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Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum
number of subsets into which the vertex set V(G) can be partitioned
so that each subset induces a subgraph whose connected components
are paths. In this paper, we seek to convert vertex linear arboricity
into its fractional analogues, i.e., the fractional vertex linear arboric-
ity of graphs. Let Z,, denote the additive group of integers modulo
n. Suppose that C C Z, \ 0 has the additional property that it is
closed under additive inverse, that is, —c € C' if and only if c € C.
A circulant graph is the graph G(Z,,C) with the vertex set Z, and
i, 7 are adjacent if and only if i — j € C. The fractional vertex linear
arboricity of the complete n-partite graph, the cycle C,,, the integer
distance graph G(D) for D = {1,2,--- ;m}, D = {2,3,--- ,m} and
D = P the set of all prime numbers, the Petersen graph and the cir-
culant graph Go,» = G(Z,,C) with C = {—a+b,--- ,=b,b,--- ,a—b}
(a—2b > b—3 > 3) are determined, and an upper and a lower bounds
of the fractional vertex linear arboricity of Mycielski graph are ob-
tained.

Keywords: Fractional vertex linear arboricity; integer distance
graph; complete n—partite graph; Petersen graph; circulant graph
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1 Introduction

In this paper, R and Z denote the set of all real numbers and all integers,
respectively. For z € R, |z] denotes the greatest integer not exceeding x;
[x] denotes the least integer not less than . For a finite set S, |.S| denotes

the cardinality of S. If H is a subgraph of G, then G is called a supergraph



of H (see [3]).

A k-coloring of a graph G is a mapping f from V(G) to {1,2,...,k}.
With respect to a given k—coloring, V; denotes the set of all vertices of G
colored with 7.

If V; is an independent set for every 1 < i < k, then f is called a proper
k—coloring. The chromatic number x(G) of a graph G is the minimum
number k of colors for which G has a proper k—coloring. If V; induces a
subgraph whose connected components are paths, then f is called a path k—
coloring. The vertex linear arboricity of a graph G, denoted by vla(G),
is the minimum number £ of colors for which G has a path k—coloring.

Matsumoto [10] proved that for any finite graph G, vla(G) < [%],
moreover, if A(G) is even, then via(G) = [%1 if and only if G is the
complete graph of order A(G) 4+ 1 or a cycle. Goddard [8] and Poh [11]
proved that vla(G) < 3 for a planar graph G. Akiyama etal. [1] proved
vla(G) < 2 if G is an outerplanar graph. Fang and Wu [7] determined the
vertex linear arboricity of complete multipartite graphs and obtained an
upper bound on the vertex linear arboricity of cartesian product of graphs.
Alavi etal. [2] proved that via(G) + vla(G) < 1+ [%H] for any graph G
of order n where G is the complement of G.

In this paper, we seek to convert the vertex linear arboricity into its

fractional analogues.

2 Main results and their proofs

A hypergraph H is a pair (V(H), x), where V(H) is a finite set and y is
a family of subsets of V/(H). The set V(H) is called the vertex set of the
hypergraph and the elements of x are called hyperedges or sometimes just
edges. A covering of H is a collection of hyperedges L1, Lo, -, L; such
that V.C Ly U---UL;.



A graph G whose connected components are pathes is called a linear
forest.

For any finite graph G, let LF be the set of all subsets of V' that induce
linear forests of G and V' be the vertex set of G, then H = (V,LF) is a
hypergraph and the elements of LF are hyperedges.

An automorphism of a hypergraph H is a bijection 7 : V(H) — V(H)
with the property that X is a hyperedge if and only if 7(X) is a hyperedge
as well. The set of all automorphisms of a hypergraph forms a group under
the operation of composition; this group is called the automorphism group
of the hypergraph. A hypergraph H is called vertex-transitive provided for
every pair of vertices u,v € V(H) there exists an automorphism of H with
m(u) = v(see[12]).

The vertex linear arboricity of a finite graph G can be formulated as
an integer program. To each set L; € LF associate a 0,1— variable z;.
The vector X is an indicator of the sets we have selected for the covering.
Let M be the vertex-linear forest incidence matrix of G, i.e., the 0,1—
matrix whose rows are indexed by V(G), whose columns are indexed by
LF, and whose i, j—entry is exactly 1 when v; € L;. The condition that
the indicator vector X corresponds to a covering is simply M X > 1 (that
is, every coordinate of M X is at least 1). Hence the vertex linear arboricity

of GG is the value of the integer program

min 1’ X
MX >1,

subject tog x; =0 or 1, (1)
i=1,2,---,|LF|.

The relaxation of the integer program (1) is the following linear program

min 1’ X
MX >1,

subjecttoq 0 <uax; <1, (2)
1=1,2, ,|LF),



and the value of (2) is called the fractional vertex linear arboricity of G. In
other word, we can define the fractional vertex linear arboricity vias(G) of

any graph G as followings.

Definition 2.1. A fractional path coloring of a graph G (can be infinite)
is a mapping ¢ from LF(G), the set of all subsets of V' that induce linear
forests of G, to the interval [0,1] such that 3-, crcppq c(L) = 1 for all
vertices x in G. The weight of a fractional path coloring is the sum of
its values, and the fractional vertex linear arboricity of the graph G is the
minimum possible weight of a fractional path coloring, that is,

vlar(G) = min{ Z ¢(L) | ¢ is a fractional path coloring of G}.

LeLF(G)

Clearly, we have viay(H) < vlay(G) for any subgraph H of G.

If f is a path vla(G)—coloring of G and V; = {v|v € V(G), f(v) =i}
(1 <i <wla(G)), then we can give a mapping ¢: LF — [0, 1] by

[ 1, for L=V, 1<i<wla(G),
o(l) = { 0, otherwise,

such that ¢ is a fractional path coloring of G which has weight vla(G).
Therefore, it follows immediately that vlaf(G) < via(G).

Conversely, suppose that G has a 0, 1—valued fractional path coloring f
of weight k. Then the support of f consists of k linear forests V7, Vo, -+, Vi
whose union is V(G). If we color a vertex v with the smallest ¢ such that
v € V;, then we have a path k—coloring of G. Thus the vertex linear
arboricity of G is the minimum weight of a 0,1—valued fractional path
coloring.

The dual LP of (2) is the following linear program

max 1Y
MY <1,

subject toq 0 <y; <1, (3)
1=1,2-- V]



Thus if we define f to take the value f(v) on each vertex of the vertex set V'
with 0 < f(v) <1land M'Y <1for Y = (f(v1),--, f(vn)) with n = |V],
then Y is a feasible solution of (3).

(2) and (3) form a dual pair. Suppose that w is the value of the opti-
mization problem (3), then w < vlas(G) by the weak duality theorem from

linear programming. Hence we have the following lemma.

Lemma 2.2. Let G be a finite graph, e = max{|X| : X € LF}, then

vlag(G) > —‘V(eG)‘.

Proof. If we assign each vertex of H weight é, then we have a feasible

solution of (3). Thus via;(G) > &f)l O
Therefore, vlay(G) > 1 for any nonempty graph G.

Theorem 2.3. For any complete n—partite graph G = K(my,ma, -+ ,my)

(n=2),

n, formi=mg=---=m, =m >3,
%", formi=mg=---=m, =m=2,
vlap(G) = 5 formi=mg=---=m, =1,
n—2, formi=mo=-=mp_1=23and my, =1,
n—g, formi=mo=---=myu_1 =3 and m,, = 2.
Proof. Suppose that X1, X, -+, X,, are n-partite of V(@) such that | X;| =

m; for 1 < i <n. Let H= (V,LF) have V = V(G) and LF the set of all
subsets of V' which induced linear forests of G.

(1) When m > 3, it is straight forward to verify that e = max{|X] :
X € LF} = m. So vlag(G) > 2 = n by Lemma 2.2. Define a mapping
hy: LF — [0,1] by

1, for X =2X,;, 1<i<n,
0, otherwise.

hi(X) = {

Then hq is a fractional path coloring of G which has weight n. So vla;(G) <
n. Therefore vias(G) = n.



(2) When m = 2, it is straight forward to verify that e = max{|X] :
X € LF} = 3. So vlay(G) > 2. Define a mapping hy : LF — [0,1] by

ﬁ, for | X| = 3 and there are (1 <)i < j(< n)
ha(X) = such that X C X, U X;,
0, otherwise.

The number of all 3—linear forests that contain two elements of X is
2(n—1) and the number of all 3—linear forests that contain one element of
X1is2(n—1). So there are 4(n—1)+4(n—2)+- - -+8+4 = 2(n—1)n elements
in LF that have value nonzero. Then hs is a fractional path coloring of G
which has weight ﬁ%n —1)n = 22, Hence vlay(G) < 2*. Therefore
vlag(G) = 2.

(3) For my =mg = --- = m, = 1, define a mapping hs : LF' — [0, 1] by

! if |L] =2,

_ n—1’
hia(X) = { 0, otherwise.

Then hj is a fractional path coloring of G' which has weight 3. Thus
vlag(G) < §. It is straight forward to verify that e = max{|X|: X €
LF} =2, 50 vlag(G) > Y9 — 2 Hence, vlas(G) = 2.

(4) For my = -+ = my—1 = 3 and m,, = 1, it is easy to prove that
e =max{|X|: X € LF} = 3, then vla,(G) > LEG)I =n—-1+1=n-2
Let X,, = {v}. There are C3(n — 1) = 3(n — 1) members in LF, assuming
them to form T}, that contain v and have cardinality 3, and 1 + C23(n —
2)+3(n—2)C2+1+C23(n—3)+3(n—3)C%+---+1+C23+3C3 +1=
14+18(n—2)+14+18(n—3)+1+---+18+1 = (n—1)(9n—17) members in
LF', assuming them to form 75, that have cardinality 3 and do not contain
v. Every vertex of X,;(1 <4 < n — 1) is contained in two members of T}
and C3(n —2) +2Ci(n —2) +1 = 9(n — 2) + 1 members of Ty (the first
part in the sum is the number of members that contain one element of X;

and the second part in the sum is the number of members that contain two



elements of X;). Define a mapping hy : LF — [0,1] by

ﬁ, when X,, C X and |X| = 3,
ha(X) = %, when X,, X = ¢ and | X| = 3,
0, else.
Then hy is a fractional path coloring of G which has weight 3(n—1) ﬁ +
(n—l)(9n—17)% =143 = n—1+3,sovlaf(G) < n—1+1%.

Hence vlay(G) =n—1+3=n— 2.

(5) Let | X,,| = 2. There are C3(n—1)+2C3(n—1) = 9(n— 1) members
of LF, assuming them to form Hi, that contain vertices of X, and have
cardinality 3, and C1C3(n—2)+C3C3(n—2)+1+C3C%(n—3)+C3C3(n—
3)+1+ - +CIC2+C2CE+1+1=18(n—2)+1+18(n—3)+1+---+
184+ 1+1=(n—1)(9n — 17) members of LF, assuming them to form Hs,
that do not contain vertices of X,, and have cardinality 3. Every vertex of
X, is contained in C}(n — 1)+ C3(n — 1) = 6(n — 1) members of H; and
every vertex of X;(1 <i <n—1) is contained in 1+ 2+ 2 = 5 members of
Hy and C3(n —2) +2C3(n —2) +1=9(n —2) + 1 members in Hy. Define

a mapping hs by

@, for X € Hl,
h5(X): Wm, fOrXEHQ,
0, else.

Then hs is a fractional path coloring of G which has weight 9(n —
It is obvious that e = max{|X| : X € LF} = 3, and then vilas(G) >

LeG)I =n-— % Therefore vias(G) =n — %

O

In these cases, we have vla(G) = [vlay(G)]. For example, in (2) of
Theorem 2.3, any four vertices induce a cycle, so that via(G) = [22] =
[vlaf(G)]. In (5) of Theorem 2.3, it is obvious that vla(G) = n since any

four vertices induce a Ky 3 or a cycle, so that vla(G) =n = [n — 1] =

[vlag(G)].



Theorem 2.4. vlay(C,) = -2=.

n—1
Proof. Suppose that C,, = a1as---anay. Let L; = aja;41 - - @j4+n—2 which
subscripts with addition modulo n and 1 < ¢ < n. It is obvious that every
a; is contained in exactly n — 1 paths Ly, -+ ,L;, Ljy2, -, Ly. Define a
mapping ¢: LF — [0,1] by

1 ; — 7. =
c(L)_{"l’ ifL="L;,j7=0,1,---,n,

0, otherwise.
Then cis a fractional path coloring of C,, which has weight ¥1c1r(c,)c(L) =
7, s0 vlag(C,) < 5. Clearly, the length of the longest induced path

in C,, is n — 1, hence vlay(C,) > 5. Therefore viay(Cp) = 5. O

n—1

Clearly, vla(C,,) = 2 = [vlas(Cy)].

If S is a subset of the set of real numbers and D is a subset of the set of
positive real numbers, then the distance graph G(S, D) is defined by the
graph G with vertex set V(G) = S and two vertices « and y are adjacent
if and only if |z — y| € D where the set D is called the distance set. In
particular, if all elements of D are positive integers and S = Z, the set of all
integers, then the graph G(Z, D) = G(D) is called integer distance graph
and the set D is called the integer distance set of the graph. For the
vertex linear arboricity of distance graphs, Zuo, Wu and Liu [14] obtained
that vla(G(R, D)) = n+ 1 if D is an interval between 1 and ¢ when 1 <
n—1<3d <n,vla(G(D)) = 2if |D| > 2 and D has at most one even
number and vla(G(D)) < k if there is unique multiple of k¥ in D. Moreover,
vla(G(P)) = 2 where P is the set of all prime numbers.

It was proved that vla(G(D)) = [] for D = {1,2,---,m} in [14]
and vla(G(Dm,1)) = [F]+1for Dpy = {2,---,m} and m > 3 in [15].

Now we study the fractional vertex linear arboricity of G(D) for D =
{1,2,---,m}, Dy = Dy,1 and D3 = P the set of all prime numbers,

respectively.



Theorem 2.5. (1) For Dy = {1,2,--- ,m}, vlay(G(Dy)) = =L,
(2) For Dp1 = {2,3,---,m} and m > 5, mT"'?’ < vlaf(G(Dm,1)) <
m oy
(3) vlaf(G(P)) = 2 where P is the set of all prime numbers.
Proof. (1) Let
Lo={--,0,1lm+1m+22(m+1),2(m+1)+1,---}

Li={--,1,22m+2m+3,2(m+1)+1,2(m+1)+2,--- },
L2:{ 5273am+3am+472(m+1)+272(m+1)+37}a

Lypa={-,-2,-1,m—1,m,2m,2m+1,3m+1,3m+2,--- },

Lp={-,-1,00mm+12m+1,2m+22(m+1)+m,3(m+1),---}.
Then each of Ly, Lq,---, L, induces a linear forest and every i € Z is

contained in exactly two L;(0 < j < m). Define a mapping ¢: LF — [0, 1]

by
1 . .
5 fL=L;j=0,1,---.m
_ 29 1 jsJ s Ly 3 3
o(l) = { ,  otherwise.

Then c is a fractional path coloring of G(D;) which has weight

m+1
Yrerra(ye(L) = —

so that vlaf(G(Dy)) < =

Let H be a subgraph induced by vertices 0,1,--- ,m. Then H = K, 11
is a complete graph and so that vla;(G(D1)) > vlag(H) = ™ by Theo-
rem 2.3. Therefore, viay(G(D;)) = 2L

(2) For any ¢ with 0 <i <m+ 3, let

L;:{j6Z:j—i£x(m0dm+4),0§x§3}.

It is straightforward to verify that L, induces a linear forest in G(Dy, 1). It
is not difficult to verify that any integer is contained in exactly four such
linear forests. Define a mapping h : LF(G(Dy,1)) — [0,1] by

if L=L;,0<j<m+3,
otherwise.

w-{ b



Then h is a fractional path coloring of G(Diy,1) which has weight 2 =
o+ 1. Thus, vlay(G(Dpma) < 3 + 1.

Let G be the subgraph of G(D,,.1) induced by the vertices {0, 1,--- ,m+
2}. Thenvila;(G(Dm,1)) > vias(G). If there are five vertices 0 < ag < a1 <
o <ag <m+2inan L € LF(G), then ag — ap > m and a4 —a; > m by
the proof of Theorem 2.2 in [15]. Thusap =0, a1 =1, a3 =m+1and ag =
m + 2. Clearly, apas,azaq € E(H), so ajaz,aza3 € E(H), i.e., a3 —az =
az—ai = 1, and then as —a; = m = 2 which is contrary to the assumption.
Hence, e = max{|L|: L C V(G) and L induces a linear forest of G} = 4.
Therefore, by Lemma 2.2, vias(G(Dyp, 1)) > 2.

(3) Let L; = {n|n = i(mod2),n € Z},i = 0,1, then L; induces a linear
forest. It is obvious that every integer is contained in exactly one of these

linear forests. Define a mapping ¢ : LF — [0,1] by

1, fL=T,i=0,1,
o(L)= { 0, otherwise.

Then c is a fractional path coloring which has weight 2. So vla;(G(P)) < 2.
Suppose that H is the subgraph induced by vertices 0,1,2,---,7. It is
straightforward to verify that

e =max{|L|: L CV(H) and L induces a linear forest of H} =4

and the vertex subset {0,2,4,6} induces a path. So vlay(H) > % = 2.
Hence vlaf(G(P)) = 2. O

Clearly, vla(G(Dy)) = [vlas(G(D1))] by [14] and [vla;(G(Dm1))] =
vla(G(Dyy,1) when m = i(mod4) for ¢ # 1 by [15].

Mycielski graph is an important graph in vertex coloring. Given a graph
G, define the graph Y (G) as follows: V(Y (G)) = (V(G) x{1,2}) U{z} and
with an edge between two vertices of Y (G) if and only if

(1) one of them is z and the other is (v, 2) for some v € V(G), or

10



(2) one of them is (v,1) and the other is (w, 1) where vw € E(G), or

(3) one of them is (v,1) and the other is (w, 2) where vw € E(G).

The Grotzsch graph is Y(C5s) and Cy = Y(K3). Mycielski proved that
X(Y(G)) = x(G) + 1 for any graph G with at least one edge. For the

(fractional) vertex linear arboricity, we have the following result.

Theorem 2.6. If G is a graph with at least one edge, then

(1) via(G) < vla(Y(G)) < vla(G) + 1. In particular, vla(Y (Cs)) =
vla(Cs) and vla(Y (K2)) = via(K3) + 1.

(2) vlaf(G) < vlaf(Y(G)) <vlap(G) + 1.

Proof. (1) The first inequality is trivial. Suppose that via(G) = m and
V(1 <4 < m) is a linear forest partition of G. Let Wy,11 = {(v,2)|v €
V(@}, Wi ={z} U{(v,)|v e Vi} and W; = {(v,1)|v € V;} for 2 < i < m.
It is clear that every W;(1 < i < m + 1) induces a linear forest. So that
vla(Y(G)) < vla(G) + 1.

It is obvious that vla(Y (K3)) = vla(K3) + 1 because of C5 = Y (K3).
Let V(C5) = {v1,v2,v3,04,05}, Up = {(vs, 1)|1 < i < 4} U{z} and U =
{(v3,2)|]1 <@ <5} H{(vs,1)}. Tt is not difficult to verify that U;(i = 1,2)
induce linear forests. So vla(Y (C5)) = vla(C5) = 2.

(2) The first inequality is trivial, too. Suppose that ¢ is a fractional

path coloring of G. Let ¢; : LF(Y(G)) — [0, 1] such that

¢(Ly), for L={(v,1)|ve L, € LF(G)}U{z}
a(L) = (1), f(;r L={(v,2)lveV(G)}

Then ¢, is a fractional path coloring of Y (G) which has weight vla;(G)+1,
sovlay(Y(G)) < wvlay(G) + 1. O

The Petersen graph P is a graph with vertex set V = {a,b,c,d, e, as,
b1,c1,d1,e1} and the edge set E = {ab,be, cd, de, ea, aay, bby, ccq,ddy, eeq,

ajcy,ardy,bidy, bier, crer . We have the following result.

11



Theorem 2.7. viag(P) = 3.

Proof. It is not difficult to verify that max{|X|: X € LF} = 6. Then
vlay(P) > % = 5 by Lemma 2.2.
Let

Ly ={a,b,c,d,dy,e1}, Lo = {b,c,d,e,e1,a1},

L3 ={c¢,d,e,a,a1,b1}, Ly = {d,e,a,b,b1,c1},

L5 = {e,a,b, C,Cl,dl}, L6 = {a,al,cl,el,bl,d},
L7 = {b,bl,dl,al,cl,e}, Lg = {C, cl,el,bl,dl,a},
Lg = {d, dl,al,cl,el,b}, L10 = {e,el,bl,dl,al,c}.

Clearly, every vertex is contained in exactly six such linear forests. Define

a mapping c by

c(L)—{ g fL=1L;1<i<10,

otherwise,
then ¢ is a fractional path coloring which has weight %O = % Hence,
vlay(P) < 2 and then viag(P) = 2. O

If let h(L1) =1 and h(L11) = 2 for L1y = {a1,¢1,b1,e}, and h(L) =0
for the other L € LF, then h is a path coloring of P, so vla(P) = 2 =
[vlay(P)] since the Petersen graph has cycles.

The following graph plays an important role in fractional vertex color-
ing. Let Z,, denote the additive group of integers modulo n. Suppose that
C C Z, \ 0 has the additional property that it is closed under additive
inverse, that is, —c € C if and only if ¢ € C. A circulant graph is the
graph G(Z,,C) with the vertex set Z,, and i,j are adjacent if and only
if i —j € C. Next we consider the circulant graph G, = G(Z,, C) with
C={-a+b,---,=bb,---,a—b} (a > 2b).

Theorem 2.8. Let a and b be positive integers with a > 2b. The circulant
graph Ggyp is the graph with vertex set V(G) = {0,1,--- ,a — 1}. The
neighbors of vertex v are {v +b,v+b+1,--- , v+ a — b} with addition

12



modulo a. Then viap(Gap) = 35 and vla(Gap) = [3351 = [vlap(Gap)]
fora—2b>b—3>3.

Proof. Let a —2b > b —3 > 3. Think of the vertices of G4 as equally
spaced points around a cycle with an edge between two vertices if they
are not too near each other. Note that G, has a vertices and is vertex-
transitive. Since {v,v + 1,--- ;v + b+ 1} induces a linear forest for each
v € V(Gap), e =max{|X|: X € LF} > b+ 2.
Claim. The cardinality of the maximum linear forest of G is b + 2,
ie,e=max{|X|: X € LF} =b+2.
Assume, on the contrary, that there are b+ 3 vertices 0 < v; < v9 <
- < vp43 < a — 1 such that {vy,ve, -+ ,vp43} induces a linear forest.

Clearly, vp+3 — v1 > b+ 2. We can suppose that
(v1 — vpg3)(mod a) > max{vit1 —v; | for 1 <i<b+2} (%)

since Ggp is vertex-transitive. If (v1 — vpts)(mod a) > b, then vy is
adjacent to vertices vpyi1,vpt2 and wvpys, a contradiction. Hence, (v; —
vp+3)(mod a) < b.

Suppose that v; —v; < b—1and v;41 —v; > b for some i with 1 < i <b.
If (v —vi41)(mod a) < b, then vy —v; >a—(2b—2)=a—20+2>b—1
and (v — vpt3)(mod a) < (v1 — vi41)(mod a) — 2 < b— 2 that contradicts
(). So v1vi11 € E(Gqp). If (v1 — vir3)(mod a) > b, then vy is adjacent
t0 Viy1,vi12 and vi+3, a contradiction. Thus, (v1 — v;43)(mod a) < b.
Let j be the least integer such that (v; — v;)(mod a) < b. Then (v1 —
vg)(mod a) <bfor j <k<b+3andi+2<j<i+3.

Case 1. w; is adjacent to vy for all j <k < b+ 3.

Then j > b+ 2 (otherwise, j < b+1, then v;, vp41, Vpt2 and vp43 induce
a K1 3, a contradiction), and i > j —3>b— 1.

Subcase 1.1.If j =0+ 3, theni=j—3=0.

13



So that vp = vp—1+1 =+ =wv; +b—1 and v1Vpt1, V1Vp42, V2Vpt2 €
E(Gap), and then vovpy1 & F(Gayp), that is, vpp1 — ve < b — 1. Hence,
Upt1 — U2 = b—1 and then vp41 —v1 = Vpp1 —p+vp—v1 = 14+b—1=5. So
that vpr2 —v; = b+ 1 (otherwise, if vp12 —v; > b+ 2, then vy o is adjacent
to v1,v2 and vs, a contradiction). Thus, vp3 is adjacent to vpy1—¢, Vpra—t
and vpy3—¢ for (vy — vpy3)(mod a) =t < b, a contradiction, too.

Subcase 1.2. If j =b+2,theni>j—3=0b—1.

(1) If § = b, then v —v; = b — 1, so that vp12 is adjacent to vertices
Ubt1—tys Vbt2—t1, Ub+3—t, When (v — vpi2)(mod a) = ¢ > 3, a contradic-
tion. Thus, (v1 — vpy2)(mod a) =t <2, i.e., vpys =vp42+1=a—1 and
v; = 0 that contradict ().

(2) If i = b—1, then vp_1 —v; < b—1and vy — vy > b, so v, and
vp+1 are all adjacent to vy, and then v, — va < b — 1 (otherwise, vertices
Up, Up+1,v1 and vg induce a cycle, a contradiction). (2.1) If v, — vy =
b — 2, then vy — v1 = 2 (otherwise, if v —v; > 3, then vp_1 —v1 > b, a
contradiction; if vo — vy = 1, then v, — v1 = b — 1, a contradiction, too).
Sovy, =vp—1+1 =+ =wvy+b—2 =10 +b Thus v, is adjacent to
Upt2, Upts and v1 when (v1 — vp42)(mod a) = t; < a — 2b, a contradiction.
Hence, (v1 — vpy2)(mod a) = t1 > a — 2b > 3 and then v,15 is adjacent
t0 Upt1—ty, Vbt2—t; and vpy3—¢,, a contradiction. (2.2) If v, — vy =b—1
and vo — vy = 1, then v, —v; = b, we can get a contradiction similarly
as (2.1). (23) vy —wve =b—1and vo —v; = 2, then v, — v = b+ 1.
Thus, vp — vp_1 = 2 since vp,_1 — vy < b—1. So that vp, = vp_1 +2 =
Vp—g+3 =+ =wv2+b—1=wv; +b+1 and then vp41 —vy = b+ 2
(otherwise, vp41 — v1 > b+ 2, then vp41 is adjacent to vertices vy, ve and
v, a contradiction). Therefore, vy o is adjacent to vertices vpyo_¢,, Ub41—t,
and vp—;, when (v1 — vpq2)(mod a) = ¢ > 3, a contradiction. So that

(v1 — vpg2)(mod a) = t1 < 2 and then (v — vpts)(mod a) = 1 which
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contradicts (x). (2.4) If vy — vy =b—1 and vo — vy > 3, then vp_1 — vy =
Vp_1 — V2 + v —v1 > b— 3+ 3 = b, a contradiction, too.

Case 2. v; is not adjacent to vy, for some (j <)k(< b+ 3).

Ifj=b+3,theni>j—3=0b,s0i=>band v, =v; +b— 1. We can
get a contradiction as Subcase 1.1 similarly.

Ifj=0+2theni>j—3=>b—1. We can get a contradiction as
Subcase 1.2 similarly.

Suppose that j < b+ 1 in the following. If (v; — vg)(mod a) < b,
then v;41 — v; > (v1 — vg)(mod a) since (v;41 — v1) > b, contrary to
(%). So vy —wv; <b. If k> j+1, then (v — vg)(mod a) < b—1, so
vi—v1 >a—(b—14+b—2)=a—2b+3 > b, a contradiction. Hence, k < j
and then k = j. Moreover, j > b+ 1 and then j = b+ 1 since v; is adjacent
tov for j+1<1<b+3. Sothat b—2<i<b-—1.

Since v; —v1 < b—1 and (v1 — vp41)(mod a) < b—1, vpp1 —v; > a —
(20—2) = a—2b+2 > b—1 and then vp11 —v; = b—1. Thus, vp41 is adjacent
to vertices v;_1,v;_2 and v;_3 when v; — v;_3 < 4, a contradiction. Hence
v;—vi—3 > 4. But v;—v;—3 = v;—v1— (vVi—g—v1) < b—1—(i—4) =b—i+3 <
b—(b—2)+3=>5since v; —v; <b—1and i >b—2, so that v; —v;_3 = 5,
vi_3—v; =i—4andthena—2b=b—-3=3,v;,—v;_1=1,i=b—-2,b=6
and a = 15. Clearly, (v1 — vp41)(mod a) =5 since vp41 —vp_2 =b—1=5
and vp_2 —wv; = 5. So that (v1 — vpy3)(mod a) = ¢ < 3. If t = 3, then
Up+3 — Upt2 = Upta — Vp41 = 1 and then vz is adjacent to vertices vy, vg and
vg, a contradiction. Hence, ¢t = 2, and then vy — vy = v3 — va = 2 by (x).
Therefore, vertices v, v3,v7 and vg induce a cycle when vg — vg = 2, and
vertices v3, v7,vg and vg induce a K 3 when vg — vg = 1, a contradiction.

Therefore, the Claim is proved.

Hence, e = max{|X|: X € LF} = b+ 2, and then vlay(G) > V@& _

€
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2. Define a mapping f : LF — [0,1] by

b+2-°
1 = e <v<ag-—
fx)={ for X .{’U,U-i-l, ,2w+b+1tand 0<v<a-—1,
0, otherwise.
Then f is a fractional path coloring of GGy, which has weight ab% = 513
Hence, viaf(G) < 45, and then viay(G) = 5.
Therefore via(Gap) > [4351. Let {i(b+2),i(b+2)+1,- - ,i(b+2)+b+1}

be colored with i for 0 <7 <[5 ]—1and {([;35]-1)(0+2), ([3351-1)(b+
2)+1,--+,a—1} be colored with [;¢5]—1. This is a path coloring of Gq,p,
so that vla(Gap) < [355]. Hence via(Gap) = [3351 = [viag(Gap)]. O
Remarks: 1. We conjecture: the Claim of Theorem 2.8 holds for any
a > 2b+ 2. So Theorem 2.8 holds in this case.
2. We only discussed several cases of complete n—partite graphs in

Theorem 2.3, the other cases can be studied similarly.
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