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Abstract

This paper is devoted to characterize permutations with forbidden patterns by using canonical reduced
decompositions, which leads to bijections between Dyck paths and Sn(321) and Sn(231) respectively. We
also discuss permutations in Sn avoiding two patterns, one of length 3 and the other of length k. These
permutations produce a kind of discrete continuity between the Motzkin and the Catalan numbers.
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1. Introduction

1.1. Pattern avoidance. Let Sn be the set of permutations on [n] = {1, 2, . . . , n}, where n ≥ 1. For
a permutation σ of k positive integers, the pattern (or type) of σ is defined as a permutation τ on [k]
obtained from σ by substituting the minimum element by 1, the second smallest element by 2, ..., and
the maximum element by k. Sometimes we say that a permutation is order equivalent to its pattern.
For a permutation τ ∈ Sk and a permutation π ∈ Sn, k ≤ n, we say that π is τ -avoiding if there is no
subsequence πi1πi2 · · ·πik

(i1 < i2 < · · · < ik) whose pattern is τ . We write Sn(τ) for the set of τ -avoiding
permutations of [n].

A barred permutation τ̄ of [k] is a permutation of Sk with a bar over exactly one of its elements. Let τ
be the permutation on [k] obtained by unbarring τ̄ , and τ̂ the pattern of the permutation obtained from
τ by removing the barred element. A permutation π ∈ Sn contains a subsequence ω of type τ̄ if and only
if ω is of type τ̂ and it is not contained in any subsequence of type τ . In other words, a subsequence ω of
π is of type τ̄ if it is of type τ̂ and it cannot be extended to a subsequence of type τ . Equivalently, for a
permutation π ∈ Sn, if every subsequence of type τ̂ can be extended to a subsequence of type τ , then we
say that π avoids the barred pattern τ̄ . We denote by Sn(τ̄) the set of permutations of Sn avoiding the
pattern τ̄ . For an arbitrary finite collection of patterns T , we say that π avoids T if π avoids every τ ∈ T ,
the corresponding subsets of Sn is denoted by Sn(T ).

Restricted permutations have been extensively studied over last decade. The first paper devoted entirely to
the study of permutations avoiding certain patterns appeared in 1985 (see [15]). Currently there exist more
than two hundred papers on this subject. While the case of permutations avoiding a single pattern has
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attracted much attention, the case of multiple pattern avoidance remains less investigated. In particular,
it is natural, as the next step, to consider permutations avoiding pairs of patterns τ1, τ2. This problem was
solved completely for τ1, τ2 ∈ S3 (see [15]) and for τ1 ∈ S3 and τ2 ∈ S4 (see [16]). Several recent papers
[5, 6, 9, 10, 11, 12] deal with the case τ1 ∈ S3, τ2 ∈ Sk for various pairs τ1 and τ2.

In this paper, we also investigate the case of multiple pattern avoidance permutations. The tools used
in this paper include canonical reduced decompositions, continued fractions, Chebyshev polynomials, and
Dyck paths.

1.2. Canonical reduced decomposition. For any 1 ≤ i ≤ n − 1, define the map si: Sn → Sn, such
that si acts on a permutation π by interchanging the elements in positions i and i + 1. We call si a
simple transposition, and write the action of si on the right of the permutation as πsi. Therefore one has
π(sisj) = (πsi)sj .

For any permutation π ∈ Sn, the canonical reduced decomposition of π has the following form:

(1) π = (1 2 · · · n)σ = (1 2 · · · n)σ1σ2 · · ·σk,

where
σi = shi

shi−1 · · · sti
, hi ≥ ti (1 ≤ i ≤ k) and 1 ≤ h1 < h2 < · · · < hk ≤ n− 1.

Note that if one writes π in the two row notation (as a permutation in the symmetric group), then from
(1) one has the relation π = σ1σ2 · · ·σk. We call hi the head and ti the tail of σi. For example, for
π = 315264 ∈ S6, the canonical reduced decomposition is (s2s1)(s4s3)(s5).

It is well-known that the above canonical reduced decomposition is unique. In fact, we have the following
algorithm to generate the canonical reduced decomposition based on the recursive construction of a per-
mutation on [n] by inserting the element n into a permutation on [n−1]. From this point of view, the idea
of the canonical reduced decompositions falls into the general framework of the ECO methodology [2, 3].

Algorithm: Observe that the product sjsj−1 · · · si is equivalent to the action of the cyclic permutation on
the segment from position i to position j +1. For the permutation 1, the canonical reduced decomposition
is the identity. Suppose that we have constructed the canonical reduced decomposition for the permutation
π\n, which is obtained from π by deleting the element n. Assume that n is in position i in π. If i = n, the
canonical reduced decomposition of π is the same as that of π\n. For i 6= n, the action of sn−1sn−2 · · · si

would bring the element n to the proper position and shift other relevant elements to the positions on
their right. This gives the canonical reduced decomposition of π.

The canonical reduced decomposition has the following property [1, 7]:

Lemma 1. If σ is the canonical reduced decomposition of π ∈ Sn, then π has k inversions if and only if
σ has exactly k simple transpositions.

Chen, Deng and Yang were the first to use the canonical reduced decomposition to study permutations
with forbidden patterns (see [4] and references therein).

1.3. Chebyshev polynomials of the section kind. Chebyshev polynomials of the second kind [13] (in
what follows just Chebyshev polynomials) are defined by Ur(cos θ) = sin(r+1)θ

sin θ for r ≥ 0. Clearly, Ur(t) is
a polynomial of degree r in t with integer coefficients, and the following recurrence holds:

(2) U0(t) = 1, U1(t) = 2t, and Ur(t) = 2tUr−1(t)− Ur−2(t) for all r ≥ 2.

The same recurrence is used to define Ur(t) for r < 0 (for example, U−1(t) = 0 and U−2(t) = −1).
Chebyshev polynomials were invented for the needs of approximation theory, but are also widely used in
various other branches of mathematics, including algebra, combinatorics, and number theory (see [13]).

Apparently, first the relation between restricted permutations and Chebyshev polynomials was discovered
by Chow and West [5], and later by Mansour and Vainshtein [9, 10, 11, 12], and by Krattenthaler [6].



DYCK PATHS AND RESTRICTED PERMUTATIONS 3

1.4. Dyck paths. A Dyck path of semilength n is a path on the plane from the origin (0, 0) to (2n, 0)
consisting of up steps and down steps such that the path does not go across the x-axis. We will use u
and d to represent the up and down steps, respectively. An up step followed by down step, ud, is called
a peak. The height of a step, peak, of a Dyck path is defined as its largest y-axis coordinate. The set of
Dyck paths of semilength n is denoted by Dn, and the cardinality of Dn is the well-known Catalan number
cn = 1

n+1

(
2n
n

)
.

1.5. Discrete continuity. Let Hk(x) =
∑

n≥0 ak(n)xn, k ≥ 1, be a family of generating functions. We
say Hk(x) yields a discrete continuity between H1(x) and f(x) =

∑
n≥0 f(n)xn (or a discrete continuity

between the numbers a1(n) and the values of f(n)) if limk→∞Hk(x) = f(x) and ak−1(n) ≤ ak(n) ≤ f(n)
for all n ≥ 0 and k ≥ 1.

Recently, Barucci, Del Lungo, Pergola, and Pinzani [3] characterized the permutations avoiding 321 and
(k + 2)1̄(k + 3)23 · · · (k + 1). The enumeration of the corresponding permutations for k = 1 gives the
Motzkin numbers, when k goes to infinity, it gives the Catalan numbers, and for 1 < k < ∞ it gives
sequences that lie between the Motzkin numbers and the Catalan numbers. By the above definition this
enumeration is a discrete continuity between the Motzkin numbers and the Catalan numbers. In [3], the
authors posed the question of giving a combinatorial descriptions of these number sequences.

In this paper, we first give bijections between Sn(321), Sn(231) and Dyck paths respectively, in terms of the
canonical reduced decomposition. Then we give combinatorial descriptions for the sequences mentioned in
[3]. We study the generating functions of the number of permutations in Sn(τ1, τ2), where τ1 ∈ S3, and τ2

is a barred pattern of length k (34 · · · (k − 1)1k̄2 or 34 · · · k1̄2). In several interesting cases the generating
function depends only of k and is expressed via Chebyshev polynomials, the generating function of the
Motzkin numbers M(x), and the generating function of the Catalan numbers C(x). In particular, we
present many classes which produce a discrete continuity between the Motzkin and the Catalan numbers.

2. Reduced decompositions for Sn(321) and the zigzag decompositions for Dyck paths

2.1. A bijection between Sn(321) and Dn. In this subsection, we present a bijection between Sn(321)
and the set of Dyck paths of semilength n based on the algorithm given in the preceding section. First we
characterize the permutations in Sn(321) by the following canonical reduced decompositions.

Theorem 2. For π ∈ Sn(321), then σ = σ1 · · ·σk is the canonical reduced decomposition of π, where
σi = shishi−1 · · · sti for 1 ≤ i ≤ k if and only if the set of parameters {(hi, ti)|1 ≤ i ≤ k} satisfies

1 ≤ h1 < h2 < · · · < hk ≤ n− 1,(3)
hi ≥ ti (1 ≤ i ≤ k),(4)

ti ≥ ti−1 + 1 (2 ≤ i ≤ k).(5)

Proof. We only need to show that ti ≥ ti−1 + 1, (2 ≤ i ≤ k) since inequalities (3) and (4) are required by
the definition of canonical reduced decomposition.

“=⇒”. We use induction on n. Clearly, the statement is true for n = 1, 2. Suppose it is true for n − 1.
Assume that n is in position i in π. If i = n, then the assertion is automatically true because the canonical
reduced decomposition of π \n is the same as that of π. When i 6= n, the canonical reduced decomposition
of π has one more factor σk = sn−1sn−2 · · · si. In other words, hk = n − 1 and tk = i. We aim to show
that i ≥ tk−1 + 1. Let

π \ n = β1 β2 · · · βi−1 βi · · · βn−1,

π = β1 β2 · · · βi−1 nβi · · · βn−1.
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By the inductive hypothesis, π\n ∈ Sn−1(321). Assume that tk−1 ≥ i. From the recursive construction
of the canonical reduced decomposition, one sees that βtk−1 > βtk−1+1. Thus nβtk−1 βtk−1+1 has pattern
321, which is a contradiction. Therefore, we conclude that i ≥ tk−1 + 1.

“⇐=”. We use induction on n. Clearly, the statement is true for n = 1, 2. Suppose that it is true for
n− 1. Assume that n is in position i in π. When i = n, the canonical reduced decomposition of π is the
same as that of π \ n. Then we have π ∈ Sn(321) since π \ n ∈ Sn−1(321). When i 6= n, the canonical
reduced decomposition of π has one more factor σk = sn−1sn−2 · · · si. In other words, hk = n − 1 and
tk = i. Notice that we have the condition i ≥ tk−1 + 1. Let hk−1 = n−m− 1 with m ≥ 1, and let

π \ n = β1β2 · · ·βn−1 = (1 2 · · · n− 1)σ1σ2 · · ·σk−1.

Then we have

π \ n = β1 · · · βtk−1−1 (n−m)βtk−1+1 · · · βn−m (n−m + 1) · · · (n− 1),

where βtk−1 = n−m. By the inductive hypothesis, π\n ∈ Sn−1(321), thus the subsequence βtk−1+1 · · · βn−m

is increasing. Since i ≥ tk−1 + 1, we have that n−m precedes βi−1 in π\n. Therefore, we obtain

π = β1 · · · (n−m) · · · βi−1 nβi · · · βn−m · · ·βn−1.

Assume that there exists a 321-pattern in π which contains n, namely, a subsequence nβj βk for some
i ≤ j < k. One sees that this can be possible only for j < k ≤ n−m. However, (n−m)βj βk would form
a 321-pattern in π \ n, which leads to a contradiction. ¤

For a Dyck path P , we define the (x + y)-labelling of P as follows: Each cell in the region enclosed by
P and the x-axis, whose corner points are (i, j), (i + 1, j − 1), (i + 2, j) and (i + 1, j + 1) is labelled by
(i + j)/2. If ((i− 1, j− 1), (i, j)) and ((i, j), (i + 1, j + 1)) are two successive up steps in P , we call this cell
an essential cell, and the step ((i− 1, j − 1), (i, j)) its left arm.

Now we can define the zigzag strip of P as follows:

• If there is no essential cell in P , then the zigzag strip is simply the empty set.
• Otherwise, we define the zigzag strip of P as the border strip that begins at the rightmost essential

cell.

As an example, Figure 1 illustrates the (x + y)-labelling of a Dyck path, whose zigzag strip is the light
gray stip with labels 11, 12, 12.
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Figure 1. The (x + y)-labelling and zigzag decomposition for Dyck path.

Suppose Pn,k is a Dyck path of semilength n that contains k essential cells, then we can obtain the zigzag
decomposition of Pn,k through the following procedure:

1. If k = 0, then the zigzag decomposition of Pn,0 is the empty set.
2. If k = 1, then the zigzag decomposition is the zigzag strip.
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3. If k ≥ 2, then decompose Pn,k into Pn,k = Pn,k−1Q, where Q is the zigzag strip of Pn,k, and Pn,k−1

is the Dyck path obtained from P by deleting Q. If we read the labels of Q from left to right,
we will get a sequence of numbers at the form {i, i + 1, . . . , j − 1, j}, and we associate Q with a
sequence of simple decompositions σk = sj sj−1 · · · si.

4. For Pn,i, i ≤ k − 1, repeat the above procedure, we will get σk−1, · · · , σ1.
5. The zigzag decomposition of Pn,k is then given by σ = σ1 σ2 · · · σk.

From the zigzag decomposition we can obtain a unique permutation ϕ(Pn,k) = (12 · · ·n)σ for the Dyck
path Pn,k. Next we want to show that σ is indeed the canonical reduced decomposition of ϕ(Pn,k).
For example, for the Dyck path P13,6 = uuuddduduuduuududdduududdd shown in Figure 1, in which
cells in the same zigzag strip are labelled with the same color. From the zigzag decomposition of this
path, we get σ = σ1 · · ·σ6 = (s1)(s2)(s7s6s5)(s8s7)(s11s10s9s8)(s12s11), the corresponding permutation is
ϕ(P13,6) = 2 3 1 4 8 5 9 12 6 7 13 10 11, and one can check that σ is the canonical reduced decomposition
of ϕ(P13,6).

From the construction of zigzag decomposition, it is clear that conditions (3)–(5) are ensured. That is,
the zigzag decomposition of Dyck paths satisfies

1 ≤ h1 < h2 < · · · < hk ≤ n− 1,
hi ≥ ti (1 ≤ i ≤ k),

ti ≥ ti−1 + 1 (2 ≤ i ≤ k).

Therefore, we have that ϕ(P13,6) ∈ S13(321). Moreover, by reversing zigzag decomposition, we can see
that such a map ϕ is a bijection.

Theorem 3. ϕ is a bijection between Dn and Sn(321).

2.2. Some statistics of Sn(321). Here we show some applications of the bijection ϕ which give generating
functions for several statistics of 321-avoiding permutations. For a permutation π = π1π2 · · ·πn recall that
i is called a fixed point of π if πi = i, and πi is called a right-to-left-minimum of π if there exists no j
such that j > i and πj < πi. We will use fp(π) and rlm(π), respectively, to denote the number of fixed
points and the number of right-to-left-minima of π, and use lis1(π) to denote the length of the longest
subsequence of π with the pattern 23 . . . k1. The following corollary follows from the definition of ϕ.

Corollary 4. Let π ∈ Sn(321) and suppose D is a Dyck path of semilength n such that ϕ(D) = π, then

(i) fp(π) = #{peaks in D of height 1};
(ii) rlm(π) = #{peaks in D};
(iii) lis1(π) = height of D;
(iv) π avoids the pattern (3 · · · (k − 1) 1 k̄ 2) iff each udu that begins at height k − 2 is contained in

a uduud;
(v) π avoids the pattern (3 · · · k 1̄ 2) iff uududd appears before every mountain of height less than

k − 1.

Proof. (i) If ud with starting point (2j, 0) is a peak of height 1, then sj and sj+1 will not appear in σ, hence
j + 1 is a fixed point. Conversely, if π(j) = j is a fixed point, since π ∈ Sn(321), it is easy to check that
neither sj−1 nor sj appears in the canonical reduced decomposition of π, that is, there exists i satisfying
hi + 2 < ti+1, therefore there is a peak ud which starts at (2j − 2, 0).

(ii) If we label the up steps of D from left to right with the elements of the permutation π (as shown in
Figure 1), then for each σi = shishi−1 · · · sti , the label of the left arm of its essential cell is exactly hi + 1,
(in fact the action of σi is to bring the element hi + 1 leftward to the proper position and shift other
relevant elements to the positions on the right), hence the labels of the up steps of the peaks of D are the
right-to-left minima of π.
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(iii) From (ii) we know that any peak in a Dyck path corresponds to a right-to-left minimum, say m, in
the permutation. Furthermore, the height of the peak is equal to the number of elements to the left of
m that are larger than m. These elements are in increasing order, thus these elements together with m
form a subsequence of the pattern 2 3 · · · k 1, which cannot be longer under the assumption that m is
the smallest element in the occurrence of the pattern.

Using (iii), the statements (iv) and (v) can be obtained easily. ¤

Example 5. (see [14]) From Corollary 4(i), we see that the number of derangements avoiding 321 of length
n is the n-th Fine number.

Theorem 6. The generating function for 321-avoiding permutations with respect to the number of fixed
points and the number of right-to-left-minima is given by

A(x, p, q) =
∑

n≥0

∑

π∈Sn(321)

xnpfp(π)qrlm(π) =
2

1 + x(1 + q − 2qp) +
√

(1− x(1 + q))2 − 4x2q

Proof. By Corollary 4, we can express A as

A(x, p, q) =
∑

n≥0

∑

D∈Dn

xnp#{peaks in D of height 1}q#{peaks in D}.

Indeed, any nonempty Dyck path D can be written uniquely in one of the following two forms: (1)
D = udD′′ or (2) D = uD′dD′′, where D′ is an arbitrary nonempty Dyck path and D′′ is an arbitrary
Dyck path. Using these cases, we obtain the following equation for the generating function A:

A(x, p, q) = 1 + xpqA(x, p, q) + x(A(x, 1, q)− 1)A(x, p, q).

The rest is easy to check. ¤

Example 7. (see [14]) Theorem 6 gives that the generating function for the number of 321-avoiding
permutations with respect to the number of fixed points is given by

∑

n≥0

∑

π∈Sn(321)

xnpfp(π) =
2

1 + 2x(1− p) +
√

1− 4x
.

Example 8. Theorem 6 gives that the generating function for the number of 321-avoiding permutations
with respect to the number of right-to-left-minima is given by

∑

n≥0

∑

π∈Sn(321)

xnqrlm(π) =
1 + x(1− q)−

√
(1− x(1 + q))2 − 4x2q

2x
.

2.3. Avoiding 321 and another pattern.

Theorem 9. For k > 0, let Bk(x, p, q) :=
∑

n≥0

∑
π∈Sn(321,23...(k+1)1) xnpfp(π)qrlm(π) be the generating

function for 321-avoiding permutations which avoid 23 . . . (k + 1)1 with respect to the number of fixed
points and the number of right-to-left-minima. Then we have the recurrence

Bk(x, p, q) =
1

1 + x(1− pq)− xBk−1(x, 1, q)
,

with B0(x, p, q) = 1. Thus, Bk can be expressed as a continued fraction of the form

Bk(x, p, q) =
1

1 + x(1− pq)− x

. . .

1 + x(1− q)− x

1 + x(1− q)− x

,
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where the fraction has k levels, or in terms of Chebyshev polynomials of the second kind, as

Bk(x, p, q) =
Uk−1(t)−

√
xUk−2(t)√

x [Uk(t)−√x(1− q(1− p))Uk−1(t)− xq(1− p)Uk−2(t)]
,

where t = 1+x(1−q)
2
√

x
.

Proof. By Corollary 4, permutations in Sn(321, 23 . . . (k+1)1) are mapped by ϕ−1 to Dyck paths of height
less than k + 1. Thus, we can express Bk as

Bk(x, p, q) =
∑

n≥0

∑

D∈Dn of height<k+1

xnp#{peaks in D of height 1}q#{peaks in D}.

For k > 1, we use again the standard decomposition of Dyck paths, and obtain the equation

Bk(x, p, q) = 1 + x(Bk−1(x, 1, q)− 1)Bk(x, p, q) + xpqBk(x, p, q).

For k = 1, the path can have only peaks of height one, so we get B1(x, p, q) = 1
1−xpq . Now, using the

above recurrence and Equation (2) we get the desired result. ¤

Example 10. Theorem 9 for p = q = 1 together with Equation (2) gives that the generating function for
the number of permutations in Sn(321, 23 . . . (k + 1)1) is given by (see [11, 12, 6])

Uk

(
1

2
√

x

)

√
xUk+1

(
1

2
√

x

) .

More generally, the generating function for the number of 321-avoiding permutations which avoid 23 . . . (k+
1)1 with respect to the number fixed points is given by

Uk

(
1

2
√

x

)

Uk

(
1

2
√

x

)
− p

√
xUk−1

(
1

2
√

x

)
− x(1− p)Uk−2

(
1

2
√

x

) ,

and the generating function for the number of 321-avoiding permutations which avoid 23 . . . (k + 1)1 with
respect to the number of right-to-left-minima is given by

Uk−1

(
1+x(1−q)

2
√

x

)
−√xUk−2

(
1+x(1−q)

2
√

x

)

√
x

[
Uk

(
1+x(1−q)

2
√

x

)
−√xUk−1

(
1+x(1−q)

2
√

x

)] .

Theorem 11. The generating function for the number of permutations avoiding both 321 and 34 . . . (k −
1)1k2 can be expressed as

1

1− x

1− x

1−
. . .

1− xM(x)

,

where the continued fraction has k−4 levels and M(x) is the generating function for the Motzkin numbers,
that is, M(x) = 1−x−√1−2x−3x2

2x2 , or in terms of Chebyshev polynomials of the second kind, as

Uk−5

(
1

2
√

x

)
−√xM(x)Uk−4

(
1

2
√

x

)

√
x

[
Uk−4

(
1

2
√

x

)
−√xM(x)Uk−3

(
1

2
√

x

)] .
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Proof. Using the standard decomposition of Dyck paths, we obtain the following equation for the generating
function Ak(x) =

∑
n≥0

∑
π∈Sn(321,34...(k−1)1k2) xn: Ak(x) = 1 + xAk−1(x)Ak(x), where k ≥ 5, and

A4(x) = 1 + xA4(x) + x2A4(x)2. Now, using the above recurrences and Equation (2) we get the desired
result. ¤

Theorem 12. The generating function for the number of permutations avoiding both 321 and 3 . . . k12 is
given by

Uk−1

(
1

2
√

x

)

√
xUk

(
1

2
√

x

) .

Proof. Using the standard decomposition of Dyck paths, we obtain the following equation for the generating
function Dk(x) =

∑
n≥0

∑
π∈Sn(321,34...k12) xn: Dk(x) = 1+xDk−1(x)Dk(x), where k ≥ 2, and D1(x) = 1.

Now, using the above recurrence and Equation (2) we get the desired result. ¤

3. Reduced decompositions for Sn(231) and the Trapezoidal Decomposition

3.1. A bijection between Sn(231) and Dn. The recursive construction of Sn(231) can be described as
follows.

Theorem 13. For n ≥ 2, a permutation π in Sn(231) can be constructed by the following recursive
procedure: for π1 ∈ Si(231) and π2 ∈ Sn−i−1(231), and 0 ≤ i ≤ n− 1, set

π = π1 n π̃2,

where π̃2 denotes the sequence obtained from π2 by adding i to every entry. Conversely, given any permu-
tation π ∈ Sn(231), one can uniquely decompose it into a pair of shorter permutations.

In this section, we will introduce the trapezoidal decomposition of Dyck paths, which is based on another
labelling for Dyck paths: the (x− y)-labelling.

For a Dyck path P , each cell in the region enclosed by P and the x-axis, whose corner points (i, j),
(i + 1, j − 1), (i + 2, j), and (i + 1, j + 1) is labelled by (i− j + 2)/2, such a labelling is called an (x− y)-
labelling. Now we can define the trapezoidal strip of P :

• If there is no essential cell in P , then the trapezoidal strip is simply the empty set.
• Otherwise, we define the trapezoidal strip of P as the horizontal strip that touches the x-axis and

starts at the rightmost essential cell.

For example, the trapezoidal strip of the Dyck path in Figure 2 is the dark gray strip with labels
5,6,7,8,9,10,11,12.

Suppose Pn,k is a Dyck path of semilength n that contains k essential cells, we define the trapezoidal
decomposition of Pn,k as follows:

1. If k = 0, then the trapezoidal decomposition of Pn,0 is the empty set.
2. If k = 1, then the trapezoidal decomposition is the trapezoidal strip.
3. If k ≥ 2, then decompose Pn,k into Pn,k = Q1uQ2d, where u is the left arm of the rightmost

essential cell that touches the x-axis, and d is the last down step of Pn,k, and Q1 and Q2 carry the
labels in Pn,k. If we read the labels of the trapezoidal strip Pn,k from left to right, we will get a
sequence of the form {i, i + 1, . . . , j}; let σk = sj sj−1 · · · si.

4. Repeat the above procedure for Q1 and Q2. Suppose the trapezoidal decomposition of Q1 and Q2

is σ′ and σ′′, then the trapezoidal decomposition of Pn,k is σ = σ′σ′′σk.
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From the trapezoidal decomposition we can obtain a permutation ψ(Pn,k) = (12 · · ·n)σ from Pn,k. For
example, for the Dyck path P13,6 = uuuddduduuduuududdduududdd shown in Figure 2, in which cells in
the same trapezoidal strip are labelled with the same color. From the trapezoidal decomposition of P13,6

we get
σ = σ1 · · ·σ6 = (s1)(s2s1)(s7s6)(s8s7s6)(s11s10)(s12s11s10s9s8s7s6s5),

the corresponding permutation is ψ(P13,6) = (12 · · ·n)σ = 3 2 1 4 13 5 9 8 6 7 12 10 11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

2

3

4

5

6

1

21 5 6 7 8 9 10 11 12

6 7 8 10 11

76

3

2

1

4 13

5 9

8

6 7

12

10 11

Figure 2. The (x− y)-labelling and trapezoidal decomposition for Dyck path.

From the construction of trapezoidal decomposition, we have the following assertion:

Theorem 14. Let P be a Dyck path of semilength n, and σ = σ1σ2 . . . σk the trapezoidal decomposition
of P . Then we have ψ(P ) = (12 · · ·n)σ ∈ Sn(231).

Proof. We use induction on n. For n = 1, it is clear that ψ(P ) = 1. Assume that the statement is true for
Dyck paths of semilength less than n. If P ends with a peak of height 1, then there exists a unique Dyck
path Q ∈ Dn−1 such that P = Qdu. Observing that sn−1 does not appear in σ1σ2 · · ·σk, we have

ψ(Qud) = (12 · · ·n)σ = ψ(Q)n.

By induction, ψ(Q) ∈ Sn−1(231). It follows that π = ψ(Q)n ∈ Sn(231). If P does not end with a
peak of height 1, we may have the decomposition P = Q1uQ2d, where Q1 is a Dyck path of semilength
i. From the construction of the trapezoidal decomposition of P , we see that σk = sn−1 · · · si+1. Let
σ1 · · ·σk−j denote the trapezoidal decomposition corresponding to Q1. Let sr be any factor of σ1σ2 · · ·σk−j ,
then we have r ≤ i − 1. Thus, they act only on the first i elements. Let σk−j+1 · · ·σk−1 denote the
trapezoidal decomposition corresponding to Q2, and sr be any factor in σk−j+1σk−j+2 · · ·σk−1, then we
have i < r ≤ n−2. Therefore, they act only on the elements whose positions are bigger than i and smaller
than n− 1. It follows that

ψ(P ) = (1 2 · · · n)σ1σ2 · · ·σk

= (1 2 · · · n)(σ1 · · ·σk−j)(σk−j+1 · · ·σk−1)(sn−1 · · · si+1)

= ((1 · · · i)σ1 · · ·σk−j) (((i + 1 · · ·n− 1)σk−j+1 · · ·σk−1) n)(sn−1 · · · si+1)

= ψ(Q1) n ψ̃(Q2),

From the induction hypothesis, we know that ψ(Q1) and ψ(Q2) are both in Sn(231). From the above
equation and Theorem 13 we can see that π = ψ(P ) ∈ Sn(231), as required. ¤

We should point out that for π ∈ Sn(231), the decomposition in Theorem 14 is indeed a canonical reduced
decomposition since it satisfies (1). So we have the following theorem.
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Theorem 15. Let σ = σ1 · · ·σk be the canonical reduced decomposition of π ∈ Sn, where σi = shi
shi−1 · · · sti

for 1 ≤ i ≤ k, then π ∈ Sn(231) if and only if

(6)

1 ≤ h1 < h2 < · · · < hk ≤ n− 1,

hi ≥ ti (1 ≤ i ≤ k),

ti ≤ ti−1, or ti ≥ hi−j + 2, (2 ≤ i ≤ k, 1 ≤ j ≤ i− 1).

But we prefer the recursive structure of π, which is easier and direct.

3.2. Some statistics about Sn(231). Here we show some applications of the bijection ψ to give generating
functions for several statistics of 231-avoiding permutations. For any permutation π, the number of
inversions, descents, rises and the length of the longest decreasing subsequence in π are denoted by inv(π),
des(π), rise(π), and lds(π), respectively. The following corollary follows from the definition of ψ.

Corollary 16. Let π ∈ Sn(231), and suppose D is a Dyck path of semilength n such that ψ(D) = π. Then

(i) inv(π) = #{cells in D}.
(ii) rlm(π) = #{peaks in D}.
(iii) rise(π) = #{valleys in D} = #{peaks in D} − 1.
(iv) des(π) = #{enssential cells in D}.
(v) lds(π) = height of D.
(vi) π avoids the pattern (k · · · 3 1̄ 2) iff uududd appears before every mountain of height less than

k − 1.
(vii) π avoids the pattern (k 1̄ (k − 1) · · · 2) iff each udu that begins at height k − 2 is contained in a

uduu.
(viii) π avoids the pattern ((k − 1) · · · 1 k̄) iff the height of the last mountain is less than k − 1.

Proof. (i) It can be obtained from Lemma 1 immediately.

(ii) This property is the same as Corollary 4 (ii). That is, if we label the up steps of D from left to right
with the elements of the permutation π, then for each σi = shishi−1 · · · sti , the label of the left arm of
its essential cell is exactly hi + 1, hence the labels of the up steps of the peaks of D are the right-to-left
minima of π.

(iii) From (ii), each right-to-left minimum and the element next to it are both rises in π, except for the
last element, and the number of valleys is equal to the number of peaks plus one.

(iv) The action of σi is to bring the element hi + 1 leftward, which will create a new descent since π is
231-avoiding.

(v) From (ii), the labels of the consecutive up steps appear in decreasing order since π is 231-avoiding,
thus the height of the mountain is the length of the decreasing subsequences.

using (v), the properties (vi), (vii) and (viii) can be obtained easily. ¤

3.3. Avoiding 231 and another pattern.

Theorem 17. Let A(x; a, b, c) =
∑

n≥0

∑
π∈Sn(231) xnainv(π)brlm(π)crise(π). Then the generating function

A(x; a, b, c) is given by

1− 1
c

+
1/c

1 + x(1− bc)− x

1 + ax(1− bc)− ax

1 + a2x(1− bc)− a2x

. . .

.
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Proof. Let B(x; a, b) =
∑

n≥0

∑
π∈Sn(231) xnainv(π)+nbrlm(π). By Lemma 16, we can express B as

B(x; a, b) =
∑

n≥0

∑

D∈D2n

xnan+#{cells in D}b#{peaks in D}.

Using the standard decomposition of Dyck paths, we obtain the following

(7) B(x; a, b) = 1 + xabB(x; a, b) + ax(B(ax; a, b)− 1)B(x; a, b).

Indeed, any nonempty Dyck path D can be written uniquely in one of the following two forms: (1)
D = udD′′ or (2) D = uD′dD′′, where D′ is an arbitrary nonempty Dyck path and D′′ is an arbitrary
Dyck path. Let us write an equation for B(x; a, b). The first and second of the block decompositions above
contributes as xabB(x; a, b) and ax(B(ax; a, b)− 1)B(x; a, b), respectively. Therefore,

B(x; a, b) =
1

1 + ax(1− b)− ax

1 + a2x(1− b)− a2x

. . .

.

Hence, by using the fact that A(x; a, b, c) = 1 + 1
c (B(x/a; a, bc)− 1), we get the desired expression. ¤

For example, Theorem 17 gives
∑

n≥0

∑

π∈Sn(231)

sign(π)brlm(π)xn =
1− 2x− x2(1− b)2 −

√
(1 + x2(1− b2))2 + 4bx2(1− x2(1− b)2)
2x(x(b− 1)− 1

,

where sign(π) = (−1)inv(π). Thus, the generating function
∑

n≥0

∑
π∈Sn(231) sign(π)xn is given by

−1 + 2x +
√

1 + 4x2

2x
= 1 + xC(−x2),

where C(x) is the generating function for the Catalan numbers (see [8] for the case Sn(132)).

Theorem 18. For k > 0, let Ak(x; a, b, c) :=
∑

n≥0

∑
π∈Sn(231,k...21) xnainv(π)brlm(π)crise(π) be the gener-

ating function for permutations avoiding both 231 and k . . . 21 with respect to the number of rises, right-
to-left-minima, and the number of inversions. Then

Ak(x; a, b, c) = 1− 1
c

+
1
c
(Bk(x/a; a, bc)− 1),

where

Bk(x; a, b) =
∑

n≥0

∑

π∈Sn(231,k...21)

xnan+inv(π)brlm(π) =
1

1 + ax(1− b)− axBk−1(ax; a, b)
,

with B1(x; a, b) = 1. Thus, Ak can be expressed as

Ak(x; a, b, c) = 1− 1
c

+
1/c

1 + x(1− bc)− x

1 + ax(1− bc)− ax

1 + a2x(1− bc)−
. . .

1 + ak−2x(1− bc)− ak−2x

.

Proof. The condition that π avoids k . . . 21 is equivalent to the condition lds(π) ≤ k. By Lemma 16,
permutations in Sn(231) satisfying this condition are mapped to Dyck paths of height less than k. Thus,
we can express Ak as

Ak(x; a, b, c) = 1 +
∑

n≥1

∑

D∈Dn of height<k

xna#{cells in D}b#{peaks in D}c#{peaks in D}−1.
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For k > 2, we use again the standard decomposition of Dyck paths D = uD′dD′′. First, the height of
udD′′ is the same as the height of D′′. Second, if the height of uD′dD′′ is less than k, the height of D′ has
to be less than k − 1. Therefore, we obtain the equation

Bk(x; a, b) = 1 + abxBk(x; a, b) + ax(Bk−1(ax; a, b)− 1)Bk(x; a, b).

For k = 2, the path can have only peaks at height one, so we get B1(x; a, b) = 1. Now, using the above
recurrence we get the desired result. ¤

By applying Theorem 18 for a = c = 1, b = q, and (2) we get the following result.

Corollary 19. For k > 0, let Ak(x; q) =
∑

n≥0

∑
π∈Sn(231,k(k−1)...1) xnqrlm(π) be the generating function

for 231-avoiding permutations which avoid k(k−1) . . . 1 with respect to the number of right-to-left-minima.
Then we have the recurrence

Ak(x; q) =
1

1 + x(1− q)− xAk−1(x; q)
,

with A1(x; q) = 1. Thus, Ak can be expressed as a continued fraction of the form

Ak(x, q) =
1

1 + x(1− q)− x

. . .
1 + x(1− q)− x

,

where the fraction has k − 2 levels, or in terms of Chebyshev polynomials of the second kind, as

Ak(x; q) =
Uk−2(t)−

√
xUk−3(t)√

x [Uk−1(t)−
√

xUk−2(t)]
,

where t = 1+x(1−q)
2
√

x
.

For example, Corollary 19 for q = 0 gives Theorem 3.1(iii) in [5] and Theorem 6 in [6], that is, the generating
function for the number of permutations which avoid both 132 and 12 . . . k is given by Rk(x) = 2tUk−1(t)

Uk(t) ,
where t = 1

2
√

x
.

Another application of Theorem 17 with a = −1 and b = c = 1 gives the following corollary (see [8]).

Corollary 20. The generating function Ak(x) =
∑

n≥0

∑
π∈Sn(231,k...21) sign(π)xn can be expressed as

1
1− x

1+ x
1− x

...

,

where the fraction has k − 1 levels, or in terms of Chebyshev polynomials of the second kind as

A2k+1(x) = 1 + xRk(−x2) and A2k(x) =
Rk(−x2)

1− xRk(−x2)
.
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