The Fractional Vertex Linear Arboricity of Graphs

Lian-Cui Zuo ${ }^{1,2}$, Jian-Liang Wu ${ }^{2}$ and Jia-Zhuang Liu ${ }^{2}$
1.Center for Combinatorics, Nankai University, Tianjin, 300071, China
2.School of Mathematics, Shandong University, Jinan, 250100, China

Abstract

The vertex linear arboricity $v l a(G)$ of a graph G is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces a subgraph whose connected components are paths. In this paper, we seek to convert vertex linear arboricity into its fractional analogues, i.e., the fractional vertex linear arboricity of graphs. Let Z_{n} denote the additive group of integers modulo n. Suppose that $C \subseteq Z_{n} \backslash 0$ has the additional property that it is closed under additive inverse, that is, $-c \in C$ if and only if $c \in C$. A circulant graph is the graph $G\left(Z_{n}, C\right)$ with the vertex set Z_{n} and i, j are adjacent if and only if $i-j \in C$. The fractional vertex linear arboricity of the complete n-partite graph, the cycle C_{n}, the integer distance graph $G(D)$ for $D=\{1,2, \cdots, m\}, D=\{2,3, \cdots, m\}$ and $D=P$ the set of all prime numbers, the Petersen graph and the circulant graph $G_{a, b}=G\left(Z_{a}, C\right)$ with $C=\{-a+b, \cdots,-b, b, \cdots, a-b\}$ $(a-2 b \geq b-3 \geq 3)$ are determined, and an upper and a lower bounds of the fractional vertex linear arboricity of Mycielski graph are obtained.

Keywords: Fractional vertex linear arboricity; integer distance graph; complete n-partite graph; Petersen graph; circulant graph $G_{a, b}$

1 Introduction

In this paper, R and Z denote the set of all real numbers and all integers, respectively. For $x \in R,\lfloor x\rfloor$ denotes the greatest integer not exceeding x; $\lceil x\rceil$ denotes the least integer not less than x. For a finite set $\mathrm{S},|S|$ denotes the cardinality of S. If H is a subgraph of G, then G is called a supergraph
of H (see [3]).
A k-coloring of a graph G is a mapping f from $V(G)$ to $\{1,2, \ldots, k\}$. With respect to a given k-coloring, V_{i} denotes the set of all vertices of G colored with i.

If V_{i} is an independent set for every $1 \leq i \leq k$, then f is called a proper k-coloring. The chromatic number $\chi(G)$ of a graph G is the minimum number k of colors for which G has a proper k-coloring. If V_{i} induces a subgraph whose connected components are paths, then f is called a path $k-$ coloring. The vertex linear arboricity of a graph G, denoted by $\operatorname{vla}(G)$, is the minimum number k of colors for which G has a path k-coloring.

Matsumoto [10] proved that for any finite graph G, vla $(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$, moreover, if $\Delta(G)$ is even, then $v l a(G)=\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ if and only if G is the complete graph of order $\Delta(G)+1$ or a cycle. Goddard [8] and Poh [11] proved that $\operatorname{vla}(G) \leq 3$ for a planar graph G. Akiyama et al. [1] proved $v l a(G) \leq 2$ if G is an outerplanar graph. Fang and $\mathrm{Wu}[7]$ determined the vertex linear arboricity of complete multipartite graphs and obtained an upper bound on the vertex linear arboricity of cartesian product of graphs. Alavi et al. [2] proved that $v l a(G)+v l a(\bar{G}) \leq 1+\left\lceil\frac{n+1}{2}\right\rceil$ for any graph G of order n where \bar{G} is the complement of G.

In this paper, we seek to convert the vertex linear arboricity into its fractional analogues.

2 Main results and their proofs

A hypergraph H is a pair $(V(H), \chi)$, where $V(H)$ is a finite set and χ is a family of subsets of $V(H)$. The set $V(H)$ is called the vertex set of the hypergraph and the elements of χ are called hyperedges or sometimes just edges. A covering of H is a collection of hyperedges $L_{1}, L_{2}, \cdots, L_{j}$ such that $V \subseteq L_{1} \cup \cdots \cup L_{j}$.

A graph G whose connected components are pathes is called a linear forest.

For any finite graph G, let $L F$ be the set of all subsets of V that induce linear forests of G and V be the vertex set of G, then $H=(V, L F)$ is a hypergraph and the elements of $L F$ are hyperedges.

An automorphism of a hypergraph H is a bijection $\pi: V(H) \longrightarrow V(H)$ with the property that X is a hyperedge if and only if $\pi(X)$ is a hyperedge as well. The set of all automorphisms of a hypergraph forms a group under the operation of composition; this group is called the automorphism group of the hypergraph. A hypergraph H is called vertex-transitive provided for every pair of vertices $u, v \in V(H)$ there exists an automorphism of H with $\pi(u)=v(\operatorname{see}[12])$.

The vertex linear arboricity of a finite graph G can be formulated as an integer program. To each set $L_{i} \in L F$ associate a $0,1-$ variable x_{i}. The vector X is an indicator of the sets we have selected for the covering. Let M be the vertex-linear forest incidence matrix of G, i.e., the $0,1-$ matrix whose rows are indexed by $V(G)$, whose columns are indexed by $L F$, and whose i, j-entry is exactly 1 when $v_{i} \in L_{j}$. The condition that the indicator vector X corresponds to a covering is simply $M X \geq \mathbf{1}$ (that is, every coordinate of $M X$ is at least 1). Hence the vertex linear arboricity of G is the value of the integer program

$$
\begin{align*}
& \min 1^{\prime} X \\
& \text { subject to }
\end{aligned} \begin{aligned}
& M X \geq \mathbf{1}, \tag{1}\\
& x_{i}=0 \text { or } 1, \\
& i=1,2, \cdots,|L F| .
\end{align*}
$$

The relaxation of the integer program (1) is the following linear program

$$
\begin{align*}
& \min 1^{\prime} X \\
& \text { subject to }
\end{align*}\left\{\begin{array}{l}
M X \geq \mathbf{1} \tag{2}\\
0 \leq x_{i} \leq 1 \\
i=1,2, \cdots,|L F|
\end{array}\right.
$$

and the value of (2) is called the fractional vertex linear arboricity of G. In other word, we can define the fractional vertex linear arboricity $v l a_{f}(G)$ of any graph G as followings.

Definition 2.1. A fractional path coloring of a graph G (can be infinite) is a mapping c from $\operatorname{LF}(G)$, the set of all subsets of V that induce linear forests of G, to the interval $[0,1]$ such that $\sum_{x \in L \in L F(G)} c(L) \geq 1$ for all vertices x in G. The weight of a fractional path coloring is the sum of its values, and the fractional vertex linear arboricity of the graph G is the minimum possible weight of a fractional path coloring, that is,

$$
v l a_{f}(G)=\min \left\{\sum_{L \in L F(G)} c(L) \mid c \text { is a fractional path coloring of } G\right\} .
$$

Clearly, we have $v l a_{f}(H) \leq v l a_{f}(G)$ for any subgraph H of G.
If f is a path $v l a(G)$-coloring of G and $V_{i}=\{v \mid v \in V(G), f(v)=i\}$ $(1 \leq i \leq \operatorname{vla}(G))$, then we can give a mapping $c: L F \longrightarrow[0,1]$ by

$$
c(L)= \begin{cases}1, & \text { for } L=V_{i}, 1 \leq i \leq \operatorname{vla}(G) \\ 0, & \text { otherwise }\end{cases}
$$

such that c is a fractional path coloring of G which has weight $v l a(G)$.
Therefore, it follows immediately that $v l a_{f}(G) \leq v l a(G)$.
Conversely, suppose that G has a 0,1 -valued fractional path coloring f of weight k. Then the support of f consists of k linear forests $V_{1}, V_{2}, \cdots, V_{k}$ whose union is $V(G)$. If we color a vertex v with the smallest i such that $v \in V_{i}$, then we have a path k-coloring of G. Thus the vertex linear arboricity of G is the minimum weight of a 0,1 -valued fractional path coloring.

The dual LP of (2) is the following linear program
$\max 1^{\prime} Y$
subject to $\left\{\begin{array}{l}M^{\prime} Y \leq \mathbf{1}, \\ 0 \leq y_{i} \leq 1, \\ i=1,2, \cdots,|V| .\end{array}\right.$

Thus if we define f to take the value $f(v)$ on each vertex of the vertex set V with $0 \leq f(v) \leq 1$ and $M^{\prime} Y \leq \mathbf{1}$ for $Y=\left(f\left(v_{1}\right), \cdots, f\left(v_{n}\right)\right)^{\prime}$ with $n=|V|$, then Y is a feasible solution of (3).
(2) and (3) form a dual pair. Suppose that ω is the value of the optimization problem (3), then $\omega \leq v l a_{f}(G)$ by the weak duality theorem from linear programming. Hence we have the following lemma.

Lemma 2.2. Let G be a finite graph, $e=\max \{|X|: X \in L F\}$, then $v l a_{f}(G) \geq \frac{|V(G)|}{e}$.

Proof. If we assign each vertex of H weight $\frac{1}{e}$, then we have a feasible solution of (3). Thus $v l a f_{f}(G) \geq \frac{|V(G)|}{e}$.

Therefore, $v \operatorname{la}_{f}(G) \geq 1$ for any nonempty graph G.
Theorem 2.3. For any complete n-partite graph $G=K\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ $(n \geq 2)$,

$$
\operatorname{vla}_{f}(G)= \begin{cases}n, & \text { for } m_{1}=m_{2}=\cdots=m_{n}=m \geq 3 \\ \frac{2 n}{3}, & \text { for } m_{1}=m_{2}=\cdots=m_{n}=m=2 \\ \frac{n}{2}, & \text { for } m_{1}=m_{2}=\cdots=m_{n}=1, \\ n-\frac{2}{3}, & \text { for } m_{1}=m_{2}=\cdots=m_{n-1}=3 \text { and } m_{n}=1 \\ n-\frac{1}{3}, & \text { for } m_{1}=m_{2}=\cdots=m_{n-1}=3 \text { and } m_{n}=2\end{cases}
$$

Proof. Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are n-partite of $V(G)$ such that $\left|X_{i}\right|=$ m_{i} for $1 \leq i \leq n$. Let $H=(V, L F)$ have $V=V(G)$ and $L F$ the set of all subsets of V which induced linear forests of G.
(1) When $m \geq 3$, it is straight forward to verify that $e=\max \{|X|$: $X \in L F\}=m$. So $v l a_{f}(G) \geq \frac{m n}{m}=n$ by Lemma 2.2. Define a mapping $h_{1}: L F \longrightarrow[0,1]$ by

$$
h_{1}(X)= \begin{cases}1, & \text { for } X=X_{i}, 1 \leq i \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Then h_{1} is a fractional path coloring of G which has weight n. So $v l a_{f}(G) \leq$ n. Therefore $v l a_{f}(G)=n$.
(2) When $m=2$, it is straight forward to verify that $e=\max \{|X|$: $X \in L F\}=3$. So $v l a_{f}(G) \geq \frac{2 n}{3}$. Define a mapping $h_{2}: L F \rightarrow[0,1]$ by

$$
h_{2}(X)= \begin{cases}\frac{1}{3(n-1)}, & \text { for }|X|=3 \text { and there are }(1 \leq) i<j(\leq n) \\ 0, & \text { such that } X \subseteq X_{i} \cup X_{j} \\ \text { otherwise. }\end{cases}
$$

The number of all 3-linear forests that contain two elements of X_{1} is $2(n-1)$ and the number of all 3 -linear forests that contain one element of X_{1} is $2(n-1)$. So there are $4(n-1)+4(n-2)+\cdots+8+4=2(n-1) n$ elements in $L F$ that have value nonzero. Then h_{2} is a fractional path coloring of G which has weight $\frac{1}{3(n-1)} 2(n-1) n=\frac{2 n}{3}$. Hence $v l a_{f}(G) \leq \frac{2 n}{3}$. Therefore $v l a_{f}(G)=\frac{2 n}{3}$.
(3) For $m_{1}=m_{2}=\cdots=m_{n}=1$, define a mapping $h_{3}: L F \rightarrow[0,1]$ by

$$
h_{3}(X)= \begin{cases}\frac{1}{n-1}, & \text { if }|L|=2 \\ 0, & \text { otherwise }\end{cases}
$$

Then h_{3} is a fractional path coloring of G which has weight $\frac{n}{2}$. Thus $v l a_{f}(G) \leq \frac{n}{2}$. It is straight forward to verify that $e=\max \{|X|: X \in$ $L F\}=2$, so $v l a_{f}(G) \geq \frac{|V(G)|}{e}=\frac{n}{2}$. Hence, $v l a_{f}(G)=\frac{n}{2}$.
(4) For $m_{1}=\cdots=m_{n-1}=3$ and $m_{n}=1$, it is easy to prove that $e=\max \{|X|: X \in L F\}=3$, then $\operatorname{vla}_{f}(G) \geq \frac{|V(G)|}{e}=n-1+\frac{1}{3}=n-\frac{2}{3}$. Let $X_{n}=\{v\}$. There are $C_{3}^{2}(n-1)=3(n-1)$ members in $L F$, assuming them to form T_{1}, that contain v and have cardinality 3 , and $1+C_{3}^{2} 3(n-$ $2)+3(n-2) C_{3}^{2}+1+C_{3}^{2} 3(n-3)+3(n-3) C_{3}^{2}+\cdots+1+C_{3}^{2} 3+3 C_{3}^{2}+1=$ $1+18(n-2)+1+18(n-3)+1+\cdots+18+1=(n-1)(9 n-17)$ members in $L F$, assuming them to form T_{2}, that have cardinality 3 and do not contain v. Every vertex of $X_{i}(1 \leq i \leq n-1)$ is contained in two members of T_{1} and $C_{3}^{2}(n-2)+2 C_{3}^{1}(n-2)+1=9(n-2)+1$ members of T_{2} (the first part in the sum is the number of members that contain one element of X_{i} and the second part in the sum is the number of members that contain two
elements of X_{i}). Define a mapping $h_{4}: L F \rightarrow[0,1]$ by

$$
h_{4}(X)= \begin{cases}\frac{1}{3(n-1)}, & \text { when } X_{n} \subseteq X \text { and }|X|=3 \\ \frac{3 n-5}{3(n-1)[9(n-2)+1]}, & \text { when } X_{n} \bigcap X=\phi \text { and }|X|=3 \\ 0, & \text { else. }\end{cases}
$$

Then h_{4} is a fractional path coloring of G which has weight $3(n-1) \frac{1}{3(n-1)}+$ $(n-1)(9 n-17) \frac{3 n-5}{3(n-1)(9 n-17)}=1+\frac{3 n-5}{3}=n-1+\frac{1}{3}$, so $v l a_{f}(G) \leq n-1+\frac{1}{3}$. Hence $\operatorname{vla}_{f}(G)=n-1+\frac{1}{3}=n-\frac{2}{3}$.
(5) Let $\left|X_{n}\right|=2$. There are $C_{3}^{1}(n-1)+2 C_{3}^{2}(n-1)=9(n-1)$ members of $L F$, assuming them to form H_{1}, that contain vertices of X_{n} and have cardinality 3 , and $C_{3}^{1} C_{3}^{2}(n-2)+C_{3}^{2} C_{3}^{1}(n-2)+1+C_{3}^{1} C_{3}^{2}(n-3)+C_{3}^{2} C_{3}^{1}(n-$ $3)+1+\cdots+C_{3}^{1} C_{3}^{2}+C_{3}^{2} C_{3}^{1}+1+1=18(n-2)+1+18(n-3)+1+\cdots+$ $18+1+1=(n-1)(9 n-17)$ members of $L F$, assuming them to form H_{2}, that do not contain vertices of X_{n} and have cardinality 3. Every vertex of X_{n} is contained in $C_{3}^{1}(n-1)+C_{3}^{2}(n-1)=6(n-1)$ members of H_{1} and every vertex of $X_{i}(1 \leq i \leq n-1)$ is contained in $1+2+2=5$ members of H_{1} and $C_{3}^{2}(n-2)+2 C_{3}^{1}(n-2)+1=9(n-2)+1$ members in H_{2}. Define a mapping h_{5} by

$$
h_{5}(X)= \begin{cases}\frac{1}{6(n-1)}, & \text { for } X \in H_{1} \\ \frac{6 n-11}{6(n-1)[9(n-2)+1]}, & \text { for } X \in H_{2} \\ 0, & \text { else. }\end{cases}
$$

Then h_{5} is a fractional path coloring of G which has weight $9(n-$ 1) $\frac{1}{6(n-1)}+(n-1)(9 n-17) \frac{6 n-11}{6(n-1)[9(n-2)+1]}=n-\frac{1}{3}$. Thus $\operatorname{vla}_{f}(G) \leq n-\frac{1}{3}$. It is obvious that $e=\max \{|X|: X \in L F\}=3$, and then $\operatorname{vla}_{f}(G) \geq$ $\frac{|V(G)|}{e}=n-\frac{1}{3}$. Therefore $\operatorname{vla}_{f}(G)=n-\frac{1}{3}$.

In these cases, we have $v l a(G)=\left\lceil v l a_{f}(G)\right\rceil$. For example, in (2) of Theorem 2.3, any four vertices induce a cycle, so that $\operatorname{vla}(G)=\left\lceil\frac{2 n}{3}\right\rceil=$ $\left\lceil v l a_{f}(G)\right\rceil$. In (5) of Theorem 2.3, it is obvious that $v l a(G)=n$ since any four vertices induce a $K_{1,3}$ or a cycle, so that $\operatorname{vla}(G)=n=\left\lceil n-\frac{1}{3}\right\rceil=$ $\left\lceil v l a_{f}(G)\right\rceil$.

Theorem 2.4. $\operatorname{vla}_{f}\left(C_{n}\right)=\frac{n}{n-1}$.
Proof. Suppose that $C_{n}=a_{1} a_{2} \cdots a_{n} a_{1}$. Let $L_{i}=a_{i} a_{i+1} \cdots a_{i+n-2}$ which subscripts with addition modulo n and $1 \leq i \leq n$. It is obvious that every a_{j} is contained in exactly $n-1$ paths $L_{1}, \cdots, L_{j}, L_{j+2}, \cdots, L_{n}$. Define a mapping $c: L F \rightarrow[0,1]$ by

$$
c(L)= \begin{cases}\frac{1}{n-1}, & \text { if } L=L_{j}, j=0,1, \cdots, n \\ 0, & \text { otherwise }\end{cases}
$$

Then c is a fractional path coloring of C_{n} which has weight $\Sigma_{L \in L F\left(C_{n}\right)} c(L)=$ $\frac{n}{n-1}$, so $v l a_{f}\left(C_{n}\right) \leq \frac{n}{n-1}$. Clearly, the length of the longest induced path in C_{n} is $n-1$, hence $v l a_{f}\left(C_{n}\right) \geq \frac{n}{n-1}$. Therefore $\operatorname{vla}_{f}\left(C_{n}\right)=\frac{n}{n-1}$.

Clearly, $\operatorname{vla}\left(C_{n}\right)=2=\left\lceil v \operatorname{la}_{f}\left(C_{n}\right)\right\rceil$.
If S is a subset of the set of real numbers and D is a subset of the set of positive real numbers, then the distance $\operatorname{graph} G(S, D)$ is defined by the graph G with vertex set $V(G)=S$ and two vertices x and y are adjacent if and only if $|x-y| \in D$ where the set D is called the distance set. In particular, if all elements of D are positive integers and $S=Z$, the set of all integers, then the graph $G(Z, D)=G(D)$ is called integer distance graph and the set D is called the integer distance set of the graph. For the vertex linear arboricity of distance graphs, Zuo, Wu and Liu [14] obtained that $\operatorname{vla}(G(R, D))=n+1$ if D is an interval between 1 and δ when $1 \leq$ $n-1<\delta \leq n, \operatorname{vla}(G(D))=2$ if $|D| \geq 2$ and D has at most one even number and $v l a(G(D)) \leq k$ if there is unique multiple of k in D. Moreover, $v l a(G(P))=2$ where P is the set of all prime numbers.

It was proved that $v l a(G(D))=\left\lceil\frac{m+1}{2}\right\rceil$ for $D=\{1,2, \cdots, m\}$ in [14] and $\operatorname{vla}\left(G\left(D_{m, 1}\right)\right)=\left\lceil\frac{m}{4}\right\rceil+1$ for $D_{m, 1}=\{2, \cdots, m\}$ and $m \geq 3$ in [15].

Now we study the fractional vertex linear arboricity of $G(D)$ for $D_{1}=$ $\{1,2, \cdots, m\}, D_{2}=D_{m, 1}$ and $D_{3}=P$ the set of all prime numbers, respectively.

Theorem 2.5. (1) For $D_{1}=\{1,2, \cdots, m\}$, vla $\left(G\left(D_{1}\right)\right)=\frac{m+1}{2}$.
(2) For $D_{m, 1}=\{2,3, \cdots, m\}$ and $m \geq 5, \frac{m+3}{4} \leq \operatorname{vla}_{f}\left(G\left(D_{m, 1}\right)\right) \leq$ $\frac{m}{4}+1$.
(3) $\operatorname{vla}_{f}(G(P))=2$ where P is the set of all prime numbers.

Proof. (1) Let

$$
\begin{aligned}
& L_{0}=\{\cdots, 0,1, m+1, m+2,2(m+1), 2(m+1)+1, \cdots\} \\
& L_{1}=\{\cdots, 1,2, m+2, m+3,2(m+1)+1,2(m+1)+2, \cdots\} \\
& L_{2}=\{\cdots, 2,3, m+3, m+4,2(m+1)+2,2(m+1)+3, \cdots\} \\
& \vdots \\
& L_{m-1}=\{\cdots,-2,-1, m-1, m, 2 m, 2 m+1,3 m+1,3 m+2, \cdots\}, \\
& L_{m}=\{\cdots,-1,0, m, m+1,2 m+1,2 m+2,2(m+1)+m, 3(m+1), \cdots\} .
\end{aligned}
$$

Then each of $L_{0}, L_{1}, \cdots, L_{m}$ induces a linear forest and every $i \in Z$ is contained in exactly two $L_{j}(0 \leq j \leq m)$. Define a mapping $c: L F \rightarrow[0,1]$
by

$$
c(L)= \begin{cases}\frac{1}{2}, & \text { if } L=L_{j}, j=0,1, \cdots, m \\ 0, & \text { otherwise }\end{cases}
$$

Then c is a fractional path coloring of $G\left(D_{1}\right)$ which has weight

$$
\Sigma_{L \in L F\left(G\left(D_{1}\right)\right)} c(L)=\frac{m+1}{2}
$$

so that $v \operatorname{la}_{f}\left(G\left(D_{1}\right)\right) \leq \frac{m+1}{2}$.
Let H be a subgraph induced by vertices $0,1, \cdots, m$. Then $H=K_{m+1}$ is a complete graph and so that $v l a_{f}\left(G\left(D_{1}\right)\right) \geq v l a_{f}(H)=\frac{m+1}{2}$ by Theorem 2.3. Therefore, $\operatorname{vla}_{f}\left(G\left(D_{1}\right)\right)=\frac{m+1}{2}$.
(2) For any i with $0 \leq i \leq m+3$, let

$$
L_{i}^{\prime}=\{j \in Z: j-i \equiv x(\bmod m+4), 0 \leq x \leq 3\}
$$

It is straightforward to verify that L_{i}^{\prime} induces a linear forest in $G\left(D_{m, 1}\right)$. It is not difficult to verify that any integer is contained in exactly four such linear forests. Define a mapping $h: \operatorname{LF}\left(G\left(D_{m, 1}\right)\right) \rightarrow[0,1]$ by

$$
h(L)= \begin{cases}\frac{1}{4}, & \text { if } L=L_{j}^{\prime}, 0 \leq j \leq m+3 \\ 0, & \text { otherwise }\end{cases}
$$

Then h is a fractional path coloring of $G\left(D_{m, 1}\right)$ which has weight $\frac{m+4}{4}=$ $\frac{m}{4}+1$. Thus, $v l a_{f}\left(G\left(D_{m, 1}\right) \leq \frac{m}{4}+1\right.$.

Let G be the subgraph of $G\left(D_{m, 1}\right)$ induced by the vertices $\{0,1, \cdots, m+$ $2\}$. Then $v l a_{f}\left(G\left(D_{m, 1}\right)\right) \geq v l a_{f}(G)$. If there are five vertices $0 \leq a_{0}<a_{1}<$ $\cdots<a_{4} \leq m+2$ in an $L \in L F(G)$, then $a_{3}-a_{0}>m$ and $a_{4}-a_{1}>m$ by the proof of Theorem 2.2 in [15]. Thus $a_{0}=0, a_{1}=1, a_{3}=m+1$ and $a_{4}=$ $m+2$. Clearly, $a_{0} a_{2}, a_{2} a_{4} \in E(H)$, so $a_{1} a_{2}, a_{2} a_{3} \notin E(H)$, i.e., $a_{3}-a_{2}=$ $a_{2}-a_{1}=1$, and then $a_{3}-a_{1}=m=2$ which is contrary to the assumption. Hence, $e=\max \{|L|: L \subseteq V(G)$ and L induces a linear forest of $G\}=4$. Therefore, by Lemma 2.2, vla $\left(G\left(D_{m, 1}\right)\right) \geq \frac{m+3}{4}$.
(3) Let $\overline{L_{i}}=\{n \mid n \equiv i(\bmod 2), n \in Z\}, i=0,1$, then $\overline{L_{i}}$ induces a linear forest. It is obvious that every integer is contained in exactly one of these linear forests. Define a mapping $c: L F \rightarrow[0,1]$ by

$$
c(L)= \begin{cases}1, & \text { if } L=\overline{L_{i}}, i=0,1 \\ 0, & \text { otherwise }\end{cases}
$$

Then c is a fractional path coloring which has weight 2. So $v l a_{f}(G(P)) \leq 2$. Suppose that H is the subgraph induced by vertices $0,1,2, \cdots, 7$. It is straightforward to verify that

$$
e=\max \{|L|: L \subseteq V(H) \text { and } L \text { induces a linear forest of } H\}=4
$$

and the vertex subset $\{0,2,4,6\}$ induces a path. So $v l a_{f}(H) \geq \frac{8}{4}=2$. Hence $v l_{f}(G(P))=2$.

Clearly, $\operatorname{vla}\left(G\left(D_{1}\right)\right)=\left\lceil\operatorname{vla}_{f}\left(G\left(D_{1}\right)\right)\right\rceil$ by [14] and $\left\lceil v l a_{f}\left(G\left(D_{m, 1}\right)\right)\right\rceil=$ $\operatorname{vla}\left(G\left(D_{m, 1}\right)\right.$ when $m \equiv i(\bmod 4)$ for $i \neq 1$ by [15].

Mycielski graph is an important graph in vertex coloring. Given a graph G, define the graph $Y(G)$ as follows: $V(Y(G))=(V(G) \times\{1,2\}) \bigcup\{z\}$ and with an edge between two vertices of $Y(G)$ if and only if
(1) one of them is z and the other is $(v, 2)$ for some $v \in V(G)$, or
(2) one of them is $(v, 1)$ and the other is $(w, 1)$ where $v w \in E(G)$, or
(3) one of them is $(v, 1)$ and the other is $(w, 2)$ where $v w \in E(G)$.

The Grötzsch graph is $Y\left(C_{5}\right)$ and $C_{5}=Y\left(K_{2}\right)$. Mycielski proved that $\chi(Y(G))=\chi(G)+1$ for any graph G with at least one edge. For the (fractional) vertex linear arboricity, we have the following result.

Theorem 2.6. If G is a graph with at least one edge, then
(1) $\operatorname{vla}(G) \leq \operatorname{vla}(Y(G)) \leq \operatorname{vla}(G)+1$. In particular, $\operatorname{vla}\left(Y\left(C_{5}\right)\right)=$ $v l a\left(C_{5}\right)$ and $v l a\left(Y\left(K_{2}\right)\right)=v l a\left(K_{2}\right)+1$.
(2) $\operatorname{vla}_{f}(G) \leq v \operatorname{la}_{f}(Y(G)) \leq v l a_{f}(G)+1$.

Proof. (1) The first inequality is trivial. Suppose that $v l a(G)=m$ and $V_{i}(1 \leq i \leq m)$ is a linear forest partition of G. Let $W_{m+1}=\{(v, 2) \mid v \in$ $V(G)\}, W_{1}=\{z\} \bigcup\left\{(v, 1) \mid v \in V_{1}\right\}$ and $W_{i}=\left\{(v, 1) \mid v \in V_{i}\right\}$ for $2 \leq i \leq m$. It is clear that every $W_{i}(1 \leq i \leq m+1)$ induces a linear forest. So that $v l a(Y(G)) \leq v l a(G)+1$.

It is obvious that $\operatorname{vla}\left(Y\left(K_{2}\right)\right)=v l a\left(K_{2}\right)+1$ because of $C_{5}=Y\left(K_{2}\right)$. Let $V\left(C_{5}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, U_{1}=\left\{\left(v_{i}, 1\right) \mid 1 \leq i \leq 4\right\} \bigcup\{z\}$ and $U_{2}=$ $\left\{\left(v_{i}, 2\right) \mid 1 \leq i \leq 5\right\} \bigcup\left\{\left(v_{5}, 1\right)\right\}$. It is not difficult to verify that $U_{i}(i=1,2)$ induce linear forests. So $v l a\left(Y\left(C_{5}\right)\right)=v l a\left(C_{5}\right)=2$.
(2) The first inequality is trivial, too. Suppose that c is a fractional path coloring of G. Let $c_{1}: \operatorname{LF}(Y(G)) \rightarrow[0,1]$ such that

$$
c_{1}(L)= \begin{cases}c\left(L_{1}\right), & \text { for } L=\left\{(v, 1) \mid v \in L_{1} \in L F(G)\right\} \cup\{z\} \\ 1, & \text { for } L=\{(v, 2) \mid v \in V(G)\} \\ 0, & \text { else }\end{cases}
$$

Then c_{1} is a fractional path coloring of $Y(G)$ which has weight $v l a_{f}(G)+1$, so $v \operatorname{la}_{f}(Y(G)) \leq v \operatorname{la}_{f}(G)+1$.

The Petersen graph P is a graph with vertex set $V=\left\{a, b, c, d, e, a_{1}\right.$, $\left.b_{1}, c_{1}, d_{1}, e_{1}\right\}$ and the edge set $E=\left\{a b, b c, c d, d e, e a, a a_{1}, b b_{1}, c c_{1}, d d_{1}, e e_{1}\right.$, $\left.a_{1} c_{1}, a_{1} d_{1}, b_{1} d_{1}, b_{1} e_{1}, c_{1} e_{1}\right\}$. We have the following result.

Theorem 2.7. $v l a_{f}(P)=\frac{5}{3}$.
Proof. It is not difficult to verify that $\max \{|X|: X \in L F\}=6$. Then $\operatorname{vla}_{f}(\mathrm{P}) \geq \frac{10}{6}=\frac{5}{3}$ by Lemma 2.2.

Let

$$
\begin{aligned}
& L_{1}=\left\{a, b, c, d, d_{1}, e_{1}\right\}, L_{2}=\left\{b, c, d, e, e_{1}, a_{1}\right\} \\
& L_{3}=\left\{c, d, e, a, a_{1}, b_{1}\right\}, L_{4}=\left\{d, e, a, b, b_{1}, c_{1}\right\} \\
& L_{5}=\left\{e, a, b, c, c_{1}, d_{1}\right\}, L_{6}=\left\{a, a_{1}, c_{1}, e_{1}, b_{1}, d\right\} \\
& L_{7}=\left\{b, b_{1}, d_{1}, a_{1}, c_{1}, e\right\}, L_{8}=\left\{c, c_{1}, e_{1}, b_{1}, d_{1}, a\right\} \\
& L_{9}=\left\{d, d_{1}, a_{1}, c_{1}, e_{1}, b\right\}, L_{10}=\left\{e, e_{1}, b_{1}, d_{1}, a_{1}, c\right\} .
\end{aligned}
$$

Clearly, every vertex is contained in exactly six such linear forests. Define a mapping c by

$$
c(L)= \begin{cases}\frac{1}{6}, & \text { if } L=L_{i}, 1 \leq i \leq 10 \\ 0, & \text { otherwise }\end{cases}
$$

then c is a fractional path coloring which has weight $\frac{10}{6}=\frac{5}{3}$. Hence, $v l a_{f}(\mathrm{P}) \leq \frac{5}{3}$ and then $v l a_{f}(\mathrm{P})=\frac{5}{3}$.

If let $h\left(L_{1}\right)=1$ and $h\left(L_{11}\right)=2$ for $L_{11}=\left\{a_{1}, c_{1}, b_{1}, e\right\}$, and $h(L)=0$ for the other $L \in L F$, then h is a path coloring of P , so $\operatorname{vla}(\mathrm{P})=2=$ $\left\lceil v l a_{f}(\mathrm{P})\right\rceil$ since the Petersen graph has cycles.

The following graph plays an important role in fractional vertex coloring. Let Z_{n} denote the additive group of integers modulo n. Suppose that $C \subseteq Z_{n} \backslash 0$ has the additional property that it is closed under additive inverse, that is, $-c \in C$ if and only if $c \in C$. A circulant graph is the graph $G\left(Z_{n}, C\right)$ with the vertex set Z_{n} and i, j are adjacent if and only if $i-j \in C$. Next we consider the circulant graph $G_{a, b}=G\left(Z_{a}, C\right)$ with $C=\{-a+b, \cdots,-b, b, \cdots, a-b\}(a>2 b)$.

Theorem 2.8. Let a and b be positive integers with $a \geq 2 b$. The circulant graph $G_{a, b}$ is the graph with vertex set $V(G)=\{0,1, \cdots, a-1\}$. The neighbors of vertex v are $\{v+b, v+b+1, \cdots, v+a-b\}$ with addition
modulo a. Then vla $\left(G_{a, b}\right)=\frac{a}{b+2}$ and vla $\left(G_{a, b}\right)=\left\lceil\frac{a}{b+2}\right\rceil=\left\lceil v l a_{f}\left(G_{a, b}\right)\right\rceil$ for $a-2 b \geq b-3 \geq 3$.

Proof. Let $a-2 b \geq b-3 \geq 3$. Think of the vertices of $G_{a, b}$ as equally spaced points around a cycle with an edge between two vertices if they are not too near each other. Note that $G_{a, b}$ has a vertices and is vertextransitive. Since $\{v, v+1, \cdots, v+b+1\}$ induces a linear forest for each $v \in V\left(G_{a, b}\right), e=\max \{|X|: X \in L F\} \geq b+2$.

Claim. The cardinality of the maximum linear forest of $G_{a, b}$ is $b+2$, i.e., $e=\max \{|X|: X \in L F\}=b+2$.

Assume, on the contrary, that there are $b+3$ vertices $0 \leq v_{1}<v_{2}<$ $\cdots<v_{b+3} \leq a-1$ such that $\left\{v_{1}, v_{2}, \cdots, v_{b+3}\right\}$ induces a linear forest. Clearly, $v_{b+3}-v_{1} \geq b+2$. We can suppose that

$$
\begin{equation*}
\left(v_{1}-v_{b+3}\right)(\bmod a) \geq \max \left\{v_{i+1}-v_{i} \mid \text { for } 1 \leq i \leq b+2\right\} \tag{*}
\end{equation*}
$$

since $G_{a, b}$ is vertex-transitive. If $\left(v_{1}-v_{b+3}\right)(\bmod a) \geq b$, then v_{1} is adjacent to vertices v_{b+1}, v_{b+2} and v_{b+3}, a contradiction. Hence, $\left(v_{1}-\right.$ $\left.v_{b+3}\right)(\bmod a)<b$.

Suppose that $v_{i}-v_{1} \leq b-1$ and $v_{i+1}-v_{1} \geq b$ for some i with $1<i \leq b$. If $\left(v_{1}-v_{i+1}\right)(\bmod a)<b$, then $v_{i+1}-v_{i} \geq a-(2 b-2)=a-2 b+2 \geq b-1$ and $\left(v_{1}-v_{b+3}\right)(\bmod a) \leq\left(v_{1}-v_{i+1}\right)(\bmod a)-2<b-2$ that contradicts $(*)$. So $v_{1} v_{i+1} \in E\left(G_{a, b}\right)$. If $\left(v_{1}-v_{i+3}\right)(\bmod a) \geq b$, then v_{1} is adjacent to v_{i+1}, v_{i+2} and v_{i+3}, a contradiction. Thus, $\left(v_{1}-v_{i+3}\right)(\bmod a)<b$. Let j be the least integer such that $\left(v_{1}-v_{j}\right)(\bmod a)<b$. Then $\left(v_{1}-\right.$ $\left.v_{k}\right)(\bmod a)<b$ for $j \leq k \leq b+3$ and $i+2 \leq j \leq i+3$.

Case 1. v_{i} is adjacent to v_{k} for all $j \leq k \leq b+3$.
Then $j \geq b+2$ (otherwise, $j \leq b+1$, then v_{i}, v_{b+1}, v_{b+2} and v_{b+3} induce a $K_{1,3}$, a contradiction), and $i \geq j-3 \geq b-1$.

Subcase 1.1. If $j=b+3$, then $i=j-3=b$.

So that $v_{b}=v_{b-1}+1=\cdots=v_{1}+b-1$ and $v_{1} v_{b+1}, v_{1} v_{b+2}, v_{2} v_{b+2} \in$ $E\left(G_{a, b}\right)$, and then $v_{2} v_{b+1} \notin E\left(G_{a, b}\right)$, that is, $v_{b+1}-v_{2} \leq b-1$. Hence, $v_{b+1}-v_{2}=b-1$ and then $v_{b+1}-v_{1}=v_{b+1}-v_{b}+v_{b}-v_{1}=1+b-1=b$. So that $v_{b+2}-v_{1}=b+1$ (otherwise, if $v_{b+2}-v_{1} \geq b+2$, then v_{b+2} is adjacent to v_{1}, v_{2} and v_{3}, a contradiction). Thus, v_{b+3} is adjacent to v_{b+1-t}, v_{b+2-t} and v_{b+3-t} for $\left(v_{1}-v_{b+3}\right)(\bmod a)=t<b$, a contradiction, too.

Subcase 1.2. If $j=b+2$, then $i \geq j-3=b-1$.
(1) If $i=b$, then $v_{b}-v_{1}=b-1$, so that v_{b+2} is adjacent to vertices $v_{b+1-t_{1}}, v_{b+2-t_{1}}, v_{b+3-t_{1}}$ when $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1} \geq 3$, a contradiction. Thus, $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1} \leq 2$, i.e., $v_{b+3}=v_{b+2}+1=a-1$ and $v_{1}=0$ that contradict $(*)$.
(2) If $i=b-1$, then $v_{b-1}-v_{1} \leq b-1$ and $v_{b}-v_{1} \geq b$, so v_{b} and v_{b+1} are all adjacent to v_{1}, and then $v_{b}-v_{2} \leq b-1$ (otherwise, vertices v_{b}, v_{b+1}, v_{1} and v_{2} induce a cycle, a contradiction). (2.1) If $v_{b}-v_{2}=$ $b-2$, then $v_{2}-v_{1}=2$ (otherwise, if $v_{2}-v_{1} \geq 3$, then $v_{b-1}-v_{1} \geq b$, a contradiction; if $v_{2}-v_{1}=1$, then $v_{b}-v_{1}=b-1$, a contradiction, too). So $v_{b}=v_{b-1}+1=\cdots=v_{2}+b-2=v_{1}+b$. Thus v_{b} is adjacent to v_{b+2}, v_{b+3} and v_{1} when $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1} \leq a-2 b$, a contradiction. Hence, $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1}>a-2 b \geq 3$ and then v_{b+2} is adjacent to $v_{b+1-t_{1}}, v_{b+2-t_{1}}$ and $v_{b+3-t_{1}}$, a contradiction. (2.2) If $v_{b}-v_{2}=b-1$ and $v_{2}-v_{1}=1$, then $v_{b}-v_{1}=b$, we can get a contradiction similarly as (2.1). (2.3) If $v_{b}-v_{2}=b-1$ and $v_{2}-v_{1}=2$, then $v_{b}-v_{1}=b+1$. Thus, $v_{b}-v_{b-1}=2$ since $v_{b-1}-v_{1} \leq b-1$. So that $v_{b}=v_{b-1}+2=$ $v_{b-2}+3=\cdots=v_{2}+b-1=v_{1}+b+1$ and then $v_{b+1}-v_{1}=b+2$ (otherwise, $v_{b+1}-v_{1}>b+2$, then v_{b+1} is adjacent to vertices v_{1}, v_{2} and v_{3}, a contradiction). Therefore, v_{b+2} is adjacent to vertices $v_{b+2-t_{1}}, v_{b+1-t_{1}}$ and $v_{b-t_{1}}$ when $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1} \geq 3$, a contradiction. So that $\left(v_{1}-v_{b+2}\right)(\bmod a)=t_{1} \leq 2$ and then $\left(v_{1}-v_{b+3}\right)(\bmod a)=1$ which
contradicts (*). (2.4) If $v_{b}-v_{2}=b-1$ and $v_{2}-v_{1} \geq 3$, then $v_{b-1}-v_{1}=$ $v_{b-1}-v_{2}+v_{2}-v_{1} \geq b-3+3=b$, a contradiction, too.

Case 2. v_{i} is not adjacent to v_{k} for some $(j \leq) k(\leq b+3)$.
If $j=b+3$, then $i \geq j-3=b$, so $i=b$ and $v_{b}=v_{1}+b-1$. We can get a contradiction as Subcase 1.1 similarly.

If $j=b+2$, then $i \geq j-3=b-1$. We can get a contradiction as Subcase 1.2 similarly.

Suppose that $j \leq b+1$ in the following. If $\left(v_{i}-v_{k}\right)(\bmod a)<b$, then $v_{i+1}-v_{i}>\left(v_{1}-v_{k}\right)(\bmod a)$ since $\left(v_{i+1}-v_{1}\right) \geq b$, contrary to $(*)$. So $v_{k}-v_{i}<b$. If $k \geq j+1$, then $\left(v_{1}-v_{k}\right)(\bmod a)<b-1$, so $v_{i}-v_{1} \geq a-(b-1+b-2)=a-2 b+3 \geq b$, a contradiction. Hence, $k \leq j$ and then $k=j$. Moreover, $j \geq b+1$ and then $j=b+1$ since v_{i} is adjacent to v_{l} for $j+1 \leq l \leq b+3$. So that $b-2 \leq i \leq b-1$.

Since $v_{i}-v_{1} \leq b-1$ and $\left(v_{1}-v_{b+1}\right)(\bmod a) \leq b-1, v_{b+1}-v_{i} \geq a-$ $(2 b-2)=a-2 b+2 \geq b-1$ and then $v_{b+1}-v_{i}=b-1$. Thus, v_{b+1} is adjacent to vertices v_{i-1}, v_{i-2} and v_{i-3} when $v_{i}-v_{i-3} \leq 4$, a contradiction. Hence $v_{i}-v_{i-3}>4$. But $v_{i}-v_{i-3}=v_{i}-v_{1}-\left(v_{i-3}-v_{1}\right) \leq b-1-(i-4)=b-i+3 \leq$ $b-(b-2)+3=5$ since $v_{i}-v_{1} \leq b-1$ and $i \geq b-2$, so that $v_{i}-v_{i-3}=5$, $v_{i-3}-v_{1}=i-4$ and then $a-2 b=b-3=3, v_{i}-v_{i-1}=1, i=b-2, b=6$ and $a=15$. Clearly, $\left(v_{1}-v_{b+1}\right)(\bmod a)=5$ since $v_{b+1}-v_{b-2}=b-1=5$ and $v_{b-2}-v_{1}=5$. So that $\left(v_{1}-v_{b+3}\right)(\bmod a)=t \leq 3$. If $t=3$, then $v_{b+3}-v_{b+2}=v_{b+2}-v_{b+1}=1$ and then v_{3} is adjacent to vertices v_{7}, v_{8} and v_{9}, a contradiction. Hence, $t=2$, and then $v_{2}-v_{1}=v_{3}-v_{2}=2$ by ($*$). Therefore, vertices v_{2}, v_{3}, v_{7} and v_{8} induce a cycle when $v_{9}-v_{8}=2$, and vertices v_{3}, v_{7}, v_{8} and v_{9} induce a $K_{1,3}$ when $v_{9}-v_{8}=1$, a contradiction.

Therefore, the Claim is proved.
Hence, $e=\max \{|X|: X \in L F\}=b+2$, and then $v l_{a_{f}}(G) \geq \frac{|V(G)|}{e}=$
$\frac{a}{b+2}$. Define a mapping $f: L F \rightarrow[0,1]$ by

$$
f(X)= \begin{cases}\frac{1}{b+2}, & \text { for } X=\{v, v+1, \cdots, v+b+1\} \text { and } 0 \leq v \leq a-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then f is a fractional path coloring of $G_{a, b}$ which has weight $a \frac{1}{b+2}=\frac{a}{b+2}$.
Hence, $v l a_{f}(G) \leq \frac{a}{b+2}$, and then $v l a_{f}(G)=\frac{a}{b+2}$.
Therefore $v l a\left(G_{a, b}\right) \geq\left\lceil\frac{a}{b+2}\right\rceil$. Let $\{i(b+2), i(b+2)+1, \cdots, i(b+2)+b+1\}$ be colored with i for $0 \leq i<\left\lceil\frac{a}{b+2}\right\rceil-1$ and $\left\{\left(\left\lceil\frac{a}{b+2}\right\rceil-1\right)(b+2),\left(\left\lceil\frac{a}{b+2}\right\rceil-1\right)(b+\right.$ $2)+1, \cdots, a-1\}$ be colored with $\left\lceil\frac{a}{b+2}\right\rceil-1$. This is a path coloring of $G_{a, b}$, so that $v l a\left(G_{a, b}\right) \leq\left\lceil\frac{a}{b+2}\right\rceil$. Hence $v l a\left(G_{a, b}\right)=\left\lceil\frac{a}{b+2}\right\rceil=\left\lceil v l a_{f}\left(G_{a, b}\right)\right\rceil$.

Remarks: 1. We conjecture: the Claim of Theorem 2.8 holds for any $a \geq 2 b+2$. So Theorem 2.8 holds in this case.
2. We only discussed several cases of complete n-partite graphs in Theorem 2.3, the other cases can be studied similarly.

References

[1] J. Akiyama, H. Era, S. V. Gerracio and M. Watanabe, Path chromatic numbers of graphs, J. Graph Theory, 13(1989), 569-579.
[2] Y. Alavi, J. Liu and J. Wang, On linear vertex-arboricity of complementary graphs, J. Graph Theory, Vol.18, No.3, 315-322.
[3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan,London, 1976.
[4] G. J. Chang, D. D.-F. Liu and X. D. Zhu, Distance graphs and Tcoloring, J. Combin. Theory, Ser. B, 75(1999), 259-269.
[5] R. B. Eggleton, P. Erdös and D. K. Skilton, Colouring the real line, J. Combin. Theory, Ser. B 39(1985), 86-100.
[6] R. B. Eggleton, P. Erdös and D. K. Skilton, Colouring prime distance graphs, Graphs and combinatorics, 6(1990), 17-32.
[7] Y. Fang and J. L. Wu, The vertex linear arboricity of complete multiple graphs and cartesian product graphs, J. Shandong Institute of Mining and Technology, 18:3(1999), 59-61.
[8] W. Goddard, Acyclic coloring of planar graphs, Discrete Mathematics, 91(1990), 91-94.
[9] A. Kemnitz and M. Marangio, Chromatic numbers of integer distance graphs, Discrete Mathematics, 233(2001), 239-246.
[10] M. Matsumoto, Bounds for the vertex linear arboricity, J. Graph Theory, 14(1990), 117-126.
[11] K. Poh, On the linear vertex-arboricity of a planar graph, J. Graph Theory, 14(1990), 73-75.
[12] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theorem, John Wiley and Sons, Inc. New York, 1997.
[13] M. Voigt, Colouring of distaince graphs, Ars Combinatoria, 52 (1999), 3-12.
[14] L. C. Zuo, J. L. Wu and J. Z. Liu, The vertex linear arboricity of distance graphs, Discrete Mathematics, 306(2002),284-289.
[15] L. C. Zuo, J. L. Wu and J. Z. Liu, The vertex linear arboricity of distance graphs with a special diatance set, Ars Combinatoria, 79 (2006), 65-76.

