
On unicyclic conjugated molecules

with minimal energies

Xueliang Li1, Jianbin Zhang1, Bo Zhou2

1 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P.R. China

2 Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

Abstract

The energy of a graph is defined as the sum of the absolute values
of all the eigenvalues of the graph. Let U(k) be the set of all unicyclic
graphs with a perfect matching. Let Cg(G) be the unique cycle of G
with length g(G), and M(G) be a perfect matching of G. Let U0(k)
be the subset of U(k) such that g(G) ≡ 0 (mod 4), there are just g

2
independence edges of M(G) in Cg(G) and there are some edges of
E(G)\M(G) in G\Cg(G) for any G ∈ U0(k). In this paper, we discuss
the graphs with minimal and second minimal energies in U∗(k) =
U(k) \ U0(k), the graph with minimal energy in U0(k), and propose a
conjecture on the graph with minimal energy in U(k).
KEY WORDS: energy, unicyclic graph, characteristic polynomial,
eigenvalue, perfect matching
AMS subject classification: 05C50, 05C35

1 Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The
characteristic polynomial of A(G) is

φ(G,λ) = det(λI − A(G)) =
n
∑

i=0

aiλ
n−i.

The roots λ1, λ2, . . . , λn of φ(G,λ) = 0 are called the eigenvalues of G.
Since A(G) is symmetric, all the eigenvalues of G are real. The energy of

G, denoted by E(G), is then defined as E(G) =
n
∑

i=0
|λi|. It is known that [7]

E(G) can be expressed as the Coulson integral formula

E(G) =
1

2π
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(1)
Since the energy of a graph can be used to approximate the total π-electron
energy of the molecule, it has been intensively studied. For a survey of the
mathematical properties and results on E(G), see the recent review [6].

In [14], F. Zhang and H. Li studied the minimal energies of acyclic
conjugated molecules. In this paper, we discuss the minimal energies about
unicylic graphs with a perfect matching.
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Let U(k) be the set of all unicyclic graphs on 2k vertices with a perfect
matching. Let Cg(G) be the unique cycle of G with length g(G), and M(G)
be a perfect matching of G. Let U0(k) be the subset of U(k) such that
g(G) ≡ 0 (mod 4), there are just g

2 independence edges of M(G) in Cg(G)

and there are some edges of E(G) \ M(G) in G \ Cg(G) for any G ∈ U0(k).
Let S1

3(k) be the graph on 2k vertices obtained from C3 by attaching one
pendant edge and k−2 paths of length 2 together to one of the three vertices
of C3. Let S1

4(k) be the graph obtained from C4 by attaching one path P of
length 2 to one vertex of C4 and then attaching k − 3 paths of length 2 to
the second vertex of the path P .
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Let S2
4(k) be the graph on 2k vertices obtained from C4 by attaching

k− 2 paths of length 2 to one of the four vertices of C4. Let S3
4(n, k) be the

graph on 2k vertices obtained from C4 by attaching one pendant edge and
k − 3 paths of length 2 together to one of the four vertices of C4, and one
pendant edge to the adjacent vertex of C4, respectively (see Fig.2).
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In this paper, we show that S1
3(k), S3

4 (k) (k ≥ 43) are the graphs with
minimal and second minimal energies in U∗(k) = U(k) \U0(k) respectively,
S1

4(k) be the graph with minimal energy in U0(k). Finally, we give a con-
jecture on the graph with minimal energy in U(k).
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2 Main results

Lemma 1 ([7, 4, 1]) Let G be a graph with characteristic polynomial φ(G,λ) =
n
∑

i=0
aiλ

n−i. Then for i ≥ 1

ai =
∑

S∈Li

(−1)p(S)2c(S).

where Li denotes the set of Sachs graphs of G with i vertices, that is, the
graphs in which every component is either a K2 or a cycle, p(S) is the
number of components of S and c(S) is the number of cycles contained in
S. In addition, a0 = 1.

Let b2i(G) = (−1)ia2i for 0 ≤ i ≤ ⌊n/2⌋. Clearly, b0(G) = 1 and b2(G)
equals the number of edges of G.

Lemma 2 ([9]) Let G ∈ U(k), then b2i(G) ≥ 0 for 0 ≤ i ≤ ⌊n/2⌋.

In view of Lemma 2, a quasi-order relation is introduced (see [5]). Let
G,G0 ∈ U(k) and G0 be a bipartite graph. If b2i(G) ≥ b2i(G0) holds for
0 ≤ i ≤ ⌊n/2⌋, we say that G is not less than G0, written as G � G0.
Furthermore, if these inequalities sometime are strict, that is, b2i(G) >
b2i(G0) for some i, we say G is more than G0, written as G ≻ G0. Obviously,
from (1) and Lemma 2 we have the following increasing property on E:

G ≻ G0 ⇒ E(G) > E(G0). (2)

We denote by M(G) a perfect matching of G, and denote by Ĝ =
G[E(G) \ M(G)], where G[E] is the subgraph induced by E, E(G) \ M(G)
is a set of edges that are not in M(G), but in E(G). For example, Ŝ2

4(k),
Ŝ3

4(k) (see Fig.3).
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Let r
(2i)
j (G) be the number of ways to choose i independence edges in G

such that just j edges are of Ĝ. Obviously, r
(2i)
0 (G) =

(k
i

)

, r
(2i)
1 (G) = k

(k−2
i−1

)

.

Lemma 3 Let G ∈ U∗(k), g(G) ≡ 1 (mod 2), g(G) ≥ 5. Then E(G) >
E(S3

4(k)).

3



Proof. Combining Lemmas 1 and 2 and the case g(G) ≡ 1( mod 2), we can
obtain

b2i(S
3
4(k)) = r

(2i)
0 (S3

4(k)) + r
(2i)
1 (S3

4(k)) + r
(2i)
2 (S3

4(k)) − 2r
(2i−4)
0 (S3

4(k) \ C4)

= r
(2i)
0 (S3

4(k)) + r
(2i)
1 (S3

4(k)) +
(k−3

i−2

)

+ (k − 3)
(k−4

i−2

)

− 2
(k−3

i−2

)

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + · · · + r

(2i)
k−1(G).

It suffices to prove that r
(2i)
2 (G) ≥ (k − 3)

(k−4
i−2

)

−
(k−3

i−2

)

. Let vi (i =
1, 2, . . . , g) be all the vertices of Cg, Ti (i = 1, 2, . . . , g) be a tree planting
at vi (vi ∈ V (Ti)), ni (i = 1, 2, . . . , g) be the number of edges of Ĝ in Ti.
Obviously, k − g+1

2 ≥ n1 + n2 + . . . + ng ≥ k − g. Let β2 be the number of

ways to choose two independence edges of Ĝ.

If there exist at least two tree Ti, Tj such that ni, nj > 0 (ni ≥ nj).
Then k − g+1

2 ≥ 2nj .

β2 − (k − 3) ≥ nj(k − nj − 2) − k + 3 = njk − n2
j − 2nj − k + 3 ≥ 0

If there is just a tree Ti such that ni > 0, then there exists an edge e of
Cg such that e belongs to E(Ĝ) and is not adjacent to vi. Thus β2 ≥ k−1−2.
Then

r
(2i)
2 (G) ≥ (k − 3)

(

k − 4

i − 2

)

.

2

Lemma 4 Let G ∈ U∗(k). If g(G) = 3, and G 6∼= S1
3(k), then E(G) >

E(S3
4(k)).

Proof. Similarly, it suffices to prove that β2 ≥ k − 3, where vi, ni, β2 are
defined as the same as those in the proof of Lemma 3.

Case 1: There is just one edge e ∈ M(G) in C3, without loss of generally,
let e = v1v2. Then n1 + n2 + n3 = k − 2.

Subcase 1.1: There are at least two trees Ti, Tj such that ni, nj > 0.
Then, similar to the proof of Lemma 3, we can obtain β2 ≥ k − 3.

Subcase 1.2: There is just a tree Ti such that ni > 0. If i = 1 or 2,
then β2 ≥ k − 3. If i = 3, let P = v3u1 · · · ut−2ut−1ut be the longest path
of T3 from v3. Then ut is a pendant edge and ut−2ut−1 ∈ E(Ĝ). Since
G 6∼= S1

3(k), we have t ≥ 3 and so t − 2 ≥ 1. Let x be the number of
edges of E(Ĝ) that adjacent to ut−2. Then β2 ≥ k − 2 when x = 1, and
β2 ≥ (x − 1)(k − x) ≥ k − 3 when x ≥ 2, since k ≥ x + 2.

Case 2: There is no edge of M(G) in C3. Then β2 ≥ n1+n2+n3 = k−3.
2

Lemma 5 Let G ∈ U∗(k). If g(G) ≡ 2 (mod 4 ), then E(G) > E(S3
4(k)).
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Proof. By Lemmas 1 and 2, we have

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + . . . + r

(2i)
k (G)+

2[r
(2i−g)
0 (G \ Cg) + r

(2i−g)
1 (G \ Cg) + · · · + r

(2i−g)
k−g (G \ Cg)].

It suffices to prove that r
(2i)
2 (G) ≥ r

(2i)
2 (S3

4(k)). Similar to the proof of
Lemma 3, we can obtain the inequality. 2

Lemma 6 Let G ∈ U∗(k), g(G) ≡ 0 ( mod 4 ), and g(G) ≥ 8.

(i) If there are less than g
2 − 1 edges of M(G) in Cg(G), then E(G) >

E(S3
4(k)).

(ii) If there are just g
2 edges of M(G) in Cg(G), then E(G) > E(S2

4(k)).

Proof. (i) By Lemmas 1 and 2, we can obtain

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + . . . + r

(2i)
k (G)

− 2[r
(2i−g)
0 (G \ Cg) + r

(2i−g)
1 (G \ Cg) + · · · + r

(2i−g)
k−g (G \ Cg)].

Case 1: There are just g
2 − 1 edges of M(G) in Cg(G). Then there are

g
2 + 1 edges of E(Ĝ) in Cg(G). Let M1,M2 be two matchings in Cg(G) with
cardinality g

2 .

Subcase 1.1: If M1 6⊂ E(Ĝ) and M2 6⊂ E(Ĝ), then M1,M2 contain
at least two edges of E(Ĝ), and one of those contains at least three edges
of E(Ĝ). Let M0 be a matching in G \ Cg(G) with cardinality i − g

2 such

that it contains at least one edge of E(Ĝ), then there are two matchings
M1 ∪ M0,M2 ∪ M0 with cardinality i corresponding to M0. Thus

b2i(G) ≥ r
(2i)
0 (G) + r

(2i)
1 (G) + β0

2

(k−4
i−2

)

−
(k− g

2

i− g

2

)

.

where β0
2 be the number of ways to choose two independence edges of E(Ĝ)

such that at least one edge in Cg(G). Let n1, n2, . . . , ng be defined as the
same as those in the proof of Lemma 3.

β0
2 ≥ (g

2 + 1 − 2)(n1 + n2 + . . . + ng) +
(

g

2
−1
2

)

= (g
2 − 1)(k − g

2 − 1) +
(

g

2
−1
2

)

= k(g
2 − 1) −

(
g

2
−1
2

)

≥ k − 3.

Subcase 1.2: Without loss of generally, let M1 ⊂ E(Ĝ), then M2 con-
tains just one edge of E(Ĝ). Similarly, we have

b2i(G) ≥ r
(2i)
0 (G) + r

(2i)
1 (G) + β∗

2

(k−4
i−2

)

−
(k− g

2

i− g

2

)

.
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where β∗
2 be the number of ways to choose two independence edges of E(Ĝ)

such that at least one edge in M1 and no edge in M2. Then

β∗
2 ≥ (g

2 − 1)(n1 + n2 + . . . + ng) +
(

g

2

2

)

= (g
2 − 1)(k − g

2 − 1) +
(

g

2

2

)

≥ k − 3.

Since
(k−3

i−2

)

≥
(k− g

2
−1

i− g

2

)

, we can obtain b2i(G) ≥ b2i(S
3
4(k)) for 0 ≤ i ≤ ⌊n/2⌋,

and these equalities do not always hold.

Case 2: There are at most g
2 − 2 edges of M(G) in Cg(G). Then

M1,M2 contain at least two edges of E(Ĝ). Similar to Case 1, we can have
b2i(G) ≥ b2i(S

3
4(k)) for 0 ≤ i ≤ ⌊n/2⌋, and these equalities do not always

hold. Thus E(G) ≻ E(S2
4(k)), E(G) > E(S2

4 (k)).

(ii) There are just g
2 edges of M(G) in Cg(G). By Lemmas 1 and 2 and

G ∈ U∗(k), we have

b2i(S
2
4(k)) = r

(2i)
0 (S3

4(k)) + r
(2i)
1 (S3

4(k)) + r
(2i)
2 (S3

4(k)) − 2r
(2i−4)
0 (S3

4(k) \ C4)

= r
(2i)
0 (S3

4(k)) + r
(2i)
1 (S3

4(k)) +
(k−2

i−2

)

+ (k − 2)
(k−3

i−2

)

− 2
(k−2

i−2

)

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + · · · + r

(2i)
k (G) − 2r

(2i−g)
0 (G \ Cg)

≥ r
(2i)
0 (G) + r

(2i)
1 (G) + β′

2

(k−3
i−2

)

−
(k− g

2

i− g

2

)

.

where β′
2 is the number of ways to choose two independence edges of E(Ĝ)

such that both are adjacent to one edge of M(G). Without loss of generality,
let v1v2, v3v4, . . . , vg−1vg ∈ E(Ĝ). Then

β′
2 ≥ n3 + ng + n2 + n4 + · · · + ng−2 + n1 + g

= k − g
2 + g

2 > k − 2

Combining
(k−2

i−2

)

≥
(k− g

2

i− g

2

)

, we can obtain E(G) ≻ E(S2
4(k)), E(G) >

E(S2
4(k)). 2

Similarly, we have

Lemma 7 Let G ∈ U∗(k), g(G) = 4. (i) If there is just one edge of M(G)
in C4, then E(G) > E(S3

4(k)). (ii) If there are just two edges of M(G) in
C4, then E(G) > E(S2

4(k)).

Lemma 8 [4] Let uv be an edge of G, then

φ(G,λ) = φ(G − uv, λ) − φ(G − u − v, λ) − 2
∑

C∈C(uv)

φ(G − C, λ),

where C(uv) is the set of cycles containing uv; In particular, if uv is a
pendant edge with pendant vertex v, then

φ(G,λ) = λφ(G − v, λ) − φ(G − u − v, λ).
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Lemma 9 [12] φ(S3
4(k), λ) < φ(S2

4(k), λ) for all λ ≥ λ(S1
4(k)). In par-

ticular, λ1(S
3
4(k)) > λ1(S

2
4(k)).

Lemma 10 [3] S1
3(k) is the graph with maximal spectral radius in U(k).

From [12, 9] and Lemma 8, we can get

Lemma 11 Let G be a graph with characteristic polynomial φ(G,λ). Then

φ(S3
4(k), λ) = (λ2 − 1)k−4(λ8 − (k + 4)λ6 + (3k + 2)λ4 − (k + 3)λ2 + 1)

φ(S2
4(k), λ) = λ2(λ2 − 1)k−3(λ4 − (k + 3)λ2 + 2k)

φ(S1
3(k), λ) = (λ2 − 1)k−2(λ4 − (k + 4)λ2 − 2λ + 1)

φ(S1
4(k), λ) = λ2(λ2 − 1)k−4(λ6 − (k + 4)λ4 + 4kλ2 − 6)

Lemma 12 E(S2
4(k)) > E(S3

4(k)) for k ≥ 29.

Proof. Let x1, x2, x3, x4 (x1 > x2 ≥ x3 ≥ x4) be the positive roots of
f(x) = x8−(k+4)x6 +(3k+2)x4−(k+3)x2 +1 = 0. Let y1, y2 (y1 > y2) be
the two positive roots of g(y) = y4− (k+3)y2 +2k = 0. For convenience, we
give the Appendix Table. It suffices to prove that x1+x2+x3+x4 < y1+y2+1
for k ≥ 50.

When k ≥ 50, f(0) > 0, f(0.145) < 0, f(0.62), f(
√

5+1
2 ) < 0, f(

√

k + 6
5) >

0; g(1.4) < 0, g(
√

k + 1) > 0, g(
√

k + 2) < 0. Then we can obtain that

x4 < 0.145, x3 < 0.62, x2 < 1.618, x1 <
√

k + 6
5 , y2 > 1.4, y1 >

√
k + 1.

Furthermore, by Lemma 9 we have
√

k + 6
5 > x1 > y1 >

√
k + 1, y1 >

x1 − (
√

k + 6
5 −

√
k + 1) > x1 − 0.0143. Thus, we have

x1 + x2 + x3 + x4 < 0.145 + 0.62 + 1.618 + x1

= 2.383 + x1

< 1 + 1.4 + x1 − 0.0143 < 1 + y1 + y2.

2

Lemma 13 E(S3
4(k)) > E(S1

3(k)) for k ≥ 43.

Proof. Let t1, t2 (t1 > t2) be the two positive roots of h(t) = t4 − (k +3)t2 −
2t + 1 = 0. By Lemma 11, we have

E(S3
4(k)) = 2k − 8 + 2(x1 + x2 + x3 + x4)

E(S1
3(k)) = 2k − 4 + 2(t1 + t2)

It suffices to prove x1 + x2 + x3 + x4 > t1 + t2 + 2 for k ≥ 51. When k ≥ 51,

f(0) > 0, f(
√

5−1
2 ) < 0, f(1.597) > 0, f(

√
5+1
2 ) < 0, and h(0) > 0, h(0.12) <

0. Then x2 + x3 + x4 − y2 − 2 ≥ 0.618 + 1.597− 0.12− 2 = 0.095 = ε. Thus
x2 + x3 + x4 > 2 + t2 + ε.
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We will prove t1 < x1 + ε. It suffices to prove h(x1 + ε) > 0. When
k ≥ 51, x1 >

√
k + 1 > 7.1. Then

h(t)
t2 = t2 − (k + 2) − 2

t + 1
t2

= t2 − (k + 2) + (1
t − 1)2 − 1

h(x1+ε)
(x1+ε)2 ≥ (x1 + ε)2 − (k + 2) + 0.7381 − 1

= x2
1 − (k + 1) + 2εx1 + ε2 − 1.2619

≥ 2εx1 − 1.2619 > 0.

We have h(x1 + ε) > 0, and x1 + x2 + x3 + x4 > t1 + t2 + 2. 2

Combining the Appendix Table and Lemmas 3 - 8, 12 and 13, we can obtain

Theorem 1 (i) When 5 ≤ k ≤ 28, S2
4(k) is the graph with minimal energy

in U∗(k). (ii) When 29 ≤ k ≤ 42, S3
4(k) is the graph with minimal energy

in U∗(k). (iii) When k ≥ 43, S1
3(k), S3

4 (k) are the graphs with minimal and
second minimal energies in U∗(k) respectively,

Lemma 14 Let G ∈ U0(k), g(G) = 4, G 6∼= S1
4(k). Then E(G) > E(S1

4(k)).

Proof. Let x be the number of edges in E(Ĝ) that are adjacent to vertices
of C4 except for two edges in C4. Since there are just two edges of M(G),
G \ C4 contains some edges of E(Ĝ). Then 1 ≤ x ≤ k − 3. By Lemmas 1
and 2, we can obtain

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + . . . + r

(2i)
k (G)

−2[r
(2i−4)
0 (G \ C4) + r

(2i−4)
1 (G \ C4) + · · · + r

(2i−4)
k−4 (G \ C4)]

≥ r
(2i)
0 (G) + r

(2i)
1 (G) + x

(k−3
i−2

)

+ 2(k − 2 − x)
(k−4

i−2

)

+(x − 1)
(k−4

i−2

)

−
(k−2

i−2

)

− (k − 2 − x)
(k−4

i−3

)

= r
(2i)
0 (G) + r

(2i)
1 (G) + x[

(k−3
i−2

)

−
(k−4

i−2

)

+
(k−4

i−3

)

]

+2(k − 2)
(k−4

i−2

)

−
(k−4

i−2

)

− (k − 2)
(k−4

i−3

)

≥ r
(2i)
0 (G) + r

(2i)
1 (G) + 1 · [

(k−3
i−2

)

−
(k−4

i−2

)

+
(k−4

i−3

)

]

+2(k − 2)
(k−4

i−2

)

−
(k−4

i−2

)

− (k − 2)
(k−4

i−3

)

= b2i(S
1
4(k))

where the equality holds if and only if G ∼= S1
4(k). So, we have G ≻ S1

4(k),
E(G) > E(S1

4(k). 2

Lemma 15 Let G ∈ U0(k), g(G) ≥ 8. Then E(G) > E(S1
4(k)).
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Proof. By Lemmas 1 and 2, we can obtain

b2i(S
1
4(k)) = r

(2i)
0 (S1

4(k)) + r
(2i)
1 (S1

4(k)) + r
(2i)
2 (S1

4(k))r
(2i)
3 (S1

4(k))

−2[r
(2i−4)
0 (S1

4(k) \ C4) + r
(2i−4)
1 (S1

4(k) \ C4)]

= r
(2i)
0 (S1

4(k)) + r
(2i)
1 (S1

4(k)) +
(k−3

i−2

)

+ 2(k − 3)
(k−4

i−2

)

−
(k−2

i−2

)

− (k − 3)
(k−4

i−3

)

b2i(G) = r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) + . . . + r

(2i)
k (G)

− 2[r
(2i−g)
0 (G \ Cg) + r

(2i−g)
1 (G \ Cg) + · · · + r

(2i−g)
k−g (G \ Cg)]

≥ r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) − r

(2i−g)
0 (G \ Cg) − r

(2i−g)
1 (G \ Cg)

≥ r
(2i)
0 (G) + r

(2i)
1 (G) + r

(2i)
2 (G) −

(k− g

2

i− g

2

)

− (k − g
2 − 1)

(k− g

2
−2

i− g

2
−1

)

.

Let vi (i = 1, 2, . . . , g) be all the vertices of Cg, Ti (i = 1, 2, . . . , g) be a tree
planting at vi (vi ∈ V (Ti)), vi (i = 1, 2, . . . , g) be the number of edges in Ĝ.
Obviously, n1 + n2 + . . . + ng = k − g

2 . Let β2 be the number of ways to

choose two independence edges of Ĝ such that at least one edge in Cg(G).
Then

β2 ≥ (g
2 − 1)(n1 + n2 + . . . + ng) +

(
g

2

2

)

= (g
2 − 1)(k − g

2 ) +
(

g

2

2

)

≥ 2k + 5.

We have r
(2i)
2 (G) >

(k−3
i−2

)

+2(k−3)
(k−4

i−2

)

. Since
(k−2

i−2

)

>
(k− g

2

i− g

2

)

, (k−3)
(k−4

i−3

)

>

(k − g
2 − 1)

(k− g

2
−2

i− g

2
−1

)

. We have G ≻ S1
4(k), E(G) ≥ E(S1

4(k)). 2

Using Lemmas 14 and 15, it is not difficult to obtain the following theorem.

Theorem 2 S1
4(k) is the graph with minimal energy in U0(k).

By Theorems 1 and 2, Lemmas 14 and 15, and the Appendix Table, we can
obtain

Theorem 3 Either S1
3(k) or S1

4(k) is the graph with minimal energies in
U(k).

Remark: We can obtain the energies of S1
3(k) or S1

4(k) by computation
for some positive integer k. When k = 100, 1000, 10000, the result of the
computation is E(S1

3(k)) > E(S1
4 (k)). But we have not found a proper way

to prove it. So, we propose

Conjecture 1 S1
4(k) is the graph with minimal energies in U(k).
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n = 2k E(S1

4
(k)) E(S1

3
(k)) E(S2

4
(k)) E(S3

4
(k))

• Appendix Table

k = 50 110.4739 110.9690 111.0880 111.0064

k = 49 108.3350 108.8348 108.9469 108.8679

k = 48 106.6994 106.1947 106.8043 106.7281

k = 47 104.5628 104.0530 104.6602 104.5869

k = 46 102.4249 101.9099 102.5146 102.4443

k = 45 100.2856 99.7652 100.3675 100.3002

k = 44 98.1449 97.6090 98.2187 98.1546

k = 43 96.0029 95.4713 96.0683 96.0074

k = 42 93.8594 93.3219 93.9161 93.8585

k = 41 91.7144 91.1709 91.7621 91.7080

k = 40 89.5678 89.0180 89.6062 89.5558

k = 39 87.4197 86.8634 87.4484 87.4017

k = 38 85.2669 84.7068 85.2886 85.2458

k = 37 83.1184 82.5483 83.1268 83.0880

k = 36 80.9651 80.3878 80.9627 80.9281

k = 35 78.8100 78.2251 78.7964 78.7662

k = 34 76.6530 76.0623 76.6277 76.6020

k = 33 74.4941 73.8931 74.4566 74.4357

k = 32 72.3331 71.7236 72.2829 72.2669

k = 31 70.1699 69.5516 70.1065 70.0957

k = 30 68.0046 67.3770 67.9272 67.3922

k = 29 65.8370 65.1996 65.7450 65.7454

k = 28 63.6669 63.0194 63.5597 63.5661

k = 27 61.4944 60.8362 61.3712 61.3839

k = 26 56.4602 58.6499 59.1791 59.1985

k = 25 57.1413 56.4602 56.9834 57.0098

k = 24 54.9605 54.2669 54.7838 54.8176

k = 23 52.7767 52.0700 52.5801 52.6218

k = 22 50.5897 49.8691 50.3720 50.4221

k = 21 48.3994 47.6641 48.1592 48.2183

k = 20 46.2055 45.4545 45.9414 46.0101

k = 19 44.0079 43.2403 43.7182 43.7972

k = 18 41.8064 41.0209 41.4991 41.5793

k = 17 39.6006 38.7960 39.2538 39.3559

k = 16 37.3904 36.5652 37.0116 37.1268

k = 15 35.1754 34.0064 34.7619 34.8913

k = 14 32.9553 32.0870 32.5039 32.6839

k = 13 30.7297 29.8318 30.2368 30.3992

k = 12 28.4982 27.5715 27.9595 28.1411

k = 11 26.2602 25.3019 25.6707 25.8739

k = 10 24.0153 23.0219 23.3689 23.5965

k = 9 21.7628 20.7601 21.0521 21.3076

k = 8 19.5020 18.4251 18.7178 19.0058

k = 7 17.2319 16.1047 16.3626 16.6890

k = 6 14.9516 13.7663 13.9820 14.3547

k = 5 12.6598 11.4066 11.5696 11.9997
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