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Abstract

In this paper, we establish an asymptotic existence theorem for group divisible designs of type mn with
block sizes in any given set K of integers greater than 1. As consequences, we will prove an asymptotic ex-
istence theorem for frames and derive a partial asymptotic existence theorem for resolvable group divisible
designs.
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1. Introduction

We refer to [1] for basic concepts in combinatorial designs. Here we give a few additional
concepts that we need throughout the paper.

Definition 1.1. Let v, λ be positive integers and let K be a set of positive integers. A group
divisible design (or a GDD for short) of order v is a triple (X,G,B), where

(1) X is a set of v elements,
(2) G = {G1,G2, . . . ,Gn} is a set of subsets of X which partition X (called groups),
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(3) B is a family of subsets of X each of cardinality from K (called blocks),
(4) every pair of elements from X is in exactly λ blocks if they are from different groups,

0 blocks if they are in the same group.

If all groups G1,G2, . . . ,Gn have the same size m, such a group divisible design is said to
be of type mn, and for convenience, we denote such a group divisible design by a (K,λ)-GDD
of type mn, or a K-GDD of type mn whenever λ = 1. If K = {k}, then all blocks have the same
size k. Clearly, an (n, k,λ)-design (or BIBD) is a special group divisible design ({k}, λ)-GDD of
type 1n. We say a design is resolvable if its blocks can be partitioned into parallel classes such
that every element occurs in each class exactly once, i.e., each parallel class partitions X. For
example, a Kirkman triple system of order v is a resolvable (v,3,1)-design. We will denote a
resolvable (K,λ)-GDD of type mn by a (K,λ)-RGDD of type mn, or a K-RGDD of type mn

whenever λ = 1.
Frames defined in the following form another kind of very useful combinatorial structures (for

more on frames, see [4] and [10]).

Definition 1.2. Let X be a set of v elements and G = {G1,G2, . . . ,Gn} be a partition of X. Let
λ � 1 and K be a set of positive integers. A (K,λ)-frame is a group divisible design (X,G,B)

whose blocks are partitioned into partial parallel classes so that each partial parallel class parti-
tions X − Gi , for some Gi ∈ G.

If all G1,G2, . . . ,Gn in a frame have the same size m, such a frame is said to be of type mn.
We simply use K-frame of type mn to denote such a frame when λ = 1. For example, if we delete
a vertex x and all blocks containing x from a Kirkman triple system of order v (i.e., a resolvable

(v,3,1)-design), we obtain a {3}-frame of type 2
v−1

2 .
Constructing (or studying existence problems of) various kinds of designs is one of central

tasks in design theory. Though a lot of progresses have been made, the spectrum for the existence
of each kind of designs is far from being completely settled. In 1973, R.M. Wilson [11,12], and
Ray-Chaudhuri and R.M. Wilson [8] proved the following asymptotic existence theorems.

Theorem 1.3. (R.M. Wilson [12]) Given fixed integers k � 2 and λ � 1, there exists v0 such that
(v, k, λ)-designs exist for all integers v � v0 that satisfy the necessary conditions λ(v − 1) ≡
0 (mod k − 1) and λv(v − 1) ≡ 0 (mod k(k − 1)).

Theorem 1.4. (Ray-Chaudhuri and R.M. Wilson [8]) Given a fixed integer k � 2, there exists v0

such that resolvable (v, k,1)-designs exist for all integers v � v0 that satisfy the necessary con-
ditions (v − 1) ≡ 0 (mod k − 1) and v ≡ 0 (mod k).

Then, in 1984, Theorem 1.4 was extended to resolvable (v, k, λ)-designs for λ > 1 by
J.X. Lu [6].

Theorem 1.5. (J.X. Lu [6]) Given fixed integers k � 2 and λ � 1, there exists v0 such that
resolvable (v, k, λ)-designs exist for all integers v � v0 that satisfy the necessary conditions
λ(v − 1) ≡ 0 (mod k − 1) and v ≡ 0 (mod k).
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In his thesis [2], K.I. Chang proved the following asymptotic existence result for group divis-
ible designs where all blocks have the same size k. A different proof for this result was given by
E.R. Lamken and R.M. Wilson [5].

Theorem 1.6. (K.I. Chang [2]) Given fixed integers k � 2, λ � 1, and m � 1, there exists n0 such
that a ({k}, λ)-GDD of type mn exists for all integers n � n0 that satisfy the necessary conditions
λm(n − 1) ≡ 0 (mod k − 1) and λm2n(n − 1) ≡ 0 (mod k(k − 1)).

In 2002, H. Mohacsy and D.R. Ray-Chaudhuri [7] proved a partial asymptotic existence result
for group divisible designs with fixed number of groups.

Theorem 1.7. (H. Mohacsy and D.R. Ray-Chaudhuri [7]) Let k and n be fixed integers satisfying
2 � k � n. Then there exists an integer m0 such that a {k}-GDD of type mn exists for all inte-
gers m � m0 if the conditions (n − 1) ≡ 0 (mod k − 1) and n(n − 1) ≡ 0 (mod k(k − 1)) are
satisfied.

Note that both Theorems 1.6 and 1.7 deal with group divisible designs whose blocks have the
same size k. In this paper, we extend Theorem 1.6 to the following asymptotic existence theorem
for (K,λ)-GDDs of type mn, where the sizes of blocks form any given set K of integers greater
than 1.

Given a set K of integers greater than 1, let α(K) be the greatest common divisor of the inte-
gers in {k − 1: k ∈ K} and let β(K) be the greatest common divisor of the integers in {k(k − 1):
k ∈ K}.

Theorem 1.8. Given fixed integers λ � 1 and m � 1, and a fixed set K of integers greater than 1,
there exists n0 such that a (K,λ)-GDD of type mn exists for all integers n � n0 that satisfy the
necessary conditions

λm(n − 1) ≡ 0
(
mod α(K)

)
and λm2n(n − 1) ≡ 0

(
mod β(K)

)
.

As a consequence to Theorem 1.8, we establish the following asymptotic existence theorem
for frames.

Theorem 1.9. Given any integers k � 2 and g � 1, there exists u0 such that all {k}-frames
of type gu exist for all u � u0 satisfying the necessary conditions g ≡ 0 (mod k − 1) and
g(u − 1) ≡ 0 (mod k).

By using Theorem 1.9, we will derive a partial asymptotic existence result for resolvable
group divisible designs in Section 4.

2. Proof of Theorem 1.8

To prove Theorem 1.8, we need to use a powerful theorem by E.R. Lamken and R.M. Wilson
in [5]. Before stating the theorem, we first introduce certain necessary concepts and notations
from [5].

Let K
(r,λ)
n be a complete digraph on n vertices with exactly λ edges of color i joining any

vertex x to any vertex y for every color i in a set of r colors.
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A family F of subgraphs of K
(r,λ)
n will be called a decomposition of K

(r,λ)
n if every edge

e ∈ E(K
(r,λ)
n ) belongs to exactly one member in F . Given a family Φ of edge-r-colored digraphs,

a Φ-decomposition of K
(r,λ)
n is a decomposition F such that every graph F ∈ F is isomorphic

to some graph G ∈ Φ .
For a vertex x of an edge-r-colored digraph G, the degree-vector of x is the 2r-vector

d(x) = (
in1(x),out1(x), in2(x),out2(x), . . . , inr (x),outr (x)

)
,

where inj (x) and outj (x) denote, respectively, the indegree and outdegree of vertex x in the
spanning subgraph of G by edges of color j , 1 � j � r . We denote by α(G) the greatest common
divisor of the integers t such that the 2r-vector (t, t, . . . , t) is an integral linear combination of the
vectors d(x) as x ranges over the vertex set V (G) of G. Equivalently, α(G) is the least positive
integer t0 such that (t0, t0, . . . , t0) is an integral linear combination of the vectors d(x).

Let Φ be a family of simple edge-r-colored digraphs and let α(Φ) denote the greatest com-
mon divisor of the integers t such that the 2r-vector (t, t, . . . , t) is an integral linear combination
of the vectors d(x) as x ranges over all vertices of all graphs in Φ . For each graph G ∈ Φ , let
μ(G) = (m1,m2, . . . ,mr), where mi is the number of edges of color i in G. We denote by β(Φ)

the greatest common divisor of the integers m such that (m,m, . . . ,m) is an integral linear com-
bination of the vectors μ(G), G ∈ Φ . Equivalently, β(Φ) is the least positive integer m0 such
that (m0,m0, . . . ,m0) is an integral linear combination of the vectors μ(G).

A graph G0 ∈ Φ is useless when it cannot occur in any Φ-decomposition of K
(r,λ)
n . We say

that Φ is admissible when no member of Φ is useless. Equivalently, Φ is admissible if and only
if there exists a positive rational linear relation

(1,1, . . . ,1) =
∑

G∈Φ

cGμ(G) with all cG > 0.

Here is the powerful result which is Corollary 13.3 (or Theorem 1.2 when λ = 1) in [5].

Theorem 2.1. (E.R. Lamken and R.M. Wilson [5]) Let Φ be an admissible family of simple
edge-r-colored digraphs. Then there exists a constant n0 = n0(Φ) such that Φ-decompositions
of K

(r,λ)
n exist for all n � n0 satisfying the congruences

λ(n − 1) ≡ 0
(
mod α(Φ)

)
,

λn(n − 1) ≡ 0
(
mod β(Φ)

)
.

It is shown by E.R. Lamken and R.M. Wilson in [5] that the existence of certain combina-
torial structures can be seen to be equivalent to the existence of a Φ-decomposition of K

(r,λ)
n

for some Φ , r , and λ. To establish such an equivalence for a given combinatorial structure, it
usually involves two steps: First, find appropriate Φ , r , and λ; and then we need to show that
the necessary conditions for the combinatorial structure imply an integer n satisfying the two
congruences in Theorem 2.1. From the definitions for α(Φ) and β(Φ), it is easy to see that
λn(n − 1) ≡ 0 (mod β(Φ)) is equivalent to showing that the vector λn(n − 1)(1,1, . . . ,1) is an
integral linear combination of the vectors μ(G) over all G ∈ Φ , and λ(n − 1) ≡ 0 (mod α(Φ))

is equivalent to showing that the vector λ(n − 1)(1,1, . . . ,1) is an integral linear combination of
the vectors d(x), as x ranges over all vertices of digraphs G ∈ Φ . This can be done by applying
the following well-known lemma from [9].
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Lemma 2.2. Let M be a rational s by t matrix and c a rational column vector of length s. The
equation Mx = c has an integral solution x, a column vector of length t , if and only if

yM integral implies yc is an integer

for all rational row vectors y of length s.

The following proof for Theorem 1.8 is motivated by the method used for the proof of Theo-
rem 8.1 in [5].

Proof of Theorem 1.8. It is easy to see that the conditions in Theorem 1.8 are necessary for the
existence of such a group divisible design.

Given a set K of integers greater than 1, we will show that the existence of a (K,λ)-GDD of
type mn is equivalent to the existence of a Φ-decomposition of K

(r,λ)
n , where r = m2 and Φ is

the family of edge-r-colored graphs described below.
As colors, we use the ordered pairs from {1,2, . . . ,m}. For each k ∈ K , let T (m, k) denote

the set of m-sequences t = (t1, t2, . . . , tm) of nonnegative integers summing to k, let G(t, k) be
the simple digraph with vertex set V (G(t, k)) = T1 ∪ T2 ∪ · · · ∪ Tm where T1, T2, . . . , Tm are
disjoint with |Ti | = ti and for all distinct x, y ∈ V (G(t, k)), there is exactly one edge from x to y

of color (i, j) where i, j are such that x ∈ Ti and y ∈ Tj (the digraph G(t, k) is simple because
T1, T2, . . . , Tm are disjoint and there is only one directed edge (x, y) of color (i, j) between
every pair of distinct vertices x and y, where i, j are such that x ∈ Ti and y ∈ Tj ). Let Φ be the
collection of all such G(t, k) for all t ∈ T (m, k) and all k ∈ K .

To obtain a (K,λ)-GDD of type mn from a Φ-decomposition F of K
(r,λ)
n , if it exists, let

V = V (K
(r,λ)
n ) and let X = V × {1,2, . . . ,m}. Set G = {{x} × {1,2, . . . ,m}: x ∈ V }. For each

F ∈ F , there is a unique partition V (F) = S1 ∪ S2 ∪ · · · ∪ Sm so that the edge from x to y in F

has color (i, j) if and only if x ∈ Si and y ∈ Sj . Let

BF =
m⋃

i=1

Si × {i}

and let B = {BF : F ∈ F}. Then it is not difficult to check that (X,G,B) is a (K,λ)-GDD of
type mn.

To apply Theorem 2.1 to obtain a Φ-decomposition F of K
(r,λ)
n , we need to show that

λm(n − 1) ≡ 0 (mod α(K)) and λm2n(n − 1) ≡ 0 (mod β(K)) together imply that λ(n − 1) ≡
0 (mod α(Φ)) and λn(n − 1) ≡ 0 (mod β(Φ)).

To show λn(n − 1) ≡ 0 (mod β(Φ)), it suffices to show that the vector λn(n− 1)(1,1, . . . ,1)

is an integral linear combination of the vectors μ(G(t, k)), t ∈ T (m, k) and k ∈ K . The vectors
μ(G(t, k)) has m2 coordinates indexed by the colors (i, j)’s, i, j ∈ {1,2, . . . ,m}; the coordinate
at (i, i) is ti (ti −1) and for i �= j , the coordinate at (i, j) is ti tj . By Lemma 2.2, to show a desired
integral linear combination, it will suffice to show: whenever m2 rational numbers xij are given,
1 � i, j � m, in such a way that

∑

i �=j

ti tj xij +
∑

i

ti (ti − 1)xii ≡ 0 for all t ∈ T (m, k) and all k ∈ K, (2.1)

then
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λn(n − 1)
∑

i,j

xij ≡ 0,

where a ≡ b means that the difference a − b is an integer.
Assume (2.1) holds. For each k ∈ K and each 1 � i � m, fix j �= i and consider the three

choices for t = (t1, t2, . . . , tm) where ti = k, where ti = k − 1, tj = 1, and where ti = k − 2,
tj = 2 (all other coordinates being 0). By (2.1), we have

k(k − 1)xii ≡ 0,

(k − 1)(k − 2)xii + (k − 1)xij + (k − 1)xji ≡ 0,

(k − 2)(k − 3)xii + 2(k − 2)xij + 2(k − 2)xji + 2xjj ≡ 0. (2.2)

Since the first congruence in (2.2) holds for all k ∈ K and β(K) is the greatest common divisor
of the integers in {k(k − 1): k ∈ K}, it follows that β(K)xii ≡ 0, 1 � i � m. If we add the first
and the third equations and subtract twice the second in (2.2), we have

2xij + 2xji ≡ 2xii + 2xjj (2.3)

for any i, j , i �= j . It implies that

n(n − 1)xij + n(n − 1)xji ≡ n(n − 1)xii + n(n − 1)xjj

and thus

λn(n − 1)
∑

i,j

xij ≡ λn(n − 1)m
∑

i

xii . (2.4)

If we subtract the second from the first in (2.2) we obtain

2(k − 1)xii ≡ (k − 1)(xij + xji) (2.5)

and since this holds when i is replaced by j , we have

2(k − 1)xii ≡ 2(k − 1)xjj

for all i and j and all k ∈ K . Since α(K) is the greatest common divisor of the integers in
{k − 1: k ∈ K}, it follows that

2α(K)xii ≡ 2α(K)xjj

for all i and j . If α(K) is odd, since λm(n − 1) ≡ 0 (mod α(K)), we have λmn(n − 1) ≡
0 (mod 2α(K)), and so

λmn(n − 1)xii ≡ λmn(n − 1)xjj . (2.6)

If α(K) is even, then each k ∈ K is odd, we multiply (2.3) by k−1
2 and combine it with (2.5) to

obtain (k−1)xii ≡ (k−1)xjj for each k ∈ K . Thus, α(K)xii ≡ α(K)xjj and we again have (2.6).
Since λm2n(n − 1) ≡ 0 (mod β(K)) and β(K)xii ≡ 0 for each 1 � i � m, it follows from (2.4)
and (2.6) that

λn(n − 1)
∑

i,j

xij ≡ λn(n − 1)m
∑

i

xii ≡ λm2n(n − 1)x11 ≡ 0.

Thus, we have proved λn(n − 1) ≡ 0 (mod β(Φ)).
Now, we show that λ(n − 1) ≡ 0 (mod α(Φ)) assuming that λm(n − 1) ≡ 0 (mod α(K)).

From earlier discussion, it suffices to show that the vector λ(n − 1)(1,1, . . . ,1) is an integral
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linear combination of the vectors d(x), as x ranges over all vertices of digraphs G(t, k) for all
t ∈ T (m, k) and k ∈ K .

A vector d(x) for a vertex x of G(t, k) has 2m2 coordinates, corresponding to the color (i, j)

indegrees and the color (i, j) outdegrees. For t = (t1, t2, . . . , tm) and V (G(t, k)) = T1 ∪ T2 ∪
· · · ∪ Tm where |Ti | = ti , if x is a vertex in Tq , then the color (i, q) indegree and the color (q, i)

outdegree at x are ti for i �= q and tq − 1 for i = q , all other color (i, j) indegrees and color (i, j)

outdegrees at x are zero.
By Lemma 2.2, to establish a desired integral linear combination, we need to show: Whenever

2m2 rational numbers xij , yij are given, 1 � i, j � m, in such a way that

(tq − 1)(xqq + yqq) +
∑

i �=q

ti(xiq + yqi) ≡ 0

for all t ∈ T (m, k) and all k ∈ K, 1 � q � m, (2.7)

then

λ(n − 1)
∑

i,j

(xij + yij ) ≡ 0.

Assume (2.7) holds. For each k ∈ K and each 1 � q � m, consider the choices for t =
(t1, t2, . . . , tm) ∈ T (m, k) where tq = k and where tq = k − 1 and ti = 1, from (2.7) we have

(k − 1)(xqq + yqq) ≡ 0, (2.8)

(k − 2)(xqq + yqq) + (xiq + yqi) ≡ 0. (2.9)

Thus,

α(K)(xqq + yqq) ≡ 0.

If we subtract (2.8) from (2.9), we obtain

(xiq + yqi) ≡ (xqq + yqq) for all i �= q.

Since λm(n − 1) ≡ 0 (mod α(K)) and α(K)(xqq + yqq) ≡ 0 for each 1 � q � m, it follows that

λ(n − 1)
∑

i,q

(xiq + yqi) ≡ λm(n − 1)
∑

q

(xqq + yqq) ≡ 0.

Thus we have shown that λ(n − 1) ≡ 0 (mod α(Φ)).
Finally, we must show that Φ is admissible. From our earlier discussion, it suffices to show

that there exists a positive rational linear relation

(1,1, . . . ,1) =
∑

G∈Φ

cGμ(G) with all cG > 0.

Let c1 denote the sum of μ(G(t, k)) as t ranges over the set of all integral vectors of length m

with k in one coordinate and 0 elsewhere, for a fixed k ∈ K . Then c1 has coordinates sij where
sii = k(k − 1) for all 1 � i � m and sij = 0 for i �= j . Let c2 denote the sum of μ(G(t, k)) as t
ranges over the set of all integral vectors of length m that sum to k for every k ∈ K . Then c2 has
coordinates uij such that uii = a for all i and uij = b for i �= j , where a and b are constants. In
fact, it is easy to see that if c(k) is the sum of μ(G(t, k)) as t ranges over the set of all integral
vectors of length m that sum to k for a fixed k ∈ K , then c(k) has coordinates cij where cii = ak

for all i and cij = bk for i �= j with ak and bk being constants for a fixed k. Thus, for a � b, the



ARTICLE IN PRESS YJCTA:3730
JID:YJCTA AID:3730 /FLA [m1+; v 1.62; Prn:14/07/2006; 13:09] P.8 (1-11)

8 J. Liu / Journal of Combinatorial Theory, Series A ••• (••••) •••–•••
linear combination b−a
k(k−1)

c1 + c2 is a constant vector (b, b, . . . , b), where b−a
k(k−1)

� 0 and b > 0.
For a > b, let k ∈ K be fixed and let c3 be the sum of μ(G(t, k)) as t ranges over the set of
all integral vectors of length m that sum to k and have coordinates as equal as possible, that is,
when we write k = hm + p with 0 � p < m, then t has m − p coordinates equal to h and p

coordinates equal to h+ 1. Then it is easy to check that c3 has coordinates hij such that for some
constants c, d with c < d , hii = c for all i and hij = d for i �= j . Thus, the linear combination
a−b
d−c

c3 + c2 produces a constant vector with each coordinate being ad−bc
d−c

> 0, where a−b
d−c

> 0.
This completes the proof of the theorem. �
3. Asymptotic existence of frames

We first recall that a {k}-frame of type gu is a group divisible design {k}-GDD of type gu

whose blocks are partitioned into partial parallel classes. The following GDD construction for
{k}-frames is Corollary 2.4.3 with λ = 1 in [4].

Construction 3.1. Let K be a set of integers greater than 1 and (X,G,B) be a group divisible
design with block sizes in K and λ = 1, and let w(x) be a nonnegative integer-valued function
on X. Suppose that for each B ∈ B, there is a {k}-frame of type {w(x): x ∈ B}. Then there is a
{k}-frame of type {∑x∈G w(x): G ∈ G}.

Next we give a simple lemma.

Lemma 3.2. For any integers d � 1 and k � 2, let a = (k − 1)(k + 2)d . Then gcd((ak + 1)a,

[(a + 1)k + 1](a + 1)) = 1 if k is even and gcd((ak + 1)a, [(a + 1)k + 1](a + 1)) = 2 if k is odd.

Proof. Clearly, gcd(a, a + 1) = 1. As (a + 1)k + 1 = ak + 1 + k, gcd(ak + 1, (a + 1)k + 1) =
gcd(ak+1, k) = 1. Since k−1 = (a+1)k−(ak+1) and a = (k−1)(k+2)d , we have gcd(a+1,

ak + 1) = gcd(a + 1, k − 1) = 1. To prove the lemma, it remains to show that gcd(a, (a + 1)k +
1) = 1 if k is even and gcd(a, (a + 1)k + 1) = 2 if k is odd. Since (a + 1)k + 1 = ak + k + 1,
gcd(a, (a + 1)k + 1) = gcd(a, k + 1). By the formula for the sum of a geometric sequence, we
have

1 + (k + 2) + (k + 2)2 + · · · + (k + 2)d−1 = (k + 2)d − 1

(k + 2) − 1
.

It follows that

(k + 2)d = (k + 1)
[
1 + (k + 2) + (k + 2)2 + · · · + (k + 2)d−1] + 1

and gcd((k + 2)d, k + 1) = 1. Since a = (k − 1)(k + 2)d , we conclude that gcd(a, k + 1) =
gcd(k − 1, k + 1). Clearly, gcd(k − 1, k + 1) divides (k + 1) − (k − 1) = 2. Thus, we have
gcd(a, (a + 1)k + 1) = gcd(a, k + 1) = gcd(k − 1, k + 1) = 1 or 2. For k even, both k − 1 and
k + 1 are odd, so we have gcd(k − 1, k + 1) = 1. For k odd, then both k − 1 and k + 1 are even,
thus, we have gcd(k − 1, k + 1) = 2. Thus, we have shown that gcd(a, (a + 1)k + 1) = 1 if k is
even and gcd(a, (a + 1)k + 1) = 2 if k is odd, and so the lemma follows. �
Proof of Theorem 1.9. Let g = (k − 1)m. Then g(u − 1) ≡ 0 (mod k) implies that m(u − 1) ≡
0 (mod k). First, we claim that a {k}-frame of type (k − 1)h exists for h sufficiently large and
h − 1 ≡ 0 (mod k). In fact, let v = (k − 1)h + 1, then v − 1 ≡ 0 (mod k − 1) and v ≡ 0 (mod k).
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Thus, by Theorem 1.4, there exists v0 such that for v � v0, a resolvable (v, k,1)-design exists.
By deleting one vertex x and all blocks containing x, we obtain a {k}-frame of type (k − 1)h for
h � h0, where h0 is some constant.

Now suppose that a = (k − 1)(k + 2)d is a constant with d sufficiently large so that ak + 1 �
h0. Let K = {ak + 1, (a + 1)k + 1}. Clearly gcd(ak, (a + 1)k) = k. By Lemma 3.2, gcd((ak +
1)ak, [(a + 1)k + 1](a + 1)k) = k if k is even and gcd((ak + 1)ak, [(a + 1)k + 1](a + 1)k) =
2k if k is odd, which implies that α(K) = k, β(K) = k for k even and β(K) = 2k for k odd.
Since m(u − 1) ≡ 0 (mod k), we have m(u − 1) ≡ 0 (mod α(K)). We claim that m2u(u − 1) ≡
0 (mod β(K)). In fact, the claim is obvious for k even as β(K) = k in this case. For k odd,
since u(u − 1) is even, m(u − 1) ≡ 0 (mod k), and β(K) = 2k, we also have m2u(u − 1) ≡
0 (mod β(K)). Thus, the claim holds. By Theorem 1.8, there exists u0 such that a group divisible
design ({ak + 1, (a + 1)k + 1},1)-GDD of type mu exists for u � u0.

Since ak + 1 � h0 and (a + 1)k + 1 � h0, a {k}-frame of type (k − 1)ak+1 and a {k}-frame
of type (k − 1)(a+1)k+1 exist. By applying Construction 3.1 with w(x) = k − 1 for every x ∈ X,
|G| = u, and each group having size m, we obtain a {k}-frame of type gu, where g = (k − 1)m

and u � u0. �
4. Resolvable group divisible designs

A transversal design TD(k,m) is defined to be a {k}-GDD of type mk , where the number of
groups is the same as the size k of blocks, i.e., each block takes exactly one element from every
group. The following result is well known [1].

Proposition 4.1. A resolvable TD(k,m) exists if and only if there are k − 1 mutually orthogonal
Latin squares of order m.

It was shown by Chowla, Erdős, and Straus [3] that the number of mutually orthogonal Latin
squares of order m approaches infinity as m goes to infinity. Thus, we have the next lemma.

Lemma 4.2. Given a fixed integer k � 2, there exists m0 such that a resolvable TD(k,m) exists
for all m � m0.

A factor F of a graph G is a subgraph of G for which V (F) = V (G). Let K(m : n) =
K(m,m, . . . ,m) denote a complete n-partite graph K(m,m, . . . ,m) with m vertices in each
partite set. A Kk-factorization of a graph G is a partition of the edge set E(G) into isomorphic
factors where each factor is a disjoint union of Kk’s. Then, by viewing each block of size k as
a complete graph Kk , it is easy to see that a resolvable group divisible design {k}-RGDD of
type mn is a Kk-factorization of K(m : n). Thus, we have the following well-known necessary
conditions for the existence of resolvable group divisible designs.

Proposition 4.3. The necessary conditions for the existence of a {k}-RGDD of type mn are
m(n − 1) ≡ 0 (mod k − 1) and mn ≡ 0 (mod k).

Here we offer the following asymptotic existence conjecture for resolvable group divisible
designs.
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Conjecture 4.4. Given integers k � 2 and m � 1, there exists n0 such that a {k}-RGDD
of type mn exists for all integers n � n0 that satisfy the necessary conditions m(n − 1) ≡
0 (mod k − 1) and mn ≡ 0 (mod k).

Recall that a {k}-frame of type gu is a group divisible design {k}-GDD of type gu whose
blocks are partitioned into partial parallel classes, or equivalently, it is a Kk-decomposition
of K(g : u) such that the subgraphs Kk’s are partitioned into partial parallel classes where each
partial parallel class forms a factor of K(g : u − 1) (a subgraph of K(g : u) after removing one
group of g vertices). By a simple calculation, it follows that a {k}-frame of type gu has gu

k−1 par-
tial parallel classes in total and has exactly g

k−1 partial parallel classes excluding each group Gi

(called a hole).
Next, we provide a simple but useful recursive construction for resolvable group divisible

designs.

Construction 4.5 (Filling in holes). Let m and g be positive integers such that g is divisible
by m. Suppose that there exists a {k}-frame of type gu and there exists a {k}-RGDD of type

m
g+m

m . Then there exists a {k}-RGDD of type mn with n = g
m

u + 1.

Proof. Start with a {k}-frame of type gu and let W be a set of m elements not from the frame.

For each group Gi of size g in the frame, we fill the hole Gi by a {k}-RGDD of type m
g+m

m on

the set Gi ∪ W , i.e., match the parallel classes of a {k}-RGDD of type m
g+m

m with the partial
parallel classes excluding Gi of the {k}-frame of type gu to form parallel classes of the whole
design. �

Here is another construction method which is a special case of Corollary 3.5.5 with λ = 1
in [4].

Construction 4.6. Suppose that the following designs exist:

(1) a {k}-RGDD of type gu,
(2) a {k}-frame of type (m1g)v ,
(3) a resolvable TD(k,m1v).

Then there exists a resovable {k}-RGDD of type (m1g)uv .

The following results provide a partial solution to Conjecture 4.4.

Theorem 4.7. Given an integer k � 2, there exist m0 and n0 such that a {k}-RGDD of type mn

exists for all integers m � m0 and n � n0 that satisfy (n − 1) ≡ 0 (mod k − 1) and mn ≡
0 (mod k).

Proof. Let g = (k −1)m and u = n−1
k−1 . Then g ≡ 0 (mod k −1) and g+m

m
= k, and so g(u−1) ≡

0 (mod k). By Theorem 1.9, there exists u0 such that a {k}-frame of type gu exists for u � u0.
Recall that a resolvable TD(k,m) is a {k}-RGDD of type mk . By Lemma 4.2, a {k}-RGDD
of type mk exists for m � m0, where m0 is some constant. Since k = g+m

m
, it follows from

Construction 4.5 that a {k}-RGDD of type mn exists, where n = (k − 1)u + 1 = g
m

u + 1. �
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Theorem 4.8. Given an integer k � 2, there exist m0 and n0 such that a {k}-RGDD of type mn

exists for all integers m � m0 and n � n0 that satisfy one of the following:

(1) m ≡ 0 (mod k(k − 1)) and n ≡ 0 (mod k), or
(2) m ≡ 0 (mod (k − 1)) and n ≡ 0 (mod k2).

Proof. We first prove the result for condition (1). Set m = (k − 1)g and n = kv. Since
k divides m, it follows from Theorem 1.9 that a {k}-frame of type [(k − 1)g]v exists for
v � v0, namely, n = kv � n0 for some n0. By Lemma 4.2, resolvable TD(k, g) and resolvable
TD(k, (k − 1)g) exist for all g � g0, namely, m = (k − 1)g � m0 for some m0. Recall that a
resolvable TD(k, g) is a {k}-RGDD of type mk . By applying Construction 4.6 with u = k and
m1 = k − 1, we obtain a {k}-RGDD of type mn.

To prove the result for condition (2), let n1 = n
k

. Then n1 ≡ 0 (mod k). It is easy to see
that the complete n-partite graph K(m : n) is a disjoint union of the factors H = ⋃

K(m : k)

and K(mk : n1). By Lemma 4.2, a resolvable TD(k,m) exists for m � m0, i.e., a {k}-RGDD of
type mk exists which means that K(m : k) has a Kk-factorization, and so is H = ⋃

K(m : k).
By (1), a {k}-RGDD of type (mk)n1 exists which means that K(mk : n1) has a Kk-factorization.
Thus, K(m : n) = H ∪ K(mk : n1) has a Kk-factorization, that is, a {k}-RGDD of type mn. �
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