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Abstract

The energy of a graph is defined as the sum of the absolute values
of all the eigenvalues of the graph. Let U(k) be the set of all unicyclic
graphs with a perfect matching. Let Cyg) be the unique cycle of G
with length g(G), and M(G) be a perfect matching of G. Let U°(k)
be the subset of U(k) such that g(G) = 0(mod4), there are just
independence edges of M(G) in Cy) and there are some edges of
E(G)\M(G) in G\ Cyc) for any G € U°(k). In this paper, we discuss
the graphs with minimal and second minimal energies in U*(k) =
U(k)\ U°(k), the graph with minimal energy in U°(k), and propose a
conjecture on the graph with minimal energy in U (k).
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1 Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The
characteristic polynomial of A(G) is

H(G,\) = det( M\ — A(G)) = znj ai Nt
=0

The roots A1, Aa,..., A, of ¢(G,A) = 0 are called the eigenvalues of G.
Since A(G) is symmetric, all the eigenvalues of G are real. The energy of

G, denoted by E(G), is then defined as F(G) = i [Ai|. Tt is known that [7]
i=0

E(QG) can be expressed as the Coulson integral formula
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Since the energy of a graph can be used to approximate the total m-electron
energy of the molecule, it has been intensively studied. For a survey of the
mathematical properties and results on E(G), see the recent review [6].

In [14], F. Zhang and H. Li studied the minimal energies of acyclic
conjugated molecules. In this paper, we discuss the minimal energies about
unicylic graphs with a perfect matching.



Let U(k) be the set of all unicyclic graphs on 2k vertices with a perfect
matching. Let Cy(G) be the unique cycle of G with length ¢(G), and M(G)
be a perfect matching of G. Let U°(k) be the subset of U(k) such that
9(G) = 0(mod4), there are just § independence edges of M(G) in Cy)
and there are some edges of E(G) \ M(G) in G\ Cyg) for any G € U°(k).
Let Si(k) be the graph on 2k vertices obtained from C3 by attaching one
pendant edge and k—2 paths of length 2 together to one of the three vertices
of C3. Let S}(k) be the graph obtained from C, by attaching one path P of
length 2 to one vertex of C4 and then attaching k& — 3 paths of length 2 to
the second vertex of the path P.
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Let S?(k) be the graph on 2k vertices obtained from Cj by attaching
k — 2 paths of length 2 to one of the four vertices of Cy. Let S3(n, k) be the
graph on 2k vertices obtained from Cy by attaching one pendant edge and
k — 3 paths of length 2 together to one of the four vertices of Cy, and one
pendant edge to the adjacent vertex of Cy, respectively (see Fig.2).
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In this paper, we show that Si(k), S3(k) (k > 43) are the graphs with
minimal and second minimal energies in U*(k) = U(k) \ U°(k) respectively,
S}(k) be the graph with minimal energy in U%(k). Finally, we give a con-

jecture on the graph with minimal energy in U (k).



2 Main results

Lemma 1 ([7, 4, 1]) Let G be a graph with characteristic polynomial (G, \) =

n .
a; A", Then fori>1
=0

(2

a; = Z (—1)P(S)2e(9),
SeL;

where L; denotes the set of Sachs graphs of G with i vertices, that is, the
graphs in which every component is either a Ko or a cycle, p(S) is the
number of components of S and c(S) is the number of cycles contained in
S. In addition, ag = 1.

Let by;(G) = (—1)tag; for 0 < i < |n/2]. Clearly, bo(G) = 1 and by(G)
equals the number of edges of G.

Lemma 2 ([9]) Let G € U(k), then be;(G) >0 for 0 <i < |n/2].

In view of Lemma 2, a quasi-order relation is introduced (see [5]). Let
G,Gy € U(k) and Gy be a bipartite graph. If by;(G) > bg;(Gp) holds for
0 < i < |n/2], we say that G is not less than Gy, written as G = Go.
Furthermore, if these inequalities sometime are strict, that is, be;(G) >
b2i(Go) for some i, we say G is more than Gy, written as G = Gy. Obviously,
from (1) and Lemma 2 we have the following increasing property on E:

G - Gy = E(G) > E(G)). (2)

We denote by M(G) a perfect matching of G, and denote by G =
G[E(G) \ M(G)], where G[E] is the subgraph induced by E, E(G) \ M(G)
is a set of edges that are not in M(G), but in E(G). For example, S3(k),
S3(k) (see Fig.3).

,_.é}(k—?ﬂ I 3}(16—2)

S3(k) Si(k)

Fig.3

Let 7’](-2i) (G) be the number of ways to choose i independence edges in G
such that just j edges are of G. Obviously, r(()%)(G) = ('.f), rgm(G) = k:(]::f)

)

Lemma 3 Let G € U*(k), g(G) = 1(mod 2), g(G) > 5. Then E(G) >
E(Si(k))-



Proof. Combining Lemmas 1 and 2 and the case g(G)) = 1( mod 2), we can
obtain

boi(S3(R)) = P (STR)) + Y (S8 (k))
= i (ShR) + 1
boi(G) = @) + @) + 186G + -+ PG,

It suffices to prove that rf”(G) > (k — 3)(’;:;1) - (]::5’) Let v; (i =
1,2,...,g) be all the vertices of Cy, T; (i = 1,2,...,g) be a tree planting
at v; (v; € V(T})), ni (i = 1,2,...,9) be the number of edges of G in T}.
Obviously, k — 9;1 >ni+ng+...+ng > k—g. Let 3> be the number of

ways to choose two independence edges of G.

If there exist at least two tree T;,T}; such that n;,n; > 0 (n; > n;).
Then k£ — % > 2n;.

Bo—(k—=3) > nj(k:—nj—2)—k‘+3:njk‘—n§—2nj—k‘—|—320

If there is just a tree T; such that n; > 0, then there exists an edge e of

A~

Cy such that e belongs to F(G) and is not adjacent to v;. Thus #y > k—1-2.

Then
r$N(G) > (k- 3) (l:: ;)

Lemma 4 Let G € U*(k). If g(G) = 3, and G % Si(k), then E(G) >
E(S§(k)).

Proof. Similarly, it suffices to prove that G, > k — 3, where v;, n;, B2 are
defined as the same as those in the proof of Lemma 3.

Case 1: There is just one edge e € M(G) in C3, without loss of generally,
let e = v1v9. Then ny +ng +n3 =k — 2.

Subcase 1.1: There are at least two trees T;,T; such that n;,n; > 0.
Then, similar to the proof of Lemma 3, we can obtain #s > k — 3.

Subcase 1.2: There is just a tree T; such that n; > 0. If i = 1 or 2,
then B > k —3. If i = 3, let P = v3uy - us_ouz_1us be the longest path
of T3 from w3. Then u; is a pendant edge and wus_ous 1 € E(é) Since
G % Si(k), we have t > 3 and so t — 2 > 1. Let x be the number of
edges of E(é) that adjacent to us_o. Then B9 > k — 2 when x = 1, and

B2 > (x —1)(k —x) > k — 3 when z > 2, since k > = + 2.

Case 2: There is no edge of M(G) in Cs. Then B > ny+ngo+ns = k—3.
O

Lemma 5 Let G € U*(k). If g(G) =2(mod 4), then E(G) > E(S3(k)).



Proof. By Lemmas 1 and 2, we have

boi(G) = r8NG) +rPNG) + (@) + PG+
2r PG\ Cy) +1PTNGN Cp) + -+ 2@ Cy)].

g
It suffices to prove that rézi)(G) > r§2i)(52(/<;)). Similar to the proof of
Lemma 3, we can obtain the inequality. O

Lemma 6 Let G € U*(k), g(G) =0( mod 4), and g(G) > 8.

(i) If there are less than § — 1 edges of M(G) in Cy(G), then E(G) >
E(Si (k).

(i) If there are just § edges of M(G) in Cy(G), then E(G) > E(S3(k)).

Proof. (i) By Lemmas 1 and 2, we can obtain

bos(G) = r8UG) +rPNG) + @) + .+ P(@)
— PTG Cy) + PTG Cy) + -+ PG Cy)l.

g

Case 1: There are just § — 1 edges of M(G) in Cy(G). Then there are

2 +1 edges of E(G) in Cy(G). Let My, My be two matchings in Cy(G) with
cardinality .

Subcase 1.1: If M; ¢ E(G) and My ¢ E(G), then Mj, My contain

A

at least two edges of E(G), and one of those contains at least three edges

of E(G). Let My be a matching in G\ Cy(G) with cardinality i — % such

that it contains at least one edge of E(G’), then there are two matchings
M7y U My, My U My with cardinality ¢ corresponding to My. Thus

).

b2i(G) = 180G + (@) + B9 - (O

[SJESTRY Y

where 39 be the number of ways to choose two independence edges of E(G)
such that at least one edge in Cy(G). Let ni,na,...,ny be defined as the
same as those in the proof of Lemma 3.

By > (%+1—2)(n1+n2+...+ng)+(%2_1)
= G-Dk-§-D+ ()
= kg-1 -
> k-3

Subcase 1.2: Without loss of generally, let M; C E(é), then M con-

tains just one edge of E(G). Similarly, we have

b2:(G) = 180G +rP(G) + B3 (P - (O

).

[T



where (35 be the number of ways to choose two independence edges of E (é)
such that at least one edge in M; and no edge in Ms. Then

)(n1+n2+...—|—ng)+(§)
Dk—§-1)+(3)

B3

Y

(5 -
(5 -

N Nl

> k-3

Since (k ) > (kl_._%g_l), we can obtain by;(G) > by;(S3(k)) for 0 < i < |n/2],
2

and these equalities do not always hold.

Case 2: There are at most % — 2 edges of M(G) in Cy(G). Then
M, My contain at least two edges of E(G). Similar to Case 1, we can have
b2i(G) > bo;(S3(k)) for 0 < i < |n/2], and these equalities do not always
hold. Thus E(G) = E(S3(k)), E(G) > E(S3(k)).

(ii) There are just § edges of M(G) in Cy(G). By Lemmas 1 and 2 and
G € U*(k), we have

ba(S3(k) = r§(S3(R)) + P (ST(R)) + S (ST (k) — 2r6 T (SH(R) \ Cu)
= 1 (SH) + P (S3R) + (57D + (k- 2)(523) —2(52)

boi (G) = @) + @) + 3G + -+ (@) - 2T (G N\ Cy)
> G +rPG) + By (D) — (575)

where (3, is the number of ways to choose two independence edges of F (é)
such that both are adjacent to one edge of M (G). Without loss of generality,
let vi1vg, v3v4, ..., V9104 € E(G). Then
By > n3tngtngtngt-tngotnityg
= k—4+45>k-2

Combining (¥~2) > (l::gg), we can obtain E(G) = E(S3(k)), E(G) >
2
E(S3(k)). O

Similarly, we have

Lemma 7 Let G € U*(k), g(G) = 4. (i) If there is just one edge of M(G)
in Cy, then E(G) > E(S3(k)). (ii) If there are just two edges of M(G) in
Cy, then E(G) > E(S3(k)).

Lemma 8 [/ Let uv be an edge of G, then
(G A) = (G —uww,\) —p(G—u—v,N) =2 Y ¢(G—C,N),

CeC(uv)

where C(uv) is the set of cycles containing uv; In particular, if uwv is a
pendant edge with pendant verter v, then

O(G,A) = Ap(G — v, A) — d(G —u— v, \).



Lemma 9 [12] ¢(S3(k),\) < #(S3(k),\) for all X > X(Si(k)). In par-
ticular, M\ (S3(k)) > M\ (S3(k)).

Lemma 10 [3] Si(k) is the graph with mazimal spectral radius in U (k).

From [12, 9] and Lemma 8, we can get

Lemma 11 Let G be a graph with characteristic polynomial (G, ). Then

G(S3(k),A) = (A2 = 1F 48 — (k+4)A° + 3k + 2)A — (k+3)A2 + 1)
G(SF(k),A) = NN = DF (M — (k + 3)\° + 2k)

G(S(k),N) = (A2=1F 2\ = (k+ 4\ — 21+ 1)

G(SH(k),N) = X2(N2 = 1)F 40 — (k + 4)\* + 4kA% - 6)

Lemma 12 E(S}(k)) > E(S3(k)) for k > 29.

Proof. Let x1,z9,x3,24 (1 > mgy > x3 > x4) be the positive roots of
flx) =28 —(k+4)x% 4 (3k+2)2* — (k+3)22 +1 = 0. Let y1,y2 (y1 > y2) be
the two positive roots of g(y) = y* — (k+3)y*>+2k = 0. For convenience, we
give the Appendix Table. It suffices to prove that z1+xo+a3+z4 < y1+y2+1
for k > 50.

When k > 50, £(0) > 0, £(0.145) < 0, £(0.62), f(¥31) < 0, f(y/k + &) >
0; g(1.4) < 0,9(vk+1) > 0,9(Vk+2) < 0. Then we can obtain that
ry < 014525 < 0.62,22 < 161821 < \/k+8, 1 > Ly > VET L
Furthermore, by Lemma 9 we have m >x1 >y > VE+HL oy >
T — (m —Vk +1) > 21 —0.0143. Thus, we have

1+ xo+a3+xs < 0.14540.62 4+ 1.618 + a1
= 2383+
< 141442 —0.0143 <14y +yo.

Lemma 13 E(S}(k)) > E(Si(k)) for k > 43.

Proof. Let tq,t2 (t1 > t2) be the two positive roots of h(t) = t* — (k+ 3)t2 —
2t +1 = 0. By Lemma 11, we have

E(S3(k)) = 2k—8+42(z1 + 29+ a3 + 24)
E(Si(k) = 2k—4+2(t; +t2)

It suffices to prove x1 + xo + x3+ x4 > t1 +t9+ 2 for &k > 51. When k > 51,
£0) >0, F(5=1) <0, £(1.597) > 0, f(¥3) < 0, and h(0) > 0,h(0.12) <
0. Then z9 +x34+ x4 —yo —2 > 0.618 + 1.597 — 0.12 — 2 = 0.095 = €. Thus
To+x3+T4 >241y+ €.




We will prove t; < 21 + . It suffices to prove h(z1 +¢) > 0. When
k>51, 21 >+vVk+1>71. Then

A —(k+2)—2+%

= 22— (k+2)+(1-1)2%-1
(xl +e)?2—(k+2)+0.7381 — 1
= 2% —(k+1)+ 2z +e? — 1.2619
> 2ex; — 1.2619 > 0.

h(:cl—i-a)
:C1+E)

-

We have h(z1 +¢) > 0, and 1 + 22 + 23 + x4 > t1 + t2 + 2. O

Combining the Appendix Table and Lemmas 3 - 8, 12 and 13, we can obtain

Theorem 1 (i) When 5 < k < 28, S3(k) is the graph with minimal energy
in U* (k). (ii) When 29 < k < 42, S3(k) is the graph with minimal energy
in U*(k). (iii) When k > 43, S%(k:), S3(k) are the graphs with minimal and
second minimal energies in U* (k) respectively,

Lemma 14 Let G € U(k), g(G) = 4, G % Si(k). Then E(G) > E(S}(k)).

Proof. Let x be the number of edges in (é) that are adjacent to vertices
of Cy except for two edges in Cy. Since there are just two edges of M(G),
G \ C4 contains some edges of E(G). Then 1 < z < k — 3. By Lemmas 1
and 2, we can obtain

(@) = Q) HrN@) +@) . PO
~ofr (G\04)+ ER(CAYN R i (cAYeN)

r&(@) + (@) + 2t 2)+2(k—2—x)(’§:§‘)
+<$—1< > (123) — (k =2 - ) (i)
= 7@ + (@) + () - () + (57

+2(k - 2><Z T2 = (i5) = (= 2)(53)
@G + (@) + 1 [(¢3) - () + (7))
+2(k -2)(575) - (75) — (k= 2) (i)
= b2i(S;(F))

v

v

where the equality holds if and only if G = S}(k). So, we have G = S}(k),
E(G) > E(S}(k). O

Lemma 15 Let G € U%k), g(G) > 8. Then E(G) > E(S}(k)).



Proof. By Lemmas 1 and 2, we can obtain

ba(SE(R) = & (SER)) + rP(SE(R)) + r$ (ST(k))rE™ (SE(R))
[ Y (SHR)\ Ca) + 2V (SER) \ )]
= ) (SER)) + P (SER) + (523) + 20k — 3)(*y)
( 2) — (k- 3)(52))
bu(G) = NG + NG + (G + .+ r(6)
g g(G\c>+r§2’ g(G\ Co) -+ 107G\ Cy)]
(@) +rP(G) +
> () +r(6) +

v

@) -GN Cy) — TGN Cy)
(@) - (- k==,

Let v; (i = 1,2,...,g) be all the vertices of Cy, T; (i = 1,2,...,9) be a tree
planting at v; (v; € V(T3)), vi (i = 1,2,...,¢g) be the number of edges in G.
Obviously, n1 +ng + ... +ng = k — 4. Let B2 be the number of ways to

l\)l‘ﬁmkq

choose two independence edges of G such that at least one edge in Cy(q)-
Then

Bo > (§—D(mi+na+...+n9)+(5)
= G-Dk-9+()
> 2k +5.

> ), (k=3)(*2)) >
(k—4%- 1)(’2?:%%:12). We have G = S1(k), E(G) > E(S}(k)).

We have r§2i)(G) > (?:3)4-2(]‘7_3) ('f:é‘) Since (523) > (]::

[SIESTEIY

Using Lemmas 14 and 15, it is not difficult to obtain the following theorem.
Theorem 2 S} (k) is the graph with minimal energy in U°(k).

By Theorems 1 and 2, Lemmas 14 and 15, and the Appendix Table, we can
obtain

Theorem 3 FEither Si(k) or Si(k) is the graph with minimal energies in
U(k).

Remark: We can obtain the energies of Si(k) or Si(k) by computation
for some positive integer k. When k& = 100, 1000, 10000, the result of the
computation is F(S3(k)) > E(S}(k)). But we have not found a proper way

to prove it. So, we propose

Conjecture 1 S}(k) is the graph with minimal energies in U (k).
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e Appendix Table

n =2k E(S;(k)) E(S3(k)) E(S3(k)) E(S§(k))
k=5 12.6598 11.4066 11.5696 11.9997
k=6 14.9516 13.7663 13.9820 14.3547
k=17 17.2319 16.1047 16.3626 16.6890
k=8 19.5020 18.4251 18.7178 19.0058
k=9 21.7628 20.7601 21.0521 21.3076
k=10 24.0153 23.0219 23.3689 23.5965
k=11 26.2602 25.3019 25.6707 25.8739
k=12 28.4982 27.5715 27.9595 28.1411
k=13 30.7297 29.8318 30.2368 30.3992
k=14 32.9553 32.0870 32.5039 32.6839
k=15 35.1754 34.0064 34.7619 34.8913
k=16 37.3904 36.5652 37.0116 37.1268
k=17 39.6006 38.7960 39.2538 39.3559
k=18 41.8064 41.0209 41.4991 41.5793
k=19 44.0079 43.2403 43.7182 43.7972
k=20 46.2055 45.4545 45.9414 46.0101
k=21 48.3994 47.6641 48.1592 48.2183
k=22 50.5897 49.8691 50.3720 50.4221
k=23 52.7767 52.0700 52.5801 52.6218
k=24 54.9605 54.2669 54.7838 54.8176
k=25 57.1413 56.4602 56.9834 57.0098
k=26 56.4602 58.6499 59.1791 59.1985
k=27 61.4944 60.8362 61.3712 61.3839
k=28 63.6669 63.0194 63.5597 63.5661
k=29 65.8370 65.1996 65.7450 65.7454
k=30 68.0046 67.3770 67.9272 67.3922
k=31 70.1699 69.5516 70.1065 70.0957
k=32 72.3331 71.7236 72.2829 72.2669
k=33 74.4941 73.8931 74.4566 74.4357
k=34 76.6530 76.0623 76.6277 76.6020
k=35 78.8100 78.2251 78.7964 78.7662
k=36 80.9651 80.3878 80.9627 80.9281
k=37 83.1184 82.5483 83.1268 83.0880
k=38 85.2669 84.7068 85.2886 85.2458
k=39 87.4197 86.8634 87.4484 87.4017
k=40 89.5678 89.0180 89.6062 89.5558
k=41 91.7144 91.1709 91.7621 91.7080
k=42 93.8594 93.3219 93.9161 93.8585
k=43 96.0029 95.4713 96.0683 96.0074
k=44 98.1449 97.6090 98.2187 98.1546
k=45 100.2856 99.7652 100.3675 100.3002
k =46 102.4249 101.9099 102.5146 102.4443
k=47 104.5628 104.0530 104.6602 104.5869
k=48 106.6994 106.1947 106.8043 106.7281
k=49 108.3350 108.8348 108.9469 108.8679
k=50 110.4739 110.9690 111.0880 111.0064
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