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We give elementary recursive constructions of quaternary self-orthogonal codes with19
dual distance three for all n ≥ 5. Consequently, good linear quantum codes of minimum
distance three for such length n are obtained. Almost all of these linear quantum codes21
are optimal or near optimal.
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1. Introduction25

It is an important problem to construct [[n, k, d]] quantum code with k maximal
for given code length n and minimum distance d. In Refs. 1–3, Gottesman, and27

Calderbank et al. proved that when n is a power of 2 or sums of odd power of 2, or
sums of even power of 2, there exists an [[n, n−m− 2, 3]] quantum code for certain29

m, see Theorem 1.2 below. In Ref. 4, we generalized their result to all even n ≥ 12
and n = 8 via Steane’s construction. In this paper, we will use quaternary self-31

orthogonal codes to construct [[n, k, 3]] quantum codes for all n ≥ 5, and improve
the parameters of some near optimal codes obtained in Ref. 4.33

Let F4 = {0, 1, ω, �} be the Galois field with four elements such that � =
1 + ω = ω2, ω3 = 1, and the conjugation is defined by x̄ = x2. The Hermitian inner
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product of u, v ∈Fn
4 is defined to be1

(u,v) = uv† = u1v̄1 + u2v̄2 + · · · + unv̄n.

From now on, orthogonality over Fn
4 will be with respect to the Hermitian inner3

product defined above. And we use 1n=(1, 1, . . . , 1)1×n to denote the all-one vector
of length n, and H† = H̄T to denote the conjugate transpose of H for any matrix or5

vector H over F4. Theorem 1.1 from Ref. 1 can be used directly to obtain quantum
codes from certain codes over F4.7

Theorem 1.1 [1]. Suppose C is an [n, k] linear self-orthogonal code over F4. Sup-
pose also that the minimal weight of C⊥ \ C is d. Then, an [[n, n − 2k, d]] quantum9

code can be obtained from C.

Note that such a quantum code is called a linear quantum code according to11

Ref. 1, and the self-orthogonal code C is called the associated code of this linear
quantum code. If the minimum distance of C⊥ is d, then the [[n, n − 2k, d]] code13

is pure in the nomenclature of Ref. 1 and nondegenerate in the nomenclature of
Ref. 2.15

Theorem 1.2.

(1) ([1][2]) For m ≥ 3, there exists a [[2m, 2m − m − 2, 3]] code.17

(2) ([1][3]) For m ≥ 2, there exists an [[n, n − m − 2, 3]] code, where n is n =∑
0≤i≤m

2
22i for even m, and n =

∑
1≤i≤ (m−1)

2
22i+1 for odd m.19

Our constructions are based on the following easily proved lemma, first we give
a definition.21

Definition 1.1. Let v be an m-dimensional column vector over F4, if the first
non-zero component of v is 1, then v is called a monic column vector.23

Lemma 1.1. Let Hn be a k × n matrix of rank k such that

Hn =
(
α1 α2 · · · αn−1 αn

)
.25

If HnH†
n = 0 and the k-dimensional column vectors α1, α2, . . . , αn−1, αn are all

different and monic, then Cn = 〈Hn〉 is self-orthogonal and C⊥
n = [n, n − k, 3].27

According to the sphere-packing bound given in Refs. 1 and 2, we give a reason-
able definition and an obvious proposition in the following, so that in concluding29

remarks we can evaluate the optimality of the quantum codes we obtain.

Definition 1.2. (1) A pure quantum code [[n, n − s, 2t + 1]] is called optimal if31

there do not exist pure [[n, n − s + 1, 2t + 1]] and [[n, n − s, 2t + 3]] codes.
(2) A pure quantum code [[n, n − s, 2t + 1]] is called near optimal if there do not33

exist pure [[n, n − s + 2, 2t + 1]] and [[n, n − s, 2t + 3]] codes.



1st Reading

November 23, 2006 16:15 WSPC/187-IJQI 00229

Linear Quantum Codes of Minimum Distance Three 3

Proposition 1.1. (1) If 2s−1 < 1 + 3n ≤ 2s < 1 + 3n + 9n(n−1)
2 , then a pure1

quantum code [[n, n − s, 3]] is optimal.
(2) If 2s−2 < 1+3n ≤ 2s < 1+3n+ 9n(n−1)

2 , then a pure quantum code [[n, n−s, 3]]3

is near optimal.

2. Codes Construction5

Let Nm = 4m−1
3 for m ≥ 2, and Um = 4m−3 for m ≥ 3. It is obvious that the

number of different m-dimensional monic column vectors over F4 is Nm. We use all7

such vectors to form a matrix and denote it as Hm,Nm , then Hm,Nm is the parity
check matrix of [Nm, Nm − m, 3] Hamming code over F4.9

Since Nm+1 = 4Nm + 1, using a recursive step, we can construct Hm+1,Nm+1

from Hm,Nm as11

Hm+1,Nm+1 =

(
0m×1 Hm,Nm Hm,Nm Hm,Nm Hm,Nm

1 0Nm 1Nm ω1Nm �1Nm

)
.

According to Ref. 1, we know that Hm,NmH†
m,Nm

= 0. Generally, we have the13

following lemma.

Lemma 2.1. Let Nm = 4m−1
3 for m ≥ 2, and Um = 4m−3 for m ≥ 3.15

(1) For m ≥ 2, the rank of Hm,Nm is m and Hm,NmH†
m,Nm

= 0.
(2) For m ≥ 3, Hm,Nm has a sub-matrix Gm,10i such that Gm,10iG

†
m,10i = 0 and17

Gm,10i110i
† = 0 for 1 ≤ i ≤ Um.

(3) For m ≥ 4 and 1 ≤ i ≤ 3
4Um, Hm,Nm has a sub-matrix Gm,10i such that19

Gm,10iG
†
m,10i = 0 and Gm,10i110i

† = 0, and each component of the last row of
Gm,10i is not zero.21

Proof. From Ref. 1 we know that (1) is correct. To prove (2) and (3), we use
induction on m. Let23

G3,10 =




1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 ω � ω �

0 1 0 1 ω � 1 1 � ω


 .

It is easy to check that G3,10G
†
3,10 = 0 and G3,10110

† = 0.25

For m = 4, let

G4,10 =

(
G3,10

110

)
, G4,20 =

(
G3,10 G3,10

110 ω110

)
,

G4,30 =

(
G3,10 G3,10 G3,10

110 ω110 �110

)
, G4,40 =

(
G3,10 G3,10 G3,10 G3,10

01×10 110 ω110 �110

)
.

Thus, the lemma holds for m = 3, 4.
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Suppose the lemma holds for m(≥4). Now we prove that the lemma also holds1

for m + 1.
If 1 ≤ i ≤ Um, construct3

Gm+1,10i =

(
Gm,10i

110i

)
.

If Um + 1 ≤ i ≤ 2Um, let i1 = i − Um and construct5

Gm+1,10i =

(
Gm,10Um Gm,10i1

110Um ω110i1

)
.

If 2Um + 1 ≤ i ≤ 3Um, let i2 = i − 2Um and construct7

Gm+1,10i =

(
Gm,10Um Gm,10Um Gm,10i2

110Um ω110Um �110i2

)
.

If 3Um + 1 ≤ i ≤ Um+1, let i3 = i − 3Um and construct9

Gm+1,10i =

(
Gm,10i3 Gm,10Um Gm,10Um Gm,10Um

01×10i3 110Um ω110Um �110Um

)
.

According to the induction hypothesis, we can deduce that Gm+1,10jG
†
m,10j = 011

and Gm+1,10j110j
† = 0 for 1 ≤ j ≤ Um+1, and each component of the last row of

Gm,10i is not zero when 1 ≤ j ≤ 3
4Um+1. Thus, the lemma follows.13

In the rest of this section, we will say that the minimum distance of a linear
quantum code is three even if its actual distance is more than three. We use Hm,n15

to denote any sub-matrix of Hm,Nm satisfying Hm,nH†
m,n = 0, and Hm,10i also

satisfying Hm,10i110i
† = 0 for 1 ≤ i ≤ Um without explanation.17

Theorem 2.1. Let Nm = 4m−1
3 for m ≥ 2, and Um = 4m−3 for m ≥ 3.

(1) If m ≥ 2, there exists an [[Nm, Nm − 2m, 3]] linear code.19

(2) If m ≥ 3 and Nm−1 < n ≤ Nm − 5, there exists an [[n, n− 2m, 3]] linear code.
(3) If m ≥ 3 and Nm−5 < n < Nm, there exists an [[n, n−2m−2, 3]] linear code.21

Proof. Equation (1) follows obviously from Lemma 2.1. To prove (2) and (3), we
use induction on m. For m = 3, let

H3,5 =

(
H2,5

0

)
, H3,6 =


1 1 1 1 0 0

0 0 1 1 1 1
0 1 0 1 ω �


 ,

H3,7 =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


 ,
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H3,8 =




0 0 1 1 1 1 1 1

1 1 0 0 ω � ω �

0 1 0 1 1 1 ω �


 ,

H3,9 =




0 0 0 1 1 1 1 1 1

0 1 1 0 0 ω � ω �

1 0 1 ω � 0 0 � ω


 ,

H3,10 =




1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 ω � ω �

0 1 0 1 ω � 1 1 � ω


 .

It is easy to check that H3,nH†
3,n = 0 for 5 ≤ n ≤ 10. Deleting the columns1

that belong to H3,n from H3,N3 for 5 ≤ n ≤ 10, we can obtain H3,21−n satisfying
H3,21−nH†

3,21−n = 0. Thus, for 6 ≤ n ≤ 16, we have a self-orthogonal code Cn =3

〈H3,n〉 and C⊥
n =[n, n− 3, 3]. Consequently, for such n, there exists an [[n, n− 6, 3]]

linear code.5

While 17 ≤ n ≤ 20, let

H4,n =
(

H3,n−10 G3,10

01×(n−10) 110

)
.

7

It is easy to check that H3,nH†
3,n = 0 for 17 ≤ n ≤ 20. Thus, we have proved the

existence of an [[n, n − 8, 3]] linear code for 17 ≤ n ≤ 20. Thus, the lemma holds9

for m = 3.
Suppose that the lemma holds for m. Now we prove that it also holds for m+1.11

(i) If 5 ≤ j ≤ Nm − 5 or j = Nm, construct

Hm+1,j =

(
Hm,j

01×j

)
.

13

If Nm − 5 < j < Nm, let

Hm+1,j =
(

Hm,j−10 Hm,10

01×(j−10) 110

)
.

15

It is obvious that Hm+1,jH
†
m+1,j = 0 for 5 ≤ j ≤ Nm. Delete the columns that

belong to Hm+1,j from Hm+1,Nm+1 , we can obtain Hm+1,n for n = Nm+1 − j17

such that Cn = 〈Hm+1,n〉 is self-orthogonal and C⊥
n =[n, n − m − 1, 3]. Thus, for

3Nm ≤ n ≤ Nm+1 − 5, there exists an [[n, n − 2m − 2, 3]] linear quantum code.19

(ii) If Nm + 1 ≤ n ≤ 2Nm, since 10 × 3
4Um+1 > 5

4 × 4m−1, there exists an
i, 1 ≤ i ≤ Um such that 5 ≤ n − 10i ≤ Nm − 5. Construct21

Hm+1,n =
(
Hm+1,n−10i Hm+1,10i

)
,



1st Reading

November 23, 2006 16:15 WSPC/187-IJQI 00229

6 R. Li, X. Li & Z. Xu

where1

Hm+1,n−10i =

(
Hm,n−10i

01×(n−10i)

)
,

and Hm+1,10i satisfies (3) of Lemma 2.1. Then, the code Cn = 〈Hm+1,n〉 is self-3

orthogonal and C⊥
n =[n, n−m− 1, 3]. Thus, for Nm + 1 ≤ n ≤ 2Nm, there exists an

[[n, n−2m−2, 3]] linear quantum code. Deleting the columns that belong to Hm+1,j5

from Hm+1,Nm+1 for Nm + 1 ≤ j ≤ 2Nm, we can obtain Hm+1,n for 2Nm + 1 ≤
n ≤ 3Nm satisfying Hm+1,nH†

m+1,n = 0. Thus, we have proved the existence of an7

[[n, n − 2m − 2, 3]] linear quantum code for 2Nm + 1 ≤ n ≤ 3Nm.

(iii) Similar to the discussion for 17 ≤ n ≤ 20, we can prove the existence of an9

[[n, n − 2m − 4, 3]] linear quantum code for Nm+1 − 5 < n < Nm+1.
Summarizing the above discussion, the theorem follows.11

Remark. (1) Our construction is different from the shorting technique of
Calderbank et al. [1, Theorem 7] and the puncturing technique of Gottesman [5,13

Theorem 3]. Using our construction to construct quantum codes, neither need one
to determine the supports of the codewords in the dual of a self-orthogonal code C15

as in Ref. 1, nor need one to determine the puncturing code of a symplectic code C
as in Ref. 5.17

(2) The linear quantum codes constructed from C6 = 〈H3,6〉 is actually [[6, 0, 4]],
see Ref. 1.19

3. Concluding Remarks

From Lemma 1.1, the quantum codes obtained in Theorem 2.1 are pure. In the sense21

of Definition 1.2, almost all of our quantum codes are optimal or near optimal. One
can easily check the following result by using Proposition 1.1.23

Theorem 3.1.
(1) For m ≥ 2, the pure [[Nm, Nm − 2m, 3]] linear quantum code is optimal.25

(2) For m ≥ 3. If 22m−1−1
3 < n ≤ Nm − 5, then the pure [[n, n − 2m, 3]] linear

code is optimal. If Nm−1 < n ≤ 22m−1−1
3 , then the pure [[n, n − 2m, 3]] linear27

quantum code is near optimal.

The number n =
∑

0≤i≤ m
2

22i for even m ≥ 2 is just our Nm
2 +1, and the number29

n =
∑

1≤i≤ (m−1)
2

22i+1 for odd m satisfies Nm+1
2 +1 < n < Nm+1

2 +2. It follows that,
for even m, our [[Nm

2 +1, Nm
2 +1 − m − 2, 3]] linear quantum code have the same31

parameter as the additive code of the same length obtained by Theorem 11 of Ref. 1.
However, for odd m, our [[40, 32, 3]], [[168, 158, 3]], . . . linear quantum codes are not33

as good as the additive codes [[40, 33, 3]], [[168, 159, 3]], . . . obtained by Theorem 11
of Ref. 1.35

Since Nm < 22m−1 < 22m < Nm+1, our [[22m, 22m − 2m− 2, 3]] linear quantum
code has the same parameters as the [[22m, 22m−2m−2, 3]] additive quantum code37
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obtained by Theorem 10 of Ref. 1. However, our [[22m−1, 22m−1 − 2m− 2, 3]] linear1

quantum code is not as good as the [[22m−1, 22m−1 − 2m− 1, 3]] additive quantum
code obtained by Theorem 10 of Ref. 1.3

Since 22m+1−1
3 < 22m < Nm+1 − 5 for m ≥ 3. It follows that when n is even

and 22m < n ≤ Nm+1 − 5 for m ≥ 3, the near optimal [[n, n − 2m − 3, 3]] additive5

code obtained in Ref. 4 can be improved into an optimal [[n, n − 2m − 2, 3]] linear
quantum code.7
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