On unicyclic conjugated molecules with minimal energies

Xueliang Li ${ }^{1}$, Jianbin Zhang ${ }^{1}$, Bo Zhou ${ }^{2}$
${ }^{1}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P.R. China
2 Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

Abstract

The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let $U(k)$ be the set of all unicyclic graphs with a perfect matching. Let $C_{g(G)}$ be the unique cycle of G with length $g(G)$, and $M(G)$ be a perfect matching of G. Let $U^{0}(k)$ be the subset of $U(k)$ such that $g(G) \equiv 0(\bmod 4)$, there are just $\frac{g}{2}$ independence edges of $M(G)$ in $C_{g(G)}$ and there are some edges of $E(G) \backslash M(G)$ in $G \backslash C_{g(G)}$ for any $G \in U^{0}(k)$. In this paper, we discuss the graphs with minimal and second minimal energies in $U^{*}(k)=$ $U(k) \backslash U^{0}(k)$, the graph with minimal energy in $U^{0}(k)$, and propose a conjecture on the graph with minimal energy in $U(k)$. KEY WORDS: energy, unicyclic graph, characteristic polynomial, eigenvalue, perfect matching AMS subject classification: 05C50, 05C35

1 Introduction

Let G be a graph with n vertices and $A(G)$ the adjacency matrix of G. The characteristic polynomial of $A(G)$ is

$$
\phi(G, \lambda)=\operatorname{det}(\lambda I-A(G))=\sum_{i=0}^{n} a_{i} \lambda^{n-i}
$$

The roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $\phi(G, \lambda)=0$ are called the eigenvalues of G. Since $A(G)$ is symmetric, all the eigenvalues of G are real. The energy of G, denoted by $E(G)$, is then defined as $E(G)=\sum_{i=0}^{n}\left|\lambda_{i}\right|$. It is known that [7] $E(G)$ can be expressed as the Coulson integral formula

$$
\begin{equation*}
E(G)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \ln \left[\left(\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} a_{2 i} x^{2 i}\right)^{2}+\left(\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} a_{2 i+1} x^{2 i+1}\right)^{2}\right] d x . \tag{1}
\end{equation*}
$$

Since the energy of a graph can be used to approximate the total π-electron energy of the molecule, it has been intensively studied. For a survey of the mathematical properties and results on $E(G)$, see the recent review [6].

In [14], F. Zhang and H. Li studied the minimal energies of acyclic conjugated molecules. In this paper, we discuss the minimal energies about unicylic graphs with a perfect matching.

Let $U(k)$ be the set of all unicyclic graphs on $2 k$ vertices with a perfect matching. Let $C_{g}(G)$ be the unique cycle of G with length $g(G)$, and $M(G)$ be a perfect matching of G. Let $U^{0}(k)$ be the subset of $U(k)$ such that $g(G) \equiv 0(\bmod 4)$, there are just $\frac{g}{2}$ independence edges of $M(G)$ in $C_{g(G)}$ and there are some edges of $E(G) \backslash M(G)$ in $G \backslash C_{g(G)}$ for any $G \in U^{0}(k)$. Let $S_{3}^{1}(k)$ be the graph on $2 k$ vertices obtained from C_{3} by attaching one pendant edge and $k-2$ paths of length 2 together to one of the three vertices of C_{3}. Let $S_{4}^{1}(k)$ be the graph obtained from C_{4} by attaching one path P of length 2 to one vertex of C_{4} and then attaching $k-3$ paths of length 2 to the second vertex of the path P.

Fig. 1
Let $S_{4}^{2}(k)$ be the graph on $2 k$ vertices obtained from C_{4} by attaching $k-2$ paths of length 2 to one of the four vertices of C_{4}. Let $S_{4}^{3}(n, k)$ be the graph on $2 k$ vertices obtained from C_{4} by attaching one pendant edge and $k-3$ paths of length 2 together to one of the four vertices of C_{4}, and one pendant edge to the adjacent vertex of C_{4}, respectively (see Fig.2).

Fig. 2

In this paper, we show that $S_{3}^{1}(k), S_{4}^{3}(k)(k \geq 43)$ are the graphs with minimal and second minimal energies in $U^{*}(k)=U(k) \backslash U^{0}(k)$ respectively, $S_{4}^{1}(k)$ be the graph with minimal energy in $U^{0}(k)$. Finally, we give a conjecture on the graph with minimal energy in $U(k)$.

2 Main results

Lemma 1 ([7, 4, 1]) Let G be a graph with characteristic polynomial $\phi(G, \lambda)=$ $\sum_{i=0}^{n} a_{i} \lambda^{n-i}$. Then for $i \geq 1$

$$
a_{i}=\sum_{S \in L_{i}}(-1)^{p(S)} 2^{c(S)}
$$

where L_{i} denotes the set of Sachs graphs of G with i vertices, that is, the graphs in which every component is either a K_{2} or a cycle, $p(S)$ is the number of components of S and $c(S)$ is the number of cycles contained in S. In addition, $a_{0}=1$.

Let $b_{2 i}(G)=(-1)^{i} a_{2 i}$ for $0 \leq i \leq\lfloor n / 2\rfloor$. Clearly, $b_{0}(G)=1$ and $b_{2}(G)$ equals the number of edges of G.

Lemma 2 ([9]) Let $G \in U(k)$, then $b_{2 i}(G) \geq 0$ for $0 \leq i \leq\lfloor n / 2\rfloor$.

In view of Lemma 2, a quasi-order relation is introduced (see [5]). Let $G, G_{0} \in U(k)$ and G_{0} be a bipartite graph. If $b_{2 i}(G) \geq b_{2 i}\left(G_{0}\right)$ holds for $0 \leq i \leq\lfloor n / 2\rfloor$, we say that G is not less than G_{0}, written as $G \succeq G_{0}$. Furthermore, if these inequalities sometime are strict, that is, $b_{2 i}(G)>$ $b_{2 i}\left(G_{0}\right)$ for some i, we say G is more than G_{0}, written as $G \succ G_{0}$. Obviously, from (1) and Lemma 2 we have the following increasing property on E :

$$
\begin{equation*}
G \succ G_{0} \Rightarrow E(G)>E\left(G_{0}\right) \tag{2}
\end{equation*}
$$

We denote by $M(G)$ a perfect matching of G, and denote by $\hat{G}=$ $G[E(G) \backslash M(G)]$, where $G[E]$ is the subgraph induced by $E, E(G) \backslash M(G)$ is a set of edges that are not in $M(G)$, but in $E(G)$. For example, $\hat{S}_{4}^{2}(k)$, $\hat{S}_{4}^{3}(k)$ (see Fig.3).

Fig. 3

Let $r_{j}^{(2 i)}(G)$ be the number of ways to choose i independence edges in G such that just j edges are of \hat{G}. Obviously, $r_{0}^{(2 i)}(G)=\binom{k}{i}, r_{1}^{(2 i)}(G)=k\binom{k-2}{i-1}$.

Lemma 3 Let $G \in U^{*}(k), g(G) \equiv 1(\bmod 2), g(G) \geq 5$. Then $E(G)>$ $E\left(S_{4}^{3}(k)\right)$.

Proof. Combining Lemmas 1 and 2 and the case $g(G) \equiv 1(\bmod 2)$, we can obtain

$$
\begin{aligned}
b_{2 i}\left(S_{4}^{3}(k)\right) & =r_{0}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{2}^{(2 i)}\left(S_{4}^{3}(k)\right)-2 r_{0}^{(2 i-4)}\left(S_{4}^{3}(k) \backslash C_{4}\right) \\
& =r_{0}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{3}(k)\right)+\binom{k-3}{i-2}+(k-3)\binom{k-4}{i-2}-2\binom{k-3}{i-2} \\
b_{2 i}(G) & =r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\cdots+r_{k-1}^{(2 i)}(G) .
\end{aligned}
$$

It suffices to prove that $r_{2}^{(2 i)}(G) \geq(k-3)\binom{k-4}{i-2}-\binom{k-3}{i-2}$. Let $v_{i}(i=$ $1,2, \ldots, g)$ be all the vertices of $C_{g}, T_{i}(i=1,2, \ldots, g)$ be a tree planting at $v_{i}\left(v_{i} \in V\left(T_{i}\right)\right), n_{i}(i=1,2, \ldots, g)$ be the number of edges of \hat{G} in T_{i}. Obviously, $k-\frac{g+1}{2} \geq n_{1}+n_{2}+\ldots+n_{g} \geq k-g$. Let β_{2} be the number of ways to choose two independence edges of \hat{G}.

If there exist at least two tree T_{i}, T_{j} such that $n_{i}, n_{j}>0\left(n_{i} \geq n_{j}\right)$. Then $k-\frac{g+1}{2} \geq 2 n_{j}$.

$$
\beta_{2}-(k-3) \geq n_{j}\left(k-n_{j}-2\right)-k+3=n_{j} k-n_{j}^{2}-2 n_{j}-k+3 \geq 0
$$

If there is just a tree T_{i} such that $n_{i}>0$, then there exists an edge e of C_{g} such that e belongs to $E(\hat{G})$ and is not adjacent to v_{i}. Thus $\beta_{2} \geq k-1-2$. Then

$$
r_{2}^{(2 i)}(G) \geq(k-3)\binom{k-4}{i-2} .
$$

Lemma 4 Let $G \in U^{*}(k)$. If $g(G)=3$, and $G \not \approx S_{3}^{1}(k)$, then $E(G)>$ $E\left(S_{4}^{3}(k)\right)$.

Proof. Similarly, it suffices to prove that $\beta_{2} \geq k-3$, where v_{i}, n_{i}, β_{2} are defined as the same as those in the proof of Lemma 3.

Case 1: There is just one edge $e \in M(G)$ in C_{3}, without loss of generally, let $e=v_{1} v_{2}$. Then $n_{1}+n_{2}+n_{3}=k-2$.

Subcase 1.1: There are at least two trees T_{i}, T_{j} such that $n_{i}, n_{j}>0$. Then, similar to the proof of Lemma 3, we can obtain $\beta_{2} \geq k-3$.

Subcase 1.2: There is just a tree T_{i} such that $n_{i}>0$. If $i=1$ or 2 , then $\beta_{2} \geq k-3$. If $i=3$, let $P=v_{3} u_{1} \cdots u_{t-2} u_{t-1} u_{t}$ be the longest path of T_{3} from v_{3}. Then u_{t} is a pendant edge and $u_{t-2} u_{t-1} \in E(\hat{G})$. Since $G \not \approx S_{3}^{1}(k)$, we have $t \geq 3$ and so $t-2 \geq 1$. Let x be the number of edges of $E(\hat{G})$ that adjacent to u_{t-2}. Then $\beta_{2} \geq k-2$ when $x=1$, and $\beta_{2} \geq(x-1)(k-x) \geq k-3$ when $x \geq 2$, since $k \geq x+2$.

Case 2: There is no edge of $M(G)$ in C_{3}. Then $\beta_{2} \geq n_{1}+n_{2}+n_{3}=k-3$.

Lemma 5 Let $G \in U^{*}(k)$. If $g(G) \equiv 2(\bmod 4)$, then $E(G)>E\left(S_{4}^{3}(k)\right)$.

Proof. By Lemmas 1 and 2, we have

$$
\begin{aligned}
b_{2 i}(G)= & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\ldots+r_{k}^{(2 i)}(G)+ \\
& 2\left[r_{0}^{(2 i-g)}\left(G \backslash C_{g}\right)+r_{1}^{(2 i-g)}\left(G \backslash C_{g}\right)+\cdots+r_{k-g}^{(2 i-g)}\left(G \backslash C_{g}\right)\right] .
\end{aligned}
$$

It suffices to prove that $r_{2}^{(2 i)}(G) \geq r_{2}^{(2 i)}\left(S_{4}^{3}(k)\right)$. Similar to the proof of Lemma 3, we can obtain the inequality.

Lemma 6 Let $G \in U^{*}(k), g(G) \equiv 0(\bmod 4)$, and $g(G) \geq 8$.
(i) If there are less than $\frac{g}{2}-1$ edges of $M(G)$ in $C_{g}(G)$, then $E(G)>$ $E\left(S_{4}^{3}(k)\right)$.
(ii) If there are just $\frac{g}{2}$ edges of $M(G)$ in $C_{g}(G)$, then $E(G)>E\left(S_{4}^{2}(k)\right)$.

Proof. (i) By Lemmas 1 and 2, we can obtain

$$
\begin{aligned}
b_{2 i}(G) & =r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\ldots+r_{k}^{(2 i)}(G) \\
& -2\left[r_{0}^{(2 i-g)}\left(G \backslash C_{g}\right)+r_{1}^{(2 i-g)}\left(G \backslash C_{g}\right)+\cdots+r_{k-g}^{(2 i-g)}\left(G \backslash C_{g}\right)\right] .
\end{aligned}
$$

Case 1: There are just $\frac{g}{2}-1$ edges of $M(G)$ in $C_{g}(G)$. Then there are $\frac{g}{2}+1$ edges of $E(\hat{G})$ in $C_{g}(G)$. Let M_{1}, M_{2} be two matchings in $C_{g}(G)$ with cardinality $\frac{g}{2}$.

Subcase 1.1: If $M_{1} \not \subset E(\hat{G})$ and $M_{2} \not \subset E(\hat{G})$, then M_{1}, M_{2} contain at least two edges of $E(\hat{G})$, and one of those contains at least three edges of $E(\hat{G})$. Let M_{0} be a matching in $G \backslash C_{g}(G)$ with cardinality $i-\frac{g}{2}$ such that it contains at least one edge of $E(\hat{G})$, then there are two matchings $M_{1} \cup M_{0}, M_{2} \cup M_{0}$ with cardinality i corresponding to M_{0}. Thus

$$
b_{2 i}(G) \geq r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+\beta_{2}^{0}\binom{k-4}{i-2}-\binom{k-\frac{g}{2}}{i-\frac{g}{2}} .
$$

where β_{2}^{0} be the number of ways to choose two independence edges of $E(\hat{G})$ such that at least one edge in $C_{g}(G)$. Let $n_{1}, n_{2}, \ldots, n_{g}$ be defined as the same as those in the proof of Lemma 3 .

$$
\begin{aligned}
\beta_{2}^{0} & \geq\left(\frac{g}{2}+1-2\right)\left(n_{1}+n_{2}+\ldots+n_{g}\right)+\binom{\frac{g}{2}-1}{2} \\
& =\left(\frac{g}{2}-1\right)\left(k-\frac{g}{2}-1\right)+\binom{\frac{g}{2}-1}{2} \\
& =k\left(\frac{g}{2}-1\right)-\left(\frac{g}{2}-1\right) \\
& \geq k-3 .
\end{aligned}
$$

Subcase 1.2: Without loss of generally, let $M_{1} \subset E(\hat{G})$, then M_{2} contains just one edge of $E(\hat{G})$. Similarly, we have

$$
b_{2 i}(G) \geq r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+\beta_{2}^{*}\binom{k-4}{i-2}-\binom{k-\frac{g}{2}}{i-\frac{g}{2}}
$$

where β_{2}^{*} be the number of ways to choose two independence edges of $E(\hat{G})$ such that at least one edge in M_{1} and no edge in M_{2}. Then

$$
\begin{aligned}
\beta_{2}^{*} & \geq\left(\frac{g}{2}-1\right)\left(n_{1}+n_{2}+\ldots+n_{g}\right)+\binom{\frac{g}{2}}{2} \\
& =\left(\frac{g}{2}-1\right)\left(k-\frac{g}{2}-1\right)+\binom{\frac{g}{2}}{2} \\
& \geq k-3 .
\end{aligned}
$$

Since $\binom{k-3}{i-2} \geq\binom{ k-\frac{g}{2}-1}{i-\frac{g}{2}}$, we can obtain $b_{2 i}(G) \geq b_{2 i}\left(S_{4}^{3}(k)\right)$ for $0 \leq i \leq\lfloor n / 2\rfloor$, and these equalities do not always hold.

Case 2: There are at most $\frac{g}{2}-2$ edges of $M(G)$ in $C_{g}(G)$. Then M_{1}, M_{2} contain at least two edges of $E(\hat{G})$. Similar to Case 1, we can have $b_{2 i}(G) \geq b_{2 i}\left(S_{4}^{3}(k)\right)$ for $0 \leq i \leq\lfloor n / 2\rfloor$, and these equalities do not always hold. Thus $E(G) \succ E\left(S_{4}^{2}(k)\right), E(G)>E\left(S_{4}^{2}(k)\right)$.
(ii) There are just $\frac{g}{2}$ edges of $M(G)$ in $C_{g}(G)$. By Lemmas 1 and 2 and $G \in U^{*}(k)$, we have

$$
\begin{aligned}
b_{2 i}\left(S_{4}^{2}(k)\right) & =r_{0}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{2}^{(2 i)}\left(S_{4}^{3}(k)\right)-2 r_{0}^{(2 i-4)}\left(S_{4}^{3}(k) \backslash C_{4}\right) \\
& =r_{0}^{(2 i)}\left(S_{4}^{3}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{3}(k)\right)+\binom{k-2}{i-2}+(k-2)\binom{k-3}{i-2}-2\binom{k-2}{i-2} \\
b_{2 i}(G) & =r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\cdots+r_{k}^{(2 i)}(G)-2 r_{0}^{(2 i-g)}\left(G \backslash C_{g}\right) \\
& \geq r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+\beta_{2}^{\prime}\binom{k-3}{i-2}-\binom{k-\frac{g}{2}}{i-\frac{9}{2}} .
\end{aligned}
$$

where β_{2}^{\prime} is the number of ways to choose two independence edges of $E(\hat{G})$ such that both are adjacent to one edge of $M(G)$. Without loss of generality, let $v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{g-1} v_{g} \in E(\hat{G})$. Then

$$
\begin{aligned}
\beta_{2}^{\prime} & \geq n_{3}+n_{g}+n_{2}+n_{4}+\cdots+n_{g-2}+n_{1}+g \\
& =k-\frac{g}{2}+\frac{g}{2}>k-2
\end{aligned}
$$

Combining $\binom{k-2}{i-2} \geq\binom{ k-\frac{g}{2}}{i-\frac{g}{2}}$, we can obtain $E(G) \succ E\left(S_{4}^{2}(k)\right), E(G)>$ $E\left(S_{4}^{2}(k)\right)$.

Similarly, we have
Lemma 7 Let $G \in U^{*}(k), g(G)=4$. (i) If there is just one edge of $M(G)$ in C_{4}, then $E(G)>E\left(S_{4}^{3}(k)\right)$. (ii) If there are just two edges of $M(G)$ in C_{4}, then $E(G)>E\left(S_{4}^{2}(k)\right)$.

Lemma 8 [4] Let uv be an edge of G, then

$$
\phi(G, \lambda)=\phi(G-u v, \lambda)-\phi(G-u-v, \lambda)-2 \sum_{C \in \mathcal{C}(u v)} \phi(G-C, \lambda),
$$

where $\mathcal{C}(u v)$ is the set of cycles containing uv; In particular, if $u v$ is a pendant edge with pendant vertex v, then

$$
\phi(G, \lambda)=\lambda \phi(G-v, \lambda)-\phi(G-u-v, \lambda) .
$$

Lemma 9 [12] $\phi\left(S_{4}^{3}(k), \lambda\right)<\phi\left(S_{4}^{2}(k), \lambda\right)$ for all $\lambda \geq \lambda\left(S_{4}^{1}(k)\right)$. In particular, $\lambda_{1}\left(S_{4}^{3}(k)\right)>\lambda_{1}\left(S_{4}^{2}(k)\right)$.

Lemma 10 [3] $S_{3}^{1}(k)$ is the graph with maximal spectral radius in $U(k)$.

From [12, 9] and Lemma 8, we can get
Lemma 11 Let G be a graph with characteristic polynomial $\phi(G, \lambda)$. Then

$$
\begin{aligned}
& \phi\left(S_{4}^{3}(k), \lambda\right)=\left(\lambda^{2}-1\right)^{k-4}\left(\lambda^{8}-(k+4) \lambda^{6}+(3 k+2) \lambda^{4}-(k+3) \lambda^{2}+1\right) \\
& \phi\left(S_{4}^{2}(k), \lambda\right)=\lambda^{2}\left(\lambda^{2}-1\right)^{k-3}\left(\lambda^{4}-(k+3) \lambda^{2}+2 k\right) \\
& \phi\left(S_{3}^{1}(k), \lambda\right)=\left(\lambda^{2}-1\right)^{k-2}\left(\lambda^{4}-(k+4) \lambda^{2}-2 \lambda+1\right) \\
& \phi\left(S_{4}^{1}(k), \lambda\right)=\lambda^{2}\left(\lambda^{2}-1\right)^{k-4}\left(\lambda^{6}-(k+4) \lambda^{4}+4 k \lambda^{2}-6\right)
\end{aligned}
$$

Lemma $12 E\left(S_{4}^{2}(k)\right)>E\left(S_{4}^{3}(k)\right)$ for $k \geq 29$.

Proof. Let $x_{1}, x_{2}, x_{3}, x_{4}\left(x_{1}>x_{2} \geq x_{3} \geq x_{4}\right)$ be the positive roots of $f(x)=x^{8}-(k+4) x^{6}+(3 k+2) x^{4}-(k+3) x^{2}+1=0$. Let $y_{1}, y_{2}\left(y_{1}>y_{2}\right)$ be the two positive roots of $g(y)=y^{4}-(k+3) y^{2}+2 k=0$. For convenience, we give the Appendix Table. It suffices to prove that $x_{1}+x_{2}+x_{3}+x_{4}<y_{1}+y_{2}+1$ for $k \geq 50$.

When $k \geq 50, f(0)>0, f(0.145)<0, f(0.62), f\left(\frac{\sqrt{5}+1}{2}\right)<0, f\left(\sqrt{k+\frac{6}{5}}\right)>$ $0 ; g(1.4)<0, g(\sqrt{k+1})>0, g(\sqrt{k+2})<0$. Then we can obtain that $x_{4}<0.145, x_{3}<0.62, x_{2}<1.618, x_{1}<\sqrt{k+\frac{6}{5}}, y_{2}>1.4, y_{1}>\sqrt{k+1}$. Furthermore, by Lemma 9 we have $\sqrt{k+\frac{6}{5}}>x_{1}>y_{1}>\sqrt{k+1}, y_{1}>$ $x_{1}-\left(\sqrt{k+\frac{6}{5}}-\sqrt{k+1}\right)>x_{1}-0.0143$. Thus, we have

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & <0.145+0.62+1.618+x_{1} \\
& =2.383+x_{1} \\
& <1+1.4+x_{1}-0.0143<1+y_{1}+y_{2} .
\end{aligned}
$$

Lemma $13 E\left(S_{4}^{3}(k)\right)>E\left(S_{3}^{1}(k)\right)$ for $k \geq 43$.
Proof. Let $t_{1}, t_{2}\left(t_{1}>t_{2}\right)$ be the two positive roots of $h(t)=t^{4}-(k+3) t^{2}-$ $2 t+1=0$. By Lemma 11, we have

$$
\begin{aligned}
& E\left(S_{4}^{3}(k)\right)=2 k-8+2\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& E\left(S_{3}^{1}(k)\right)=2 k-4+2\left(t_{1}+t_{2}\right)
\end{aligned}
$$

It suffices to prove $x_{1}+x_{2}+x_{3}+x_{4}>t_{1}+t_{2}+2$ for $k \geq 51$. When $k \geq 51$, $f(0)>0, f\left(\frac{\sqrt{5}-1}{2}\right)<0, f(1.597)>0, f\left(\frac{\sqrt{5}+1}{2}\right)<0$, and $h(0)>0, h(0.12)<$ 0 . Then $x_{2}+x_{3}+x_{4}-y_{2}-2 \geq 0.618+1.597-0.12-2=0.095=\varepsilon$. Thus $x_{2}+x_{3}+x_{4}>2+t_{2}+\varepsilon$.

We will prove $t_{1}<x_{1}+\varepsilon$. It suffices to prove $h\left(x_{1}+\varepsilon\right)>0$. When $k \geq 51, x_{1}>\sqrt{k+1}>7.1$. Then

$$
\begin{aligned}
\frac{h(t)}{t^{2}} & =t^{2}-(k+2)-\frac{2}{t}+\frac{1}{t^{2}} \\
& =t^{2}-(k+2)+\left(\frac{1}{t}-1\right)^{2}-1 \\
\frac{h\left(x_{1}+\varepsilon\right)}{\left(x_{1}+\varepsilon\right)^{2}} & \geq\left(x_{1}+\varepsilon\right)^{2}-(k+2)+0.7381-1 \\
& =x_{1}^{2}-(k+1)+2 \varepsilon x_{1}+\varepsilon^{2}-1.2619 \\
& \geq 2 \varepsilon x_{1}-1.2619>0 .
\end{aligned}
$$

We have $h\left(x_{1}+\varepsilon\right)>0$, and $x_{1}+x_{2}+x_{3}+x_{4}>t_{1}+t_{2}+2$.

Combining the Appendix Table and Lemmas 3-8, 12 and 13, we can obtain
Theorem 1 (i) When $5 \leq k \leq 28, S_{4}^{2}(k)$ is the graph with minimal energy in $U^{*}(k)$. (ii) When $29 \leq k \leq 42, S_{4}^{3}(k)$ is the graph with minimal energy in $U^{*}(k)$. (iii) When $k \geq 43, S_{3}^{1}(k), S_{4}^{3}(k)$ are the graphs with minimal and second minimal energies in $U^{*}(k)$ respectively,

Lemma 14 Let $G \in U^{0}(k), g(G)=4, G \neq S_{4}^{1}(k)$. Then $E(G)>E\left(S_{4}^{1}(k)\right)$.

Proof. Let x be the number of edges in $E(\hat{G})$ that are adjacent to vertices of C_{4} except for two edges in C_{4}. Since there are just two edges of $M(G)$, $G \backslash C_{4}$ contains some edges of $E(\hat{G})$. Then $1 \leq x \leq k-3$. By Lemmas 1 and 2, we can obtain

$$
\begin{aligned}
b_{2 i}(G)= & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\ldots+r_{k}^{(2 i)}(G) \\
& -2\left[r_{0}^{(2 i-4)}\left(G \backslash C_{4}\right)+r_{1}^{(2 i-4)}\left(G \backslash C_{4}\right)+\cdots+r_{k-4}^{(2 i-4)}\left(G \backslash C_{4}\right)\right] \\
\geq & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+x\binom{k-3}{i-2}+2(k-2-x)\binom{k-4}{i-2} \\
& +(x-1)\binom{k-4}{i-2}-\binom{k-2}{i-2}-(k-2-x)\binom{k-4}{i-3} \\
= & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+x\left[\binom{k-3}{i-2}-\binom{k-4}{i-2}+\binom{k-4}{i-3}\right] \\
& +2(k-2)\binom{k-4}{i-2}-\binom{k-4}{i-2}-(k-2)\binom{k-4}{i-3} \\
\geq & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+1 \cdot\left[\binom{k-3}{i-2}-\binom{k-4}{i-2}+\binom{k-4}{i-3}\right] \\
& +2(k-2)\binom{k-4}{i-2}-\binom{k-4}{i-2}-(k-2)\binom{k-4}{i-3} \\
= & b_{2 i}\left(S_{4}^{1}(k)\right)
\end{aligned}
$$

where the equality holds if and only if $G \cong S_{4}^{1}(k)$. So, we have $G \succ S_{4}^{1}(k)$, $E(G)>E\left(S_{4}^{1}(k)\right.$.

Lemma 15 Let $G \in U^{0}(k), g(G) \geq 8$. Then $E(G)>E\left(S_{4}^{1}(k)\right)$.

Proof. By Lemmas 1 and 2, we can obtain

$$
\begin{aligned}
b_{2 i}\left(S_{4}^{1}(k)\right)= & r_{0}^{(2 i)}\left(S_{4}^{1}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{1}(k)\right)+r_{2}^{(2 i)}\left(S_{4}^{1}(k)\right) r_{3}^{(2 i)}\left(S_{4}^{1}(k)\right) \\
& -2\left[r_{0}^{(2 i-4)}\left(S_{4}^{1}(k) \backslash C_{4}\right)+r_{1}^{(2 i-4)}\left(S_{4}^{1}(k) \backslash C_{4}\right)\right] \\
= & r_{0}^{(2 i)}\left(S_{4}^{1}(k)\right)+r_{1}^{(2 i)}\left(S_{4}^{1}(k)\right)+\binom{k-3}{i-2}+2(k-3)\binom{k-4}{i-2} \\
& -\binom{k-2}{i-2}-(k-3)\binom{k-4}{i-3} \\
= & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)+\ldots+r_{k}^{(2 i)}(G) \\
- & 2\left[r_{0}^{(2 i-g)}\left(G \backslash C_{g}\right)+r_{1}^{(2 i-g)}\left(G \backslash C_{g}\right)+\cdots+r_{k-g}^{(2 i-g)}\left(G \backslash C_{g}\right)\right] \\
\geq & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)-r_{0}^{(2 i-g)}\left(G \backslash C_{g}\right)-r_{1}^{(2 i-g)}\left(G \backslash C_{g}\right) \\
\geq & r_{0}^{(2 i)}(G)+r_{1}^{(2 i)}(G)+r_{2}^{(2 i)}(G)-\binom{k-\frac{g}{2}}{i-\frac{g}{2}}-\left(k-\frac{g}{2}-1\right)\binom{k-\frac{g}{2}-2}{i-\frac{g}{2}-1} .
\end{aligned}
$$

Let $v_{i}(i=1,2, \ldots, g)$ be all the vertices of $C_{g}, T_{i}(i=1,2, \ldots, g)$ be a tree planting at $v_{i}\left(v_{i} \in V\left(T_{i}\right)\right), v_{i}(i=1,2, \ldots, g)$ be the number of edges in \hat{G}. Obviously, $n_{1}+n_{2}+\ldots+n_{g}=k-\frac{g}{2}$. Let β_{2} be the number of ways to choose two independence edges of \hat{G} such that at least one edge in $C_{g(G)}$. Then

$$
\begin{aligned}
\beta_{2} & \geq\left(\frac{g}{2}-1\right)\left(n_{1}+n_{2}+\ldots+n_{g}\right)+\binom{\frac{g}{2}}{2} \\
& =\left(\frac{g}{2}-1\right)\left(k-\frac{g}{2}\right)+\binom{\frac{g}{2}}{2} \\
& \geq 2 k+5 .
\end{aligned}
$$

We have $r_{2}^{(2 i)}(G)>\binom{k-3}{i-2}+2(k-3)\binom{k-4}{i-2}$. Since $\binom{k-2}{i-2}>\binom{k-\frac{g}{2}}{i-\frac{g}{2}},(k-3)\binom{k-4}{i-3}>$ $\left(k-\frac{g}{2}-1\right)\binom{k-\frac{g}{2}-2}{i-\frac{g}{2}-1}$. We have $G \succ S_{4}^{1}(k), E(G) \geq E\left(S_{4}^{1}(k)\right)$.

Using Lemmas 14 and 15, it is not difficult to obtain the following theorem.
Theorem $2 S_{4}^{1}(k)$ is the graph with minimal energy in $U^{0}(k)$.
By Theorems 1 and 2, Lemmas 14 and 15, and the Appendix Table, we can obtain

Theorem 3 Either $S_{3}^{1}(k)$ or $S_{4}^{1}(k)$ is the graph with minimal energies in $U(k)$.

Remark: We can obtain the energies of $S_{3}^{1}(k)$ or $S_{4}^{1}(k)$ by computation for some positive integer k. When $k=100,1000,10000$, the result of the computation is $E\left(S_{3}^{1}(k)\right)>E\left(S_{4}^{1}(k)\right)$. But we have not found a proper way to prove it. So, we propose

Conjecture $1 S_{4}^{1}(k)$ is the graph with minimal energies in $U(k)$.

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge Universty Press, Second Edition, 1993.
[2] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39(1999), 984-996.
[3] A. Chang, F. Tian, On the spectral radius of unicyclic graphs with perfect matchings, Linear Algebra Appl. 370(2003), 237-250.
[4] D. Cvetkoić, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
[5] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta (Berlin) 45(1977), 79-87.
[6] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann, Springer-Verlag, Berlin, 2001, 196-211.
[7] I. Gutman, O.E. Polansky, Mathematicl Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[8] I. Gutman, N. Tronajstić, Graph theory and molecular orbital: The Hückel rule, J. Chem. Phys. 64(1976), 4921-4925.
[9] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. $29(2001), 163-168$.
[10] Y. Hou Bicyclic graphs with minimum energy, Linear and Multilinear Algebra 49(2001), 347-354.
[11] Y. Hou, J. Li, Bounds on the largest eigenvalues of trees with a given size of matchings, Linear Algebra Appl. 342(2002), 203-217.
[12] X. Li, J. Zhang, B. Zhou, The spread of unicyclic graphs with given size of maximum matchings, Preprint 2006.
[13] J. Rada, A. Tineo, Polygonal chains with minimal energy, Linear Algebra Appl. 372(2003), 333-344.
[14] F. Zhang, H. Li, On acyclic conjugated molecules with minimal energies, Discrete Applied Math. 92(1999), 71-84.

- Appendix Table

$n=2 k$	$E\left(S_{4}^{1}(k)\right)$	$E\left(S_{3}^{1}(k)\right)$	$E\left(S_{4}^{2}(k)\right)$	$E\left(S_{4}^{3}(k)\right)$
$k=5$	12.6598	11.4066	11.5696	11.9997
$k=6$	14.9516	13.7663	13.9820	14.3547
$k=7$	17.2319	16.1047	16.3626	16.6890
$k=8$	19.5020	18.4251	18.7178	19.0058
$k=9$	21.7628	20.7601	21.0521	21.3076
$k=10$	24.0153	23.0219	23.3689	23.5965
$k=11$	26.2602	25.3019	25.6707	25.8739
$k=12$	28.4982	27.5715	27.9595	28.1411
$k=13$	30.7297	29.8318	30.2368	30.3992
$k=14$	32.9553	32.0870	32.5039	32.6839
$k=15$	35.1754	34.0064	34.7619	34.8913
$k=16$	37.3904	36.5652	37.0116	37.1268
$k=17$	39.6006	38.7960	39.2538	39.3559
$k=18$	41.8064	41.0209	41.4991	41.5793
$k=19$	44.0079	43.2403	43.7182	43.7972
$k=20$	46.2055	45.4545	45.9414	46.0101
$k=21$	48.3994	47.6641	48.1592	48.2183
$k=22$	50.5897	49.8691	50.3720	50.4221
$k=23$	52.7767	52.0700	52.5801	52.6218
$k=24$	54.9605	54.2669	54.7838	54.8176
$k=25$	57.1413	56.4602	56.9834	57.0098
$k=26$	56.4602	58.6499	59.1791	59.1985
$k=27$	61.4944	60.8362	61.3712	61.3839
$k=28$	63.6669	63.0194	63.5597	63.5661
$k=29$	65.8370	65.1996	65.7450	65.7454
$k=30$	68.0046	67.3770	67.9272	67.3922
$k=31$	70.1699	69.5516	70.1065	70.0957
$k=32$	72.3331	71.7236	72.2829	72.2669
$k=33$	74.4941	73.8931	74.4566	74.4357
$k=34$	76.6530	76.0623	76.6277	76.6020
$k=35$	78.8100	78.2251	78.7964	78.7662
$k=36$	80.9651	80.3878	80.9627	80.9281
$k=37$	83.1184	82.5483	83.1268	83.0880
$k=38$	85.2669	84.7068	85.2886	85.2458
$k=39$	87.4197	86.8634	87.4484	87.4017
$k=40$	89.5678	89.0180	89.6062	89.5558
$k=41$	91.7144	91.1709	91.7621	91.7080
$k=42$	93.8594	93.3219	93.9161	93.8585
$k=43$	96.0029	95.4713	96.0683	96.0074
$k=44$	98.1449	97.6090	98.2187	98.1546
$k=45$	100.2856	99.7652	100.3675	100.3002
$k=46$	102.4249	101.9099	102.5146	102.4443
$k=47$	104.5628	104.0530	104.6602	104.5869
$k=48$	106.6994	106.1947	106.8043	106.7281
$k=49$	108.3350	108.8348	108.9469	108.8679
$k=50$	110.4739	110.9690	111.0880	111.0064

