Reducing Hajós’ 4-coloring conjecture to 4-connected graphs

Xingxing Yu ${ }^{\text {a,b, }}$, Florian Zickfeld ${ }^{\text {a,2 }}$
${ }^{\text {a }}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
${ }^{\text {b }}$ Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China

Received 13 September 2004

Abstract

Hajós conjectured that, for any positive integer k, every graph containing no K_{k+1}-subdivision is k-colorable. This is true when $k \leqslant 3$, and false when $k \geqslant 6$. Hajós' conjecture remains open for $k=4$, 5 . In this paper, we show that any possible counterexample to this conjecture for $k=4$ with minimum number of vertices must be 4 -connected. This is a step in an attempt to reduce Hajós' conjecture for $k=4$ to the conjecture of Seymour that any 5 -connected non-planar graph contains a K_{5}-subdivision. © 2005 Elsevier Inc. All rights reserved.

Keywords: Coloring; K_{5}-subdivision; Connectivity; Cycle

1. Introduction

Graphs considered in this paper are simple and finite. The Four Color Theorem states that every planar graph is 4 -colorable. The Kuratowski Theorem states that a graph is planar if, and only if, it contains neither a K_{5}-subdivision nor a $K_{3,3}$-subdivision. Also, a graph is planar if, and only if, it contains neither a K_{5}-minor nor a $K_{3,3}$-minor. Based on these characterizations of planar graphs, there are two conjectures that would generalize the Four Color Theorem. One of these was attributed to Hajós (see [1]) which states that, for any positive integer k, every graph containing no K_{k+1}-subdivision is k-colorable. The other is Hadwiger's conjecture [4]: For any positive integer k, every graph containing no K_{k+1}-minor is k-colorable. Both conjectures are

[^0]easily seen to be true when $k=1,2$. It is also not hard to show that both conjectures are true for $k=3$.

Hadwiger's conjecture for $k=4$ is equivalent to the Four Color Theorem [12]. Hadwiger's conjecture for $k=5$ can also be reduced to the Four Color Theorem [9], and it remains open for $k \geqslant 6$.

On the other hand, Catlin [1] showed that Hajós' conjecture fails when $k \geqslant 6$. In fact, Erdös and Fajtlowicz [3] showed that Hajós' conjecture fails for almost all graphs. Recently, Thomassen [11] discovered more interesting counterexamples to Hajós' conjecture by studying its connections with Ramsey numbers, maximum cuts, and perfect graphs. Thomassen [11] also explored graph classes for which Hajós' conjecture may be true. Kühn and Osthus [6] proved that Hajós' conjecture holds for graphs with sufficiently large girth, and they later [7] improved the bound on girth to 27 . However, Hajós' conjecture remains open for $k=4$ and $k=5$. It is therefore important to derive structural information about graphs containing no K_{5}-subdivisions (respectively K_{6}-subdivisions).

There has been considerable work concerning K_{5}-subdivisions. Dirac [2] conjectured that every simple graph on n vertices with at least $3 n-5$ edges contains a K_{5}-subdivision, which was proved by Mader [8]. However, the following conjecture of Seymour [10] remains open: Every 5 -connected non-planar graph contains a K_{5}-subdivision. A result in [5] shows that Seymour's conjecture implies Dirac's conjecture. Our aim is to establish a connection between Hajós' conjecture and Seymour's conjecture by looking at the connectivity of a minimum counterexample to Hajós' conjecture. More specifically, if a counterexample to Hajós' conjecture is 5-connected then, by the Four Color Theorem, Seymour's conjecture implies Hajós' conjecture for $k=4$.

For convenience, we say that a graph G is a Hajós graph if
(i) G is not 4-colorable,
(ii) G contains no K_{5}-subdivision, and
(iii) subject to (i) and (ii), $|V(G)|$ is minimum.

Note that any non-spanning subgraph of a Hajós graph is 4-colorable. The main result of this paper is the following.

Theorem 1.1. Every Hajós graph is 4-connected.

Let G be a graph. A separation of G is a pair $\left(G_{1}, G_{2}\right)$ of edge disjoint subgraphs of G such that $G=G_{1} \cup G_{2}$ and $V\left(G_{i}\right)-V\left(G_{3-i}\right) \neq \emptyset$ for $i=1$, 2. (Note that our definition of a separation is different from the usual one in which $V\left(G_{i}\right)-V\left(G_{3-i}\right) \neq \emptyset$ is not required.) We call $\left(G_{1}, G_{2}\right)$ a k-separation if $\left|V\left(G_{1} \cap G_{2}\right)\right|=k$. A set $S \subseteq V(G)$ is a k-cut in G, if $|S|=k$ and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=S$.

To prove Theorem 1.1, we need to deal with k-cuts with $k \leqslant 3$. It is very easy to show that no Hajós graph admits k-cuts with $k \leqslant 2$. The main work is to show that no Hajós graph admits a 3-cut, for which we need to combine structural and coloring arguments. Suppose there is a Hajós graph G that admits a 3-cut. Choose a 3-separation (G_{1}, G_{2}) of G such that G_{2} is minimal with respect to subgraph containment. We shall prove several lemmas showing that G_{1} and G_{2} admit certain 4-colorings. (This is done in Section 2.) Let G_{i}^{\prime} denote the graph obtained from G_{i} by adding an edge between every pair of distinct vertices from $V\left(G_{1} \cap G_{2}\right)$. We shall decide whether G_{i}^{\prime} contains a K_{5}-subdivision. For this reason, we need to know whether G_{3-i}^{\prime} has a
cycle containing $V\left(G_{1} \cap G_{2}\right)$. Therefore, we need the following reformulation of a result of Watkins and Mesner [13].

Theorem 1.2. Let G be a 2-connected graph and let x, y, z be three distinct vertices of G. Then there is no cycle through x, y and z in G if, and only if, at least one of the following statements holds.
(i) There exists a 2-cut S in G and there exist three distinct components D_{x}, D_{y}, D_{z} of $G-S$ such that $u \in V\left(D_{u}\right)$ for each $u \in\{x, y, z\}$.
(ii) There exist a vertex v of $G, 2$-cuts S_{x}, S_{y}, S_{z} in G, and components D_{u} of $G-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that $S_{x} \cap S_{y} \cap S_{z}=\{v\}, S_{x}-\{v\}, S_{y}-\{v\}, S_{z}-\{v\}$ are pairwise disjoint, and D_{x}, D_{y}, D_{z} are pairwise disjoint.
(iii) There exist pairwise disjoint 2-cuts S_{x}, S_{y}, S_{z} in G and components D_{u} of $G-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that D_{x}, D_{y}, D_{z} are pairwise disjoint and $G-V\left(D_{x} \cup\right.$ $D_{y} \cup D_{z}$) has exactly two components, each containing exactly one vertex from S_{u}, for all $u \in\{x, y, z\}$.

We remark that in order to show that Hajós graphs are 5-connected, one needs to consider the much harder problem of characterizing graphs in which there is no K_{4}-subdivision at specified locations.

We conclude this section with some notation. Let G be a graph. For $A, B \subseteq V(G)$, an $A-B$ path in G is a path in G which has one end in A and the other in B and is otherwise disjoint from $A \cup B$. If $A=\{x\}$, we speak of $x-B$ path instead of $\{x\}-B$ path, and if, in addition, $B=\{y\}$ then we write $x-y$ path instead of $\{x\}-\{y\}$ path. Two paths in G are said to be internally disjoint if no internal vertex of one is contained in the other. For any two sets $A, B \subseteq V(G)$, we say that a set $S \subseteq V(G)$ separates A from B if there is a separation $\left(G_{1}, G_{2}\right)$ of G with $V\left(G_{1} \cap G_{2}\right)=S$, $A \subseteq V\left(G_{1}\right), B \subseteq V\left(G_{2}\right), A-S \neq \emptyset$, and $B-S \neq \emptyset$. If $A=\{v\}$ we simply say S separates v from B, and if $A=\{v\}$ and $B=\{w\}$ then we simply say that S separates v from w.

Let H be a subgraph of a graph G, let $v_{1}, \ldots, v_{k} \in V(G)$, and $\left\{u_{i}, w_{i}\right\} \subseteq V(H) \cup\left\{v_{1}, \ldots, v_{k}\right\}$, $i=1, \ldots, m$. Then we let $H+\left\{v_{1}, \ldots, v_{k}, u_{1} w_{1}, \ldots, u_{m} w_{m}\right\}$ denote the graph with vertex set $V(H) \cup\left\{v_{1}, \ldots, v_{k}\right\}$ and edge set $E(H) \cup\left\{u_{1} w_{1}, \ldots, u_{k} w_{k}\right\}$.

Let G be a graph. For any $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S. A path P in G is said to be a branch path in G if its internal vertices are of degree 2 in G and its ends are of degree at least 3 in G. Vertices of G with degree at least 3 are called branch vertices of G.

Given a graph G, we shall view a coloring of G as a mapping c from $V(G)$ to a set of colors such that $c(u) \neq c(v)$ whenever $u v \in E(G)$.

2. 3-Separations

We begin this section by stating an easy fact without proof.

Proposition 2.1. Every Hajós graph is 3-connected.

For the remainder of this section, we choose a 3-separation $\left(G_{1}, G_{2}\right)$ of a Hajós graph such that G_{2} is minimal. We shall show two results concerning certain 4-colorings of G_{1}. First, we need some structural information from G_{2}.

Lemma 2.2. Let G be a Hajós graph, and let $\left(G_{1}, G_{2}\right)$ be a 3-separation of G chosen to minimize G_{2}. Then
(i) $\left|V\left(G_{2}\right)\right| \geqslant 5$,
(ii) $G_{2}-V\left(G_{1} \cap G_{2}\right)$ is connected, and
(iii) G_{2} is 2-connected.

Proof. Suppose $\left|V\left(G_{2}\right)\right| \leqslant 4$. Then $\left|V\left(G_{2}\right)\right|=4$. Let $v \in V\left(G_{2}\right)-V\left(G_{1}\right)$. Then by Proposition 2.1, v has degree 3 in G. Since $G-v$ does not contain a K_{5}-subdivision, $G-v$ is 4-colorable. Because the degree of v in G is 3, any 4-coloring of $G-v$ can easily be extended to v to give a 4-coloring of G, a contradiction. Thus $\left|V\left(G_{2}\right)\right| \geqslant 5$ and (i) holds.

Now suppose $G_{2}-V\left(G_{1} \cap G_{2}\right)$ is not connected. Let D denote a component of $G_{2}-V\left(G_{1} \cap\right.$ $\left.G_{2}\right)$. Then there is a 3-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ of G with $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=V\left(G_{1} \cap G_{2}\right)$ and $G_{2}^{\prime}-$ $V\left(G_{1} \cap G_{2}\right)=D$. This contradicts the choice of $\left(G_{1}, G_{2}\right)$, for G_{2}^{\prime} is properly contained in G_{2}. So (ii) holds.

By (ii), $G_{2}-V\left(G_{1} \cap G_{2}\right)$ is connected, and by Proposition 2.1, every vertex from $V\left(G_{1} \cap G_{2}\right)$ has a neighbor in $V\left(G_{2}\right)-V\left(G_{1} \cap G_{2}\right)$. So G_{2} is connected, and any possible cut vertex of G_{2} must be contained in $V\left(G_{2}\right)-V\left(G_{1} \cap G_{2}\right)$. Suppose G_{2} is not 2-connected, and let v denote a cut vertex of G_{2}. Then, $V\left(G_{1} \cap G_{2}\right)$ cannot be contained in a component of $G_{2}-v$, for otherwise v would be a cut vertex in G (contradicting Proposition 2.1). So we may assume that some vertex x from $V\left(G_{1} \cap G_{2}\right)$ is contained in the component of $G_{2}-v$ which does not contain any other vertex from $V\left(G_{1} \cap G_{2}\right)$. Then, since G is 3-connected, v is the only neighbor of x in $V\left(G_{2}\right)-V\left(G_{1} \cap G_{2}\right)$. Therefore, since $\left|V\left(G_{2}\right)\right| \geqslant 5,\left(V\left(G_{1} \cap G_{2}\right)-\{x\}\right) \cup\{v\}$ is a cut in G, which yields a 3-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ in which $G_{2}^{\prime}=G_{2}-x$ is a proper subgraph of G_{2}, a contradiction. Hence (iii) holds.

Proposition 2.3. Let G be a Hajós graph, let $\left(G_{1}, G_{2}\right)$ be a 3 -separation of G chosen to minimize G_{2}, and let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$. Then there is a 4 -coloring c_{1} of G_{1} such that $c_{1}(x), c_{1}(y)$ and $c_{1}(z)$ are all distinct.

Proof. Suppose this is not true, that is, $G_{1}^{\prime}:=G_{1}+\{x y, y z, z x\}$ is not 4-colorable. Then since $\left|V\left(G_{1}^{\prime}\right)\right|<|V(G)|, G_{1}^{\prime}$ contains a K_{5}-subdivision, say Σ.

We claim that x, y, z are branch vertices of Σ. This is easy to see when $\{x y, x z, y z\} \subseteq E(\Sigma)$. So we may assume by symmetry that $y z \notin E(\Sigma)$. By (iii) of Lemma 2.2, there exist internally disjoint paths Y from x to y and Z from x to z in G_{2}. It is easy to see that ($\left.\Sigma-\{x y, x z\}\right) \cup Y \cup Z$ (and hence G) contains a K_{5}-subdivision, a contradiction.

Note that if G_{2} contains a cycle C through x, y, z, then $(\Sigma-\{x y, y z, z x\}) \cup C$ (and hence G) contains a K_{5}-subdivision, a contradiction. So there is no cycle through x, y, z in G_{2}. Hence by applying Theorem 1.2 to G_{2}, it suffices to consider the following three cases.

Case 1. There exists a 2-cut S in G_{2} and there exist distinct components D_{x}, D_{y}, D_{z} of $G_{2}-S$ such that $u \in V\left(D_{u}\right)$ for each $u \in\{x, y, z\}$.

Let $S=\{a, b\}$. Suppose $\left|V\left(D_{x}\right)\right| \geqslant 2$. Then $\{x, a, b\}$ is a 3-cut of G and $\left(G-V\left(D_{x}-x\right)\right.$, $\left.G\left[V\left(D_{x}\right) \cup S\right]\right)$ is a 3-separation of G. But $G\left[V\left(D_{x}\right) \cup S\right]$ is properly contained in G_{2}, contradicting the choice of $\left(G_{1}, G_{2}\right)$. So $V\left(D_{x}\right)=\{x\}$. Similarly, we have $V\left(D_{y}\right)=\{y\}$, and $V\left(D_{z}\right)=\{z\}$. Hence, a and b are the only vertices of G not contained in G_{1}.

Since G_{1} is a non-spanning subgraph of G, G_{1} is 4-colorable. Let c_{1} be a 4-coloring of G_{1}. If $c_{1}(x), c_{1}(y), c_{1}(z)$ are all distinct, then c_{1} is a 4 -coloring of G_{1}^{\prime}, a contradiction. So assume $c_{1}(x), c_{1}(y), c_{1}(z)$ are not all distinct. Define $c_{1}^{\prime}(u)=c_{1}(u)$ for all $u \in V\left(G_{1}\right)$, and let $c_{1}^{\prime}(a)$ and $c_{1}^{\prime}(b)$ be two colors not in $\left\{c_{1}(x), c_{1}(y), c_{1}(z)\right\}$. Clearly, c_{1}^{\prime} is a 4-coloring of G, a contradiction.

Case 2. There exist a vertex v of $G_{2}, 2$-cuts S_{x}, S_{y}, S_{z} in G_{2}, and components D_{u} of $G_{2}-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that $S_{x} \cap S_{y} \cap S_{z}=\{v\}, S_{x}-\{v\}, S_{y}-\{v\}, S_{z}-\{v\}$ are pairwise disjoint, and D_{x}, D_{y}, D_{z} are pairwise disjoint.

As in Case 1, we can show that $V\left(D_{x}\right)=\{x\}, V\left(D_{y}\right)=\{y\}$ and $V\left(D_{z}\right)=\{z\}$.
Note that $G_{1}+x y$ contains no K_{5}-subdivision. For otherwise, by replacing $x y$ in such a K_{5}-subdivision with an $x-y$ path in $G_{2}-z$ (which exists by (iii) of Lemma 2.2), we produce a K_{5}-subdivision in G, a contradiction.

Thus, since $\left|V\left(G_{1}+x y\right)\right|<|V(G)|, G_{1}+x y$ is 4-colorable. Let c_{1} be a 4-coloring of $G_{1}+x y$. Then $c_{1}(x) \neq c_{1}(y)$. If $c_{1}(z) \neq c_{1}(x)$ and $c_{1}(z) \neq c_{1}(y)$, then c_{1} is a 4-coloring of G_{1}^{\prime}, a contradiction. Therefore, we may assume (by symmetry between x and y) that $c_{1}(z)=c_{1}(y)$.

Since G_{2} is a non-spanning subgraph of G, G_{2} is 4-colorable. Let c_{2} be a 4-coloring of G_{2}. As y and z together only has three neighbors in G_{2}, we may choose c_{2} so that $c_{2}(y)=c_{2}(z)$. Since x has only two neighbors in G_{2}, we may further choose c_{2} so that $c_{2}(x) \neq c_{2}(y)$. Now by permuting the colors of vertices of G_{2}, we may assume that $c_{2}(u)=c_{1}(u)$ for all $u \in\{x, y, z\}$. Let c be a coloring of G defined by letting $c(u)=c_{i}(u)$ for all $u \in V\left(G_{i}\right), i=1,2$. Then c is a 4-coloring of G, a contradiction.

Case 3. There exist pairwise disjoint 2-cuts S_{x}, S_{y}, S_{z} in G_{2} and components D_{u} of $G_{2}-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that D_{x}, D_{y}, D_{z} are pairwise disjoint and $G_{2}-V\left(D_{x} \cup\right.$ $D_{y} \cup D_{z}$) has exactly two components, each containing exactly one vertex from S_{u}, for all $u \in\{x, y, z\}$.

As in Case 1, we can show $V\left(D_{x}\right)=\{x\}, V\left(D_{y}\right)=\{y\}$ and $V\left(D_{z}\right)=\{z\}$.
Let $S_{x}:=\left\{a_{x}, b_{x}\right\}, S_{y}:=\left\{a_{y}, b_{y}\right\}$, and $S_{z}:=\left\{a_{z}, b_{z}\right\}$, and assume that $\left\{a_{x}, a_{y}, a_{z}\right\}$ (respectively $\left.\left\{b_{x}, b_{y}, b_{z}\right\}\right)$ is contained in the component A (respectively B) of $G_{2}-V\left(D_{x} \cup D_{y} \cup D_{z}\right)$. Then $|V(A)|=3=|V(B)|$; for otherwise, $\left(G-V\left(A-\left\{a_{x}, a_{y}, a_{z}\right\}\right), A\right)$ or $(G-V(B-$ $\left.\left\{b_{x}, b_{y}, b_{z}\right\}, B\right)$ is a 3 -separation of G in which A or B is properly contained in G_{2}, contradicting the choice of $\left(G_{1}, G_{2}\right)$.

Now $G_{1}+\{x y, y z\}$ contains no K_{5}-subdivision. For otherwise, let Σ be a K_{5}-subdivision in $G_{1}+\{x y, y z\}$. By (iii) of Lemma 2.2, there are internally disjoint paths X, Z from y to x, z, respectively, in G_{2}. Now $(\Sigma-\{x y, y z\}) \cup X \cup Z$ (and hence G) contains a K_{5}-subdivision, a contradiction.

Since $\left|V\left(G_{1}+\{x y, y z\}\right)\right|<|V(G)|, G_{1}+\{x y, y z\}$ is 4-colorable. Let c_{1} be a 4-coloring of $G_{1}+\{x y, y z\}$. Then $c_{1}(x) \neq c_{1}(y) \neq c_{1}(z)$. If $c_{1}(x) \neq c_{1}(z)$, then G_{1}^{\prime} is 4-colorable, a contradiction. So assume that $c_{1}(x)=c_{1}(z)$. For convenience, assume that the colors we use are $\{\alpha, \beta, \gamma, \delta\}$ and $c_{1}(x)=\alpha$ and $c_{1}(y)=\beta$. Let c be a coloring of G such that $c(u)=c_{1}(u)$ for all $u \in V\left(G_{1}\right), c\left(a_{x}\right)=c\left(b_{z}\right)=\gamma, c\left(b_{x}\right)=c\left(a_{z}\right)=\beta, c\left(a_{y}\right)=\delta$, and $c\left(b_{y}\right)=\alpha$. It is easy to check that c is a 4 -coloring of G, a contradiction.

Proposition 2.4. Let G be a Hajós graph, let $\left(G_{1}, G_{2}\right)$ be a 3-separation of G chosen to minimize G_{2}, and let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$. Suppose there is a vertex $x^{\prime} \in V\left(G_{1}\right)-\{x, y, z\}$ separating x from $\{y, z\}$ in G_{1}. Then there exist 4 -colorings c_{1} and c_{2} of G_{1} such that $c_{1}(x)=c_{1}(y) \neq c_{1}(z)$ and $c_{2}(x)=c_{2}(z) \neq c_{2}(y)$.

Proof. Note that $x y, x z \notin E\left(G_{1}\right)$ for otherwise x^{\prime} would not separate x from $\{y, z\}$ in G_{1}. Also $x x^{\prime} \in E(G)$, for otherwise $\left\{x, x^{\prime}\right\}$ would be a 2 -cut in G, contradicting Proposition 2.1. Let $G_{1}^{*}:=\left(G_{1}-x\right)+\left\{x^{\prime} y, y z\right\}$.

We claim that G_{1}^{*} contains no K_{5}-subdivision. For otherwise, let Σ be a K_{5}-subdivision in G_{1}^{*}. Since G contains no K_{5}-subdivision, $\left\{x^{\prime} y, y z\right\} \cap E(\Sigma) \neq \emptyset$. By (iii) of Lemma 2.2, we see that G_{2} contains two internally disjoint paths X, Z from y to x, z, respectively. Now $\left(\Sigma-\left\{x^{\prime} y, y z\right\}\right) \cup\left(X+\left\{x^{\prime}, x x^{\prime}\right\}\right) \cup Z$, and hence G, contains a K_{5}-subdivision, a contradiction.

Therefore, since $\left|V\left(G_{1}^{*}\right)\right|<|V(G)|, G_{1}^{*}$ is 4-colorable. Let c_{1}^{*} be a 4-coloring of G_{1}^{*}. Then $c_{1}^{*}\left(x^{\prime}\right) \neq c_{1}^{*}(y) \neq c_{1}^{*}(z)$. Define a coloring c_{1} of G_{1} by letting $c_{1}(x)=c_{1}^{*}(y)$ and $c_{1}(u)=c_{1}^{*}(u)$ for all $u \in V\left(G_{1}\right)-\{x\}$. It is easy to see that c_{1} gives the desired 4-coloring of G_{1}.

Similarly, by defining $G_{1}^{*}:=\left(G_{1}-x\right)+\left\{x^{\prime} z, y z\right\}$, we can show that G_{1} has the desired 4 -coloring c_{2}.

Next, we show that G_{2} admits certain 4-colorings. First, we need the following lemma.

Lemma 2.5. Let G be a Hajós graph, and let $\left(G_{1}, G_{2}\right)$ be a 3-separation of G chosen to minimize G_{2}. Then G_{1} is 2-connected.

Proof. Suppose G_{1} is not 2-connected. Since G is 3-connected (by Proposition 2.1), there must exist vertices $x \in V\left(G_{1} \cap G_{2}\right)$ and $x^{\prime} \in V\left(G_{1}\right)-V\left(G_{1} \cap G_{2}\right)$ such that x^{\prime} separates x from $V\left(G_{1} \cap G_{2}\right)-\{x\}$. Let y, z denote the other two vertices in $V\left(G_{1} \cap G_{2}\right)-\{x\}$. By Proposition 2.4, there exists a 4-coloring c_{1} of G_{1} such that $c_{1}(x)=c_{1}(y) \neq c_{1}(z)$, and there exists a 4 -coloring c_{1}^{\prime} of G_{1} such that $c_{1}^{\prime}(x)=c_{1}^{\prime}(z) \neq c_{1}^{\prime}(y)$.

Note that $G_{2}+y z$ contains no K_{5}-subdivision. For otherwise, let Σ be a K_{5}-subdivision in $G_{2}+y z$. By Proposition 2.1, $G_{1}-x$ has a $y-z$ path P. Now $(\Sigma-y z) \cup P$ (and hence G) contains a K_{5}-subdivision, a contradiction. Since $\left|V\left(G_{2}+y z\right)\right|<|V(G)|, G_{2}+y z$ is 4-colorable. Let c_{2} be a 4 -coloring of $G_{2}+y z$. Then $c_{2}(y) \neq c_{2}(z)$.

First, assume that $c_{2}(y) \neq c_{2}(x) \neq c_{2}(z)$. Then c_{2} is a 4-coloring of $G_{2}+\{x y, x z, y z\}$. By Proposition 2.3, G_{1} has a 4 -coloring c_{1}^{*} such that $c_{1}^{*}(x), c_{1}^{*}(y)$ and $c_{1}^{*}(z)$ are all distinct. We may assume c_{1}^{*} and c_{2} use the same set of four colors, and by permuting colors of vertices of G_{1}, we have $c_{1}^{*}(u)=c_{2}(u)$ for all $u \in\{x, y, z\}$. Now define a coloring c of G with $c(u)=c_{1}^{*}(u)$ for $u \in V\left(G_{1}\right)$ and $c(u)=c_{2}(u)$ for $u \in V\left(G_{2}\right)$. This shows that G is 4-colorable, a contradiction.

Now by symmetry between y and z (with respect to c_{1} and c_{1}^{\prime}), we may assume that $c_{2}(x)=c_{2}(y) \neq c_{2}(z)$. We may also assume that c_{1} and c_{2} use the same set of four colors, and by permuting colors if necessary, $c_{1}(u)=c_{2}(u)$ for all $u \in\{x, y, z\}$. Define $c(u)=c_{i}(u)$ for all $u \in V\left(G_{i}\right), i=1,2$. Then it is easy to see that c is a 4-coloring of G, a contradiction.

Proposition 2.6. Let G be a Hajós graph, let $\left(G_{1}, G_{2}\right)$ be a 3 -separation of G chosen to minimize G_{2}, and let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$. Let $F \subseteq\{x y, x z, y z\}$. Then $G_{2}+F$ is 4-colorable if, and only if, $|F| \leqslant 2$.

Proof. First, assume that $|F|=3$. Then $G_{2}+F=G_{2}+\{x y, x z, y z\}$. Suppose $G_{2}+F$ is 4 -colorable, then there is a 4-coloring c_{2} of G_{2} such that $c_{2}(x), c_{2}(y)$ and $c_{2}(z)$ are all distinct. By Proposition 2.3, let c_{1} be a 4-coloring of G_{1} such that $c_{1}(x), c_{1}(y)$ and $c_{1}(z)$ are all distinct. Assume that c_{1} and c_{2} use the same set of four colors. By permuting colors if necessary, we may assume that $c_{1}(u)=c_{2}(u)$ for all $u \in\{x, y, z\}$. Let $c(u)=c_{i}(u)$ for all $u \in V\left(G_{i}\right), i=1,2$.

Then we see that c is a 4-coloring of G, a contradiction. Hence $G_{2}+F$ is not 4-colorable when $|F|=3$.

Now assume $|F|=1$. By symmetry, consider $F=\{x y\}$. If $G_{2}+x y$ has no K_{5}-subdivision, then by the choice of G, we see that $G_{2}+x y$ is 4-colorable. So assume that $G_{2}+x y$ has a K_{5}-subdivision, say Σ. By Lemma 2.5 , we see that $G_{1}-z$ has an $x-y$ path P. Now $(\Sigma-x y) \cup P$ (and hence G) contains a K_{5}-subdivision, a contradiction.

Finally, assume $|F|=2$. By symmetry, we consider $F=\{x y, x z\}$. If $G_{2}+\{x y, x z\}$ contains no K_{5}-subdivision then, by the choice of G, we see that $G_{2}+\{x y, x z\}$ is 4 -colorable. So we may assume that $G_{2}+\{x y, x z\}$ does contain a K_{5}-subdivision, and denote it by Σ. By Lemma 2.5, G_{1} contains internally disjoint paths Y, Z from x to y, z, respectively. Hence $(\Sigma-\{x y, y z\}) \cup Y \cup Z$ (and hence G) contains a K_{5}-subdivision, a contradiction.

We conclude this section with a useful observation.

Lemma 2.7. Let G be a Hajós graph, and let $\left(G_{1}, G_{2}\right)$ be a 3 -separation of G chosen to minimize G_{2}. Then there is no cycle in G_{1} containing $V\left(G_{1} \cap G_{2}\right)$, and $V\left(G_{1} \cap G_{2}\right)$ is an independent set in G_{1}.

Proof. Let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$. By Proposition 2.6, $G_{2}+\{x y, x z, y z\}$ is not 4-colorable. Hence, $G_{2}+\{x y, x z, y z\}$ has a K_{5}-subdivision Σ. If there is a cycle C in G_{1} through x, y, z, then $(\Sigma-\{x y, y z, z x\}) \cup C$ (and hence G) contains a K_{5}-subdivision, a contradiction. So G_{1} contains no cycle through x, y, z. Therefore, by Lemma 2.5 and Theorem 1.2, $\{x, y, z\}$ must be independent in G_{1}.

3. 4-Connectivity

In this section, we prove Theorem 1.1. First, we prove a lemma.
Lemma 3.1. Let G be a Hajós graph, let $\left(G_{1}, G_{2}\right)$ be a 3 -separation of G chosen to minimize G_{2}, and let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$. Let E_{x} (respectively, E_{y}) denote the set of edges of G_{1} incident with x (respectively, y), and let G_{1}^{*} denote the graph obtained from G_{1} by adding the edge $y z$ and identifying x and y as x^{*} (and deleting multiple edges). Then $E_{x} \cap E_{y}=\emptyset, G_{1}^{*}$ contains a K_{5}-subdivision, and for any K_{5}-subdivision Σ in G_{1}^{*},
(i) x^{*} is a branch vertex of Σ,
(ii) $x^{*} z \notin E(\Sigma)$,
(iii) $\left|E_{x} \cap E(\Sigma)\right|=2=\left|E_{y} \cap E(\Sigma)\right|$, and
(iv) for any two branch vertices u, v of Σ, there are four internally disjoint $u-v$ paths in Σ.

Proof. For convenience, vertices and edges of G_{1} are also viewed as vertices and edges of G_{1}^{*}, except for x and y. By Lemma 2.7, $E_{x} \cap E_{y}=\emptyset$.

Suppose G_{1}^{*} contains no K_{5}-subdivision. Then since $\left|V\left(G_{1}^{*}\right)\right|<|V(G)|, G_{1}^{*}$ is 4-colorable. Hence G_{1} has a 4-coloring c_{1} such that $c_{1}(x)=c_{1}(y) \neq c_{1}(z)$. By Proposition 2.6, $G_{2}+\{x z, y z\}$ is 4-colorable. Let c_{2} be a 4-coloring of $G_{2}+\{x z, y z\}$. Then $c_{2}(x) \neq c_{2}(z) \neq c_{2}(y)$. If $c_{2}(x) \neq$ $c_{2}(y)$ then $G_{2}+\{x y, y z, z x\}$ is 4-colorable, contradicting Proposition 2.6. So $c_{2}(x)=c_{2}(y)$. We may assume that c_{1} and c_{2} use the same set of four colors, and we may permute the colors of
vertices of G_{1} so that $c_{1}(u)=c_{2}(u)$ for all $u \in\{x, y, z\}$. Let $c(u)=c_{i}(u)$ for all $u \in V\left(G_{i}\right)$, $i=1,2$. Then c is a 4 -coloring of G, a contradiction.

Now let Σ be a K_{5}-subdivision in G_{1}^{*}. By (iii) of Lemma 2.2, G_{2} is 2 -connected. So there exists a $y-z$ path (respectively $z-x$ path, $x-y$ path) P_{x} (respectively P_{y}, P_{z}) in $G-x$ (respectively $G-y, G-z)$. For the same reason, G_{2} contains internally disjoint paths X_{y}, X_{z} from x to y, z, respectively, and internally disjoint paths Y_{x}, Y_{z} from y to x, z, respectively.

Suppose x^{*} is not a branch vertex of Σ. Then since G_{1} has no K_{5}-subdivision, exactly one branch path of Σ, say R, uses x^{*}. Let q, r be the neighbors of x^{*} in R. First assume that $z \in\{q, r\}$, say $z=r$. If $q y \in E\left(G_{1}\right)$ then $\left(\left(\Sigma-x^{*}\right)+\{y, q y\}\right) \cup P_{x}$ is a K_{5}-subdivision in G, a contradiction. So assume $q x \in E\left(G_{1}\right)$ then $\left(\left(\Sigma-x^{*}\right)+\{x, q x\}\right) \cup P_{y}$ is a K_{5}-subdivision in G, a contradiction. Now assume that $z \notin\{q, r\}$. If $q x, r x \in E\left(G_{1}\right)$ then $\left(\Sigma-x^{*}\right)+\{x, q x, r x\}$ is a K_{5}-subdivision in G_{1}, a contradiction. If $q y, r y \in E\left(G_{1}\right)$ then $\left(\Sigma-x^{*}\right)+\{y, q y, r y\}$ is a K_{5}-subdivision in G_{1}, a contradiction. So assume by symmetry that $q x, r y \in E\left(G_{1}\right)$. Then $\left(\left(\Sigma-x^{*}\right)+\{x, y, q x, r y\}\right) \cup P_{z}$ is a K_{5}-subdivision in G, a contradiction. Thus x^{*} is a branch vertex of Σ, and (i) holds.

Suppose $x^{*} z \in E(\Sigma)$. Then either $\left|E_{x} \cap E(\Sigma)\right| \leqslant 1$ or $\left|E_{y} \cap E(\Sigma)\right| \leqslant 1$. By symmetry, assume that $\left|E_{x} \cap E(\Sigma)\right| \leqslant 1$. If $\left|E_{x} \cap E(\Sigma)\right|=0$ then let $y y_{1}, y y_{2}, y y_{3} \in E_{y} \cap E(\Sigma)$, and we see that $\left(\left(\Sigma-x^{*}\right)+\left\{y, y y_{1}, y y_{2}, y y_{3}\right\}\right) \cup P_{x}$ is a K_{5}-subdivision in G, a contradiction. So assume $\left|E_{x} \cap E(\Sigma)\right|=1$. Let $y y_{1}, y y_{2} \in E_{y} \cap E(\Sigma)$ and $x x^{\prime} \in E_{x} \cap E(\Sigma)$. Then $\left(\left(\Sigma-x^{*}\right)+\right.$ $\left.\left\{x, y, y y_{1}, y y_{2}, x x^{\prime}\right\}\right) \cup Y_{x} \cup Y_{z}$ is a K_{5}-subdivision in G, a contradiction. So $x^{*} z \notin E(\Sigma)$, and (ii) holds.

If $\left|E_{x} \cap E(\Sigma)\right|=0$ or $\left|E_{y} \cap E(\Sigma)\right|=0$, then by (ii), Σ gives a K_{5}-subdivision in G (by simply renaming x^{*} as x or y), a contradiction. Suppose (iii) fails, and assume by symmetry that $\left|E_{x} \cap E(\Sigma)\right|=1$ and $\left|E_{y} \cap E(\Sigma)\right|=3$. Let $x x^{\prime} \in E_{x} \cap E(\Sigma), y y_{1}, y y_{2}, y y_{3} \in E_{y} \cap E(\Sigma)$. Then $\left(\left(\Sigma-x^{*}\right)+\left\{x, y, x x^{\prime}, y y_{1}, y y_{2}, y y_{3}\right\}\right) \cup P_{z}$ is a K_{5}-subdivision in G, a contradiction. So (iii) must hold.

Clearly, (iv) holds.

Proof of Theorem 1.1. Suppose the assertion of Theorem 1.1 is not true. Let G be a Hajós graph, and assume that G is not 4-connected. By Proposition $2.1, G$ is 3 -connected. Let $\left(G_{1}, G_{2}\right)$ be a 3-separation of G chosen to minimize G_{2}, and let $V\left(G_{1} \cap G_{2}\right)=\{x, y, z\}$.

By Lemma 2.7, $\{x, y, z\}$ is an independent set in G_{1}. Let E_{x} (respectively E_{y}) denote the set of edges of G_{1} incident with x (respectively y). Let G_{1}^{*} denote the graph obtained from G_{1} by adding the edge $y z$ and identifying x and y as x^{*} (and deleting multiple edges). Then by Lemma 3.1, $E_{x} \cap E_{y}=\emptyset$, and G_{1}^{*} contains a K_{5}-subdivision, say Σ. Note that Σ satisfies (i)-(iv) of Lemma 3.1.

Note that G_{1} is 2 -connected (by Lemma 2.5) and G_{1} has no cycle containing $\{x, y, z\}$ (by Lemma 2.7). Therefore, by applying Theorem 1.2 to G_{1}, it suffices to consider the following three cases.

Case 1. There exists a 2-cut S in G_{1} and there exist three distinct components D_{x}, D_{y}, D_{z} of $G_{1}-S$ such that $u \in V\left(D_{u}\right)$ for each $u \in\{x, y, z\}$.

Let $S:=\{a, b\}$. By (i) of Lemma 3.1, x^{*} is a branch vertex of Σ. Therefore, D_{z} contains no branch vertex of Σ because S and the edge $z x^{*}$ show that G_{1}^{*} contains at most three internally disjoint paths between x^{*} and D_{z}, contradicting (iv) of Lemma 3.1. Similarly, either $D_{x}-x$ or $D_{y}-y$ has no branch vertex of Σ since $S \cup\left\{x^{*}\right\}$ is a 3-cut in G_{1}^{*} separating $D_{x}-x$ from $D_{y}-y$.

Therefore, we may assume that all branch vertices of Σ are in $V\left(D_{x}\right) \cup S \cup\left\{x^{*}\right\}$. By (iii) of Lemma 3.1, $\left|E_{y} \cap E(\Sigma)\right|=2$. Because there are no branch vertices of Σ in D_{y}, Σ contains two paths P_{a}, P_{b} from x^{*} to a, b, respectively, each using one edge of E_{y}, that are contained in $G_{1}^{*}\left[V\left(D_{y}\right) \cup S \cup\left\{x^{*}\right\}\right]$. If a and b are branch vertices of Σ then the branch path P of Σ between a and b may use edges outside of $G_{1}^{*}\left[V\left(D_{x}\right) \cup S \cup\left\{x^{*}\right\}\right]$. Except for edges in the paths P_{a}, P_{b} and possibly P, all edges of Σ appear in $G_{1}^{*}\left[V\left(D_{x}\right) \cup S \cup\left\{x^{*}\right\}\right]$.

If $G\left[V\left(D_{y}\right) \cup S\right]$ (respectively $G\left[V\left(D_{z}\right) \cup S\right]$) contains internally disjoint paths Y from a to y (respectively z) and B from a to b, then we can produce a K_{5}-subdivision in G as follows: replace P_{a}, P by Y, B, respectively, replace P_{b} by a path in $G\left[V\left(D_{z}\right) \cup\{b\}\right]$ (respectively $G\left[V\left(D_{y}\right) \cup\right.$ $\{b\}]$) from z (respectively y) to b, and add two internally disjoint paths from x to $\{y, z\}$ in G_{2} (which exist by (iii) of Lemma 2.2). This gives a contradiction. So we may assume that such paths Y, B do not exist in $G\left[V\left(D_{y}\right) \cup S\right]$ (respectively $G\left[V\left(D_{z}\right) \cup S\right]$). Then there is a cut vertex a_{y} (respectively a_{z}) of $G\left[V\left(D_{y}\right) \cup S\right]$ (respectively $G\left[V\left(D_{z}\right) \cup S\right]$) separating a from $\{y, b\}$ (respectively $\{z, b\}$). Since $\left\{a, a_{y}\right\}$ is not a 2 -cut in G, we see that a_{y} (respectively a_{z}) is the only neighbor of a in $G\left[V\left(D_{y}\right) \cup S\right]$ (respectively $G\left[V\left(D_{z}\right) \cup S\right]$).

Similarly, we conclude that b has only one neighbor b_{y} in $G\left[V\left(D_{y}\right) \cup S\right]$, and b has only one neighbor b_{z} in $G\left[V\left(D_{z}\right) \cup S\right]$.

Next we use the above structural information to color vertices of G. By Proposition 2.3, G_{1} has a 4 -coloring c_{1} such that $c_{1}(x), c_{1}(y)$ and $c_{1}(z)$ are all distinct. We shall obtain a new 4-coloring c_{1}^{\prime} of G_{1} such that x, y, z use exactly two colors. For convenience, let $\{\alpha, \beta, \gamma, \delta\}$ denote the four colors used by c_{1}, and let $H_{i j}$ denote the subgraph of G_{1} induced by vertices of color i or j, for all $\{i, j\} \subseteq\{\alpha, \beta, \gamma, \delta\}$. Let $c_{1}(x)=\alpha, c_{1}(y)=\beta$, and $c_{1}(z)=\gamma$. Note that $\{y, z\}$ must be contained in a component of $H_{\beta \gamma}$, as otherwise we could switch colors in the component of $H_{\beta \gamma}$ containing y, yielding the desired 4 -coloring c_{1}^{\prime} of G_{1}. Therefore by symmetry between a and b, we may assume that $c_{1}\left(a_{y}\right)=\beta=c_{1}\left(a_{z}\right)$ and $c_{1}(a)=\gamma$, or $c_{1}\left(a_{y}\right)=\gamma=c_{1}\left(a_{z}\right)$ and $c_{1}(a)=\beta$. By the same argument, $\{x, z\}$ must be contained in a component of $H_{\alpha \gamma}$, and $\{x, y\}$ must be contained in a component of $H_{\alpha \beta}$. Therefore, $c_{1}\left(b_{y}\right)=\beta, c_{1}(b)=\alpha$, and $c_{1}\left(b_{z}\right)=\gamma$. But then, neither x nor z can be in the component of $H_{\beta \delta}$ containing y, and neither y nor z is in the component of $H_{\alpha \delta}$ containing x. Thus we can switch the colors in the component of $H_{\beta \delta}$ containing y and in the component of $H_{\alpha \delta}$ containing x. This yields the desired 4-coloring c_{1}^{\prime} of G_{1}, with $c_{1}^{\prime}(x)=c_{1}^{\prime}(y)=\delta$ and $c_{1}^{\prime}(z)=\gamma$.

Now by symmetry, assume that $c_{1}^{\prime}(x)=c_{1}^{\prime}(y) \neq c_{1}^{\prime}(z)$. By Proposition 2.6, $G_{2}+\{x z, y z\}$ is 4 -colorable. Let c_{2} be a 4 -coloring of $G_{2}+\{x z, y z\}$ using the colors from $\{\alpha, \beta, \gamma, \delta\}$. If $c_{2}(x) \neq c_{2}(y)$ then c_{2} is a 4-coloring of $G_{2}+\{x y, y z, z x\}$, contradicting Proposition 2.6. So $c_{2}(x)=c_{2}(y)$. By permuting colors if necessary, we may assume that $c_{2}(u)=c_{1}^{\prime}(u)$ for all $u \in\{x, y, z\}$. Now let $c(u)=c_{1}^{\prime}(u)$ for all $u \in V\left(G_{1}\right)$ and $c(u)=c_{2}(u)$ for all $u \in V\left(G_{2}\right)$. Then c is a 4-coloring of G, a contradiction.

Case 2. There exist a vertex v of $G_{1}, 2$-cuts S_{x}, S_{y}, S_{z} in G_{1}, and components D_{u} of $G_{1}-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that $S_{x} \cap S_{y} \cap S_{z}=\{v\}, S_{x}-\{v\}, S_{y}-\{v\}, S_{z}-\{v\}$ are pairwise disjoint, and D_{x}, D_{y}, D_{z} are pairwise disjoint.

By (i) of Lemma 3.1, x^{*} is a branch vertex of Σ. Therefore, D_{z} contains no branch vertex of Σ because S_{z} and the edge $z x^{*}$ shows that G_{1}^{*} contains at most three internally disjoint paths between x^{*} and D_{z}, contradicting (iv) of Lemma 3.1. In fact, all branch vertices of Σ must be contained in $R:=V\left(D_{x}-x\right) \cup V\left(D_{y}-y\right) \cup S_{x} \cup S_{y} \cup\left\{x^{*}\right\}$. For otherwise, Σ has a branch vertex $v \notin R$, and Σ must have four disjoint path leaving R. But this forces $x^{*} z \in E(\Sigma)$, contradicting (ii) of Lemma 3.1.

We claim that, for each $u \in\{x, y\}$, not all branch vertices of Σ are contained in $V\left(D_{u}\right) \cup$ $S_{u} \cup\left\{x^{*}\right\}$. For otherwise, suppose by symmetry that all branch vertices of Σ are contained in $V\left(D_{x}\right) \cup S_{x} \cup\left\{x^{*}\right\}$. By (iii) of Lemma 3.1, let $x^{*} s, x^{*} t$ be the two edges in $E(\Sigma) \cap E_{x}$, let $x^{*} q, x^{*} r$ be the two edges in $E(\Sigma) \cap E_{y}$, and let B_{q}, B_{r} be the branch paths in Σ containing $x^{*} q, x^{*} r$, respectively. Since $x^{*} z \notin E(\Sigma)$ (by (ii) of Lemma 3.1), both B_{q} and B_{r} have an $x^{*}-S_{y}$ subpath whose internal vertices are all contained in D_{y}. Let $P_{x y}, P_{x z}$ be two internally disjoint paths in G_{2} from x to y, z, respectively, which exist by (iii) of Lemma 2.2. Note that there exists an $\left(S_{z}-\{v\}\right)-\left(S_{x}-\{v\}\right)$ path $Q_{x z}$ in $\left(G_{1}-v\right)-V\left(D_{x} \cup D_{y} \cup D_{z}\right)$; for otherwise, one of $\{v, x\},\{v, z\}$ is a 2-cut in G, contradicting Proposition 2.1. Let Y be a $y-v$ path in $G\left[V\left(D_{y}\right) \cup\{v\}\right]$ and let Z be a $z-\left(S_{z}-\{v\}\right)$ path in $G\left[V\left(D_{z}\right) \cup\left(S_{z}-\{v\}\right)\right]$. Then

$$
\begin{aligned}
& \left(\left(\left(\Sigma-x^{*}\right)+\{x, x s, x t\}\right)-\left(V\left(B_{q} \cup B_{r}\right)-\left(V\left(D_{x}\right) \cup S_{x}\right)\right)\right) \\
& \quad \cup\left(P_{x y} \cup Y\right) \cup\left(P_{x z} \cup Z \cup Q_{x z}\right)
\end{aligned}
$$

is a K_{5}-subdivision in G, a contradiction.
Since $\left|\left\{x^{*}\right\} \cup S_{x} \cup S_{y}\right|=4$, there must exist a branch vertex x^{\prime} of Σ such that $x^{\prime} \in V\left(D_{x}-x\right)$ $\cup V\left(D_{y}-y\right)$. By symmetry, we may assume that $x^{\prime} \in V\left(D_{x}-x\right)$. Hence by the above claim, there is also a branch vertex y^{\prime} of Σ such that $y^{\prime} \in V\left(D_{y}-y\right) \cup\left(S_{y}-\{v\}\right)$. Now $S_{x} \cup\left\{x^{*}\right\}$ is a 3-cut in Σ separating x^{\prime} from y^{\prime}, contradicting (iv) of Lemma 3.1.

Case 3. There exist pairwise disjoint 2-cuts S_{x}, S_{y}, S_{z} in G_{1} and components D_{u} of $G_{1}-S_{u}$ containing u, for all $u \in\{x, y, z\}$, such that D_{x}, D_{y}, D_{z} are pairwise disjoint and $G_{1}-V\left(D_{x} \cup\right.$ $D_{y} \cup D_{z}$) has exactly two components, each containing exactly one vertex from S_{u}, for all $u \in$ $\{x, y, z\}$.

Let $S_{x}=\left\{a_{x}, b_{x}\right\}, S_{y}=\left\{a_{y}, b_{y}\right\}$, and $S_{z}=\left\{a_{z}, b_{z}\right\}$ such that $\left\{a_{x}, a_{y}, a_{z}\right\}$ is contained in a component A of $G_{1}-V\left(D_{x} \cup D_{y} \cup D_{z}\right)$, and $\left\{b_{x}, b_{y}, b_{z}\right\}$ is contained in another component B of $G_{1}-V\left(D_{x} \cup D_{y} \cup D_{z}\right)$.

As in Cases 1 and 2, we can show that all branch vertices of Σ are in $R \cup S_{z}$, where $R:=$ $V\left(D_{x}-x\right) \cup V\left(D_{y}-y\right) \cup S_{x} \cup S_{y} \cup\left\{x^{*}\right\}$. In fact, all branch vertices of Σ must be in R. For otherwise, assume by symmetry that a_{z} is a branch vertex of Σ. Then, since $x^{*} z \notin E(\Sigma)$ (by (ii) of Lemma 3.1), $\left\{b_{z}, a_{x}, a_{y}\right\}$ shows that Σ cannot contain four internally disjoint paths between a_{z} and x^{*}, contradicting (iv) of Lemma 3.1.

We claim that, for each $u \in\{x, y\}$, not all branch vertices of Σ are contained in $V\left(D_{u}\right) \cup$ $S_{u} \cup\left\{x^{*}\right\}$. For otherwise, we may assume that all branch vertices of Σ are contained in $V\left(D_{x}\right) \cup$ $S_{x} \cup\left\{x^{*}\right\}$. By (iii) of Lemma 3.1, let $x^{*} s, x^{*} t$ be the two edges in $E(\Sigma) \cap E_{x}$, let $x^{*} q, x^{*} r$ be the two edges in $E(\Sigma) \cap E_{y}$, and let A_{q}, B_{r} be the branch paths in Σ containing $x^{*} q, x^{*} r$, respectively. Since $x^{*} z \notin E(\Sigma)$, both A_{q} and B_{r} have an $x^{*}-S_{y}$ subpath whose internal vertices are all contained in D_{y}. Let $P_{x y}, P_{x z}$ be two internally disjoint paths in G_{2} from x to y, z, respectively, which exist by (iii) of Lemma 2.2. Note that there exists an $a_{y}-a_{x}$ path $Q_{x y}$ in A (since A is connected) and there exists a $b_{z}-b_{x}$ path $Q_{x z}$ in B (since B is connected). Let Y be a $y-a_{y}$ path in $G\left[V\left(D_{y}\right) \cup\left\{a_{y}\right\}\right]$ and let Z be an $z-b_{z}$ path in $G\left[V\left(D_{z}\right) \cup\left\{b_{z}\right\}\right]$. Then,

$$
\begin{aligned}
& \left(\left(\left(\Sigma-x^{*}\right)+\{x, x s, x t\}\right)-\left(V\left(A_{q} \cup B_{r}\right)-\left(V\left(D_{x}\right) \cup S_{x}\right)\right)\right) \\
& \quad \cup\left(P_{x y} \cup Y \cup Q_{x y}\right) \cup\left(P_{x z} \cup Z \cup Q_{x z}\right)
\end{aligned}
$$

is a K_{5}-subdivision in G, a contradiction.
We further claim that the set of branch vertices of Σ is $S_{x} \cup S_{y} \cup\left\{x^{*}\right\}$. For otherwise, there must be a branch vertex x^{\prime} of Σ such that $x^{\prime} \in V\left(D_{x}-x\right) \cup V\left(D_{y}-y\right)$. By symmetry, we may
assume that $x^{\prime} \in V\left(D_{x}-x\right)$. Then by the above claim, there is a branch vertex y^{\prime} of Σ such that $y^{\prime} \in V\left(D_{y}-y\right) \cup S_{y}$. Now $S_{x} \cup\left\{x^{*}\right\}$ is a 3-cut in Σ separating x^{\prime} from y^{\prime}, contradicting (iv) of Lemma 3.1.

Since $x^{*} z \notin E(\Sigma)$, we see that Σ must contain two branch paths from $\left\{a_{x}, a_{y}\right\}$ to $\left\{b_{x}, b_{y}\right\}$ which must be contained in $G_{1}-V\left(D_{x} \cup D_{y}\right)$. But this is impossible, because a_{z} separates $\left\{a_{x}, a_{y}\right\}$ from $\left\{b_{x}, b_{y}\right\}$ in $G_{1}-V\left(D_{x} \cup D_{y}\right)$, a contradiction.

Acknowledgment

We thank the referee for helpful suggestions and for bringing reference [10] to our attention and for informing us that Kühn and Osthus [7] also showed that Hajós’ conjecture holds for graphs with girth at least 27.

References

[1] P. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory Ser. B 26 (1979) 268-274.
[2] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. Ser. B 27 (1952) 85-92.
[3] P. Erdös, S. Fajtlowicz, On the conjecture of Hajós, Combinatorica 1 (1981) 141-143.
[4] H. Hadwiger, Über eine Klassifikation der Streckencomplexe, Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943) 133-142.
[5] A.E. Kézdy, P.J. McGuinness, Do $3 n-5$ edges force a subdivision of K_{5} ? J. Graph Theory 15 (1991) 389-406.
[6] D. Kühn, D. Osthus, Topological minors in graphs of large girth, J. Combin. Theory Ser. B 86 (2002) 364-380.
[7] D. Kühn, D. Osthus, Improved bounds for topological cliques in graphs of large girth, SIAM J. Discrete Math., in press.
[8] W. Mader, $3 n-5$ edges do force a subdivision of K_{5}, Combinatorica 18 (1998) 569-595.
[9] N. Robertson, P.D. Seymour, R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993) 279361.
[10] P.D. Seymour, private communication with X. Yu.
[11] C. Thomassen, Some remarks on Hajós' conjecture, J. Combin. Theory Ser. B 93 (2005) 95-105.
[12] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-590.
[13] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Canad. J. Math. 19 (1967) 1319-1328.

[^0]: E-mail address: yu@math.gatech.edu (X. Yu).
 ${ }^{1}$ Partially supported by NSF grant DMS-0245230 and NSA grant MDA-904-03-1-0052.
 2 Supported by the Fulbright Program and the German National Academic Fundation.

