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Abstract

Hajós conjectured that, for any positive integerk, every graph containing noKk+1-subdivision is
k-colorable. This is true whenk � 3, and false whenk � 6. Hajós’ conjecture remains open fork = 4,5. In
this paper, we show that any possible counterexample to this conjecture fork = 4 with minimum number
of vertices must be 4-connected. This is a step in an attempt to reduce Hajós’ conjecture fork = 4 to the
conjecture of Seymour that any 5-connected non-planar graph contains aK5-subdivision.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Graphs considered in this paper are simple and finite. The Four Color Theorem stat
every planar graph is 4-colorable. The Kuratowski Theorem states that a graph is planar
only if, it contains neither aK5-subdivision nor aK3,3-subdivision. Also, a graph is planar
and only if, it contains neither aK5-minor nor aK3,3-minor. Based on these characterizations
planar graphs, there are two conjectures that would generalize the Four Color Theorem.
these was attributed to Hajós (see [1]) which states that, for any positive integerk, every graph
containing noKk+1-subdivision isk-colorable. The other is Hadwiger’s conjecture [4]: For a
positive integerk, every graph containing noKk+1-minor is k-colorable. Both conjectures a
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easily seen to be true whenk = 1,2. It is also not hard to show that both conjectures are true
k = 3.

Hadwiger’s conjecture fork = 4 is equivalent to the Four Color Theorem [12]. Hadwige
conjecture fork = 5 can also be reduced to the Four Color Theorem [9], and it remains op
k � 6.

On the other hand, Catlin [1] showed that Hajós’ conjecture fails whenk � 6. In fact,
Erdös and Fajtlowicz [3] showed that Hajós’ conjecture fails for almost all graphs. Rec
Thomassen [11] discovered more interesting counterexamples to Hajós’ conjecture by s
its connections with Ramsey numbers, maximum cuts, and perfect graphs. Thomassen [
explored graph classes for which Hajós’ conjecture may be true. Kühn and Osthus [6]
that Hajós’ conjecture holds for graphs with sufficiently large girth, and they later [7] impr
the bound on girth to 27. However, Hajós’ conjecture remains open fork = 4 andk = 5. It is
therefore important to derive structural information about graphs containing noK5-subdivisions
(respectivelyK6-subdivisions).

There has been considerable work concerningK5-subdivisions. Dirac [2] conjectured th
every simple graph onn vertices with at least 3n−5 edges contains aK5-subdivision, which was
proved by Mader [8]. However, the following conjecture of Seymour [10] remains open: E
5-connected non-planar graph contains aK5-subdivision. A result in [5] shows that Seymou
conjecture implies Dirac’s conjecture. Our aim is to establish a connection between Hajó
jecture and Seymour’s conjecture by looking at the connectivity of a minimum counterex
to Hajós’ conjecture. More specifically, if a counterexample to Hajós’ conjecture is 5-conn
then, by the Four Color Theorem, Seymour’s conjecture implies Hajós’ conjecture fork = 4.

For convenience, we say that a graphG is aHajós graph if

(i) G is not 4-colorable,
(ii) G contains noK5-subdivision, and

(iii) subject to (i) and (ii),|V (G)| is minimum.

Note that any non-spanning subgraph of a Hajós graph is 4-colorable. The main result
paper is the following.

Theorem 1.1. Every Hajós graph is 4-connected.

Let G be a graph. Aseparation of G is a pair(G1,G2) of edge disjoint subgraphs ofG
such thatG = G1 ∪ G2 andV (Gi) − V (G3−i ) �= ∅ for i = 1,2. (Note that our definition of a
separation is different from the usual one in whichV (Gi) − V (G3−i ) �= ∅ is not required.) We
call (G1,G2) a k-separation if |V (G1 ∩ G2)| = k. A setS ⊆ V (G) is a k-cut in G, if |S| = k

andG has a separation(G1,G2) such thatV (G1 ∩ G2) = S.
To prove Theorem 1.1, we need to deal withk-cuts withk � 3. It is very easy to show that n

Hajós graph admitsk-cuts withk � 2. The main work is to show that no Hajós graph admi
3-cut, for which we need to combine structural and coloring arguments. Suppose there is
graphG that admits a 3-cut. Choose a 3-separation(G1,G2) of G such thatG2 is minimal
with respect to subgraph containment. We shall prove several lemmas showing thatG1 andG2

admit certain 4-colorings. (This is done in Section 2.) LetG′
i denote the graph obtained fro

Gi by adding an edge between every pair of distinct vertices fromV (G1 ∩ G2). We shall decide
whetherG′ contains aK5-subdivision. For this reason, we need to know whetherG′ has a
i 3−i
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cycle containingV (G1 ∩ G2). Therefore, we need the following reformulation of a result
Watkins and Mesner [13].

Theorem 1.2. Let G be a 2-connected graph and let x, y, z be three distinct vertices of G. Then
there is no cycle through x, y and z in G if, and only if, at least one of the following statements
holds.

(i) There exists a 2-cut S in G and there exist three distinct components Dx,Dy,Dz of G − S

such that u ∈ V (Du) for each u ∈ {x, y, z}.
(ii) There exist a vertex v of G, 2-cuts Sx,Sy, Sz in G, and components Du of G−Su containing

u, for all u ∈ {x, y, z}, such that Sx ∩Sy ∩Sz = {v}, Sx −{v}, Sy −{v}, Sz −{v} are pairwise
disjoint, and Dx,Dy,Dz are pairwise disjoint.

(iii) There exist pairwise disjoint 2-cuts Sx,Sy, Sz in G and components Du of G − Su contain-
ing u, for all u ∈ {x, y, z}, such that Dx,Dy,Dz are pairwise disjoint and G − V (Dx ∪
Dy ∪ Dz) has exactly two components, each containing exactly one vertex from Su, for all
u ∈ {x, y, z}.

We remark that in order to show that Hajós graphs are 5-connected, one needs to cons
much harder problem of characterizing graphs in which there is noK4-subdivision at specified
locations.

We conclude this section with some notation. LetG be a graph. ForA,B ⊆ V (G), anA–B

path inG is a path inG which has one end inA and the other inB and is otherwise disjoint from
A∪B. If A = {x}, we speak ofx–B path instead of{x}–B path, and if, in addition,B = {y} then
we writex–y path instead of{x}–{y} path. Two paths inG are said to beinternally disjoint if
no internal vertex of one is contained in the other. For any two setsA,B ⊆ V (G), we say that a
setS ⊆ V (G) separates A from B if there is a separation(G1,G2) of G with V (G1 ∩ G2) = S,
A ⊆ V (G1), B ⊆ V (G2), A − S �= ∅, andB − S �= ∅. If A = {v} we simply sayS separatesv
from B, and ifA = {v} andB = {w} then we simply say thatS separatesv from w.

Let H be a subgraph of a graphG, letv1, . . . , vk ∈ V (G), and{ui,wi} ⊆ V (H)∪{v1, . . . , vk},
i = 1, . . . ,m. Then we letH + {v1, . . . , vk, u1w1, . . . , umwm} denote the graph with vertex s
V (H) ∪ {v1, . . . , vk} and edge setE(H) ∪ {u1w1, . . . , ukwk}.

Let G be a graph. For anyS ⊆ V (G), G[S] denotes the subgraph ofG induced byS. A path
P in G is said to be abranch path in G if its internal vertices are of degree 2 inG and its ends
are of degree at least 3 inG. Vertices ofG with degree at least 3 are calledbranch vertices ofG.

Given a graphG, we shall view a coloring ofG as a mappingc from V (G) to a set of colors
such thatc(u) �= c(v) wheneveruv ∈ E(G).

2. 3-Separations

We begin this section by stating an easy fact without proof.

Proposition 2.1. Every Hajós graph is 3-connected.

For the remainder of this section, we choose a 3-separation(G1,G2) of a Hajós graph suc
that G2 is minimal. We shall show two results concerning certain 4-colorings ofG1. First, we
need some structural information fromG2.
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Lemma 2.2. Let G be a Hajós graph, and let (G1,G2) be a 3-separation of G chosen to minimize
G2. Then

(i) |V (G2)| � 5,
(ii) G2 − V (G1 ∩ G2) is connected, and

(iii) G2 is 2-connected.

Proof. Suppose|V (G2)| � 4. Then|V (G2)| = 4. Let v ∈ V (G2) − V (G1). Then by Proposi
tion 2.1,v has degree 3 inG. SinceG−v does not contain aK5-subdivision,G−v is 4-colorable.
Because the degree ofv in G is 3, any 4-coloring ofG − v can easily be extended tov to give a
4-coloring ofG, a contradiction. Thus|V (G2)| � 5 and (i) holds.

Now supposeG2−V (G1∩G2) is not connected. LetD denote a component ofG2−V (G1∩
G2). Then there is a 3-separation(G′

1,G
′
2) of G with V (G′

1 ∩ G′
2) = V (G1 ∩ G2) andG′

2 −
V (G1 ∩ G2) = D. This contradicts the choice of(G1,G2), for G′

2 is properly contained inG2.
So (ii) holds.

By (ii), G2−V (G1∩G2) is connected, and by Proposition 2.1, every vertex fromV (G1∩G2)

has a neighbor inV (G2) − V (G1 ∩ G2). SoG2 is connected, and any possible cut vertex ofG2

must be contained inV (G2) − V (G1 ∩ G2). SupposeG2 is not 2-connected, and letv denote
a cut vertex ofG2. Then,V (G1 ∩ G2) cannot be contained in a component ofG2 − v, for
otherwisev would be a cut vertex inG (contradicting Proposition 2.1). So we may assume
some vertexx from V (G1∩G2) is contained in the component ofG2−v which does not contai
any other vertex fromV (G1 ∩ G2). Then, sinceG is 3-connected,v is the only neighbor ofx
in V (G2) − V (G1 ∩ G2). Therefore, since|V (G2)| � 5, (V (G1 ∩ G2) − {x}) ∪ {v} is a cut
in G, which yields a 3-separation(G′

1,G
′
2) in which G′

2 = G2 − x is a proper subgraph ofG2,
a contradiction. Hence (iii) holds.�
Proposition 2.3. Let G be a Hajós graph, let (G1,G2) be a 3-separation of G chosen to minimize
G2, and let V (G1 ∩ G2) = {x, y, z}. Then there is a 4-coloring c1 of G1 such that c1(x), c1(y)

and c1(z) are all distinct.

Proof. Suppose this is not true, that is,G′
1 := G1 + {xy, yz, zx} is not 4-colorable. Then sinc

|V (G′
1)| < |V (G)|, G′

1 contains aK5-subdivision, sayΣ .
We claim thatx, y, z are branch vertices ofΣ . This is easy to see when{xy, xz, yz} ⊆ E(Σ).

So we may assume by symmetry thatyz /∈ E(Σ). By (iii) of Lemma 2.2, there exist internall
disjoint pathsY from x to y andZ from x to z in G2. It is easy to see that(Σ −{xy, xz})∪Y ∪Z

(and henceG) contains aK5-subdivision, a contradiction.
Note that ifG2 contains a cycleC throughx, y, z, then(Σ −{xy, yz, zx})∪C (and henceG)

contains aK5-subdivision, a contradiction. So there is no cycle throughx, y, z in G2. Hence by
applying Theorem 1.2 toG2, it suffices to consider the following three cases.

Case 1. There exists a 2-cutS in G2 and there exist distinct componentsDx,Dy,Dz of G2 −S

such thatu ∈ V (Du) for eachu ∈ {x, y, z}.
Let S = {a, b}. Suppose|V (Dx)| � 2. Then{x, a, b} is a 3-cut ofG and(G − V (Dx − x),

G[V (Dx)∪S]) is a 3-separation ofG. ButG[V (Dx)∪S] is properly contained inG2, contradict-
ing the choice of(G1,G2). SoV (Dx) = {x}. Similarly, we haveV (Dy) = {y}, andV (Dz) = {z}.
Hence,a andb are the only vertices ofG not contained inG1.



ARTICLE IN PRESS
S0095-8956(05)00148-6/FLA AID:2365 Vol.•••(•••) [+model] P.5 (1-11)
YJCTB:m1+ v 1.50 Prn:7/11/2005; 13:42 yjctb2365 by:PS p. 5

X. Yu, F. Zickfeld / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 5

e

a

-
are
SinceG1 is a non-spanning subgraph ofG, G1 is 4-colorable. Letc1 be a 4-coloring ofG1.
If c1(x), c1(y), c1(z) are all distinct, thenc1 is a 4-coloring ofG′

1, a contradiction. So assum
c1(x), c1(y), c1(z) are not all distinct. Definec′

1(u) = c1(u) for all u ∈ V (G1), and letc′
1(a) and

c′
1(b) be two colors not in{c1(x), c1(y), c1(z)}. Clearly,c′

1 is a 4-coloring ofG, a contradiction.

Case 2. There exist a vertexv of G2, 2-cutsSx,Sy, Sz in G2, and componentsDu of G2 − Su

containingu, for all u ∈ {x, y, z}, such thatSx ∩ Sy ∩ Sz = {v}, Sx − {v}, Sy − {v}, Sz − {v} are
pairwise disjoint, andDx,Dy,Dz are pairwise disjoint.

As in Case 1, we can show thatV (Dx) = {x}, V (Dy) = {y} andV (Dz) = {z}.
Note thatG1 + xy contains noK5-subdivision. For otherwise, by replacingxy in such a

K5-subdivision with anx–y path inG2 − z (which exists by (iii) of Lemma 2.2), we produce
K5-subdivision inG, a contradiction.

Thus, since|V (G1 + xy)| < |V (G)|, G1 + xy is 4-colorable. Letc1 be a 4-coloring of
G1 + xy. Thenc1(x) �= c1(y). If c1(z) �= c1(x) andc1(z) �= c1(y), thenc1 is a 4-coloring ofG′

1,
a contradiction. Therefore, we may assume (by symmetry betweenx andy) thatc1(z) = c1(y).

SinceG2 is a non-spanning subgraph ofG, G2 is 4-colorable. Letc2 be a 4-coloring ofG2.
As y andz together only has three neighbors inG2, we may choosec2 so thatc2(y) = c2(z).
Sincex has only two neighbors inG2, we may further choosec2 so thatc2(x) �= c2(y). Now by
permuting the colors of vertices ofG2, we may assume thatc2(u) = c1(u) for all u ∈ {x, y, z}.
Let c be a coloring ofG defined by lettingc(u) = ci(u) for all u ∈ V (Gi), i = 1,2. Thenc is a
4-coloring ofG, a contradiction.

Case 3. There exist pairwise disjoint 2-cutsSx,Sy, Sz in G2 and componentsDu of G2 − Su

containingu, for all u ∈ {x, y, z}, such thatDx,Dy,Dz are pairwise disjoint andG2 − V (Dx ∪
Dy ∪ Dz) has exactly two components, each containing exactly one vertex fromSu, for all
u ∈ {x, y, z}.

As in Case 1, we can showV (Dx) = {x}, V (Dy) = {y} andV (Dz) = {z}.
Let Sx := {ax, bx}, Sy := {ay, by}, andSz := {az, bz}, and assume that{ax, ay, az} (respec-

tively {bx, by, bz}) is contained in the componentA (respectivelyB) of G2 −V (Dx ∪Dy ∪Dz).
Then |V (A)| = 3 = |V (B)|; for otherwise,(G − V (A − {ax, ay, az}),A) or (G − V (B −
{bx, by, bz}),B) is a 3-separation ofG in which A or B is properly contained inG2, contra-
dicting the choice of(G1,G2).

Now G1 + {xy, yz} contains noK5-subdivision. For otherwise, letΣ be aK5-subdivision in
G1 + {xy, yz}. By (iii) of Lemma 2.2, there are internally disjoint pathsX,Z from y to x, z,
respectively, inG2. Now (Σ − {xy, yz}) ∪ X ∪ Z (and henceG) contains aK5-subdivision, a
contradiction.

Since|V (G1 + {xy, yz})| < |V (G)|, G1 + {xy, yz} is 4-colorable. Letc1 be a 4-coloring of
G1 + {xy, yz}. Thenc1(x) �= c1(y) �= c1(z). If c1(x) �= c1(z), thenG′

1 is 4-colorable, a con
tradiction. So assume thatc1(x) = c1(z). For convenience, assume that the colors we use
{α,β, γ, δ} andc1(x) = α andc1(y) = β. Let c be a coloring ofG such thatc(u) = c1(u) for all
u ∈ V (G1), c(ax) = c(bz) = γ , c(bx) = c(az) = β, c(ay) = δ, andc(by) = α. It is easy to check
thatc is a 4-coloring ofG, a contradiction. �
Proposition 2.4. Let G be a Hajós graph, let (G1,G2) be a 3-separation of G chosen to minimize
G2, and let V (G1 ∩ G2) = {x, y, z}. Suppose there is a vertex x′ ∈ V (G1) − {x, y, z} separating
x from {y, z} in G1. Then there exist 4-colorings c1 and c2 of G1 such that c1(x) = c1(y) �= c1(z)

and c2(x) = c2(z) �= c2(y).
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Proof. Note thatxy, xz /∈ E(G1) for otherwisex′ would not separatex from {y, z} in G1. Also
xx′ ∈ E(G), for otherwise{x, x′} would be a 2-cut inG, contradicting Proposition 2.1. Le
G∗

1 := (G1 − x) + {x′y, yz}.
We claim thatG∗

1 contains noK5-subdivision. For otherwise, letΣ be aK5-subdivision
in G∗

1. SinceG contains noK5-subdivision,{x′y, yz} ∩ E(Σ) �= ∅. By (iii) of Lemma 2.2,
we see thatG2 contains two internally disjoint pathsX,Z from y to x, z, respectively. Now
(Σ − {x′y, yz}) ∪ (X + {x′, xx′}) ∪ Z, and henceG, contains aK5-subdivision, a contradiction

Therefore, since|V (G∗
1)| < |V (G)|, G∗

1 is 4-colorable. Letc∗
1 be a 4-coloring ofG∗

1. Then
c∗

1(x
′) �= c∗

1(y) �= c∗
1(z). Define a coloringc1 of G1 by lettingc1(x) = c∗

1(y) andc1(u) = c∗
1(u)

for all u ∈ V (G1) − {x}. It is easy to see thatc1 gives the desired 4-coloring ofG1.
Similarly, by definingG∗

1 := (G1 − x) + {x′z, yz}, we can show thatG1 has the desire
4-coloringc2. �

Next, we show thatG2 admits certain 4-colorings. First, we need the following lemma.

Lemma 2.5. Let G be a Hajós graph, and let (G1,G2) be a 3-separation of G chosen to minimize
G2. Then G1 is 2-connected.

Proof. SupposeG1 is not 2-connected. SinceG is 3-connected (by Proposition 2.1), there m
exist verticesx ∈ V (G1 ∩ G2) andx′ ∈ V (G1) − V (G1 ∩ G2) such thatx′ separatesx from
V (G1 ∩ G2) − {x}. Let y, z denote the other two vertices inV (G1 ∩ G2) − {x}. By Proposi-
tion 2.4, there exists a 4-coloringc1 of G1 such thatc1(x) = c1(y) �= c1(z), and there exists
4-coloringc′

1 of G1 such thatc′
1(x) = c′

1(z) �= c′
1(y).

Note thatG2 + yz contains noK5-subdivision. For otherwise, letΣ be aK5-subdivision in
G2+yz. By Proposition 2.1,G1−x has ay–z pathP . Now (Σ −yz)∪P (and henceG) contains
aK5-subdivision, a contradiction. Since|V (G2 + yz)| < |V (G)|, G2 + yz is 4-colorable. Letc2
be a 4-coloring ofG2 + yz. Thenc2(y) �= c2(z).

First, assume thatc2(y) �= c2(x) �= c2(z). Thenc2 is a 4-coloring ofG2 + {xy, xz, yz}. By
Proposition 2.3,G1 has a 4-coloringc∗

1 such thatc∗
1(x), c∗

1(y) andc∗
1(z) are all distinct. We may

assumec∗
1 andc2 use the same set of four colors, and by permuting colors of vertices oG1,

we havec∗
1(u) = c2(u) for all u ∈ {x, y, z}. Now define a coloringc of G with c(u) = c∗

1(u) for
u ∈ V (G1) andc(u) = c2(u) for u ∈ V (G2). This shows thatG is 4-colorable, a contradiction.

Now by symmetry betweeny and z (with respect toc1 and c′
1), we may assume tha

c2(x) = c2(y) �= c2(z). We may also assume thatc1 and c2 use the same set of four color
and by permuting colors if necessary,c1(u) = c2(u) for all u ∈ {x, y, z}. Definec(u) = ci(u) for
all u ∈ V (Gi), i = 1,2. Then it is easy to see thatc is a 4-coloring ofG, a contradiction. �
Proposition 2.6. Let G be a Hajós graph, let (G1,G2) be a 3-separation of G chosen to minimize
G2, and let V (G1 ∩ G2) = {x, y, z}. Let F ⊆ {xy, xz, yz}. Then G2 + F is 4-colorable if, and
only if, |F | � 2.

Proof. First, assume that|F | = 3. ThenG2 + F = G2 + {xy, xz, yz}. SupposeG2 + F is
4-colorable, then there is a 4-coloringc2 of G2 such thatc2(x), c2(y) andc2(z) are all distinct.
By Proposition 2.3, letc1 be a 4-coloring ofG1 such thatc1(x), c1(y) andc1(z) are all distinct.
Assume thatc1 and c2 use the same set of four colors. By permuting colors if necessar
may assume thatc1(u) = c2(u) for all u ∈ {x, y, z}. Let c(u) = ci(u) for all u ∈ V (Gi), i = 1,2.
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Then we see thatc is a 4-coloring ofG, a contradiction. HenceG2 + F is not 4-colorable when
|F | = 3.

Now assume|F | = 1. By symmetry, considerF = {xy}. If G2 + xy has noK5-subdivision,
then by the choice ofG, we see thatG2 + xy is 4-colorable. So assume thatG2 + xy has a
K5-subdivision, sayΣ . By Lemma 2.5, we see thatG1−z has anx–y pathP . Now (Σ −xy)∪P

(and henceG) contains aK5-subdivision, a contradiction.
Finally, assume|F | = 2. By symmetry, we considerF = {xy, xz}. If G2 + {xy, xz} contains

noK5-subdivision then, by the choice ofG, we see thatG2 +{xy, xz} is 4-colorable. So we ma
assume thatG2+{xy, xz} does contain aK5-subdivision, and denote it byΣ . By Lemma 2.5,G1
contains internally disjoint pathsY,Z from x to y, z, respectively. Hence(Σ −{xy, yz})∪Y ∪Z

(and henceG) contains aK5-subdivision, a contradiction.�
We conclude this section with a useful observation.

Lemma 2.7. Let G be a Hajós graph, and let (G1,G2) be a 3-separation of G chosen to minimize
G2. Then there is no cycle in G1 containing V (G1 ∩G2), and V (G1 ∩G2) is an independent set
in G1.

Proof. Let V (G1 ∩ G2) = {x, y, z}. By Proposition 2.6,G2 + {xy, xz, yz} is not 4-colorable
Hence,G2 + {xy, xz, yz} has aK5-subdivisionΣ . If there is a cycleC in G1 throughx, y, z,
then(Σ − {xy, yz, zx}) ∪ C (and henceG) contains aK5-subdivision, a contradiction. SoG1
contains no cycle throughx, y, z. Therefore, by Lemma 2.5 and Theorem 1.2,{x, y, z} must be
independent inG1. �
3. 4-Connectivity

In this section, we prove Theorem 1.1. First, we prove a lemma.

Lemma 3.1. Let G be a Hajós graph, let (G1,G2) be a 3-separation of G chosen to minimize G2,
and let V (G1 ∩ G2) = {x, y, z}. Let Ex (respectively, Ey ) denote the set of edges of G1 incident
with x (respectively, y), and let G∗

1 denote the graph obtained from G1 by adding the edge yz

and identifying x and y as x∗ (and deleting multiple edges). Then Ex ∩ Ey = ∅, G∗
1 contains a

K5-subdivision, and for any K5-subdivision Σ in G∗
1,

(i) x∗ is a branch vertex of Σ ,
(ii) x∗z /∈ E(Σ),

(iii) |Ex ∩ E(Σ)| = 2= |Ey ∩ E(Σ)|, and
(iv) for any two branch vertices u,v of Σ , there are four internally disjoint u–v paths in Σ .

Proof. For convenience, vertices and edges ofG1 are also viewed as vertices and edges ofG∗
1,

except forx andy. By Lemma 2.7,Ex ∩ Ey = ∅.
SupposeG∗

1 contains noK5-subdivision. Then since|V (G∗
1)| < |V (G)|, G∗

1 is 4-colorable.
HenceG1 has a 4-coloringc1 such thatc1(x) = c1(y) �= c1(z). By Proposition 2.6,G2+{xz, yz}
is 4-colorable. Letc2 be a 4-coloring ofG2 + {xz, yz}. Thenc2(x) �= c2(z) �= c2(y). If c2(x) �=
c2(y) thenG2 +{xy, yz, zx} is 4-colorable, contradicting Proposition 2.6. Soc2(x) = c2(y). We
may assume thatc1 andc2 use the same set of four colors, and we may permute the colo
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vertices ofG1 so thatc1(u) = c2(u) for all u ∈ {x, y, z}. Let c(u) = ci(u) for all u ∈ V (Gi),
i = 1,2. Thenc is a 4-coloring ofG, a contradiction.

Now letΣ be aK5-subdivision inG∗
1. By (iii) of Lemma 2.2,G2 is 2-connected. So there e

ists ay–z path (respectivelyz–x path,x–y path)Px (respectivelyPy , Pz) in G − x (respectively
G − y, G − z). For the same reason,G2 contains internally disjoint pathsXy,Xz from x to y, z,
respectively, and internally disjoint pathsYx,Yz from y to x, z, respectively.

Supposex∗ is not a branch vertex ofΣ . Then sinceG1 has noK5-subdivision, exactly one
branch path ofΣ , say R, usesx∗. Let q, r be the neighbors ofx∗ in R. First assume tha
z ∈ {q, r}, sayz = r . If qy ∈ E(G1) then((Σ − x∗) + {y, qy}) ∪ Px is aK5-subdivision inG,
a contradiction. So assumeqx ∈ E(G1) then((Σ − x∗) + {x, qx}) ∪ Py is aK5-subdivision in
G, a contradiction. Now assume thatz /∈ {q, r}. If qx, rx ∈ E(G1) then(Σ − x∗) + {x, qx, rx}
is a K5-subdivision inG1, a contradiction. Ifqy, ry ∈ E(G1) then (Σ − x∗) + {y, qy, ry} is
a K5-subdivision inG1, a contradiction. So assume by symmetry thatqx, ry ∈ E(G1). Then
((Σ − x∗) + {x, y, qx, ry}) ∪ Pz is aK5-subdivision inG, a contradiction. Thusx∗ is a branch
vertex ofΣ , and (i) holds.

Supposex∗z ∈ E(Σ). Then either|Ex ∩ E(Σ)| � 1 or |Ey ∩ E(Σ)| � 1. By symmetry,
assume that|Ex ∩ E(Σ)| � 1. If |Ex ∩ E(Σ)| = 0 then letyy1, yy2, yy3 ∈ Ey ∩ E(Σ), and
we see that((Σ − x∗) + {y, yy1, yy2, yy3}) ∪ Px is aK5-subdivision inG, a contradiction. So
assume|Ex ∩ E(Σ)| = 1. Letyy1, yy2 ∈ Ey ∩ E(Σ) andxx′ ∈ Ex ∩ E(Σ). Then((Σ − x∗) +
{x, y, yy1, yy2, xx′}) ∪ Yx ∪ Yz is aK5-subdivision inG, a contradiction. Sox∗z /∈ E(Σ), and
(ii) holds.

If |Ex ∩ E(Σ)| = 0 or |Ey ∩ E(Σ)| = 0, then by (ii),Σ gives aK5-subdivision inG (by
simply renamingx∗ asx or y), a contradiction. Suppose (iii) fails, and assume by symmetry
|Ex ∩E(Σ)| = 1 and|Ey ∩E(Σ)| = 3. Letxx′ ∈ Ex ∩E(Σ), yy1, yy2, yy3 ∈ Ey ∩E(Σ). Then
((Σ − x∗) + {x, y, xx′, yy1, yy2, yy3}) ∪ Pz is a K5-subdivision inG, a contradiction. So (iii)
must hold.

Clearly, (iv) holds. �
Proof of Theorem 1.1. Suppose the assertion of Theorem 1.1 is not true. LetG be a Hajós graph
and assume thatG is not 4-connected. By Proposition 2.1,G is 3-connected. Let(G1,G2) be a
3-separation ofG chosen to minimizeG2, and letV (G1 ∩ G2) = {x, y, z}.

By Lemma 2.7,{x, y, z} is an independent set inG1. Let Ex (respectivelyEy ) denote the
set of edges ofG1 incident with x (respectivelyy). Let G∗

1 denote the graph obtained fro
G1 by adding the edgeyz and identifyingx andy asx∗ (and deleting multiple edges). The
by Lemma 3.1,Ex ∩ Ey = ∅, andG∗

1 contains aK5-subdivision, sayΣ . Note thatΣ satisfies
(i)–(iv) of Lemma 3.1.

Note thatG1 is 2-connected (by Lemma 2.5) andG1 has no cycle containing{x, y, z} (by
Lemma 2.7). Therefore, by applying Theorem 1.2 toG1, it suffices to consider the followin
three cases.

Case 1. There exists a 2-cutS in G1 and there exist three distinct componentsDx,Dy,Dz of
G1 − S such thatu ∈ V (Du) for eachu ∈ {x, y, z}.

Let S := {a, b}. By (i) of Lemma 3.1,x∗ is a branch vertex ofΣ . Therefore,Dz contains no
branch vertex ofΣ becauseS and the edgezx∗ show thatG∗

1 contains at most three internal
disjoint paths betweenx∗ andDz, contradicting (iv) of Lemma 3.1. Similarly, eitherDx − x or
Dy −y has no branch vertex ofΣ sinceS ∪{x∗} is a 3-cut inG∗ separatingDx −x from Dy −y.
1
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Therefore, we may assume that all branch vertices ofΣ are inV (Dx) ∪ S ∪ {x∗}. By (iii)
of Lemma 3.1,|Ey ∩ E(Σ)| = 2. Because there are no branch vertices ofΣ in Dy , Σ contains
two pathsPa,Pb from x∗ to a, b, respectively, each using one edge ofEy , that are contained i
G∗

1[V (Dy)∪S ∪{x∗}]. If a andb are branch vertices ofΣ then the branch pathP of Σ between
a andb may use edges outside ofG∗

1[V (Dx) ∪ S ∪ {x∗}]. Except for edges in the pathsPa,Pb

and possiblyP , all edges ofΣ appear inG∗
1[V (Dx) ∪ S ∪ {x∗}].

If G[V (Dy)∪S] (respectivelyG[V (Dz)∪S]) contains internally disjoint pathsY from a to y

(respectivelyz) andB froma tob, then we can produce aK5-subdivision inG as follows: replace
Pa,P by Y,B, respectively, replacePb by a path inG[V (Dz) ∪ {b}] (respectivelyG[V (Dy) ∪
{b}]) from z (respectivelyy) to b, and add two internally disjoint paths fromx to {y, z} in G2
(which exist by (iii) of Lemma 2.2). This gives a contradiction. So we may assume that
pathsY,B do not exist inG[V (Dy)∪ S] (respectivelyG[V (Dz)∪ S]). Then there is a cut verte
ay (respectivelyaz) of G[V (Dy) ∪ S] (respectivelyG[V (Dz) ∪ S]) separatinga from {y, b}
(respectively{z, b}). Since{a, ay} is not a 2-cut inG, we see thatay (respectivelyaz) is the only
neighbor ofa in G[V (Dy) ∪ S] (respectivelyG[V (Dz) ∪ S]).

Similarly, we conclude thatb has only one neighborby in G[V (Dy) ∪ S], andb has only one
neighborbz in G[V (Dz) ∪ S].

Next we use the above structural information to color vertices ofG. By Proposition 2.3,
G1 has a 4-coloringc1 such thatc1(x), c1(y) andc1(z) are all distinct. We shall obtain a ne
4-coloring c′

1 of G1 such thatx, y, z use exactly two colors. For convenience, let{α,β, γ, δ}
denote the four colors used byc1, and letHij denote the subgraph ofG1 induced by vertices o
color i or j , for all {i, j} ⊆ {α,β, γ, δ}. Let c1(x) = α, c1(y) = β, andc1(z) = γ . Note that{y, z}
must be contained in a component ofHβγ , as otherwise we could switch colors in the compon
of Hβγ containingy, yielding the desired 4-coloringc′

1 of G1. Therefore by symmetry betwee
a andb, we may assume thatc1(ay) = β = c1(az) andc1(a) = γ , or c1(ay) = γ = c1(az) and
c1(a) = β. By the same argument,{x, z} must be contained in a component ofHαγ , and{x, y}
must be contained in a component ofHαβ . Therefore,c1(by) = β, c1(b) = α, andc1(bz) = γ .
But then, neitherx nor z can be in the component ofHβδ containingy, and neithery nor z is
in the component ofHαδ containingx. Thus we can switch the colors in the component ofHβδ

containingy and in the component ofHαδ containingx. This yields the desired 4-coloringc′
1

of G1, with c′
1(x) = c′

1(y) = δ andc′
1(z) = γ .

Now by symmetry, assume thatc′
1(x) = c′

1(y) �= c′
1(z). By Proposition 2.6,G2 + {xz, yz}

is 4-colorable. Letc2 be a 4-coloring ofG2 + {xz, yz} using the colors from{α,β, γ, δ}. If
c2(x) �= c2(y) then c2 is a 4-coloring ofG2 + {xy, yz, zx}, contradicting Proposition 2.6. S
c2(x) = c2(y). By permuting colors if necessary, we may assume thatc2(u) = c′

1(u) for all
u ∈ {x, y, z}. Now letc(u) = c′

1(u) for all u ∈ V (G1) andc(u) = c2(u) for all u ∈ V (G2). Then
c is a 4-coloring ofG, a contradiction.

Case 2. There exist a vertexv of G1, 2-cutsSx,Sy, Sz in G1, and componentsDu of G1 − Su

containingu, for all u ∈ {x, y, z}, such thatSx ∩ Sy ∩ Sz = {v}, Sx − {v}, Sy − {v}, Sz − {v} are
pairwise disjoint, andDx,Dy,Dz are pairwise disjoint.

By (i) of Lemma 3.1,x∗ is a branch vertex ofΣ . Therefore,Dz contains no branch verte
of Σ becauseSz and the edgezx∗ shows thatG∗

1 contains at most three internally disjoint pat
betweenx∗ andDz, contradicting (iv) of Lemma 3.1. In fact, all branch vertices ofΣ must be
contained inR := V (Dx −x)∪V (Dy −y)∪Sx ∪Sy ∪{x∗}. For otherwise,Σ has a branch verte
v /∈ R, andΣ must have four disjoint path leavingR. But this forcesx∗z ∈ E(Σ), contradicting
(ii) of Lemma 3.1.
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We claim that, for eachu ∈ {x, y}, not all branch vertices ofΣ are contained inV (Du) ∪
Su ∪ {x∗}. For otherwise, suppose by symmetry that all branch vertices ofΣ are contained in
V (Dx) ∪ Sx ∪ {x∗}. By (iii) of Lemma 3.1, letx∗s, x∗t be the two edges inE(Σ) ∩ Ex , let
x∗q, x∗r be the two edges inE(Σ) ∩ Ey , and letBq,Br be the branch paths inΣ containing
x∗q, x∗r , respectively. Sincex∗z /∈ E(Σ) (by (ii) of Lemma 3.1), bothBq andBr have anx∗–Sy

subpath whose internal vertices are all contained inDy . Let Pxy,Pxz be two internally disjoint
paths inG2 from x to y, z, respectively, which exist by (iii) of Lemma 2.2. Note that th
exists an(Sz − {v})–(Sx − {v}) pathQxz in (G1 − v) − V (Dx ∪ Dy ∪ Dz); for otherwise, one o
{v, x}, {v, z} is a 2-cut inG, contradicting Proposition 2.1. LetY be ay–v path inG[V (Dy)∪{v}]
and letZ be az–(Sz − {v}) path inG[V (Dz) ∪ (Sz − {v})]. Then

((
(Σ − x∗) + {x, xs, xt}) − (

V (Bq ∪ Br) − (
V (Dx) ∪ Sx

)))

∪ (Pxy ∪ Y) ∪ (Pxz ∪ Z ∪ Qxz)

is aK5-subdivision inG, a contradiction.
Since|{x∗} ∪Sx ∪Sy | = 4, there must exist a branch vertexx′ of Σ such thatx′ ∈ V (Dx − x)

∪ V (Dy − y). By symmetry, we may assume thatx′ ∈ V (Dx − x). Hence by the above claim
there is also a branch vertexy′ of Σ such thaty′ ∈ V (Dy − y) ∪ (Sy − {v}). Now Sx ∪ {x∗} is a
3-cut inΣ separatingx′ from y′, contradicting (iv) of Lemma 3.1.

Case 3. There exist pairwise disjoint 2-cutsSx,Sy, Sz in G1 and componentsDu of G1 − Su

containingu, for all u ∈ {x, y, z}, such thatDx,Dy,Dz are pairwise disjoint andG1 − V (Dx ∪
Dy ∪ Dz) has exactly two components, each containing exactly one vertex fromSu, for all u ∈
{x, y, z}.

Let Sx = {ax, bx}, Sy = {ay, by}, andSz = {az, bz} such that{ax, ay, az} is contained in a
componentA of G1 − V (Dx ∪ Dy ∪ Dz), and{bx, by, bz} is contained in another componentB

of G1 − V (Dx ∪ Dy ∪ Dz).
As in Cases 1 and 2, we can show that all branch vertices ofΣ are inR ∪ Sz, whereR :=

V (Dx − x) ∪ V (Dy − y) ∪ Sx ∪ Sy ∪ {x∗}. In fact, all branch vertices ofΣ must be inR. For
otherwise, assume by symmetry thataz is a branch vertex ofΣ . Then, sincex∗z /∈ E(Σ) (by (ii)
of Lemma 3.1),{bz, ax, ay} shows thatΣ cannot contain four internally disjoint paths betwe
az andx∗, contradicting (iv) of Lemma 3.1.

We claim that, for eachu ∈ {x, y}, not all branch vertices ofΣ are contained inV (Du) ∪
Su ∪ {x∗}. For otherwise, we may assume that all branch vertices ofΣ are contained inV (Dx)∪
Sx ∪ {x∗}. By (iii) of Lemma 3.1, letx∗s, x∗t be the two edges inE(Σ) ∩ Ex , let x∗q, x∗r
be the two edges inE(Σ) ∩ Ey , and letAq,Br be the branch paths inΣ containingx∗q, x∗r ,
respectively. Sincex∗z /∈ E(Σ), bothAq andBr have anx∗–Sy subpath whose internal vertic
are all contained inDy . Let Pxy,Pxz be two internally disjoint paths inG2 from x to y, z,
respectively, which exist by (iii) of Lemma 2.2. Note that there exists anay–ax pathQxy in A

(sinceA is connected) and there exists abz–bx pathQxz in B (sinceB is connected). LetY be
ay–ay path inG[V (Dy) ∪ {ay}] and letZ be anz–bz path inG[V (Dz) ∪ {bz}]. Then,

((
(Σ − x∗) + {x, xs, xt}) − (

V (Aq ∪ Br) − (
V (Dx) ∪ Sx

)))

∪ (Pxy ∪ Y ∪ Qxy) ∪ (Pxz ∪ Z ∪ Qxz)

is aK5-subdivision inG, a contradiction.
We further claim that the set of branch vertices ofΣ is Sx ∪ Sy ∪ {x∗}. For otherwise, ther

must be a branch vertexx′ of Σ such thatx′ ∈ V (Dx − x) ∪ V (Dy − y). By symmetry, we may
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9–
assume thatx′ ∈ V (Dx − x). Then by the above claim, there is a branch vertexy′ of Σ such that
y′ ∈ V (Dy − y) ∪ Sy . Now Sx ∪ {x∗} is a 3-cut inΣ separatingx′ from y′, contradicting (iv) of
Lemma 3.1.

Sincex∗z /∈ E(Σ), we see thatΣ must contain two branch paths from{ax, ay} to {bx, by}
which must be contained inG1 − V (Dx ∪ Dy). But this is impossible, becauseaz separates
{ax, ay} from {bx, by} in G1 − V (Dx ∪ Dy), a contradiction. �
Acknowledgment

We thank the referee for helpful suggestions and for bringing reference [10] to our att
and for informing us that Kühn and Osthus [7] also showed that Hajós’ conjecture hol
graphs with girth at least 27.

References

[1] P. Catlin, Hajós’ graph-coloring conjecture: variations and counterexamples, J. Combin. Theory Ser. B 26
268–274.

[2] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. S
(1952) 85–92.

[3] P. Erdös, S. Fajtlowicz, On the conjecture of Hajós, Combinatorica 1 (1981) 141–143.
[4] H. Hadwiger, Über eine Klassifikation der Streckencomplexe, Vierteljahrsschr. Naturforsch. Ges. Zürich 88

133–142.
[5] A.E. Kézdy, P.J. McGuinness, Do 3n − 5 edges force a subdivision ofK5? J. Graph Theory 15 (1991) 389–406.
[6] D. Kühn, D. Osthus, Topological minors in graphs of large girth, J. Combin. Theory Ser. B 86 (2002) 364–3
[7] D. Kühn, D. Osthus, Improved bounds for topological cliques in graphs of large girth, SIAM J. Discrete Ma

press.
[8] W. Mader, 3n − 5 edges do force a subdivision ofK5, Combinatorica 18 (1998) 569–595.
[9] N. Robertson, P.D. Seymour, R. Thomas, Hadwiger’s conjecture forK6-free graphs, Combinatorica 13 (1993) 27

361.
[10] P.D. Seymour, private communication with X. Yu.
[11] C. Thomassen, Some remarks on Hajós’ conjecture, J. Combin. Theory Ser. B 93 (2005) 95–105.
[12] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570–590.
[13] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Canad. J. Math. 19 (1967) 1319–1328.


