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Abstract

Hajos conjectured that, for any positive integerevery graph containing n&.1-subdivision is
k-colorable. This is true wheh< 3, and false whek > 6. Hajds’ conjecture remains open foe 4, 5. In
this paper, we show that any possible counterexample to this conjecture=fdrwith minimum number
of vertices must be 4-connected. This is a step in an attempt to reduce Hajos’ conjecture 4ao the
conjecture of Seymour that any 5-connected non-planar graph cont&igsabdivision.
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1. Introduction

Graphs considered in this paper are simple and finite. The Four Color Theorem states that
every planar graph is 4-colorable. The Kuratowski Theorem states that a graph is planar if, and
only if, it contains neither &s-subdivision nor ak3 3-subdivision. Also, a graph is planar if,
and only if, it contains neither &s-minor nor ak'3 3-minor. Based on these characterizations of
planar graphs, there are two conjectures that would generalize the Four Color Theorem. One of
these was attributed to Hajos (see [1]) which states that, for any positive itegezry graph
containing noKy.1-subdivision isk-colorable. The other is Hadwiger's conjecture [4]: For any
positive integelk, every graph containing n&.1-minor is k-colorable. Both conjectures are
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easily seen to be true whén=1, 2. It is also not hard to show that both conjectures are true for
k=3.

Hadwiger’s conjecture fok = 4 is equivalent to the Four Color Theorem [12]. Hadwiger's
conjecture folk = 5 can also be reduced to the Four Color Theorem [9], and it remains open for
k> 6.

On the other hand, Catlin [1] showed that Hajés’ conjecture fails when6. In fact,

Erd6s and Fajtlowicz [3] showed that Hajos’ conjecture fails for almost all graphs. Recently,
Thomassen [11] discovered more interesting counterexamples to Hajés’ conjecture by studying
its connections with Ramsey numbers, maximum cuts, and perfect graphs. Thomassen [11] also
explored graph classes for which Hajos’ conjecture may be true. Kilhn and Osthus [6] proved
that Hajos’ conjecture holds for graphs with sufficiently large girth, and they later [7] improved
the bound on girth to 27. However, Hajés’ conjecture remains opeh fod andk = 5. It is
therefore important to derive structural information about graphs containiigssubdivisions
(respectivelyKs-subdivisions).

There has been considerable work concernffiggsubdivisions. Dirac [2] conjectured that
every simple graph om vertices with at leastz8— 5 edges contains Es-subdivision, which was
proved by Mader [8]. However, the following conjecture of Seymour [10] remains open: Every
5-connected non-planar graph containk=subdivision. A result in [5] shows that Seymour’s
conjecture implies Dirac’s conjecture. Our aim is to establish a connection between Hajés’ con-
jecture and Seymour’s conjecture by looking at the connectivity of a minimum counterexample
to Hajos’ conjecture. More specifically, if a counterexample to Hajos’ conjecture is 5-connected
then, by the Four Color Theorem, Seymour’s conjecture implies Hajos’ conjecturefdr.

For convenience, we say that a graptis aHajos graph if

(i) G is not 4-colorable,
(ii) G contains naKs-subdivision, and
(i) subjectto (i) and (ii),| V(G)| is minimum.

Note that any non-spanning subgraph of a Hajés graph is 4-colorable. The main result of this
paper is the following.

Theorem 1.1. Every Hajos graph is 4-connected.

Let G be a graph. Aseparation of G is a pair(G1, G2) of edge disjoint subgraphs af
such thatG = G1 U G2 andV(G;) — V(G3—;) # ¥ for i = 1, 2. (Note that our definition of a
separation is different from the usual one in whi¢bG;) — V(G3—;) # @ is not required.) We
call (G1, G2) ak-separationif |V(G1NG2)|=k. AsetS C V(G)is ak-cutin G, if |S|=k
andG has a separatiofG1, G2) such thatV (G1 N Gp) = S.

To prove Theorem 1.1, we need to deal witlbuts withk < 3. It is very easy to show that no
Hajos graph admitg-cuts withk < 2. The main work is to show that no Hajés graph admits a
3-cut, for which we need to combine structural and coloring arguments. Suppose there is a Hajés
graph G that admits a 3-cut. Choose a 3-separation, G2) of G such thatG, is minimal
with respect to subgraph containment. We shall prove several lemmas showikg; that G»
admit certain 4-colorings. (This is done in Section 2.) Ggtdenote the graph obtained from
G; by adding an edge between every pair of distinct vertices vaidi1 N G2). We shall decide
whetherG contains aKs-subdivision. For this reason, we need to know whetfigr. has a
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cycle containingV (G1 N G2). Therefore, we need the following reformulation of a result of
Watkins and Mesner [13].

Theorem 1.2. Let G be a 2-connected graph and let x, y, z be three distinct vertices of G. Then
there is no cycle through x, y and z in G if, and only if, at least one of the following statements
holds.

(i) Thereexistsa 2-cut S in G and there exist three distinct components D,, Dy, D, of G — §
suchthat u € V(D,) for eachu € {x, y, z}.

(i) Thereexistavertexv of G, 2-cuts Sy, S, S; in G, and components D,, of G — §,, containing
u,forall u € {x, y, z}, suchthat S, NS, NS, = {v}, Sx — {v}, Sy — {v}, S; — {v} arepairwise
disoint, and Dy, Dy, D are pairwise disjoint.

(i) Thereexist pairwise disoint 2-cuts S, Sy, S; in G and components D,, of G — S, contain-
ing u, for all u € {x,y,z}, such that D,, D,, D, are pairwise digoint and G — V(D U
D, U D;) has exactly two components, each containing exactly one vertex from S, , for all
uefx,y,z}.

We remark that in order to show that Hajés graphs are 5-connected, one needs to consider the
much harder problem of characterizing graphs in which there i&Kssgubdivision at specified
locations.

We conclude this section with some notation. ebe a graph. FoA, B C V(G), anA-B
path inG is a path inG which has one end i and the other irB and is otherwise disjoint from
AUB. If A={x}, we speak ok—B path instead ofx}-B path, and if, in additionB = {y} then
we write x—y path instead ofx}—{y} path. Two paths irG are said to bénternally digoint if
no internal vertex of one is contained in the other. For any two4efs C V(G), we say that a
setS C V(G) separates A from B if there is a separatio(G1, G2) of G with V(G1 N G2) = S,
ACV(G1),BCV(Gp),A—S#@,andB — S £@. If A= {v} we simply sayS separates
from B, and if A = {v} and B = {w} then we simply say th&f separates from w.

Let H be a subgraph of a grafh letvy, ..., v € V(G), and{u;, w;} € V(H)U{v1, ..., v},
i=1,...,m. Then we letH + {vs, ..., vg, urw1, ..., uywy} denote the graph with vertex set
V(H)U{v1,...,v} and edge sek (H) U {ugws, ..., upwy}.

Let G be a graph. For an§ C V(G), G[S] denotes the subgraph 6finduced byS. A path
P in G is said to be dranch path in G if its internal vertices are of degree 2 hand its ends
are of degree at least 3 . Vertices ofG with degree at least 3 are callbchanch vertices ofG.

Given a graphG, we shall view a coloring of; as a mapping from V(G) to a set of colors
such that(u) # c(v) whenevemv € E(G).

2. 3-Separations
We begin this section by stating an easy fact without proof.
Proposition 2.1. Every Hajés graph is 3-connected.
For the remainder of this section, we choose a 3-separé&fignG,) of a Hajos graph such

that G, is minimal. We shall show two results concerning certain 4-colorings ofFirst, we
need some structural information frofp.
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Lemma2.2. Let G beaHajésgraph, andlet (G1, G2) bea 3-separation of G chosento minimize
G». Then

() V(G2 =5,
(i) G2 —V(G1NGy) isconnected, and
(i) G2 is2-connected.

Proof. SupposgV (G2)| < 4. Then|V(G2)| = 4. Letv € V(G2) — V(G1). Then by Proposi-
tion 2.1,v has degree 3i. SinceG — v does not contain &s-subdivision,G — v is 4-colorable.
Because the degree ofin G is 3, any 4-coloring of; — v can easily be extended tato give a
4-coloring of G, a contradiction. ThugV (G2)| = 5 and (i) holds.

Now suppos& > — V(G1N Gy) is not connected. Lad denote a component 6f2 — V(G1N
G2). Then there is a 3-separati¢6’, G5) of G with V(G]; N G),) = V(G1N G2) and G, —
V(G1 N G2) = D. This contradicts the choice &1, G»), for G/2 is properly contained iy 5.
So (i) holds.

By (i), Go— V(G1NG2) is connected, and by Proposition 2.1, every vertex fiof@ 1N G2)
has a neighbor iV (G2) — V(G1 N G2). S0G2 is connected, and any possible cut vertexGof
must be contained itY (G2) — V(G1 N G2). Suppose&sz is not 2-connected, and letdenote
a cut vertex ofG,. Then, V(G1 N G2) cannot be contained in a component@$ — v, for
otherwisev would be a cut vertex il (contradicting Proposition 2.1). So we may assume that
some vertex from V(G1N G2) is contained in the component 6 — v which does not contain
any other vertex fronV (G1 N G2). Then, sinceG is 3-connectedy is the only neighbor ok
in V(G2) — V(G1 N G»). Therefore, sinceV (G2)| = 5, (V(G1 N Gp) — {x}) U {v} is a cut
in G, which yields a 3-separatiofG, G%) in which G}, = G2 — x is a proper subgraph @,
a contradiction. Hence (iii) holds.O

Proposition 2.3. Let G beaHajosgraph, let (G1, G2) bea 3-separation of G chosento minimize
Gy, andlet V(G1N Gp) ={x, y, z}. Thenthereisa 4-coloring ¢1 of G1 such that c1(x), c1(y)
and c¢1(z) areall distinct.

Proof. Suppose this is not true, that i§; := G1 + {xy, yz, zx} is not 4-colorable. Then since
|[V(G)I| < |V(G)I, G} contains aK5-subdivision, say.

We claim thaty, y, z are branch vertices d'. This is easy to see whény, xz, yz} C E(X).
So we may assume by symmetry that¢ E(X). By (iii) of Lemma 2.2, there exist internally
disjoint pathsY from x to y andZ from x to z in G. Itis easy to see th&ty — {xy, xz))UYUZ
(and hence5) contains aKs-subdivision, a contradiction.

Note that ifG, contains a cycl€ throughx, y, z, then(X — {xy, yz, zx}) UC (and hence;)
contains aK5-subdivision, a contradiction. So there is no cycle through, z in G2. Hence by
applying Theorem 1.2 t@:», it suffices to consider the following three cases.

Casel. There exists a 2-cuf in G, and there exist distinct componedds, Dy, D, of G, — S
such thawt € V(D,) for eachu € {x, y, z}.

Let S = {a, b}. SupposdV (D,)| > 2. Then{x, a, b} is a 3-cut ofG and(G — V(D, — x),
G[V(Dy)US)) isa 3-separation aff. But G[V (D,) U S] is properly contained i, contradict-
ing the choice 0ofG1, G2). SOV (D;) = {x}. Similarly, we haveV (D,) = {y}, andV (D,) = {z}.
Hence andb are the only vertices aff not contained irG1.
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SinceG1 is a non-spanning subgraph 6f G1 is 4-colorable. Let be a 4-coloring ofG1.
If c1(x),c1(y), c1(z) are all distinct, ther; is a 4-coloring ofG’, a contradiction. So assume
c1(x), c1(y), c1(z) are not all distinct. Define; (u) = c1(u) for all u € V(G1), and letc; (a) and
c}(b) be two colors not irfc1(x), c1(y), c1(z)}. Clearly,c; is a 4-coloring ofG, a contradiction.

Case2. There exist a vertex of G, 2-cutsSy, Sy, S; in G2, and component®,, of G, — S,
containingu, for all u € {x, y, z}, such thatS, N S, N S, = {v}, S, — {v}, Sy — {v}, S, — {v} are
pairwise disjoint, and),, Dy, D, are pairwise disjoint.

As in Case 1, we can show the{(D,) = {x}, V(D,) = {y} andV (D) = {z}.

Note thatG1 + xy contains noKs-subdivision. For otherwise, by replacing in such a
Ks-subdivision with arnk—y path inG2 — z (which exists by (iii) of Lemma 2.2), we produce a
Ks-subdivision inG, a contradiction.

Thus, sincelV(G1 + xy)| < |[V(G)|, G1 + xy is 4-colorable. Letc; be a 4-coloring of
G1+xy. Thencyi(x) # c1(y). If c1(z) # c1(x) andc1(z) # c1(y), thency is a 4-coloring ofG’;,
a contradiction. Therefore, we may assume (by symmetry betwe@na y) thatci(z) = c1(y).

SinceG3 is a non-spanning subgraph 6f G- is 4-colorable. Let, be a 4-coloring ofG .
As y andz together only has three neighborsGrz, we may choosez so thatca(y) = c2(z).
Sincex has only two neighbors itr,, we may further choose so thatca(x) # c2(y). Now by
permuting the colors of vertices 6f2, we may assume thab(u) = c1(u) for all u € {x, y, z}.
Let ¢ be a coloring ofG defined by letting:(«) = ¢; (u) for all u € V(G;),i =1,2. Thenc is a
4-coloring of G, a contradiction.

Case 3. There exist pairwise disjoint 2-culk, Sy, S; in G2 and component®,, of G, — S,
containingu, for all u € {x, y, z}, such thatD,, Dy, D, are pairwise disjoint and'> — V (D, U
D, U D;) has exactly two components, each containing exactly one vertex Sgorfor all
uefx,y,z}

As in Case 1, we can shoW(D,) = {x}, V(D,) = {y} andV (D;) = {z}.

Let Sy := {ay, by}, Sy :={ay, by}, and S, := {a;, b.}, and assume thdt,, a,, a;} (respec-
tively {b,, by, b.}) is contained in the componenat(respectivelyB) of G, — V(D U D, U D,).
Then |V (A)| = 3 = |V(B)|; for otherwise,(G — V(A — {ax,ay,a;}),A) or (G — V(B —
{bx, by, b;}), B) is a 3-separation of; in which A or B is properly contained irG2, contra-
dicting the choice ofG1, G2).

Now G1 + {xy, yz} contains naKs-subdivision. For otherwise, |eX be aKs5-subdivision in
G1+ {xy, yz}. By (iii) of Lemma 2.2, there are internally disjoint patks Z from y to x, z,
respectively, inG2. Now (X — {xy, yz}) U X U Z (and hence5) contains aKs-subdivision, a
contradiction.

Since|V(G1 + {xy, yz})| < |V(G)|, G1 + {xy, yz} is 4-colorable. Let; be a 4-coloring of
G1+ {xy, yz}. Thenci(x) # c1(y) # c1(z). If c1(x) # c1(z), then G/ is 4-colorable, a con-
tradiction. So assume that(x) = c1(z). For convenience, assume that the colors we use are
{a, B, y, 8} andc1(x) = @ andc1(y) = B. Letc be a coloring ofG such that (u) = ¢1(u) for all
ueV(Gy), clay) =c(b;) =y, c(by) =cla;) = B, c(ay) =8, andc(b,) = a. It is easy to check
thatc is a 4-coloring ofG, a contradiction. O

Proposition 2.4. Let G beaHajoésgraph, let (G1, G2) bea 3-separation of G chosen to minimize
Gy, andlet V(G1NGo) ={x, vy, z}. Jpposethereisavertex x’ € V(G1) — {x, v, z} Separating
x from{y, z} in G1. Thenthere exist 4-colorings c1 and ¢ of G1 suchthat c1(x) = c1(y) # c1(z)
and c2(x) = c2(z) # c2(y)-
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Proof. Note thatrxy, xz ¢ E(G1) for otherwisex” would not separate from {y, z} in G1. Also
xx' € E(G), for otherwise{x, x'} would be a 2-cut inG, contradicting Proposition 2.1. Let
G} :=(G1—x)+{x'y, yz}.

We claim thatGj contains noKs-subdivision. For otherwise, lef' be a Ks-subdivision
in G}. SinceG contains noKs-subdivision,{x'y, yz} N E(X) # . By (iii) of Lemma 2.2,
we see thatG, contains two internally disjoint path¥, Z from y to x, z, respectively. Now
(X —{x'y, yz) U(X + {x/, xx’}) U Z, and hencé&;, contains a5-subdivision, a contradiction.

Therefore, sinceéV (G3)| < |V(G)I, G] is 4-colorable. Let] be a 4-coloring ofG]. Then
i (x) # i (y) # ¢} (2). Define a coloring-y of Gy by letting c1(x) = ¢ (y) andcy(u) = 5 (u)
forallu € V(G1) — {x}. Itis easy to see that gives the desired 4-coloring df;.

Similarly, by definingG7 := (G1 — x) + {x'z, yz}, we can show thaG; has the desired
4-coloringc2. O

Next, we show thaG > admits certain 4-colorings. First, we need the following lemma.

Lemma2.5. Let G beaHajosgraph, andlet (G1, G2) bea 3-separation of G chosento minimize
G2. Then G1 is 2-connected.

Proof. Supposé5 is not 2-connected. Sinag is 3-connected (by Proposition 2.1), there must
exist verticesx € V(G1 N Gp) andx’ € V(G1) — V(G1 N G2) such thatx’ separates from
V(G1 N Gy) — {x}. Let y, z denote the other two vertices M(G1 N G2) — {x}. By Proposi-
tion 2.4, there exists a 4-coloring of G1 such thatc1(x) = c1(y) # c1(z), and there exists a
4-coloringc) of G1 such that) (x) = ¢} (2) # c1 ().

Note thatG, + yz contains noKs-subdivision. For otherwise, |eX' be aKs-subdivision in
G2+ yz. By Proposition 2.1G1 — x has ay— pathP. Now (X — yz) U P (and hencé&;) contains
a Ks-subdivision, a contradiction. Sin¢¥ (G2 + yz)| < |V(G)|, G2 + yz is 4-colorable. Let;
be a 4-coloring oG + yz. Thenca(y) # c2(z).

First, assume thatx(y) # c2(x) # c2(z). Thencs is a 4-coloring ofG, + {xy, xz, yz}. By
Proposition 2.3(G1 has a 4-coloring; such thatj (x), cj(y) andcj (z) are all distinct. We may
assumer] andcz use the same set of four colors, and by permuting colors of verticés of
we havecy (u) = c2(u) for all u € {x, y, z}. Now define a coloring of G with ¢(u) = ¢} (u) for
u € V(G1) andc(u) = co(u) for u € V(G»). This shows tha& is 4-colorable, a contradiction.

Now by symmetry betweery and z (with respect toc; and ¢}), we may assume that
c2(x) = c2(y) # c2(2). We may also assume that and c2 use the same set of four colors,
and by permuting colors if necessaty(u) = c2(u) for all u € {x, y, z}. Definec(u) = ¢; (u) for
allu e V(G;),i =1,2. Then itis easy to see thats a 4-coloring ofG, a contradiction. O

Proposition 2.6. Let G beaHajosgraph, let (G1, G2) bea 3-separation of G chosento minimize
Go,andlet V(G1NGo) ={x,y,z}. Let F C {xy,xz, yz}. Then G2 + F is 4-colorable if, and
onlyif, |[F| < 2.

Proof. First, assume thatF| = 3. ThenGz2 + F = G2 + {xy, xz, yz}. SupposeG, + F is
4-colorable, then there is a 4-coloring of G, such thata(x), c2(y) andcz(z) are all distinct.
By Proposition 2.3, let1 be a 4-coloring ofG1 such that1(x), c1(y) andci(z) are all distinct.
Assume that1 andc, use the same set of four colors. By permuting colors if necessary, we
may assume that (u) = co(u) forall u € {x, y, z}. Letc(u) = ¢; (u) forallu € V(G;),i =1, 2.
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Then we see thatis a 4-coloring ofG, a contradiction. Henc&, + F is not 4-colorable when
|F|=3.

Now assumeF| = 1. By symmetry, consideF = {xy}. If G2 4+ xy has noKs-subdivision,
then by the choice o&, we see thatG, + xy is 4-colorable. So assume th@b + xy has a
Ks-subdivision, say. By Lemma 2.5, we see thé&t — z has anc—y pathP. Now (X —xy)U P
(and hencé?) contains aKs-subdivision, a contradiction.

Finally, assumé¢F| = 2. By symmetry, we considefr = {xy, xz}. If G2 + {xy, xz} contains
no Ks-subdivision then, by the choice 6f, we see thaG» + {xy, xz} is 4-colorable. So we may
assume thati>+ {xy, xz} does contain &5-subdivision, and denote ithy. By Lemma 2.5G1
contains internally disjoint pathi§ Z from x to y, z, respectively. Henc&x' — {xy, yz}))UYU Z
(and hencé7) contains aK's-subdivision, a contradiction. O

We conclude this section with a useful observation.

Lemma2.7. Let G beaHajosgraph, andlet (G1, G2) bea 3-separation of G chosento minimize
G». Thenthereisno cyclein G1 containing V(G1N G2), and V(G1 N G») isan independent set
in G1.

Proof. Let V(G1 N G2) = {x, y, z}. By Proposition 2.6G, + {xy, xz, yz} is not 4-colorable.
Hence,G2 + {xy, xz, yz} has aKs-subdivisionX. If there is a cycleC in G; throughx, v, z,
then (X — {xy, yz,zx}) U C (and hence5) contains aKs-subdivision, a contradiction. SG1
contains no cycle through, y, z. Therefore, by Lemma 2.5 and Theorem X2y, z} must be
independentirG;. O

3. 4-Connectivity
In this section, we prove Theorem 1.1. First, we prove a lemma.

Lemma3.1. Let G beaHajosgraph, let (G1, G2) bea 3-separation of G chosento minimize G,
andlet V(G1N G2) = {x, y, z}. Let E, (respectively, E,) denote the set of edges of G incident
with x (respectively, y), and let G] denote the graph obtained from G by adding the edge yz
and identifying x and y as x* (and deleting multiple edges). Then E, N Ey, = ¢, G] contains a
Ks-subdivision, and for any Ks-subdivision X' in G%,

(i) x*isabranch vertex of X,
(i) x*z ¢ E(X),
(i) |ExNE(X)=2=|E,NE(X)|,and
(iv) for any two branch verticesu, v of X, there are four internally disoint u—v pathsin X.

Proof. For convenience, vertices and edgegsqfare also viewed as vertices and edge&df
except forx andy. By Lemma 2.7E, NE, =0.

SupposeG] contains noKs-subdivision. Then sincg (G7)| < |V(G)|, G7 is 4-colorable.
HenceG1 has a 4-coloring; such that1(x) = c1(y) # c1(z). By Proposition 2.6G2+ {xz, yz}
is 4-colorable. Let, be a 4-coloring ofG2 + {xz, yz}. Thenca(x) # c2(z) # c2(y). If ca(x) #
c2(y) thenG, + {xy, yz, zx} is 4-colorable, contradicting Proposition 2.6. §0x) = c2(y). We
may assume that; andc; use the same set of four colors, and we may permute the colors of
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vertices of Gy so thatci(u) = co(u) for all u € {x, y, z}. Let c(u) = ¢;(u) for all u € V(G;),
i =1,2. Thenc is a 4-coloring ofG, a contradiction.

Now let X be aKs-subdivision inG7. By (iii) of Lemma 2.2,G is 2-connected. So there ex-
ists ay— path (respectively—x path,x—y path) P, (respectivelyP,, P.) in G — x (respectively
G —y, G —z). For the same reasoG; contains internally disjoint paths,, X, fromx to y, z,
respectively, and internally disjoint patlig, Y, from y to x, z, respectively.

Supposec* is not a branch vertex af. Then sinceG1 has noKs-subdivision, exactly one
branch path ofY¥, say R, usesx*. Let ¢,r be the neighbors of* in R. First assume that
ze€lq,r}, sayz=r.If gy € E(G1) then((¥ — x*) + {y, qy}) U P, is a Ks-subdivision inG,

a contradiction. So assunga € E(G1) then((X — x*) + {x, gx}) U P, is a Ks-subdivision in
G, a contradiction. Now assume tha¢ {¢, r}. If gx,rx € E(G1) then(X — x*) + {x, gx, rx}

is a Ks-subdivision inG1, a contradiction. lfgy,ry € E(G1) then(X — x*) + {y,qy,ry} is

a Ks-subdivision inG1, a contradiction. So assume by symmetry thairy € E(G1). Then
(X —x*)+ {x,y,qx,ry}) U P, is aKs-subdivision inG, a contradiction. Thus™* is a branch
vertex of X', and (i) holds.

Supposex*z € E(X). Then either|E, N E(X)| <1 or |E, N E(X)| < 1. By symmetry,
assume thatEx N E(X)| < 1. If |[E, N E(X)| = 0 then letyys1, yy2, yy3 € E, N E(X), and
we see that(X — x*) + {y, yy1, yy2, yy3}) U P, is a Ks-subdivision inG, a contradiction. So
assumeE, N E(X)| =1. Letyy1, yy2 € E, N E(X) andxx’ € Ex N E(X). Then((¥ —x*) +
{x,y,yy1, yy2, xx’'}) UY, UY, is a Ks-subdivision inG, a contradiction. Sa*z ¢ E(X), and
(ii) holds.

If [ExNE(X)=0o0r|E,NE(X)| =0, then by (i), ¥ gives aKs-subdivision inG (by
simply renaminge* asx or y), a contradiction. Suppose (iii) fails, and assume by symmetry that
|ExNE(X)|=1andE,NE(X)|=3.Letxx’ € ExNE(X), yy1, yy2, yy3 € EyNE(X). Then
(X —x*) + {x,y,xx’, yy1, yy2, yy3}) U P, is a Ks-subdivision inG, a contradiction. So (iii)
must hold.

Clearly, (iv) holds. O

Proof of Theorem 1.1. Suppose the assertion of Theorem 1.1 is not trueGLis¢ a Hajos graph,
and assume that is not 4-connected. By Proposition 2(,is 3-connected. LetG1, G2) be a
3-separation oG chosen to minimiz&s2, and letV (G1 N Go) = {x, y, z}.

By Lemma 2.7,{x, y, z} is an independent set i&;. Let E, (respectivelyE,) denote the
set of edges of5; incident withx (respectivelyy). Let G] denote the graph obtained from
G1 by adding the edgez and identifyingx andy asx* (and deleting multiple edges). Then
by Lemma 3.1E, N E, = ¢, andG] contains akKs-subdivision, sayX'. Note thatX' satisfies
(h—(iv) of Lemma 3.1.

Note thatG; is 2-connected (by Lemma 2.5) aiig} has no cycle containingyx, y, z} (by
Lemma 2.7). Therefore, by applying Theorem 1.2G&g, it suffices to consider the following
three cases.

Case 1. There exists a 2-cuf in G1 and there exist three distinct components D,, D, of
G1— S such thau € V(D,) for eachu € {x, y, z}.

Let S := {a, b}. By (i) of Lemma 3.1 x* is a branch vertex o&'. Therefore,D, contains no
branch vertex o becauseS and the edgex* show thatGj contains at most three internally
disjoint paths betweern* and D,, contradicting (iv) of Lemma 3.1. Similarly, eithér, — x or
Dy, —y has no branch vertex & sinceS U {x*} is a 3-cutinG] separating), —x from D, —y.
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Therefore, we may assume that all branch vertice¥' aire inV (D,) U S U {x*}. By (iii)
of Lemma 3.1|E, N E(X)| = 2. Because there are no branch vertice'dh D,, X' contains
two pathsP,, P, from x* to a, b, respectively, each using one edgeff, that are contained in
GilV(Dy)USU{x*}]. If a andb are branch vertices af then the branch path of X between
a andb may use edges outside 6% [V (D,) U S U {x*}]. Except for edges in the pati#, P,
and possiblyP, all edges of% appear inG;[V (Dy) U S U {x*}].

If G[V(Dy)U S] (respectivelyG[V (D;) U S]) contains internally disjoint pathis froma to y
(respectively) andB froma to b, then we can produceks-subdivision inG as follows: replace
P,, P by Y, B, respectively, replac®, by a path inG[V (D) U {b}] (respectivelyG[V (D,) U
{b}]) from z (respectivelyy) to b, and add two internally disjoint paths fromto {y, z} in G2
(which exist by (iii) of Lemma 2.2). This gives a contradiction. So we may assume that such
pathsY, B do not exist inG[V (D,) U S] (respectivelyG[V (D,) U S]). Then there is a cut vertex
ay (respectivelya;) of G[V(D,) U §] (respectivelyG[V (D;) U S]) separatingz from {y, b}
(respectively{z, b}). Since{a, ay} is not a 2-cut inG, we see that, (respectively;) is the only
neighbor ofa in G[V (D,) U S] (respectivelyG[V (D;) U S1).

Similarly, we conclude thai has only one neighbdr, in G[V (D,) U S], andb has only one
neighborb, in G[V(D;) U S].

Next we use the above structural information to color vertices;oBy Proposition 2.3,
G1 has a 4-coloring:; such thatcy(x), c1(y) andci(z) are all distinct. We shall obtain a new
4-coloring ¢} of G such thatx, y, z use exactly two colors. For convenience, {et 8, y, 5}
denote the four colors used by, and letH;; denote the subgraph ¢f; induced by vertices of
colori or j, forall {i, j} < {a, B, y, 8}. Letc1i(x) = «, c1(y) = B, andc1(z) = y. Note that{y, 7}
must be contained in a componentfdf, , as otherwise we could switch colors in the component
of Hg, containingy, yielding the desired 4-coloringj of G1. Therefore by symmetry between
a andb, we may assume thai(a,) = f = c1(a;) andci(a) =y, of c1(ay) = y = c1(a;) and
c1(a) = B. By the same argumertty, z} must be contained in a component®§, , and{x, y}
must be contained in a component®fg. Thereforeci(by) = B, c1(b) = «, andcy(b;) = y.
But then, neitherx nor z can be in the component @fgs containingy, and neithery nor z is
in the component ofd,s containingx. Thus we can switch the colors in the componentfgf
containingy and in the component aofl,; containingx. This yields the desired 4-coloring
of G1, with ¢} (x) = ¢} (y) =8 andcy(z) = y.

Now by symmetry, assume thaf(x) = c}(y) # c}(z). By Proposition 2.6G> + {xz, yz}
is 4-colorable. Letcy be a 4-coloring ofG> + {xz, yz} using the colors frome, 8, v, §}. If
c2(x) # c2(y) thenc; is a 4-coloring ofG2 + {xy, yz, zx}, contradicting Proposition 2.6. So
c2(x) = c2(y). By permuting colors if necessary, we may assume that) = ¢;(u) for all
u € {x,y,z}. Now letc(u) = cj(u) for all u € V(G1) andc(u) = c2(u) for all u € V(G2). Then
¢ is a 4-coloring ofG, a contradiction.

Case2. There exist a vertex of G1, 2-cutsSy, Sy, S; in G1, and component®,, of G1 — S,
containingu, for all u € {x, y, z}, such thatS, N S, N S, = {v}, S, — {v}, Sy — {v}, S; — {v} are
pairwise disjoint, and,, D,, D, are pairwise disjoint.

By (i) of Lemma 3.1,x* is a branch vertex of'. Therefore,D, contains no branch vertex
of X' becauses; and the edgex* shows thatG] contains at most three internally disjoint paths
betweenx* and D,, contradicting (iv) of Lemma 3.1. In fact, all branch vertices>dfmust be
contained inR := V (D, —x) UV (D, —y)US,US, U{x*}. For otherwiseX has a branch vertex
v ¢ R, andX must have four disjoint path leavirg. But this forcesc*z € E(X'), contradicting
(i) of Lemma 3.1.
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We claim that, for eacly € {x, y}, not all branch vertices of' are contained irV (D,) U
S, U {x*}. For otherwise, suppose by symmetry that all branch vertices afe contained in
V(Dx) U S, U {x*}. By (iii) of Lemma 3.1, letx*s, x*¢ be the two edges ik (X) N E,, let
X q x*r be the two edges i (X) N E,, and letB,, B, be the branch paths i&¥ containing
x*q, x*r, respectively. Since*z ¢ E(X) (by (ii) of Lemma 3.1), bottB, andB, have anc*-S,
subpath whose internal vertices are all containe®jnLet P,,, Py, be two internally d|510|nt
paths inG, from x to y, z, respectively, which exist by (iii) of Lemma 2.2. Note that there
exists an(S; — {v)—(Sx — {v}) pathQ,; in (G1 —v) — V(D U D, U D;); for otherwise, one of
{v, x}, {v, z} is a 2-cutinG, contradicting Proposition 2.1. L&tbe ay—v path inG[V (D) U{v}]
and letZ be az—(S; — {v}) pathinG[V(D;) U (S, — {v})]. Then

(((E —x®) 4+ {x, xs, xt}) — (V(Bq UB,) — (V(Dx) U Sx)))
U(Py UY)U (P, UZU Qy;)

is a Ks-subdivision inG, a contradiction.

Since|{x*}U S, U S,| = 4, there must exist a branch vertexof X such that’ € V (D, —x)
U V(Dy —y). By symmetry, we may assume théte V (D, — x). Hence by the above claim,
there is also a branch vertgkof X such thaty’ e V(D, — y) U (S, — {v}). Now S, U {x*} is a
3-cut in X separating’ from y’, contradicting (iv) of Lemma 3.1.

Case 3. There exist pairwise disjoint 2-cutk, S,, S; in G1 and component®, of G1 — S,
containingu, for all u € {x, y, z}, such thatD,, D, D, are pairwise disjoint an@; — V (D, U
D, U D;) has exactly two components, each containing exactly one vertex$ofior all u €
{x,y,2z}.

Let Sy = {ax, bx}, Sy = {ay, by}, and S; = {a;, b;} such that{a,, a,, a;} is contained in a
componentd of Gy — V(D U D, U D;), and{by, by, b.} is contained in another componet
of G1 — V(Dy UDyUD,).

As in Cases 1 and 2, we can show that all branch vertices afe inR U S;, whereRr :=
V(Dy —x)UV(Dy —y)US, US, U {x*}. In fact, all branch vertices af must be inR. For
otherwise, assume by symmetry thais a branch vertex of'. Then, sincec*z ¢ E(X) (by (ii)
of Lemma 3.1){b, ax, ay} shows that¥ cannot contain four internally disjoint paths between
a; andx*, contradicting (iv) of Lemma 3.1.

We claim that, for eacl € {x, y}, not all branch vertices of' are contained irV (D,) U
S, U {x*}. For otherwise, we may assume that all branch vertices afe contained itV (D,) U
Sy U {x*}. By (iii) of Lemma 3.1, letx*s, x*r be the two edges iiE(X) N E,, let x*q, x*r
be the two edges i (X) N Ey, and let4,, B, be the branch paths i& containingx*q, x*r,
respectively. Since*z ¢ E(X), bothA, and B, have anx*—S, subpath whose internal vertices
are all contained inD,. Let Py, P,; be two internally disjoint paths iG> from x to y, z,
respectively, which exist by (iii) of Lemma 2.2. Note that there exista,af, path Q,, in A
(sinceA is connected) and there exist®ab, pathQ,. in B (sinceB is connected). LeY be
ay—ay path inG[V(Dy) U {ay}] and letZ be anz—b; path inG[V (D;) U {b;}]. Then,

((Z =x*) +{x,xs5,xt}) = (V(Ag U B,) — (V(Dx) USy)))
U(Pry UY U Quy) U (P UZU Qyy)

is a Ks-subdivision inG, a contradiction.
We further claim that the set of branch vertices3is S, U S, U {x*}. For otherwise, there
must be a branch vertex of X' such thatc’ € V(D, —x) U V(D, — y). By symmetry, we may
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assume that’ € V(D, — x). Then by the above claim, there is a branch vestesf X such that
y e V(D, —y)US,. Now S, U{x*}is a 3-cutinX separating’ from y’, contradicting (iv) of
Lemma 3.1.

Sincex*z ¢ E(X), we see that’ must contain two branch paths frof,, a,} to {b,, b,}
which must be contained iF; — V(D, U Dy). But this is impossible, because separates
{ax,ay} from {by, by} in G, — V(D, U D,), a contradiction. O
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