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WEIDONG GAO AND ALFRED GEROLDINGER

Abstract. We give an overview of zero-sum theory in finite abelian groups, a subfield of additive group
theory and combinatorial number theory. In doing so we concentrate on the algebraic part of the theory

and on the development since the appearance of the survey article by Y. Caro in 1996.

1. Introduction

Let G be an additive finite abelian group. In combinatorial number theory a finite sequence S =
(g1, . . . , gl) = g1 · . . . · gl of elements of G, where the repetition of elements is allowed and their order is
disregarded, is simply called a sequence over G, and S is called a zero-sum sequence if g1 + . . .+ gl = 0.
A typical direct zero-sum problem studies conditions which ensure that given sequences have non-empty
zero-sum subsequences with prescribed properties. The associated inverse zero-sum problem studies the
structure of extremal sequences which have no such zero-sum subsequences.

These investigations were initiated by a result of P. Erdős, A. Ginzburg and A. Ziv, who proved that
2n − 1 is the smallest integer l ∈ N such that every sequence S over a cyclic group of order n has a
zero-sum subsequence of length n (see [47]). Some years later, P.C. Baayen, P. Erdős and H. Davenport
(see [137], [45] and [142]) posed the problem to determine the smallest integer l ∈ N such that every
sequence S over G of length |S| ≥ l has a zero-sum subsequence. In subsequent literature that integer l
has been called the Davenport constant of G. It is denoted by D(G), and its precise value - in terms of
the group invariants of G - is still unknown in general.

These problems were the starting points for much research, as it turned out that questions of this type
occur naturally in various branches of combinatorics, number theory and geometry. Conversely, zero-sum
problems have greatly influenced the development of various subfields of these areas (among others, zero-
sum Ramsey theory was initiated by the works of A. Bialostocki and P. Dierker). So there are intrinsic
connections with graph theory, Ramsey theory and geometry (see [118], [4], [12, 13] for some classical
papers and [11], [10], [104], [14], [107], [40], [122] for some recent papers). The following observation
goes back to H. Davenport : If R is the ring of integers of some algebraic number field with ideal class
group (isomorphic to) G, then D(G) is the maximal number of prime ideals (counted with or without
multiplicity) which occur in the prime ideal decomposition of aR for irreducible elements a ∈ R. Indeed,
in the theory of non-unique factorizations it has turned out that the monoid of all zero-sum sequences
over G closely reflects the arithmetic of a Krull monoid which has class group G and every class contains
a prime (see [96, Corollary 3.4.12]). On the other hand, it was factorization theory which promoted the
investigation of inverse zero-sum problems, which appear naturally in that area. Apart from all that,
zero-sum problems occur in various types of number theoretical topics (as Carmicheal numbers [1], Artin’s
conjecture on additive forms [19] or permutation matrices [134]).

Zero-sum problems are tackled with a huge variety of methods. First of all we mention methods from
additive group theory including all types of addition theorems (see [135, 136], [141], [96], [111], [106, 108],
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[132], [123], [9]). Furthermore, group algebras ([74]), results from the covering area ([163, 131], [80]), from
linear algebra ([32, 31]) and polynomial methods ([2, 3]) play crucial roles. Moreover, in the meantime
zero-sum theory has already developed its own methods and a wealth of results which promote its further
development.

The first survey article on zero-sum theory, written by Y. Caro, appeared ten years ago in 1996 (see
[23] and [24]). The aim of the present article is to sketch the development in the last decade and to
give an overview over the present state of the area under the following two restrictions. First, we do
not outline the relationships to other areas, as graph theory, Ramsey theory or the theory of non-unique
factorizations, but we restrict to what is sometimes called the algebraic part of zero-sum theory. Second,
although since the 1960s zero-sum problems were studied also in the setting of non-abelian groups (see
[36], [145, 149, 146, 147], [169], [63], [39], [171]) but we restrict to the case of abelian groups. Since Y.
Caro’s article has an extended bibliography on the literature until 1994, we also refer to his bibliography
and concentrate ourselves on papers having appeared since that time. In Section 2 we fix our notations
and terminology, and we give the definitions of the key invariants. Then in the subsequent sections we
present the state of knowledge on these invariants and on the associated inverse problems.

Throughout this article, let G be an additive finite abelian group and let G• = G \ {0}

2. Preliminaries

Let N denote the set of positive integers, P ⊂ N the set of all prime numbers and let N0 = N ∪ {0}.
For integers a, b ∈ Z we set [a, b] = {x ∈ Z | a ≤ x ≤ b}, and for c ∈ N let N≥c = N \ [1, c− 1]. For a real
number x, we denote by bxc the largest integer that is less than or equal to x, and by dxe the smallest
integer that is greater than or equal to x.

Throughout, all abelian groups will be written additively. For n ∈ N, let Cn denote a cyclic group
with n elements, and let nG = {ng | g ∈ G}. By the Fundamental Theorem of Finite Abelian Groups we
have

G ∼= Cn1 ⊕ . . .⊕ Cnr
∼= Cq1 ⊕ . . .⊕ Cqs ,

where r = r(G) ∈ N0 is the rank of G, s = r∗(G) ∈ N0 is the total rank of G, n1, . . . , nr ∈ N are integers
with 1 < n1 | . . . | nr and q1, . . . qs are prime powers. Moreover, n1, . . . , nr, q1, . . . , qs are uniquely
determined by G, and we set

d∗(G) =
r∑

i=1

(ni − 1) and k∗(G) =
s∑

i=1

qi − 1
qi

.

Clearly, nr = exp(G) is the exponent of G, and if |G| = 1, then r(G) = d∗(G) = k∗(G) = 0 and
exp(G) = 1.

Let s ∈ N. An s-tuple (e1, . . . , es) of elements of G is said to be independent if ei 6= 0 for all i ∈ [1, s]
and, for every s-tuple (m1, . . . ,ms) ∈ Zs,

s∑
i=1

miei = 0 implies m1e1 = . . . = mses = 0 .

An s-tuple (e1, . . . , es) of elements of G is called a basis if it is independent and G = 〈e1〉 ⊕ . . .⊕ 〈es〉.

We write sequences multiplicatively and consider them as elements of the free abelian monoid over G,
a point of view which was put forward by the requirements of the theory of non-unique factorizations.
Thus we have at our disposal all notions from elementary divisibility theory which provides a suitable
framework when dealing with subsequences of given sequences, and we may apply algebraic concepts in
a natural way.
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Let F(G) be the free abelian monoid, multiplicatively written, with basis G. The elements of F(G)
are called sequences over G. We write sequences S ∈ F(G) in the form

S =
∏
g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G .

We call vg(S) the multiplicity of g in S, and we say that S contains g, if vg(S) > 0. S is called
squarefree (in F(G)) if vg(S) ≤ 1 for all g ∈ G. The unit element 1 ∈ F(G) is called the empty sequence .
A sequence S1 is called a subsequence of S if S1 |S in F(G) (equivalently, vg(S1) ≤ vg(S) for all
g ∈ G), and it is called a proper subsequence of S if it is a subsequence with 1 6= S1 6= S. If a sequence
S ∈ F(G) is written in the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G.

For a sequence
S = g1 · . . . · gl =

∏
g∈G

gvg(S) ∈ F(G) ,

we call
|S| = l =

∑
g∈G

vg(S) ∈ N0 the length of S ,

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|] the maximum of the multiplicities of S ,

k(S) =
l∑

i=1

1
ord(gi)

∈ Q≥0 the cross number of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

σ(S) =
l∑

i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S ,

Σk(S) =
{∑

i∈I

gi

∣∣∣ I ⊂ [1, l] with |I| = k
}

the set of k-term subsums of S , for all k ∈ N ,

Σ≤k(S) =
⋃

j∈[1,k]

Σj(S) , Σ≥k(S) =
⋃
j≥k

Σj(S) ,

and
Σ(S) = Σ≥1(S) the set of (all) subsums of S .

The sequence S is called
• zero-sumfree if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a zero-sum sequence and every proper subsequence is zero-

sumfree,
• a short zero-sum sequence if it is a zero-sum sequence of length |S| ∈ [1, exp(G)].

We denote by B(G) the set of all zero-sum sequences and by A(G) the set of all minimal zero-sum
sequences. Then B(G) ⊂ F(G) is a submonoid (also called the block monoid over G); it is a Krull
monoid and A(G) is the set of atoms of B(G) (see [96, Proposition 2.5.6]). For any map of abelian groups
ϕ : G → G′, there exists a unique homomorphism ϕ : F(G) → F(G′) with ϕ |G = ϕ. Usually we simply
write ϕ instead of ϕ. Explicitly, ϕ : F(G) → F(G′) is given by ϕ(g1 ·. . .·gl) = ϕ(g1)·. . .·ϕ(gl) for all l ∈ N0

and g1, . . . , gl ∈ G. . If S ∈ F(G), then |ϕ(S)| = |S| and supp
(
ϕ(S)

)
= ϕ

(
supp(S)

)
. If ϕ : G → G′

is even a homomorphism, then σ
(
ϕ(S)

)
= ϕ

(
σ(S)

)
, Σ

(
ϕ(S)

)
= ϕ

(
Σ(S)

)
and ϕ

(
B(G)

)
⊂ B(G′). In

particular, we use the inversion (g 7→ −g) and the translation (g 7→ g0 +g), and for S = g1 · . . . ·gl ∈ F(G)
we set

−S = (−g1) · . . . · (−gl) and g0 + S = (g0 + g1) · . . . · (g0 + gl) ∈ F(G) .
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If g ∈ G is a non-zero element and

S = (n1g) · . . . · (nlg), where l ∈ N0 and n1, . . . , nl ∈ [1, ord(g)] ,

then
‖S‖g =

n1 + . . .+ nl

ord(g)
is called the g-norm of S. If S is a zero-sum sequence for which {0} 6= 〈supp(S)〉 ⊂ G is a finite cyclic
group, then

ind(S) = min{‖S‖g | g ∈ G with 〈supp(S)〉 = 〈g〉} ∈ N0

is called the index of S. We set ind(1) = 0, and if supp(S) = {0}, then we set ind(S) = 1.

Next we give the definition of the zero-sum invariants which we are going to discuss in the subsequent
sections. We concentrate on invariants dealing with general sequences, as introduced in Definition 2.1.
However, by an often used technique, problems on general sequences are reduced to problems on squarefree
sequences, and thus we briefly deal also with invariants on squarefree sequences (or in other words, with
sets), as introduced in Definition 2.2.

Definition 2.1. Let exp(G) = n and k,m ∈ N with k - exp(G). We denote by
• D(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a

non-empty zero-sum subsequence. The invariant D(G) is called the Davenport constant of G.
• d(G) the maximal length of a zero-sumfree sequence over G.
• η(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a short

zero-sum subsequence.
• smn(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a

zero-sum subsequence T of length |T | = mn. In particular, we set s(G) = sn(G).
• snN(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a

non-empty zero-sum subsequence T of length |T | ≡ 0 mod n.
• Ek(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a

zero-sum subsequence T with k - |T |.
• ν(G) the smallest integer l ∈ N0 with the following property :

For every zero-sumfree sequence S ∈ F(G) of length |S| ≥ l there exist a subgroup H ⊂ G
and an element a ∈ G \H such that G• \ Σ(S) ⊂ a+H.

A simple argument (see [96, Section 5.1] for details) shows that

d(G) = max
{
|S|

∣∣ S ∈ F(G) , Σ(S) = G•} and 1 + d(G) = D(G) = max
{
|S|

∣∣ S ∈ A(G)
}
.

Definition 2.2. We denote by
• Ol(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G) of length |S| ≥ l

has a non-empty zero-sum subsequence. The invariant Ol(G) is called the Olson constant of G.
• ol(G) the maximal length of a squarefree zero-sumfree sequence S ∈ F(G).
• cr(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G•) of length |S| ≥ l

satisfies Σ(S) = G. The invariant cr(G) is called the critical number of G.
• g(G) the smallest integer l ∈ N such that every squarefree sequence S ∈ F(G) of length |S| ≥ l

has a zero-sum subsequence T of length |T | = exp(G).
We use the convention that min(∅) = sup(∅) = 0. For a subset G0 ⊂ G and some integer l ∈ N, R.B.

Eggleton and P. Erdős (see [41]) introduced the f-invariant

f(G0, l) = min
{
|Σ(S)|

∣∣ S ∈ F(G0), S squarefree and zero-sumfree, |S| = l} .
The basic relationships between these invariants are summarized in Lemma 10.1.
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3. On the Davenport Constant

Let G = Cn1 ⊕ . . . ⊕ Cnr
with 1 < n1 | . . . | nr, r = r(G) and let (e1, . . . , er) be a basis of G with

ord(ei) = ni for all i ∈ [1, r]. Then the sequence

S =
r∏

i=1

eni−1
i ∈ F(G)

is zero-sumfree whence we have the crucial inequality

d(G) ≥ d∗(G) .

In the 1960s, D. Kruyswijk and J.E. Olson proved independently the following result (see [5, 44, 142, 143]
and [96, Theorems 5.5.9 and 5.8.3]).

Theorem 3.1. If G is a p-group or r(G) ≤ 2, then d(G) = d∗(G).

We present two types of results implying that d(G) = d∗(G). The first one is due to P. van Emde
Boas et. al. (see [44, Theorems 3.9, 4.2], where more results of this flavor may be found) and the second
is due to S.T. Chapman et. al. (see [25], and also the various conjectures in that paper).

Theorem 3.2. Let G = C2n1 ⊕ C2n2 ⊕ C2n3 and H = Cn1 ⊕ Cn2 ⊕ Cn3 with 1 ≤ n1 | n2 | n3. If
ν(H) = d∗(H)− 1, then d(G) = d∗(G).

Theorem 3.3. Let G = H ⊕ Ckm where k,m ∈ N and H ⊂ G is a subgroup with exp(H)|m. If
d(H ⊕Cm) = d(H) +m− 1 and η(H ⊕Cm) ≤ d(H) + 2m, then d(G) = d(H) + km− 1. In particular
(use Theorem 3.1 and [96, Proposition 5.7.7]), if m is a prime power and d(H) < m, then d(G) = d∗(G).

These and similar results give rise to long lists of explicit groups satisfying d(G) = d∗(G) (see [6],
[44], [46], [35], [25]). The first example of a group G with d(G) > d∗(G) is due to P.C. Baayen. In [44,
Theorem 8.1] it is shown that

d(G) > d∗(G) for G = C4k
2 ⊕ C4k+2 with k ∈ N ,

and more examples are given in [46]. Let H ⊂ G be a subgroup. Then d(H) + d(G/H) ≤ d(G), and if G
is as above, I ⊂ [1, r] and

H =
⊕
i∈I

Cni
, then d(H) > d∗(H) implies d(G) > d∗(G)

(see [96, Proposition 5.1.11]). This shows that the interesting groups with d(G) > d∗(G) are those with
small rank. A. Geroldinger and R. Schneider showed that there are infinitely many G with r(G) = 4 such
that d(G) > d∗(G). The following result may be found in [98] and [77, Theorem 3.3].

Theorem 3.4. We have d(G) > d∗(G) in each of the following cases :
1. G = Cm ⊕ C2

n ⊕ C2n where m,n ∈ N≥3 are odd and m | n.
2. G = Ci

2 ⊕ C5−i
2n where n ∈ N≥3 is odd and i ∈ [2, 4].

Let G = Cr
2 ⊕ Cn where r ∈ N and n ∈ N≥3 is odd. Then d(G) = d∗(G) if and only if r ≤ 4 (see [98,

Corollary 2]). For some small r ≥ 5 and n ≥ 3 the precise value of d(G) was recently determined in [49].
The growth of d(G)− d∗(G) is studied in [139].

We make the following conjecture.

Conjecture 3.5. If G = Cr
n, where n, r ∈ N≥3, or r(G) = 3, then d(G) = d∗(G).
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For groups of rank three Conjecture 3.5 goes back to P. van Emde Boas (see [46]) and is supported by
[69]. For groups of the form G = Cr

n it is supported by [80, Theorem 6.6].

The next result provides upper bounds on D(G). The first one is due to P. van Emde Boas and D.
Kruyswijk ([46, Theorem 7.1]) and is sharp for cyclic groups (for other approaches and related bounds
see [8], [140]). The second bound is sharp for groups of rank 2 and with H = pG for some prime divisor
p of exp(G) (see [96, Theorem 5.5.5 and Proposition 5.7.11]).

Theorem 3.6. Let exp(G) = n ≥ 2 and H ⊂ G be a subgroup.

1. d(G) ≤ (n− 1) + n log |G|
n .

2. d(G) ≤ d(H) exp(G/H) + max
{
d(G/H), η(G/H)− exp(G/H)− 1

}
.

We end this section with a conjecture supported by [96, Theorem 6.2.8].

Conjecture 3.7. D(G) ≤ d∗(G) + r(G).

4. On the structure of long zero-sumfree sequences

Let S ∈ F(G) be a zero-sumfree sequence of length |S| = d(G). According to general philosophy in
inverse additive number theory (see [141], [53, 54]), S should have some structure. Obviously, if G is
cyclic of order n ≥ 2, then S = gn−1 for some g ∈ supp(S) with ord(g) = n, and if S is an elementary
2-group of rank r, then S = e1 · . . . · er for some basis (e1, . . . , er) of G. Apart from these trivial cases
very little is known up to now. The most modest questions one could ask are the following :

1. What is the order of elements in supp(S)?
2. What is the multiplicity of elements in supp(S)? What is a reasonable lower bound for h(S)?
3. How large is supp(S)?

Crucial in all investigations of zero-sumfree sequences is the following inequality of Moser-Scherk (see
[96, Theorem 5.3.1]) : Let S ∈ F(G) be a zero-sumfree sequence.

If S = S1S2 , then |Σ(S)| ≥ |Σ(S1)|+ |Σ(S2)| .
By M. Freeze and W.W. Smith ([52, Theorem 2.5], [96, Proposition 5.3.5]) this implies that

|Σ(S)| ≥ 2|S| − h(S) ≥ |S|+ |supp(S)| − 1 .

We start with the following conjecture.

Conjecture 4.1. Every zero-sumfree sequence S ∈ F(G) of length |S| = d(G) has some element
g ∈ supp(S) with ord(g) = exp(G).

The conjecture is true for cyclic groups, p-groups (see [96, Corollary 5.1.13]), groups of the form
G = Cn ⊕ Cn (see below) and for G = C2 ⊕ C2n (see [78]). As concerns the second question, the
philosophy is that in groups where the exponent is large in comparison with the rank, h(S) should be
large.

For cyclic groups, there are the following results going back to J.D. Bovey, P. Erdős, I. Niven, W. Gao,
A. Geroldinger and Y. ould Hamidoune (see [17], [76], [97] and [96, Theorem 5.4.5]).

Theorem 4.2. Let G be cyclic of order n ≥ 3, and let S ∈ F(G) be a zero-sumfree sequence of length

|S| ≥ n+ 1
2

.
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1. For all g ∈ supp(S) we have ord(g) ≥ 3.
2. There exists some g ∈ supp(S) with vg(S) ≥ 2|S| − n+ 1.
3. There exists some g ∈ supp(S) with ord(g) = n such that

vg(S) ≥ n+ 5
6

if n is odd , and vg(S) ≥ 3 if n is even .

In cyclic groups long zero-sumfree sequences and long minimal zero-sum sequences can be completely
characterized (see [71]).

Theorem 4.3. Let G by cyclic of order n ≥ 2 and let S ∈ F(G) a zero-sumfree sequence of length
|S| = n − k with k ∈ [1, bn/3c] + 1]. Then there exists some g ∈ G with ord(g) = n and x1, . . . , xk−1 ∈
[1, n− 1] such that

S = gn−2k+1
k−1∏
i=1

(xig) and
k−1∑
i=1

xi ≤ 2k − 2 .

In particular, every minimal zero-sum sequence S ∈ A(G) of length |S| ≥ n− bn/3c has ind(S) = 1.

The index of zero-sum sequences over cyclic groups is investigated in [26, 71, 29]. In [126] (page 344
with d = n) it is conjectured that every sequence S ∈ F(Cn) of length |S| = n has a non-empty zero-sum
subsequence T with ind(T ) = 1. Among others, the g-norm and the index of zero-sum sequences play a
role in arithmetical investigations (see [96, Section 6.8]).

Next we discuss groups of the form G = Cn ⊕Cn with n ≥ 2 (see [77], [166], [79], [96, Section 5.8] and
[130]).

Theorem 4.4. Let G = Cn ⊕ Cn with n ≥ 2. Then the following statements are equivalent :
(a) If S ∈ F(G), |S| = 3n − 3 and S has no zero-sum subsequence T of length |T | ≥ n, then there

exists some a ∈ G such that 0n−1an−2 |S.
(b) If S ∈ F(G) is zero-sumfree and |S| = d(G), then an−2 |S for some a ∈ G.
(c) If S ∈ A(G) and |S| = D(G), then an−1 |S for some a ∈ G.
(d) If S ∈ A(G) and |S| = D(G), then there exists a basis (e1, e2) of G and integers x1, . . . , xn ∈

[0, n− 1] with x1 + . . .+ xn ≡ 1 mod n such that

S = en−1
1

n∏
ν=1

(xνe1 + e2) .

Moreover, if S ∈ A(G) and |S| = D(G), then ord(g) = n for every g ∈ supp(S), and if n is prime, then
|supp(S)| ∈ [3, n].

Conjecture 4.5. For every n ≥ 2 the four equivalent statements of Theorem 4.4 are satisfied.

Conjecture 4.5 has been verified for n ∈ [2, 7], and if it holds for some n ≥ 6, then it holds for 2n (see
[79, Theorem 8.1]). We continue with a result for non-cyclic groups having large exponent (see [79]).

Theorem 4.6.

1. Let G = Cn1 ⊕ Cn2 with 1 < n1 | n2 and n2 > n1(n1 + 1). Let ϕ : G → G = Cn1 ⊕ Cn1 be the
canonical epimorphism and S ∈ A(G) of length |S| = D(G). If gk|ϕ(S) for some k > n1 and some
g ∈ G, then gk|S for some g ∈ ϕ−1(g).



8 WEIDONG GAO AND ALFRED GEROLDINGER

2. Let G = H ⊕ Cn where exp(G) = n = lm, H ⊂ G a subgroup with exp(H) |m, m ≥ 2 and
l ≥ 4|H| > 4(m−2). Let ϕ : G→ G = H⊕Cm denote the canonical epimorphism and S ∈ F(G) a
zero-sumfree sequence of length |S| = n. Then S has a subsequence T of length |T | ≥ (l−2|H|+1)m
such that the following holds : If gk|ϕ(T ) for some k > m and some g ∈ G, then gk|T for some
g ∈ ϕ−1(g).

For general finite abelian groups there is the following result (see [76], [96, Theorem 5.3.6]) which plays
a key role in the proof of Theorem 10.4.2).

Theorem 4.7. Let G0 ⊂ G be a subset, k ∈ N and k ≥ 2 be such that f(G0, k) > 0, and let S ∈ F(G0)
be a zero-sumfree sequence of length

|S| ≥
( |G| − k

f(G0, k)
+ 1

)
k .

Then there exists some g ∈ G0 such that

vg(S) ≥ |S|
k − 1

− |G| − k − 1
(k − 1)f(G0, k)

.

If the rank of the group is large in comparison with the exponent, there is in general no element with
high multiplicity (see Theorem 10.4.1), but in case of elementary p-groups there is the following structural
result (see [77, Theorem 10.3], [80, Corollary 6.3], [96, Corollary 5.6.9]).

Theorem 4.8. Let G be a finite elementary p-group and S ∈ F(G) be a zero-sumfree sequence of length
|S| = d(G). Then (g, h) is independent for any two distinct elements g, h ∈ supp(S).

We continue with the following

Conjecture 4.9. Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| · · · |nr, k ∈ [1, n1 − 1] and S ∈ F(G) be a
sequence of length |S| = k+ d(G). If S has no zero-sum subsequence S′ of length |S′| > k, then S = 0kT
where T ∈ F(G) is zero-sumfree.

The following example shows that in Conjecture 4.9 the restriction k ∈ [1, n1 − 1] is essential :
Let T ∈ F(G) be a zero-sumfree sequence of length |T | = d(G) such that vg(S) = ord(g) − 1 for

some g ∈ G. Then for every l ∈ N the sequence S = glord(g)T has no zero-sum subsequence S′ of length
|S′| > lord(g).

Next we discuss the invariant ν(G) which was introduced by P. van Emde Boas in connection with his
investigations of the Davenport constant for groups of rank three (see [44, page 15] and [69]). An easy
argument (see [96, Proposition 5.1.16]) shows that

d(G)− 1 ≤ ν(G) ≤ d(G) ,

and we make the following conjecture.

Conjecture 4.10. ν(G) = d(G)− 1.

The following result goes back to P. van Emde Boas, W. Gao and A. Geroldinger ([44, Theorem 2.8],
[79, Theorem 5.3], [96, Theorems 5.5.9 and 5.8.10], for more see also [69, Theorem 5.2]).

Theorem 4.11. Conjecture 4.10 holds true in each of the following cases :
1. G is cyclic.
2. G is a p-group.
3. G = Cn ⊕ Cn satisfies Conjecture 4.5.
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We end this section with a result (see [81]) showing that minimal zero-sum sequences are not additively
closed (apart from some well-defined exceptions).

Theorem 4.12. Let S ∈ F(G•) be a sequence of length |S| ≥ 4, and let S = BC with B,C ∈ F(G)
such that |B| ≥ |C|. If σ(T ) ∈ supp(S) for all subsequences T of B with |T | = 2 and for all subsequences
T of C with |T | = 2, then S has a proper zero-sum subsequence, apart from the following exceptions :

1. |C| = 1, and we are in one of the following cases :
(a) B = gk and C = 2g for some k ≥ 3 and g ∈ G with ord(g) ≥ k + 2.
(b) B = gk(2g) and C = 3g for some k ≥ 2 and g ∈ G with ord(g) ≥ k + 5.
(c) B = g1g2(g1+g2) and C = g1+2g2 for some g1, g2 ∈ G with ord(g1) = 2 and ord(g2) ≥ 5.

2. {B, C} = {g(9g)(10g) , (11g)(3g)(14g) } for some g ∈ G with ord(g) = 16.

If S = g1 · . . . · gl ∈ F(G) such that ord(gk) > kk for all k ∈ [1, l], then G. Harcos and I. Ruzsa showed
that S allows a product decomposition S = S1S2 where S1 and S2 are both zero-sumfree (see [119]).

5. On generalizations of the Davenport constant

We discuss two generalizations of the Davenport constant in some detail (for yet another generalization,
the barycentric Davenport constant, we refer to [34]). The first one was introduced by F. Halter-Koch in
connection with the analytic theory of non-unique factorizations (see [109]).

Definition 5.1. Let k ∈ N. We denote by
• Dk(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l is divisible

by a product of k non-empty zero-sum sequences.
• dk(G) the largest integer l ∈ N with the following property :

There is a sequence S ∈ F(G) of length |S| = l which is not divisible by a product of k
non-empty zero-sum sequences.

Obviously, we have Dk(G) = 1 + dk(G), d1(G) = d(G) and D1(G) = D(G). We present one result on
dk(G) which, among others, may be found in [96, Section 6.1].

Theorem 5.2. Let exp(G) = n and k ∈ N.
1. Let G = H ⊕ Cn where H ⊂ G is a subgroup. Then

d(H) + kn− 1 ≤ dk(G) ≤ (k − 1)n+ max{d(G), η(G)− n− 1} .
In particular, if d(G) = d(H) + n− 1 and η(G) ≤ d(G) + n+ 1, then dk(G) = d(G) + (k− 1)n.

2. If r(G) ≤ 2, then dk(G) = d(G) + (k − 1)n.
3. If G a p-group and D(G) ≤ 2n− 1, then dk(G) = d(G) + (k − 1)n.

The following generalization of the Davenport constant was introduced by M. Ska lba in connection
with his investigations on binary quadratic forms (see [159], [160], [161]).

Definition 5.3. For every g ∈ G, let Dg(G) denote the largest integer l ∈ N with the following property :
There is a sequence S ∈ F(G) of length |S| = l and sum σ(S) = g such that every proper
subsequence of S is zero-sumfree.

By definition, D0(G) = D(G), and if g 6= 0, then Dg(G) ≤ d(G). The following result is due to M.
Ska lba (see [160, Theorem 2] and [161, Theorem 1])
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Theorem 5.4. Let G = Cn1 ⊕Cn2 with 1 ≤ n1 | n2 and (e1, e2) a basis of G. Let g = a1e1 +a2e2 ∈ G•

with a1 ∈ [0, n1 − 1], a2 ∈ [0, n2 − 1] and d = gcd
(
gcd(a1, n1), gcd(a2, n2)

)
. Then

Dg(G) =

{
n1 + n2 − d− 1 if d 6= n1,

n1 + n2 − gcd(a2, n2)− 1 if d = n1.

Lemma 5.5. Let exp(G) = n ≥ 2. Then the following statements are equivalent :
(a) There exists some g ∈ G with ord(g) = n such that Dg(G) = d(G).
(b) For all g ∈ G with ord(g) = n we have Dg(G) = d(G).
(c) There exists a minimal zero-sum sequence S ∈ F(G) of length |S| = D(G) such that

max{ord(g) | g ∈ supp(S)} = n.

Proof. (a) ⇒ (b) Let g, g∗ ∈ G with ord(g) = ord(g∗) = n and suppose that Dg∗(G) = d(G). Then
there exists a zero-sumfree sequence S ∈ F(G) of length |S| = d(G) and σ(S) = g∗. If ϕ : G → G is a
group automorphism with ϕ(g∗) = g, then ϕ(S) is a zero-sumfree sequence of length |ϕ(S)| = d(G) and
σ(ϕ(S)) = ϕ(σ(S)) = g whence Dg(G) = d(G).

(b) ⇒ (c) Let g ∈ G and S ∈ F(G) a zero-sumfree sequence with σ(S) = g and |S| = Dg(G) = d(G).
Then the sequence S∗ = (−g)S has the required properties.

(c) ⇒ (a) Assume to the contrary that for all g ∈ G with ord(g) = n we have Dg(G) < d(G).
This means that for all zero-sumfree sequences S ∈ F(G) with |S| = d(G) we have ord(σ(S)) < n.
But this implies that for all minimal zero-sum sequences S ∈ F(G) of length |S| = D(G) we have
max{ord(g) | g ∈ supp(S)} < n, a contradiction. �

Note that Conjecture 4.1 implies Condition (c) of Lemma 5.5. Using this condition we immediately
obtain the following corollary.

Corollary 5.6. If d∗(G) = d(G) and g ∈ G with ord(g) = exp(G), then Dg(G) = d(G).

6. On the invariants η(G), s(G) and their analogues

We start with a key result first obtained by W. Gao (see [60]). Its proof is based on the Addition
Theorem of Kemperman-Scherk (for the version below we refer to [96, Theorem 5.7.3]).

Theorem 6.1. Let S ∈ F(G) be a sequence of length |S| ≥ |G|. Then S has a non-empty zero-sum
subsequence T of length |T | ≤ min

{
h(S), max{ord(g) | g ∈ supp(S)}

}
.

Now we discuss the invariants η(G), s(G) and their relationship. Both invariants have received a lot
of attention in the literature. The various contributions and the present state of knowledge are well-
described in [40], where also the connection with finite geometry is discussed (see also [82]). Therefore
we only mention some of the most recent results, and then we discuss the relationship of η(G) and s(G)
in greater detail. A simple observation shows that

D(G) ≤ η(G) ≤ s(G)− exp(G) + 1 .

Using Theorem 6.1 we obtain the following upper bounds on η(G) and s(G) (see [96, Theorem 5.7.4])
which are sharp for cyclic groups.

Theorem 6.2. η(G) ≤ |G| and s(G) ≤ |G|+ exp(G)− 1.
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Both invariants, η(G) and s(G) are completely determined for groups of rank at most two (see [96,
Theorem 5.8.3]). Theorem 6.3 is based on the result by C. Reiher which states that s(Cp ⊕Cp) = 4p− 3
for all p ∈ P (see [154], and also [155]), and it contains the Theorem of Erdős-Ginzburg-Ziv (set n1 = 1).
Theorem 6.4 may be found in [158].

Theorem 6.3. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 | n2. Then

η(G) = 2n1 + n2 − 2 and s(G) = 2n1 + 2n2 − 3 .

Theorem 6.4. Let G be a p-group for some odd prime p with exp(G) = n and D(G) ≤ 2n− 1. Then

2D(G)− 1 ≤ η(G) + n− 1 ≤ s(G) ≤ D(G) + 2n− 2 .

In particular, if D(G) = 2n− 1, then s(G) = η(G) + n− 1 = 4n− 3.

We continue with the following conjecture

Conjecture 6.5. η(G) = s(G)− exp(G) + 1.

Theorem 6.6. Conjecture 6.5 holds true in each of the following cases :
1. exp(G) ∈ {2, 3, 4}.
2. r(G) ≤ 2.
3. G is a p-group for some odd prime p and D(G) = 2 exp(G)− 1.
4. G = C3

5 .

Proof. 1. is proved in [73], 2. follows from Theorem 6.3, and 3. follows from Theorem 6.4. In order to
give an idea of the arguments we are going to prove 4. We need the following two results :

F1 If n ∈ N≥3 is odd, then η(C3
n) ≥ 8n− 7 (this is due to C. Elsholtz [43], see also [40, Lemma 3.4]).

F2 If exp(G) = n and S ∈ F(G) such that

|S| ≥ η(G) + n− 1 and h(S) ≥ n− bn/2c − 1 ,

then S has a zero-sum subsequence of length n (see [73, Proposition 2.7]).
Let G = C3

5 . It suffices to show that s(G) ≤ η(G) + 4. Let S ∈ F(G) be a sequence of length η(G) + 4.
We have to verify that S has a zero-sum subsequence of length 5. By F1 we have, |S| ≥ 37. If we can
prove that h(S) ≥ 2, then the assertion follows from F2.

Assume to the contrary that S is squarefree. Let G = H ⊕ 〈g〉 where H ⊂ G is a subgroup with
|H| = 25 and g ∈ G with ord(g) = 5. Then

S =
l∏

i=1

(gi + hi), where gi ∈ 〈g〉, hi ∈ H, and we set T =
l∏

i=1

gi .

If h(T ) ≥ 9, say g1 = . . . = g9, then h1, . . . , h9 are pairwise distinct. Since g(C2
5 ) = 9 (see [124] and

Conjecture 10.2), the sequence h1 · . . . · h9 has a zero-sum subsequence of length 5, and therefore S has
a zero-sum subsequence of length 5.

Suppose that h(T ) ≤ 8. Then T = 0l0gl1(2g)l2(3g)l3(4g)l4 with l0, l1, l2, l3, l4 ∈ [5, 8], and we write S
in the form

S =
4∏

i=0

li∏
j=1

(ig + hi,j) with all hi,j ∈ H .

Since S is squarefree, for every i ∈ [0, 4] the elements hi,1, . . . , hi,li are pairwise distinct, and we set
Ai = {hi,1, . . . , hi,li}. Note that 0 + g + 2g + 3g + 4g = 0 ∈ G. So if

0 ∈ A = A0 +A1 +A2 +A3 +A4 ,
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then S has a zero-sum subsequence of length 5. LetK be the maximal subgroup ofH such that A+K = A.
By Kneser’s Addition Theorem (see [96, Theorem 5.2.6.2]) we obtain that

|A| ≥
4∑

i=0

|Ai +K| − 4|K| .

If |K| = 1, then |A| ≥ |A0|+ |A1|+ |A2|+ |A3|+ |A4| − 4 = |S| − 4 ≥ 33, a contradiction.
Assume to the contrary that |K| = 5. Since |A0|+ |A1|+ |A2|+ |A3|+ |A4| = |S| ≥ 37 and |Ai| = li ∈

[5, 8], it follows that |Ai| ≥ 6 for at least four indices i ∈ [0, 4]. Therefore we obtain that

|A| ≥
4∑

i=0

|Ai +K| − 4|K| ≥ 4 · 2|K|+ |K| − 4|K| = 5|K| = 25 ,

a contradiction. Thus it follows that K = H whence A = H and we are done.
�

For recent progress on Conjecture 6.5 we refer to [82]. Next we consider the invariant snN(G). Theorem
6.3 allows to determine snN(G) for groups G of rank r(G) ≤ 2.

Theorem 6.7. Let exp(G) = n ≥ 2.
1. d(G) + n ≤ snN(G) ≤ min{s(G),D(G⊕ Cn)}.
2. We have snN(G) = d(G) + n in each of the following cases :

(a) G is a p-group.
(b) G = Cn1 ⊕ Cn2 with 1 ≤ n1 | n2.

Proof. 1. is simple (see [79, Lemma 3.5]) and 2.(a) is a consequence of 1. To verify 2.(b), let G =
Cn1 ⊕ Cn2 with 1 ≤ n1 | n2. Then 1. implies that d(G) + n2 ≤ snN(G) whence it remains to prove that
snN(G) ≤ d(G) +n2 = n1 + 2n2− 2. If n1 = 1, this follows from 1. Let S ∈ F(G) be a sequence of length
|S| = n1 + 2n2 − 2. We have to show that S has a zero-sum subsequence of length n2 or 2n2.

Let H = G⊕Cn2 = G⊕〈e〉 with ord(e) = n2, so that every h ∈ G⊕Cn2 has a unique representation
h = g+ je, where g ∈ G and j ∈ [0, n2 − 1]. We define ψ : G→ H by ψ(g) = g+ e for every g ∈ G. Thus
it suffices to show that ψ(S) has a non-empty zero-sum subsequence. We distinguish two cases.
CASE 1: n1 = n2.

We set n = n1 and proceed by induction on n. If n is prime, the assertion follows from 2.(a). Suppose
that n is composite, p a prime divisor of n and ϕ : H → H the multiplication by p. Then pG ∼= Cn/p⊕Cn/p

and Ker(ϕ) ∼= C3
p . Since s(pG) = 4(n/p) − 3 and |S| = 3n − 2 ≥ (3p − 4)(n/p) + 4n/p − 3, S admits a

product decomposition S = S1 · . . . · S3p−3S
′ such that, for all i ∈ [1, 3p − 3], ϕ(Si) has sum zero and

length |Si| = n/p (for details see [96, Lemma 5.7.10]). Then |S′| = 3n/p − 2 = snN(Cn/p ⊕ Cn/p), and
thus S′ has a subsequence S3p−2 such that ϕ(S3p−2) has sum zero and length |S3p−2| ∈ {n/p, 2n/p}. This
implies that

3p−2∏
i=1

σ
(
ψ(Si)

)
∈ F

(
Ker(ϕ)

)
.

Since D(Ker(ϕ)) = 3p− 2, there exists a non-empty subset I ⊂ [1, 3p− 2] such that∑
i∈I

σ
(
ψ(Si)

)
= 0 whence

∏
i∈I

ψ(Si)

is a non-empty zero-sum subsequence of ψ(S).
CASE 2: n2 > n1.

Let m = n−1
1 n2 and let ϕ : H = Cn1 ⊕C2

n2
→ Cn1 ⊕mC2

n2
be a map which is the identity on the first

component and the multiplication by m on the second and on the third component whence Ker(ϕ) ∼= Cm⊕
Cm and ϕ(G) ∼= Cn1⊕Cn1 . Since s(Cn1⊕Cn1) = 4n1−3 and |S| = n1 +2n2−2 ≥ (2m−3)n1 +(4n1−3),
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S admits a product decomposition S = S1 · . . . · S2m−2S
′, where for all i ∈ [1, 2m − 2], ϕ(Si) has sum

zero and length |Si| = n1. Then |S′| = 3n1 − 2, and since by CASE 1, snN(Cn1 ⊕ Cn1) = 3n1 − 2, the
sequence S′ has a subsequence S2m−1 such that ϕ(S2m−1) has sum zero and length |S2m−1| ∈ {n1, 2n1}.
This implies that

2m−1∏
i=1

σ
(
ψ(Si)

)
∈ F

(
Ker(ϕ)

)
.

Since D(Ker(ϕ)) = 2m− 1, there exists a non-empty subset I ⊂ [1, 2m− 1] such that∑
i∈I

σ
(
ψ(Si)

)
= 0 whence

∏
i∈I

ψ(Si)

is a non-empty zero-sum subsequence of ψ(S). �

Next we deal with zero-sum subsequences of length |G|. The following result is due to W. Gao and Y.
Caro (see [21], [22], [62] and also [96, Proposition 5.7.9]). In Section 9 we discuss generalizations due to
Y. ould Hamidoune. The structure of sequences S of length |S| = |G|+ d(G)− 1 which have no zero-sum
subsequence of length |G| is studied in [94].

Theorem 6.8. s|G|(G) = |G|+ d(G).

Note that Theorem 6.8 yields immediately a generalization of a Theorem of Hall (see [134, Section 3]).

Conjecture 6.9. Let G be cyclic of order n ≥ 2, q the smallest prime divisor of n and S ∈ F(G•) be a
sequence of length |S| = n. If h = h(S) ≥ n/q − 1, then

∑
≤h(S) =

∑
(S).

Conjecture 6.9 has been verified for cyclic groups of prime power order in [93]. The following example
shows that the conclusion of Conjecture 6.9 does not hold whenever nq/(2n− q) ≤ h ≤ n/q − 2.

Let all notations be as in Conjecture 6.9, N = {0, a1, · · · , an/q−1} a subgroup of G with |N | = n/q,
g ∈ G with ord(g) = n and

W = ah
1 · . . . · ah

n/q−1g
h(g + a1)h · . . . · (g + an/q−1)h ∈ F(G) .

Since h ≥ nq/(2n − q), we have |W | = (n
q − 1)h + n

q h ≥ n. Now let S be a subsequence of W of length
|S| = n such that gh(g + ai) is a subsequence of S for some i ∈ [1, (n/q)− 1]. Then h(S) = h,

((h+ 1)g +N) ∩ Σ(S) 6= ∅ but ((h+ 1)g +N) ∩ Σ≤h(S) = ∅

whence Σ≤h(S) 6= Σ(S).

Next we discuss the invariants skn(G) where exp(G) = n and k ∈ N. If S ∈ F(G) is a zero-sumfree
sequence of length |S| = d(G) elements, then the sequence

T = 0kn−1S

has no zero-sum subsequence of length kn whence skn(G) ≥ |T | + 1 = kn + d(G). The following result
may be found in [73].

Theorem 6.10. Let exp(G) = n ≥ 2 and k ∈ N.
1. If k < D(G)/n, then skn(G) > kn+ d(G).
2. If k ≥ |G|/n, then skn(G) = kn+ d(G).
3. If G a finite abelian p-group and pl ≥ D(G), then splk(G) = plk + d(G).

Theorem 6.10 motivates the following definition.
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Definition 6.11. We denote by l(G) the smallest integer l ∈ N such that

sk exp(G)(G) = k exp(G) + d(G) for every k ≥ l .

Theorem 6.10 shows that
D(G)
n

≤ l(G) ≤ |G|
n

whence l(Cn) = 1 .

Theorem 6.12. Let G = Cn1 ⊕ Cn2 with 1 < n1 | n2. Then l(G) = 2.

Proof. Since s(G) = 2n1 + 2n2 − 3 > n2 + d(G), it follows that l(G) ≥ 2. Let k ≥ 2 and S ∈ F(G)
a sequence of length |S| = kn2 + d(G) = (k − 2)n2 + 3n2 + n1 − 2. We prove that S has a zero-sum
subsequence of length kn which implies that l(G) ≤ 2. Since s(G) = 2n1 + 2n2 − 3, S admits a product
decomposition S = S1 · . . . · Sk−1S

′ where for all i ∈ [1, k − 1], Si has sum zero and length |Si| = n2

(for details see [96, Lemma 5.7.10]). Since |S′| = |S| − (k + 1)n2 = 2n2 + n1 − 1, Theorem 6.7.2.(b)
implies that S′ has a zero-sum subsequence Sk of length |Sk| ∈ {n2, 2n2} whence either S1 · . . . · Sk−1Sk

or S1 · . . . · Sk−2Sk is a zero-sum subsequence of length kn2. �

The invariant Ek(G) was introduced in [72] (in connection with investigations on s(G), see also [90]).
Clearly, we have D(G) ≤ Ek(G) ≤ s(G), and if D(G) < k, then D(G) = Ek(G) (see [156, Lemma 2.1]).

Theorem 6.13.
1. [72, Section 3] If G = Cn1 ⊕ Cn2 with 1 ≤ n1 | n2 and n2 odd, then E2(G) = 2n1 + 2n2 − 3.
2. If G = Cn ⊕ Cn with n ≥ 2 and 3 - n, then E3(G) = 3n− 2.
3. [156] If G is a p-group and k ∈ N≥2 with gcd(p, k) = 1, then

Ek(G) =
⌊

k

k − 1
d∗(G)

⌋
+ 1.

Proof. 2. By [156, Lemma 2.4], we have 3n−2 ≤ E3(G). Since snN(G) = 3n−2, every sequence S ∈ F(G)
of length |S| ≥ 3n− 2 has a zero-sum subsequence T of length |T | ∈ {n, 2n} whence E3(G) ≤ 3n− 2. �

7. Inverse problems associated with η(G) and s(G)

In this section we investigate the structure of sequences S ∈ F(G) of length

η(G)− 1 without a zero-sum subsequence T of length |T | ∈ [1, exp(G)] ,

s(G)− 1 without a zero-sum subsequence T of length |T | = exp(G) .

We formulate two properties and two conjectures.

Conjecture 7.1. Let S ∈ F(G) be a sequence of length |S| = s(G)−1. If S has no zero-sum subsequence
of length exp(G), then h(S) = exp(G)− 1.

Note that Conjecture 7.1 and Fact F2 (formulated in the proof of Theorem 6.6) imply Conjecture 6.5.

Property C. Every sequence S ∈ F(G) of length |S| = η(G) − 1 which has no short zero-sum
subsequence has the form S = Tn−1 for some sequence T ∈ F(G).

Property D. Every sequence S ∈ F(G) of length |S| = s(G)− 1 which has no zero-sum subsequence
of length n has the form S = Tn−1 for some sequence T ∈ F(G).
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Suppose that G has Property D. We show that G satisfies Property C as well. Let S ∈ F(G) be a
sequence of length η(G)− 1 which has no short zero-sum subsequence. We consider the sequence

T = 0n−1S .

If T has a zero-sum subsequence T ′ of length |T ′| = n, then T ′ = 0kS′ with k′ ∈ [0, n− 1] whence S′ is a
short zero-sum subsequence of S, a contradiction. Thus T has no zero-sum subsequence of length n. Since
Property D holds, Conjecture 7.1 and Conjecture 6.5 hold in G whence |T | = η(G)−1+(n−1) = s(G)−1.
Therefore Property D implies that S has the required form.

Conjecture 7.2. Every group G = Cr
n, where r ∈ N and n ∈ N≥2, has Property D.

An easy observation shows that

s(G) ≤
(
g(G)− 1

)
(n− 1) + 1 .

Moreover, if G = Cr
n and equality holds, then Cr

n has Property D (see [40, Lemma 2.3]). Thus [118,
Hilfssatz 3] implies that Cr

3 has Property D for every r ∈ N. However, only little is known for groups
G = Cr

n in case r ≥ 3 (see [91] and [82]).
We continue with some results on Σ|G|(S) for general groups which arose from generalizations of the

Erdős-Ginzburg-Ziv Theorem (see also [85], [57], [167] [113] and note that Theorem 7.3 implies Theorem
6.8). Then we discuss cyclic groups and groups of the form G = Cn ⊕ Cn.

Theorem 7.3. [60, 61] Let S ∈ F(G) be a sequence of length |S| ≥ |G| and let g ∈ G with vg(S) = h(S).
1.

Σ|G|(S) = Σ
≥
(
|G|−h(S)

)(−g + g−h(S)S) .

2. Suppose that for every a ∈ G and every subsequence T of S of length |T | = |S| − |G| + 1 we have
0 ∈ Σ(a+ T ). Then

Σ|G|(S) =
⋂

y∈G

Σ(y + S) = Σ(−g + S) .

Next we present a result by D.J. Grynkiewicz ([105, Theorem 1]) which confirms a conjecture of Y.
ould Hamidoune (see [115, Theorem 3.6] and [59] for special cases).

Theorem 7.4. Let S ∈ F(G) be a sequence of length |S| ≥ |G| + 1, k ∈ N with |supp(S)| ≥ k and
h(S) ≤ |G| − k + 2. Then one of the following two statements holds :

(a) |Σ|G|(S)| ≥ min{|G|, |S| − |G|+ k − 1}.
(b) There exists a non-trivial subgroup H ⊂ G, some g ∈ G and a subsequence T of S such that the

following conditions hold :
• H ⊂

∑
|G|(S), Σ|G|(S) is H-periodic and |

∑
|G|(S)| ≥ (|T |+ 1)|H|.

• supp(T−1S) ⊂ g +H and |T | ≤ min
{ |S−|G|+k−2

|H| , (G : H)− 2
}
.

Now we consider cyclic groups. Several authors ([170], [13], [20], [50], [23]) showed independently that
a sequence S ∈ F(Cn) of length |S| = 2n − 2, which has no zero-sum subsequence of length n, has the
form S = an−1bn−1 where a, b ∈ Cn and ord(a − b) = n. Based on Theorem 7.3 the following stronger
result was obtained in [65, Theorem 1] (see also [88]).

Theorem 7.5. Let G be cyclic of order n ≥ 2, k ∈ [2, bn/4c+ 2] and S ∈ F(G) be a sequence of length
|S| = 2n− k. If S has no zero-sum subsequence of length n, then

S = aubvc1 · . . . · cl, where ord(a− b) = n, u ≥ v ≥ n− 2k + 3 and

u+ v ≥ 2n− 2k + 1 (equivalently, l ≤ k − 1). In particular, we have
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• If k = 2, then S = an−1bn−1.
• If k = 3 and n ≥ 4, then S = an−1bn−2 or S = an−1bn−3(2b− a)

Closely related to the inverse problem is the investigation of the Brakemeier function (see [18, 15],
[58, 56, 57], [120, 121]).

Conjecture 7.6. Let G be cyclic of order n ≥ 2, q the smallest prime divisor of n and S ∈ F(G) be a
sequence of length |S| ≥ n+ n/q − 1. If 0 6∈ Σn(S) then h(S) ≥ |S| − n+ 1.

Conjecture 7.6 has been verified for cyclic groups of prime power order (see [92], [93]). The following
example shows that the conclusion of Conjecture 7.6 does not hold whenever q ≤ |S| − n ≤ n/q − 2.

Let all notations be as in Conjecture 7.6, N = {0, a1, a2, · · · , an/q−1} be the subgroup of G with
|N | = n/q, k ∈ [q, n/q − 2], g ∈ G with ord(g) = n and

W = ak
1 · . . . · ak

n/q−1g
k(g + a1)k · . . . · (g + an/q−1)k ∈ F(G)

a sequence of length |W | = k(2n/q − 1). Since k ∈ [q, n/q − 2], one can choose a subsequence S of W
such that |S| = n+ k such that gk is a subsequence of S and σ(S) ∈ (k + 1)g +N . Therefore h(S) = k
and ((k + 1)g +N) ∩ Σk(S) = ∅ which implies that σ(S) 6∈ Σk(S) and 0 6∈

∑
n(S).

Now suppose that G = Cn⊕Cn. It was P. van Emde Boas who studied Property C for such groups in
connection with his investigations on the Davenport constant for groups of rank three (see [44] and [69,
Lemma 4.7]). Property D was introduced in [70], where it is shown that both Property C and Property
D are multiplicative in the following sense.

Theorem 7.7. Let n1, n2 ∈ N≥2. If the groups Cn1 ⊕ Cn1 and Cn2 ⊕ Cn2 both have Property C (or
Property D respectively), then the group Cn1n2 ⊕ Cn1n2 has Property C (or Property D respectively).

The next result follows from Theorem 6.7.2.(b), from Theorem 7.7 and from [79, Theorem 6.2].

Theorem 7.8. Let n ≥ 2 and suppose that n = m1 · . . . ·ms where s ∈ N and m1, . . . ,ms ∈ N≥2. If for
all i ∈ [1, s] the groups Cmi

⊕ Cmi
satisfy the equivalent conditions of Theorem 4.4, then Cn ⊕ Cn has

Property C.

In [124] it is shown that Cp ⊕ Cp has Property D for p ∈ {2, 3, 5} and in [164] the same is shown for
p = 7. We end with a result which could be a first step on the way showing that Cn ⊕ Cn has Property
C.

Theorem 7.9. Let G = Cn ⊕ Cn with n ≥ 3 and S = fn−1
1 fn−1

2 g1 · . . . · gn−1 ∈ F(G) be a sequence
of length |S| = 3n − 3 which has no short zero-sum subsequence. Then there exists a basis (e1, e2) of G
such that

S = (e1 + e2)n−1en−1
2

n−1∏
i=1

(aie1 + be2)

where ai ∈ [0, n− 1] for all i ∈ [1, n− 1] and b ∈ [0, n− 1] \ {1}.

Proof. By [96, Lemma 5.8.6] it follows that (f1, f2) is a basis of G whence gi = yif1 + xif2 with xi, yi ∈
[0, n− 1] for all i ∈ [1, n− 1]. We assert that

x1 + y1 = . . . = xn−1 + yn−1 .

Assume to the contrary that this does not hold. Then Theorem 4.2.2 implies that the sequence
n−1∏
i=1

(
(xi + yi − 1)e1

)
is not zero-sumfree .
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Hence after some renumeration we may suppose that
t∑

i=1

(xi + yi − 1) ≡ 0 mod n for some t ∈ [1, n− 1] .

Then the sequence

W = fn−x
2 fn−y

1

t∏
i=1

(yif1 + xif2),

where x, y ∈ [1, n] such that x ≡ x1 + . . . + xt mod n and y ≡ y1 + . . . + yt mod n, is a zero-sum
subsequence of S of length |W | = (n − x) + (n − y) + t ≡ 0 mod n. Since S has no short zero-sum
subsequence, it follows that |W | = 2n. But then |W | > d(Cn ⊕ Cn) whence W (and thus S) has a short
zero-sum subsequence, a contradiction.

Now we obtain that (e1, e2) = (f2 − f1, f1) is a basis of G and

gi = yif1 + xif2 = xie1 + (xi + yi)e2 for all i ∈ [1, n− 1] .

Thus it remains to show that x1 + y1 6≡ 1 mod n. Assume to the contrary that (x1 + y1)e2 = e2.
Since s(Cn) = 2n − 1, the sequence en−1

1 0n−1(x1e1) has a zero-sum subsequence of length n whence
(e1 + e2)n−1en−1

2 (x1e1 + e2) has a zero-sum subsequence of length n, a contradiction. �

8. On the number of zero-sum subsequences

The enumeration of zero-sum subsequences of a given (long) sequence over G, which have some pre-
scribed properties, is a classical topic in combinatorial number theory going back to P. Erdős, J.E. Olson
and others. Many zero-sum results (such as the proof of d∗(G) = d(G) for p-groups or the proof that
s(Cp ⊕ Cp) = 4p− 3) are based on enumeration results.

Definition 8.1. Let S = g1 · . . . · gl ∈ F(G) be a sequence of length |S| = l ∈ N0 and let g ∈ G.
1. For every k ∈ N0 let

Nk
g(S) =

∣∣∣{I ⊂ [1, l]
∣∣∣ ∑

i∈I

gi = g and |I| = k
}∣∣∣

denote the number of subsequences T of S having sum σ(T ) = g and length |T | = k (counted with
the multiplicity of their appearance in S). In particular, N0

0(S) = 1 and N0
g(S) = 0 if g ∈ G•.

2. We define

Ng(S) =
∑
k≥0

Nk
g(S) , N+

g (S) =
∑
k≥0

N2k
g (S) and N−

g (S) =
∑
k≥0

N2k+1
g (S) .

Thus Ng(S) denotes the number of subsequences T of S having sum σ(T ) = g, N+
g (S) denotes

the number of all such subsequences of even length, and N−
g (S) denotes the number of all such

subsequences of odd length (each counted with the multiplicity of its appearance in S).

We start with two results on p-groups. The first one (see [75]) sharpens results of J.E. Olson and
I.Koutis (see [142, Theorem 1] and [127, Theorems 7, 8, 9 and 10]). It is proved via group algebras.

Theorem 8.2. Let G be a p-group, g ∈ G, k ∈ N0 and S ∈ F(G) be a sequence of length |S| >
k exp(G) + d∗(G).

1. N+
g (S) ≡ N−

g (S) mod pk+1.

2. If p = 2, then Ng(S) ≡ 0 mod 2k+1.
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The next result (proved in [73]) is based on Theorem 8.2.

Theorem 8.3. Let G be a p-group and S ∈ F(G) be a sequence of length |S| ∈ [|G| + d(G), 2|G| − 1].
Then

N|G|
g (S) ≡

{
0 mod p if g ∈ G•,

1 mod p if g = 0.

An easy argument shows that in an elementary 2-group we have N0(S) = Ng(S) for every S ∈ F(G)
and every g ∈ Σ(S) (see [75, Proposition 3.3]). For more enumeration results in G = Cp see [64], and in
G = Cp ⊕ Cp see [96, Theorems 5.8.1 and 5.8.2]).

We continue with some results of the following type: A sequence S ∈ F(G), for which |S| is long and
|Σ(S)| is small, has a very special form. The first result is due to J.E. Olson ([148, Theorems 1 and 2]).

Theorem 8.4. Let S ∈ F(G•) be a sequence of length |S| = |G|. If N0(S) < |G|, then G is cyclic and
S = g|G| for some g ∈ G•.

For cyclic groups there are the following two sharper results : For Theorem 8.5 see [67, Theorem 1]
(note that there is a misprint in the formulation of Theorem 1), and for Theorem 8.6 see [67, Theorems
2, 3 and 4].

Theorem 8.5. Let G be cyclic of order n ≥ 2, k ∈ [1, bn/4c+1] and S ∈ F(G). If N0(S) < 2|S|−n+k+1,
then there exists some g ∈ G with ord(g) = n such that

S = gu(−g)v(x1g) · . . . · (xk−1g)(y1g) · . . . · (ylg)

where u ≥ v ≥ 0, u + v = n − 2k + 1, yi ∈ [0, n − 1] for all i ∈ [1, l], xi ∈ [1, n − 1] for all i ∈ [1, k − 1]
and

∑
xi≤n/2 xi +

∑
xi>n/2(n− xi) ≤ 2k − 2.

Theorem 8.6. Let G be cyclic of order n ≥ 22 and S ∈ F(G•) be a sequence of length |S| = n− 1. If
N0(S) ≤ n, then there exists some g ∈ G with ord(g) = n such that S has one of the following forms :

(−g)gn−2, (2g)(−g)gn−3, (3g)(−g)gn−3, (2g)2(−g)gn−4, gn−1, (2g)gn−2, (3g)gn−2, (2g)2gn−3 .

The next result deals with the number of zero-sum subsequences of length exp(G) in cyclic groups (see
[68]).

Theorem 8.7. Let G be cyclic of order n ≥ 2 and S ∈ F(G) be a sequence of length |S| = 2n− 1.
1. For every g ∈ G• we have Nn

g (S) = 0 or Nn
g (S) ≥ n.

2. Nn
0 (S) ≥ n+ 1 or S = anbn−1 for some a, b ∈ G with ord(a− b) = n.

The following examples show that the inequalities in Theorem 8.7 cannot be improved. Let g ∈ G
with ord(g) = n. If

S = 0n−1gn−1(−g) , then Nn
−g(S) = n ,

and if
S = 0n+1gn−2 , then Nn

0 (S) = n+ 1 .

A problem related to Theorem 8.7 on Nn
0 (S) is the following conjecture formulated by A. Bialostocki

and M. Lotspeich ([125], [55]) :

Conjecture 8.8. Let G be cyclic of order n ≥ 2 and S ∈ F(G). Then

Nn
0 (S) ≥

(
b|S|/2c
n

)
+

(
d|S|/2e
n

)
.
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Z. Füredi and D. Kleitman, M. Kisin, W. Gao and D.J. Grynkiewicz gave partial positive answers to
the above conjecture.

Theorem 8.9. Conjecture 8.8 holds true in each of the following cases :
1. [55] n = paqb where p, q are distinct primes, a ∈ N and b ∈ {0, 1}.
2. [125] |S| ≥ n6n.
3. [68] |S| < 5n/2.
4. [102] |S| ≤ 19n/3.

The next result (see [84]) settles a conjecture of B. Bollobás and I. Leader (see [16]).

Theorem 8.10. Let S ∈ F(G) be a sequence. If 0 6∈ Σ|G|(S), then there is a zero-sumfree sequence
T ∈ F(G) of length |T | = |S| − |G|+ 1 such that |Σ|G|(S)| ≥ |Σ(T )|.

We conclude with an explicit formula for the number of all zero-sum sequences of given length, which
was recently derived by V. Ponomarenko (see [153]).

Theorem 8.11. Let G be cyclic of order n ≥ 10 and k > 2n/3. Then∣∣{S ∈ A(G)
∣∣ |S| = k

}∣∣ = ϕ(n)pk(n) ,

where ϕ is Euler’s Phi Function and pk(n) denotes the number of partitions of n into k parts.

9. Weighted sequences and the cross number

We start with a recent result due to D.J. Grynkiewicz (see [103, Theorem 1.1]) which may be considered
as a weighted version of the Theorem of Erdős-Ginzburg-Ziv (the case where G is cyclic, k = |G| and
w1 = . . . = wk = 1 gives the classical result). It completely affirms a conjecture of Y. Caro formulated in
1996 (see [23, Conjecture 2.4]. Special cases were settled by N. Alon, A. Bialostocki and Y. Caro ( [23]),
by W. Gao and X. Jin ([83]) and by Y. ould Hamidoune ([112, Theorem 2.1]).

Theorem 9.1. Let S ∈ F(G) be a sequence of length |S| = |G| + k − 1, for some k ≥ 2, and
(w1, . . . , wk) ∈ Zk a k-tuple of integers such that w1 + . . . + wk ≡ 0 mod exp(G). Then S has a
subsequence T = g1 · . . . · gk such that w1g1 + . . .+ wkgk = 0.

We continue with a result by Y. ould Hamidoune ([112, Theorem 3.2] which implies Theorem 6.8 (for
results of a similar flavor see [110], [34], [116]).

Theorem 9.2. Let S ∈ F(G) be a sequence of length |S| = D(G) + k with k ≥ |G| − 1 and let g ∈ G
with vg(S) = h(S). Then S has a subsequence T of length |T | = k such that σ(T ) = kg.

Next we discuss the cross number of a finite abelian group. It was introduced by U. Krause (see [128],
[129]), and its relevance stems from the theory of non-unique factorizations (see [157] and [96, Chapter
6]).

Definition 9.3. The invariant
K(G) = max

{
k(S)

∣∣ S ∈ A(G)
}

is called the cross number of G and

k(G) = max
{
k(S)

∣∣ S ∈ F(G) is zero-sumfree
}

is called the little cross number of G.
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If exp(G) = n and q is the smallest prime divisor of n, then a straightforward argument (see [96,
Proposition 5.1.8]) shows that

1
n

+ k∗(G) ≤ 1
n

+ k(G) ≤ K(G) ≤ 1
q

+ k(G) .

Conjecture 9.4. 1
n + k∗(G) = K(G).

Conjecture 9.4 has been verified for p-groups and various other classes of groups (see [96, Theorem
5.5.9 and Section 5.7]).

Theorem 9.5.
1. 1 + nk(G) is the smallest integer l ∈ N such that every sequence S ∈ F(G) with nk(S) ≥ l has a

non-empty zero-sum subsequence.
2. Every sequence S ∈ F(G) of length |S| ≥ |G| has a non-empty zero-sum subsequence T with

k(T ) ≤ 1.

Whereas Theorem 9.5.1 is straightforward, Theorem 9.5.2 settles a conjecture of D. Kleitman and P.
Lemke (see [126], [95], and [42] for a recent graph theoretical approach). For more information on the
cross number we refer to [99], [28], [100], [101], [7].

10. On the Olson constant, the critical number and some analogues

We summarize some basic relationships of the invariants introduced in Definition 2.2. Note that
max

{
|U |

∣∣ U ∈ A(G) squarefree } is called the strong Davenport constant of G (see [51, 26, 27, 150]).

Lemma 10.1.
1. 1 + ol(G) = Ol(G) ≤ g(G) ≤ |G|+ 1.
2. g(G) = |G|+ 1 if and only if G is either cyclic of even order or an elementary 2-group.
3. 1 + max

{
|S|

∣∣ S ∈ F(G) squarefree ,Σ(S) = G•} ≤ Ol(G) ≤ min{D(G), cr(G)}.
4. max

{
|supp(U)|

∣∣ U ∈ A(G)
}

= max
{
|U |

∣∣ U ∈ A(G) squarefree } ≤ Ol(G).

5. If f(G, l) ≥ 1 + c−2l2 for some l ∈ N and c ∈ R>0, then ol(G) < c
√
|G| − 1 .

Proof. We show the upper bound on g(G) and 2. A proof of 4. may be found in [26, Theorem 7]), and
the remaining assertions follow either by the very definitions or by [96, Lemma 5.1.17]. Since there are no
squarefree sequences S ∈ F(G) of length |S| ≥ |G|+ 1, every such sequence has a zero-sum subsequence
of length |T | = exp(G) whence g(G) ≤ |G| + 1. If G is cyclic of even order or an elementary 2-group,
then the squarefree sequence S ∈ F(G) consisting of all group elements has no zero-sum subsequence
T of length |T | = exp(G) whence g(G) > |G|. Suppose that G = H ⊕ 〈g〉 with some (possibly trivial)
subgroup H ⊂ G and some g ∈ G with ord(g) = exp(G) = n ≥ 3. We have to show that the squarefree
sequence S ∈ F(G) consisting of all group elements has a zero-sum subsequence T of length |T | = n.
If n is odd, then T = g(2g) · . . . · (ng) has the required property. If n is even and h ∈ H \ {0}, then
T = g(2g) · . . . ·

(
(n− 2)g

)(
h+ (n− 1)g

)(
−h+ (n/2)g

)
has the required property. �

We start with the g-invariant which was first studied by H. Harborth and A. Kemnitz (see [118, 124]).
Let G = Cn ⊕ Cn with n ≥ 3 and let (e1, e2) be a basis of G. If n is odd, then

S =
n−2∏
i=0

(ie2)
n−1∏
i=1

(e1 + ie2) ∈ F(G)
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is a squarefree sequence of length |S| = 2n − 2 which has no zero-sum subsequence of length n whence
g(G) ≥ 2n− 1. If n is even, then

S =
n−1∏
i=0

(ie2)
n−1∏
i=0

(e1 + ie2) ∈ F(G)

is a squarefree sequence of length |S| = 2n which has no zero-sum subsequence of length n whence
g(G) ≥ 2n+ 1.

Conjecture 10.2. Let G = Cn ⊕ Cn with n ≥ 3. Then

g(G) =

{
2n− 1 if n is odd,
2n+ 1 if n is even.

Conjecture 10.2 holds true for some small integers and for all primes p ≥ 67 (see [92]).
We continue with the Olson constant. For some basic bounds for the f-invariant (and hence for the

Olson constant) we refer to [96, Section 5.3]. Proving a conjecture of P. Erdős and H. Heilbronn, E.
Szemerédi [165] showed that there is some c ∈ R>0 (not depending on the group) such that Ol(G) ≤
c
√
|G|. J.E. Olson [144] proved the result for c = 3. The following result is due to Y. ould Hamidoune

and G. Zémor [117, Theorems 3.3 and 4.5].

Theorem 10.3.
1. If G is prime cyclic, then Ol(G) ≤

√
2|G|+ 5 log(|G|).

2. Ol(G) ≤
√

2|G|+ ε(|G|) for some real-valued function ε with ε(x) = O(x1/3 log x).

The result for prime cyclic groups is essentially the best possible. However, the situation is completely
different for non-cyclic groups. We have ol(G) ≤ d(G), and obviously equality holds for elementary 2-
groups, and by [162] also for elementary 3-groups. In the following theorem we summarize two results. The
first one (see [77, Theorem 7.3]) shows in particular that in p-groups of large rank we have ol(G) = d(G)
(which is in contrast to the situation in Cp ⊕ Cp, see Theorem 4.4). The second result was recently
achieved in [89].

Theorem 10.4.
1. Let G = H⊕Cs+1

n where exp(G) = n ≥ 2, s ∈ N0, H ⊂ G a (possibly trivial) subgroup and exp(H)
a proper divisor of n. If r(H) + s/2 ≥ n, then 1 + d∗(G) ≤ max

{
|U |

∣∣ U ∈ A(G) squarefree }.
2. Ol(Cp ⊕ Cp) = Ol(Cp) + p− 1 for all primes p > 4 · 67× 1034.

Let G = H⊕Cn = H⊕〈e〉 where H ⊂ G is a subgroup with |H| ≥ n−1 and e ∈ G with ord(e) = n. If
T ∈ F(H) is a squarefree zero-sumfree sequence of length |T | = ol(G) and h1, . . . , hn−1 ∈ H are pairwise
distinct, then

S = T
n−1∏
i=1

(e+ hi) ∈ F(G)

is a squarefree zero-sumfree sequence of length |S| = |T | + n − 1 whence ol(G) ≥ ol(H) + n − 1. Let
n be a prime power. Assume to the contrary that Ol(Cr

n) = Ol(Cr−1
n ) + n − 1 for all r ≥ 2. Then

Theorem 10.4.1 implies that Ol(Cn) = D(Cn), a contradiction. Thus there exists some r ≥ 2 such that
Ol(Cr

n) > Ol(Cr−1
n ) + n− 1.

Finally we discuss the critical number cr(G) of G. It was first studied by P. Erdős and H. Heilbronn
(see [48, Theorem I]) for cyclic groups of prime order, and in the sequel this problem found a lot of
attention (see [137], [38], [37], [138], [152], [30], [33], [133], [86], [114]). Following [87] (where the inverse
problem associated to the critical number is studied) we summarize what is known on cr(G).
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Theorem 10.5. Let q denote the smallest prime divisor of exp(G).
1. Suppose that |G| = q. Then cr(G) ≤ b

√
4q − 7c, and equality holds if the upper bound is odd (see

[33, Example 4.2]).
2. Suppose that |G|/q is prime.

(a) cr(C2 ⊕ C2) = 3, and if q is odd, then cr(Cq ⊕ Cq) = 2q − 2.
(b) |G|/q + q − 2 ≤ cr(G) ≤ |G|/q + q − 1.

3. Suppose that |G|/q is composite. We have cr(C8) = cr(C2 ⊕ C4) = 5, and otherwise

cr(G) =
|G|
q

+ q − 2 .

C. Peng (see [151], [152], [66]) investigated the following variant of the critical number. He studied the
smallest integer l ∈ N0 with the following property : Every sequence S ∈ F(G•) of length |S| ≥ l and
with |supp(S) ∩H| ≤ |H| − 1 for all proper subgroups H ⊂ G, satisfies Σ(S) = G.

Van H. Vu (see [168]) showed the existence of a constant C with the following property : If G is a
sufficiently large cyclic group and S ∈ F(G) a squarefree sequence with supp(S) ⊂ {g ∈ G | ord(g) = |G|}
and |S| ≥ C

√
|G|, then Σ(S) = G•.

Acknowledgements: The first author is supported by NSFC, Project No. 10271080. The second
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Note added in proof: When this article went to press in June 2006, we were informed on the
following progress:

• S. Savchev and F. Chen announced an improvement of Theorem 4.2
• D.J. Grynkiewiecz, O. Ordaz, M.T. Varela and F. Villarroel announced progress on Conjectures

6.9 and 7.6.
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