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Abstract

Recently, Tenner [12] studied the set of posets of a permutation of length n with unique maximal
element, which arise naturally when studying the set of zonotopal tilings of Elnitsky’s polygon. In
this paper, we prove that the number of such posets is given by

P5n − 4P5(n−1) + 2P5(n−2) −
n−2∑

j=0

CjP5(n−2−j),

where Pn is the n-th Padovan number and Cn is the n-th Catalan number.

2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70

1. Introduction

Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation, and suppose α ∈ Sn

and τ ∈ Sk. We say α contains τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that
(αi1 , . . . , αik

) is order-isomorphic to τ . In this context τ is usually called a pattern; α avoids τ , or is τ -
avoiding , if α does not contain such a subsequence. For any set of patterns T = {τ1, . . . , τs} we write
Sn(T ) or Sn(τ1, . . . , τs) to denote the set of permutations in Sn which avoid τ1, . . . , τs simultaneously.
One important and often difficult problem in the study of permutations that avoid a set of patterns
is the enumeration problem: given a set T of patterns, enumerate the set Sn(T ) consisting of those
permutations in Sn which avoid every element of T . It well known that there is no general procedure
for finding an explicit formula for Sn(T ), in fact it is an art (for example, see [1], [3]-[5], [9]-[10] and
references therein).

Recently, a special classe of restricted permutations has arisen in the study of algebraic combinatorics.
For instance, Green and Losonczy [6] defined, for any simply laced Coxeter group, a subset of “freely
braided elements” (for details, see [6] and [7]), and they suggest as an open problem to enumerate
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the number of freely-braided permutations in Sn. Mansour [8] showed that the ordinary generating
function for the number of freely-braided permutations in Sn is given by

1− 3x− 2x2 + (1 + x)
√

1− 4x

1− 4x− x2 + (1− x2)
√

1− 4x
.

Tenner [12] studied the set of posets P (π), π ∈ Sn, with an unique maximal element, where P (π) arises
naturally when studying the set of zonotopal tilings of Elnitsky’s polygon (see [12] and the references
therein). He proved that the poset P (π) has unique maximal element if and only if π avoids each
of the three patterns 4231, 4312, and 3421. Thus, it is interesting to present an explicit formula for
the number of permutations π in Sn such that the poset P (π) has unique maximal element, which is
equivalent to find an explicit formula for the number of permutations in Sn that avoid each of the three
patterns 4231, 4312, and 3421. Note, however, that a permutation π avoids these three patterns if and
only if r(π) avoids each of the three patterns 1324, 2134 and 1243, where r : π1π2 . . . πn → πn . . . π2π1.
So, for all n ≥ 0, #Sn(1324, 2134, 1243) = #Sn(4231, 4312, 3421). This leads us to the following
definition.

Definition 1.1. A permutation π is said to be maximal-poset if and only if π avoids each of the three
patterns 1324, 2134, and 1243. We denote the set of all maximal-poset permutations in Sn by Fn,
i.e., Fn = Sn(1324, 2134, 1243).

The main reason for the term ”maximal-poset permutation” is that for each permutation π with
r(π) ∈ Fn obtains a poset P (π) with unique maximal element.

The main result of this paper can be formulated as follows.

Theorem 1.2. The ordinary generating function for the number of maximal-poset permutations in
Sn is given by

2− C(x)
2− x− C(x)

.

where C(x) = 1−√1−4x
2x is the ordinary generating function for the Catalan numbers (Cn = 1

n+1

(
2n
n

)
).

Moreover, the number of maximal-poset permutations in Sn is given by

P5n − 4P5(n−1) + 2P5(n−2) −
n−2∑

j=0

CjP5(n−2−j),

where Pn is the n-th Padovan number (see [11, A012814,A000931]).

The proof of the above theorem is presented in Section 2.

2. Proof of main result

Given b1, b2, . . . , bm ∈ N, we define

fn(b1, b2, . . . , bm) = #{π1π2 . . . πn ∈ Fn | π1π2 . . . πm = b1b2 . . . bm}.
It is natural to extend fn(b1, b2, . . . , bm) to the case m = 0 by setting fn(∅) = fn = #Fn. The
following properties of the numbers fn(b1, . . . , bm) can be deduced easily from the definitions.



THE ENUMERATION OF PERMUTATIONS WHOSE POSETS HAVE A MAXIMAL ELEMENT 3

Lemma 2.1. (1) Let m ≥ 1 and n− 2 ≥ b1 > b2 > · · · > bm ≥ 1. Then, for all bm + 1 ≤ j ≤ b1 − 1,

fn(b1, . . . , bm, j) = 0.

(2) Let m ≥ 2 and n− 2 ≥ b1 > b2 > · · · > bm ≥ 1. Then, for all b1 + 1 ≤ j ≤ n− 1,

fn(b1, . . . , bm, j) = 0.

(3) Let m ≥ 1 and n− 2 ≥ b1 > b2 > · · · > bm ≥ 1. Then,

fn(b1, . . . , bm, n) = fn−1(b1, . . . , bm).

(4) Let m ≥ 1 and n− 2 ≥ b1 > b2 > · · · > bm ≥ 1. Then

fn(n, b1, . . . , bm) = fn(n− 1, b1, . . . , bm) = fn−1(b1, . . . , bm).

Proof. For (1), observe that if π ∈ Sn is such that π1 . . . πmπm+1 = b1 . . . bmj, then the entries bm, j,
n, n− 1 give an occurrence of the pattern 1243 or the entries b1, j, n− 1, n give an occurrence of the
pattern 2134.

For (2), observe that if π ∈ Sn is such that π1 . . . πmπm+1 = b1 . . . bmj, then the entries b1, b2, j, n
give an occurrence of the pattern 2134.

For (3), observe that if π ∈ Sn is such that π1 . . . πmπm+1 = b1 . . . bmn, where n − 2 ≥ b1 > · · · >
bm ≥ 1, then no occurrence of the patterns 1243, 2134, 1324 in π can involve the entry πm+1 = n.
Hence, there is a bijection between the set of permutations π ∈ Fn with π1 . . . πmπm+1 = b1 . . . bmn
and the set of permutations σ ∈ Fn−1 such that σ1 . . . σm = b1 . . . bm.

Using similar arguments as in the proof of (3) we get that (4) holds. ¤

Next we introduce objects Am(n), Cm(n), and B(n) which organize suitably the information about
the numbers fn(b1, . . . , bm) and play an important role in the proof of the main result.

Definition 2.2. For 1 ≤ m ≤ n− 2 set

Am(n) =
∑

n−2≥b1>b2>···>bm≥1

fn(b1, b2, . . . , bm),

Cm(n) =
∑

n−1≥b1>b2>···>bm≥1

fn(b1, b2, . . . , bm),

B(n) =
n−2∑
i=1

fn(i, n− 1).

We start by deriving recursive expressions for Am(n) and B(n).

Proposition 2.3. For all 2 ≤ m ≤ n− 2,

Am(n) = Am+1(n) + Am(n− 1) + · · ·+ A2(n + 1−m) + fn−m − fn−1−m.

Proof. Let 2 ≤ m ≤ n− 2. Definition 2.2 yields

Am(n) = Am+1(n) +
∑

n−2≥b1>b2>···>bm≥1

n∑

j=bm+1

fn(b1, . . . , bm, j).
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Using Lemma 2.1, parts (1)-(3), we have

(2.1)

Am(n) = Am+1(n) +
∑

n−2≥b1>b2>···>bm≥1

fn(b1, b2, . . . , bm, n)

= Am+1(n) +
∑

n−2≥b1>b2>···>bm≥1

fn−1(b1, b2, . . . , bm)

= Am+1(n) + Cm(n− 1).

Definition 2.2 and Lemma 2.1(4) give

(2.2)

Cm(n) = Am(n) +
∑

n−2≥b2>···>bm≥1

fn(n− 1, b2, . . . , bm)

= Am(n) +
∑

n−2≥b2>···>bm≥1

fn−1(b2, . . . , bm)

= Am(n) + Cm−1(n− 1),

and

(2.3) C1(n) =
n−2∑

j=1

fn−1(j) = fn−1 − fn−1(n− 1) = fn−1 − fn−2.

Hence, by induction on m together with (2.1), (2.2) and (2.3) we get the desired result. ¤

Let f(x) =
∑

n≥0 fnxn. We next find an explicit expression for A2(n) in terms of fn.

Theorem 2.4. The ordinary generating function for the sequence {A2(n)}n≥0 is given by
∑

n≥0

A2(n)xn = x2C2(x)((1− x)f(x)− 1).

Proof. Define An(v) =
∑n−2

j=2 Aj(n)vj−2 for all n ≥ 0. Proposition 2.3 gives that

An(v)− vAn−1(v) =
1
v
(An(v)−An(0)) +An−1(0) + fn−2 − fn−3

for all n ≥ 4 and An(v) = 0 for n = 0, 1, 2, 3. Defining A(x; v) =
∑

n≥0An(v)xn, multiplying the
above recurrence relation by xn and summing over all n ≥ 4 we arrive at

(
1− 1

v
− xv

)
A(x; v) = x2((1− x)f(x)− 1)− 1− xv

v
A(x; 0).

This type of functional equation can be solved systematically using the kernel method [2]. In this case,
by assuming v = C(x) we get the desired result. ¤

Next we find an explicit formula for the ordinary generating function B(x) =
∑

n≥0 B(n)xn of the
sequence {B(n)}n≥0 in terms of f(x).

Proposition 2.5. For all n ≥ 3,

B(n) = A2(n− 1) + 2fn−2 − fn−3.

Moreover, the ordinary generating function for the sequence {B(n)}n≥0 is given by

B(x) = x3C2(x)((1− x)f(x)− 1) + 2x2(f(x)− 1)− x3f(x).
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Proof. By Definition 2.2 we get that

B(n) =
n−3∑

i=1

fn(i, n− 1) + fn(n− 2, n− 1).

Observe that if a permutation π ∈ Fn is such that π1 = n − 2 and π2 = n − 1, then no occurrence
of the patterns 1243, 2134, 1324, can involve either the entry n − 2 or the entry n − 1. Thus,
fn(n− 2, n− 1) = fn−1(n− 2) = fn−2. On the other hand, by the definitions we get that

n−3∑

i=1

fn(i, n− 1) =
n−3∑

i=1

i−1∑

j=1

fn(i, n− 1, j) +
n−3∑

i=1

n−2∑

j=i+1

fn(i, n− 1, j) +
n−3∑

i=1

fn(i, n− 1, n).

Observe that if a permutation π ∈ Fn is such that π1 = i, π2 = n−1 and π3 = j with 1 ≤ j < i ≤ n−2,
then the entries i, n−1, j and n give an occurrence of the pattern 1324. Hence the middle sum of the
above equation is zero. Using similar arguments as in the proof of Lemma 2.1, part (3), we get that
fn(i, n− 1, n) = fn−2(i) for all 1 ≤ i ≤ n− 3, and fn(i, n− 1, j) = fn−1(i, j) for all 1 ≤ j < i ≤ n− 3.
Thus,

n−3∑

i=1

fn(i, n− 1) =
n−3∑

i=1

i−1∑

j=1

fn−1(i, j) +
n−3∑

i=1

fn−2(i).

Therefore, by Definition 2.2 we obtain that

B(n) = A2(n− 1) + 2fn−2 − fn−3,

for all n ≥ 3, as claimed. Now multiplying by xn and summing over all n ≥ 3 we arrive at∑

n≥0

B(n)xn = xA2(x) + 2x2(f(x)− 1)− x3f(x).

Hence, Theorem 2.4 gives that

B(x) = x3C2(x)((1− x)f(x)− 1) + 2x2(f(x)− 1)− x3f(x),

as required. ¤

We need one more result for the proof of Theorem 1.2.

Proposition 2.6. We have

(1− 3x + x2)f(x)− 1 + 2x = A2(x) + L(x),

where
L(x) =

1
1− x

∑

n≥0

B(n)xn.

Proof. By Definition 2.2, and defining L(n) =
n−2∑
i=1

n−1∑
j=i+1

fn(i, j) we get that for all n ≥ 2,

fn = fn(n) + fn(n− 1) +
n−2∑

i=1

fn(i) = 2fn−1 +
n−2∑

i=1

fn(i)

and
n−2∑

i=1

fn(i) = A2(n) + L(n) +
n−2∑

i=1

fn(i, n),
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which is equivalent to
n−2∑

i=1

fn(i) = A2(n) + L(n) + fn−1 − fn−2.

In terms of generating functions this becomes

f(x)− 1− x = 3x(f(x)− 1)− x2f(x) = L(x) + A2(x),

where L(x) =
∑
n≥0

L(n)xn is the ordinary generating function for the sequence {L(n)}n≥0.

Also, by Definition 2.2 we obtain that

L(n) = B(n) +
n−3∑

i=1

n−2∑

j=i+1

fn(i, j) = B(n) +
n−3∑

i=1

n−2∑

j=i+1

fn(i, j, j + 1).

The last equality can be proved as follows: observe that if a permutation π ∈ Fn is such that
1 ≤ π1 = i < π2 = j ≤ n− 2, then π3 = j + 1 otherwise

• if π3 < π2 then the entries j, π3, n− 1 and n give an occurrence of either 2134 or 1243.
• if π3 > π2 + 1 then the entries i, j, π3 and j + 1 give an occurrence of 1243.

Now, observe that if a permutation π ∈ Fn is such that 1 ≤ π1 = i < π2 = j ≤ n− 2 and π3 = j + 1,
then there no occurrence of the patterns 1243, 2134 and 1324 can involve the entry j and the entry
j + 1. Thus, fn(i, j, j + 1) = fn−1(i, j). Therefore, by the definitions of the sequence L(n) we obtain
that for all n ≥ 4,

L(n) = B(n) +
n−3∑

i=1

n−2∑

j=i+1

fn−1(i, j) = B(n) + L(n− 1).

Hence, multiplying by xn and summing over all n ≥ 4 we get that L(x) = 1
1−xB(x), as required. ¤

Now we are ready to prove the main result of this paper, namely Theorem 1.2, which is restated here
for easy reference.

Theorem 1.2. The ordinary generating function for the number of maximal-poset permutations in
Sn is given by

2− C(x)
2− x− C(x)

.

Moreover, the number of maximal-poset permutations in Sn is given by

P5n − 4P5(n−1) + 2P5(n−2) −
n−2∑

j=0

CjP5(n−2−j),

where Pn is the n-th Padovan number (see [11, A012814, A000931]) and Cn is the n-th Catalan
number.

Proof. Combining Theorem 2.4, Proposition 2.3, and Proposition 2.6 gives

(1− 3x + x2)f(x)− 1 + 2x = x2C2(x)((1− x)f(x)− 1)

+ 1
1−x

(
x3C2(x)((1− x)f(x)− 1) + 2x2(f(x)− 1)− x3f(x)

)
.
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Solving the above equation we get that

f(x) =
2− C(x)

2− x− C(x)
=

2− 9x + 4x2 + x
√

1− 4x

2(1− 5x + 4x2 − x3)
.

Hence, by using the fact that the ordinary generating function for the fifth term of the Padovan
sequence is given by 1

1−5x+4x2−x3 (see [11, A012814]), we obtain that

f(x) =
∑

n≥0

xn


P5n − 4P5(n−1) + 2P5(n−2) −

n−2∑

j=0

CjP5(n−2−j)


 ,

as claimed. ¤
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[4] M. Bóna, Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps, J.
Combin. Theory, Series A 80 (1997) 257–272.
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