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Abstract

Let Γ be a finite G-symmetric graph whose vertex set admits a nontrivial G-
invariant partition B. It was observed that the quotient graph ΓB of Γ relative to
B can be (G, 2)-arc transitive even if Γ itself is not necessarily (G, 2)-arc transitive.
In a previous paper of Iranmanesh, Praeger and Zhou, this observation motivated
a study of G-symmetric graphs (Γ,B) such that ΓB is (G, 2)-arc transitive and,

for blocks B,C ∈ B adjacent in ΓB, there are exactly |B| − 2 (≥ 1) vertices in B

which have neighbours in C. In the present paper we investigate the general case
where ΓB is (G, 2)-arc transitive and is not multi-covered by Γ, that is, at least
one vertex in B has no neighbour in C for adjacent B,C ∈ B. In this case it is
natural to analyse the dual D∗(B) of the 1-design D(B) := (B,ΓB(B), I) and the
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dual D
∗
(B) of the complement D(B) of D(B), where ΓB(B) is the neighbourhood

of B in ΓB and αIC (α ∈ B, C ∈ ΓB(B)) in D(B) if and only if α has at least one

neighbour in C. A crucial feature is that D∗(B) and D
∗
(B) admit G as a group of

automorphisms acting 2-transitively on points and transitively on blocks. The case
when no point ofD(B) is incident with two blocks can be reduced to multicovers, and

the case when no point of D(B) is incident with two blocks can be partially reduced

to the 3-arc graph construction. In the general situation D∗(B) and D
∗
(B) are

(G, 2)-point-transitive and G-block-transitive 2-designs, and exploring relationships
between them and Γ is an attractive research direction. In this paper we investigate

the degenerate case where D∗(B) or D
∗
(B) is a trivial Steiner system with block

size 2, that is, a complete graph. In each of these cases we give a construction which
produces symmetric graphs with the corresponding properties, and we prove further
that every such graph Γ can be constructed from ΓB by using the construction.

Keywords: Symmetric graph; two-arc transitive graph; quotient graph; three-
arc graph; 2-design

AMS Subject Classification (2000): 05C25

1 Introduction

This paper is a continuation of [24, 20], where two classes of symmetric graphs with 2-arc

transitive quotients were investigated. Although most quotient graphs of 2-arc transitive

graphs are not themselves 2-arc transitive (see e.g. [29]), the main results of [24] suggest

that under certain circumstances a quotient of a symmetric graph can be 2-arc transitive

even when the original graph is not 2-arc transitive. This observation motivated the

following general questions [20, Question 1.1]: When does a quotient of a symmetric

graph admit a natural 2-arc transitive group action? If there is such a quotient, what

information does this give us about the original graph? This paper is an attempt on the

second question under the assumption that the original is not a multicover of the quotient.

Thus, the objects of investigation in the paper are symmetric graphs with 2-arc transitive

quotients; and the main results of the paper, which will be summarised in Section 1.2, are

concerned with the structure and construction of such graphs.

There has been a lot of interest in 2-arc transitive graphs since the classification

of finite simple groups. See for example [7, 14, 15, 21, 22, 23, 28], [1, 25, 27] for 2-

arc transitive Cayley graphs, and [17, 20, 24, 33, 35] for 2-arc transitive quotients of

symmetric graphs. The present paper is a contribution towards symmetric graphs with

2-arc transitive quotients, and it forms part of our study of imprimitive symmetric graphs.

The reader is referred to [4, 19] for basic results about symmetric graphs, and to

[29, 30] for more recent development in the area.

2



1.1 Notation and terminology

Let us first introduce the notation and terminology that will be used throughout the

paper.

Let Γ = (V (Γ), E(Γ)) be a finite graph and s ≥ 1 an integer. An s-arc of Γ is a sequence

(α0, α1, . . . , αs) of s+1 vertices of Γ such that αi, αi+1 are adjacent for i = 0, . . . , s−1 and

αi−1 6= αi+1 for i = 1, . . . , s−1. Denote by Arcs(Γ) the set of s-arcs of Γ. Let G be a finite

group acting on V (Γ). The graph Γ is said to admit G as a group of automorphisms if G

preserves the adjacency of Γ, that is, for any α, β ∈ V (Γ) and g ∈ G, α and β are adjacent

in Γ if and only if αg and βg are adjacent in Γ. In the case where G is transitive on V (Γ)

and, under the induced action, transitive on Arcs(Γ), Γ is said to be (G, s)-arc transitive.

From this definition it is clear that a (G, s)-arc transitive graph must be (G, s − 1)-arc

transitive, where (G, 0)-arc transitivity is interpreted as G-vertex transitivity. A 1-arc

is usually called an arc, and a (G, 1)-arc transitive graph is called a G-symmetric graph.

In this paper we will use Arc(Γ) in place of Arc1(Γ). Evidently, a G-vertex transitive

graph Γ is G-symmetric ((G, 2)-arc transitive, respectively) if and only if Gα is transitive

(2-transitive, respectively) on Γ(α).

Roughly speaking, in most cases a G-symmetric graph Γ admits a nontrivial G-

invariant partition, that is, a partition B of V (Γ) such that 1 < |B| < |V (Γ)| and Bg ∈ B

for B ∈ B and g ∈ G, where Bg := {αg : α ∈ B}. In such a case Γ is called an imprimitive

G-symmetric graph. From permutation group theory [12, Corollary 1.5A], this happens

precisely when the stabilizer Gα in G of a vertex α ∈ V (Γ) is not a maximal subgroup of

G. In this case the quotient graph ΓB of Γ with respect to B is defined to be the graph

with vertex set B in which B,C ∈ B are adjacent if and only if there exist α ∈ B, β ∈ C

such that α, β are adjacent in Γ. In this paper we will always assume that ΓB contains at

least one edge, so that each block of B is an independent set of Γ (see e.g. [4, Proposition

22.1]). It is not difficult to see that ΓB is G-symmetric under the induced action (possibly

unfaithful) of G on B. Although ΓB stores a lot of information about the original graph

Γ, a genuine picture of Γ would need the bipartite subgraph induced on two adjacent

blocks and a 1-design with point set B. Let Γ(α) denote the neighbourhood of α in Γ.

For B ∈ B, define Γ(B) :=
⋃

α∈B Γ(α), and denote by ΓB(B) the neighbourhood of B in

ΓB. For adjacent blocks B,C of B, let Γ[B,C] be the induced bipartite subgraph of Γ

with bipartition {Γ(C)∩B,Γ(B)∩C}. Define D(B) := (B,ΓB(B), I) to be the incidence

structure in which αIC for α ∈ B and C ∈ ΓB(B) if and only if α ∈ Γ(C); such a pair

(α,C) is called a flag of D(B). The triple (ΓB,Γ[B,C],D(B)) mirrors the structure of

Γ, and this approach to imprimitive symmetric graphs was suggested in [16] and further
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developed in [17, 24, 20, 32, 33, 35, 36]. Let

v := |B|, k := |Γ(C) ∩B|, b := |ΓB(B)|, r := |ΓB(α)|

where ΓB(α) := {C ∈ ΓB(B) : αIC}. In the case where k = v, Γ is called a multicover [29]

of ΓB. Since Γ is G-symmetric, it can be checked easily that D(B) is a 1-(v, k, r) design

with b blocks, and is independent of the choice of B up to isomorphism. The number

of blocks of D(B) with the same trace is a constant, m, called the multiplicity of D(B).

Also, up to isomorphism, Γ[B,C] is independent of the choice of adjacent blocks B,C of

B. As we will see later sometimes it is convenient to analyse the complementary structure

D(B) := (B,ΓB(B), I) of D(B), for which αIC if and only if α 6∈ Γ(C), that is, (α,C)

is a flag of D(B) if and only if it is an antiflag of D(B) and vice versa. In the following

we will take D(B) and D(B) respectively as having blocks Γ(C)∩B and B \ Γ(C) (where

C ∈ ΓB(B)), each repeated m times, and interpret their incidence relations as set-theoretic

inclusion.

The notation and terminology for graphs, groups and designs used in the paper are

standard; see e.g. [4], [12] and [3], respectively. For a group G acting on a set Ω and for

X ⊆ Ω, GX and G(X) are the setwise and pointwise stabilisers of X in G, respectively. For

α ∈ Ω, αG := {αg : g ∈ G} is the G-orbit on Ω containing α, and Gα := {g ∈ G : α
g = α}

is the stabiliser of α in G. The action of G on Ω is said to be faithful if G(Ω) = 1, and

regular if it is transitive and Gα = 1 for α ∈ Ω. Suppose that a group G acts on two

sets Ω1 and Ω2. If there exists a bijection ψ : Ω1 → Ω2 such that ψ(α
g) = (ψ(α))g for all

α ∈ Ω1 and g ∈ G, then the actions of G on Ω1 and Ω2 are said to be permutationally

equivalent.

A graph Γ is called regular if all vertices of it have the same valency, denoted by

val(Γ). The union of n vertex-disjoint copies of Γ is denoted by n · Γ. For two graphs Γ

and Σ, the lexicographic product of Γ by Σ, Γ[Σ], is the graph with vertex set V (Γ)×V (Σ)

such that (α, β), (γ, δ) are adjacent if and only if either α, γ are adjacent in Γ, or α = γ

and β, δ are adjacent in Σ.

1.2 A summary of the main results

Let Γ be a G-symmetric graph with V (Γ) admitting a nontrivial G-invariant partition

B. In this summary we assume that ΓB is (G, 2)-arc transitive, and that Γ is not a

multicover of ΓB. Then both D(B) and D(B) admit G as a group of automorphisms

acting transitively on points and 2-transitively on blocks. Thus, G is 2-transitive on

the point sets of D∗(B) and D
∗
(B), the dual designs of D(B) and D(B), respectively.
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Of course, D(B), D∗(B) and D
∗
(B) are all induced from D(B). However, sometimes it

seems handy to think of these derived designs instead of D(B).

It may happen that no two points of D∗(B) lie in a block of D∗(B) simultaneously.

In this case Γ admits a second G-invariant partition Q such that Γ is a multicover of

ΓQ (Theorem 3.5). It may also happen that no two points of D
∗
(B) lie in a block of

D
∗
(B) simultaneously. This second possibility can be partially reduced to the 3-arc graph

construction, which was introduced in [24] and developed in [32]. (See the beginning of

Section 3.2 for the 3-arc graph construction.) More precisely, in this case Γ admits a second

G-invariant partition P such that ΓP is isomorphic to a 3-arc graph of ΓB or otherwise Γ,

ΓP and ΓB are all known (Theorem 3.7). Combining the 3-arc graph construction and the

well-known covering graph construction [4], we then give (Construction 3.8) a method of

constructing symmetric graphs for which the second possibility occurs.

In the general case, D∗(B) and D
∗
(B) are both 2-designs with parameters λ ≥ 1

and λ ≥ 1, and with G acting 2-transitively on points. These 2-designs may contain

key information about the structure of Γ and ΓB, yet to be dug out, and many natu-

ral and interesting problems arise from these designs. For example, we may ask when

a 2-point-transitive, flag-transitive (antiflag-transitive) and block-transitive 2-design can

occur as D∗(B) (D
∗
(B)), and how much structural information of Γ and/or ΓB we can

get if we know D∗(B) or D
∗
(B). No one may expect simple answers to these questions

due to the complex of both imprimitive symmetric graphs and 2-designs. Perhaps it is

not realistic to try all possible cases in one time. So in this paper we will focus on the

following “trivial” cases: (i) D∗(B) is the trivial design with λ = 1 and block size r = 2;

(ii) D
∗
(B) is the trivial design with λ = 1 and block size b− r = 2. Interesting combina-

torics appears even in such degenerate cases. In fact, we find a simple construction which

can produce imprimitive symmetric graphs in case (i), and moreover every imprimitive

symmetric graph in this case can be constructed from its quotient by using this method.

See Construction 4.2, Theorem 4.4 and Theorem 4.10. This is another kind of “3-arc

construction” since it involves a self-paired orbit of the 3-arcs of a regular graph. How-

ever, unlike the 3-arc construction in [24, 32]. This time the vertices of the constructed

graph are paths of length two of the given graph. The main results for case (i) imply

the following somewhat strange consequence (Corollary 4.8): every connected (G, 3)-arc

transitive graph of valency at least 3 is a quotient graph of at least one G-symmetric but

not (G, 2)-arc transitive graph. Thus, a connected graph can be just symmetric but not

2-arc transitive, but a quotient of it can be 7-arc transitive. (There are infinitely many

such graphs since there are infinitely many 7-arc transitive graphs [11].) For case (ii) we

find another construction and prove that every imprimitive symmetric graph in this case
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can be constructed from its quotient by using this construction. See Construction 4.11,

Theorem 4.12 and Theorem 4.14.

As preliminaries we will derive general information about D(B) and D(B) in the

next section. The most striking result in this section says that either λ = 0 or D(B) is

connected as a hypergraph. See Theorem 2.2 for details.

2 Induced designs

In this section we do not assume 2-arc transitivity of the quotient graph. The following

simple facts were observed in [16, Section 3] under the assumption that Gα is primitive

on Γ(α), and stated explicitly in [32, Lemma 2.1] for any imprimitive symmetric graph.

Lemma 2.1 Let Γ be a finite G-symmetric graph whose vertex set admits a nontrivial

G-invariant partition B, and let B be a block of B. Then GB induces a group of automor-

phisms of D(B) which is transitive on the points, the blocks and the flags of D(B).

The following theorem is obtained by viewing D(B) as a uniform hypergraph [2] with

vertex set B and hyperedges B \ Γ(C), C ∈ ΓB(B). It says that in general D(B) is

connected as a hypergraph. This was known in [20, Theorem 2.1] in the special case

when k = v − 2 ≥ 1, for which D(B) is the graph ΓB as defined in [20]. (A hypergraph

is connected [2] if, for any two vertices α, β there exists a sequence E0, E1, . . . , En of

hyperedges such that α ∈ E0, β ∈ En and Ei−1 ∩ Ei 6= ∅ for i = 1, . . . , n.) Let d :=

val(Γ[B,C]) for adjacent blocks B,C of B.

Theorem 2.2 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Then D(B) is a 1-(v, v − k, b − r)

design, and it admits GB as a group of automorphisms acting transitively on the points,

the blocks and the antiflags. Moreover, one of the following (a)-(b) occurs.

(a) D(B) is connected as a hypergraph.

(b) The blocks of D(B) form a GB-invariant partition of B, and the blocks of D(B) for

B running over B form a G-invariant partition of V (Γ), namely

P :=
⋃

B∈B

{B \ Γ(C) : C ∈ ΓB(B)}, (1)

which is a nontrivial refinement of B. In this case v−k divides v and k, b = m(t+1),

r = mt, where t = k/(v − k), either k = v/2 or k ≥ 2v/3, G(P) = G(B), and the
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parameters with respect to (Γ,P) satisfy vP = v − k and rPdP = rd. Moreover,

P admits a G-invariant partition B̂ induced by B such that (ΓP)B̂
∼= ΓB, and the

parameters with respect to (ΓP , B̂) satisfy kB̂ = v
B̂
− 1 = t ≥ 1, b

B̂
= b, r

B̂
= r and

m
B̂
= m.

Proof From Lemma 2.1 it follows immediately thatGB induces a group of automorphisms

of D(B) which is transitive on the points, the blocks and the antiflags of D(B). In

particular, D(B) must be a 1-design with v points and b blocks of size v− k. Hence each

point is incident with b(v − k)/v = b − r blocks in D(B). In other words, D(B) is a

1-(v, v − k, b− r) design.

Since GB is transitive on the points and blocks of D(B), the connected components

B(1), . . . , B(ω) of D(B) (as a hypergraph) form a GB-invariant partition Q of B. It is

straightforward to show that GB is transitive on such components. Note that the vertices

in the same block of D(B) must be in the same connected component of D(B). Thus,

each B(i) is the union of some blocks of D(B). In the following we will show that either

D(B) is connected (that is, ω = 1) and (a) holds, or each part of Q is a block of D(B)

(that is, ω = b/m).

Let us first assume that each block B(i) of Q contains more than v−k vertices, that is,

each B(i) is the union of at least two non-repetitive blocks of D(B). In this case we must

have ω = 1. Suppose to the contrary that ω ≥ 2, and let γ ∈ B(2). Let X = B \ Γ(C)

be a block of D(B) contained in B(1), where C ∈ ΓB(B). Then X 6= B(1) and hence we

may take a vertex α ∈ B(1) \ X. Thus α, γ ∈ Γ(C) ∩ B and consequently there exist

β, δ ∈ Γ(B) ∩ C such that (α, β), (γ, δ) ∈ Arc(Γ). Since Γ is G-symmetric, there exists

g ∈ G such that (α, β)g = (γ, δ). Since B is a G-invariant partition of V (Γ), this implies

that g fixes each of B,C setwise. Thus, Xg = Bg \ Γ(Cg) = B \ Γ(C) = X. However, Q

is a GB-invariant partition of B and X ⊂ B(1). Hence g fixes B(1) setwise. This together

with α ∈ B(1) implies γ = αg ∈ B(1), which contradicts the assumption that γ ∈ B(2).

This contradiction shows that ω = 1, that is, D(B) is connected and hence (a) holds.

In the remaining case each B(i) consists of only one block of D(B). In this case the

blocks (ignoring the multiplicity) of D(B) form a GB-invariant partition of B, and this

partition is exactly Q. Based on this fact it is straightforward to show that the blocks

of D(B) for B running over B form a G-invariant partition P of V (Γ) with block size

vP = v − k. Clearly, P =
⋃

B∈B{B \ Γ(C) : C ∈ ΓB(B)}, and P is a refinement of B.

Thus, v − k is a divisor of v and hence a divisor of k. Also, setting t = k/(v − k), we

have b = mv/(v − k) = m(t + 1) and r = b − m = mt. Note that P 6= B and so we

have v/(v − k) ≥ 2, that is, k ≥ v/2. Moreover, if t = 1 then k = v/2; if t > 1 then
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k/(v − k) ≥ 2, which implies k ≥ 2v/3. Evidently, we have rPdP = rd = val(Γ). Since

B is G-invariant and P is a refinement of B, we have G(P) ⊆ G(B). On the other hand,

if g ∈ G(B), then g fixes setwise each block of B and hence fixes setwise each block of P ,

that is, g ∈ G(P). Therefore, G(P) = G(B).

Let B̂ := {B \ Γ(C) ∈ P : C ∈ ΓB(B)} (ignoring the multiplicity of each B \ Γ(C)).

Then B̂ is the set of blocks of P contained in B. Let

B̂ := {B̂ : B ∈ B}. (2)

It is straightforward to show that B̂ is a G-invariant partition of P , and that (ΓP)B̂
∼= ΓB

via the bijection B ↔ B̂ between B and B̂. Let v
B̂
, k

B̂
, b

B̂
, r

B̂
,m

B̂
be the parameters with

respect to (ΓP , B̂). For blocks B,C of B adjacent in ΓB, each “vertex” B \ Γ(D) of B̂

other than B \ Γ(C) (where D ∈ ΓB(B) \ {C}) is adjacent to at least one “vertex” of

Ĉ other than C \ Γ(B). Thus we have k
B̂
= v

B̂
− 1 = (v/vP) − 1 = t ≥ 1. Also, the

isomorphism above between (ΓP)B̂ and ΓB implies that bB̂ = b. Since v
B̂
r
B̂
= b

B̂
k
B̂
, it

follows that (v/(v−k))r
B̂
= b(k/(v−k)) and hence r

B̂
= r. Also, it is clear that m

B̂
= m.

2

Remark 2.3 (a) In contrast with D(B) (Lemma 2.1), the group GB is not necessarily

transitive on the flags of D(B).

(b) In possibility (b) of Theorem 2.2, the case k = v/2 occurs if and only if t = 1,

and in this case we have b = 2m, r = m, and k
B̂
= v

B̂
− 1 = 1. In the other case where

k ≥ 2v/3 (that is, t ≥ 2), we have k
B̂
= v

B̂
− 1 = t ≥ 2. In both cases the graph ΓP

together with its vertex-partition B̂ satisfies the assumptions in [24]. This connection will

be explored in the next section under the condition that ΓB is (G, 2)-arc transitive. In

particular, we will give a construction of graphs with 2-arc transitive quotients satisfying

the conditions of Theorem 2.2(b).

(c) In possibility (b) of Theorem 2.2, since the blocks of D(B) form a GB-invariant

partition of B with block size v − k < v, GB is not 2-transitive on B unless k = v − 1.

(d) Let (Γ, G,B) be as in Theorem 2.2. In the case where in addition v− k is a prime,

either (b) in Theorem 2.2 occurs, or G is faithful on B. In fact, since G(B) is a normal

subgroup of G, the set O of G(B)-orbits on the vertices of Γ is a G-invariant partition of

V (Γ), which is a refinement of B. Since G(B) fixes each block of B setwise, each block of

D(B) must be invariant under the action of G(B) and hence is a union of some blocks of

O. Under the condition that G is unfaithful on B, O is a nontrivial partition of V (Γ).

Thus, if in addition v − k is a prime, then each block of D(B) is a block of O; in other

words, case (b) in Theorem 2.2 occurs.
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Similarly, if k is a prime, then either the blocks of D(B) for B running over B form

a G-invariant partition of V (Γ), or G is faithful on B. Also, if v and k are coprime, then

O is forced to be the trivial partition {{α} : α ∈ V (Γ)}, and consequently G must be

faithful on B.

(e) For D(B) the counterpart of Theorem 2.2 is not true, that is, under the same

conditions D(B) is not necessarily connected as a hypergraph if its blocks do not form a

partition of B.

For each block X of D(B), define

〈X〉 := {C ∈ ΓB(B) : Γ(C) ∩B = X}.

Thus, 〈X〉 is an m-element subset of ΓB(B). Let

L(B) := {〈X〉 : X a block of D(B)}.

The following lemma is straightforward, and it is a generalisation of [20, Lemma 3.1]. Note

that to establish (b) we require that Γ is not a multicover of ΓB. A G-symmetric graph

is called G-locally primitive or G-locally imprimitive according to whether the stabiliser

of a vertex in G is primitive or imprimitive on its neighbourhood.

Lemma 2.4 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Then L(B) is a GB-invariant partition

of ΓB(B) with block size m. The induced action of GB on L(B), the action of GB on

the blocks of D(B) (ignoring the multiplicity of each block) and the action of GB on the

blocks of D(B) (ignoring the multiplicity of each block) are permutationally equivalent

with respect to the bijections X 7→ 〈X〉, X 7→ 〈X〉, for blocks X of D(B). Moreover, if

m = 1 then the actions of GB on ΓB(B), on the blocks of D(B) and on the blocks of D(B)

are permutationally equivalent; and if m ≥ 2 then ΓB is G-locally imprimitive and hence

ΓB is not (G, 2)-arc transitive.

3 Two-arc transitive quotients

From now on we will deal with G-symmetric graphs (Γ,B) with (G, 2)-arc transitive

quotients ΓB. The following consequence of Lemma 2.4 will be the starting point for our

investigation.

Lemma 3.1 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive.
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Then D(B) contains no repeated blocks, and moreover GB is 2-transitive on the blocks of

D(B) and 2-transitive on the blocks of D(B).

Thus, when ΓB is (G, 2)-arc transitive, any two distinct blocks of D(B) (D(B), respec-

tively) intersect in the same number of points. That is,

λ := |X ∩ Y |, λ := |X ∩ Y |

are independent of the choice of distinct blocksX,Y of D(B), whereX = B\X,Y = B\Y

are blocks of D(B). Evidently, we have

λ = v − 2k + λ. (3)

Recall that D∗(B), D
∗
(B) are the dual designs of D(B), D(B), respectively. From

Lemmas 2.1 and 3.1 we obtain the following results immediately.

Theorem 3.2 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc tran-

sitive. If λ ≥ 1, then D∗(B) is a 2-(b, r, λ) design with parameters (v∗, b∗, r∗, k∗, λ∗) =

(b, v, k, r, λ), and it admits GB as a group of automorphisms acting 2-transitively on its

points and transitively on its blocks and flags. If λ ≥ 1, then D
∗
(B) is a 2-(b, b − r, λ)

design with parameters (v∗, b
∗
, r∗, k

∗
, λ

∗
) = (b, v, v − k, b − r, λ), and it admits GB as a

group of automorphisms acting 2-transitively on its points and transitively on its blocks

and antiflags.

Corollary 3.3 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive.

Then

λ(b− 1) = k(r − 1). (4)

Proof In the case where λ ≥ 1, D∗(B) is a 2-design by Theorem 3.2 and hence (4)

follows from λ∗(v∗ − 1) = r∗(k∗ − 1). Similarly, if λ ≥ 1, then D
∗
(B) is a 2-design and

from λ
∗
(v∗ − 1) = r∗(k

∗
− 1) we have λ(b− 1) = (v − k)(b− r − 1), which gives (4) after

simplification.

In the remaining case λ = λ = 0 we have k = v/2 by (3), and hence r = 1 and (4) is

valid as well. 2

The discussion above suggests that we may distinguish the following (not exclusive)

three cases:
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Case 1: λ = 0;

Case 2: λ = 0;

Case 3: λ ≥ 1, λ ≥ 1.

The remainder of this section is devoted to the first two cases.

3.1 Case 1: λ = 0

This case can be partially characterised by the following simple construction, which ap-

peared in [20, Example 2.4] when Σ is trivalent.

Construction 3.4 Let Σ be a G-symmetric graph. Define Γ
arc
(Σ) to be the graph with

vertex set Arc(Σ) and edge set {{(σ, τ), (τ, σ)} : (σ, τ) ∈ Arc(Σ)}. Then Γ
arc
(Σ) is a

G-symmetric graph admitting B(Σ) := {B(σ) : σ ∈ V (Σ)} as a G-invariant partition

such that kB(Σ) = 1, Γarc(Σ) ∼= ` · K2 and (Γarc(Σ))B(Σ) ∼= Σ, where ` = |E(Σ)| and

B(σ) = {(σ, τ) : τ ∈ Σ(σ)} for σ ∈ V (Σ).

Note that, when ΓB is (G, 2)-arc transitive, the case λ = 0 occurs if and only if D(B)

contains two disjoint blocks.

Theorem 3.5 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive

and λ = 0 (that is, D(B) contains two disjoint blocks). Then Γ admits a second G-

invariant partition, namely

Q :=
⋃

B∈B

{Γ(C) ∩B : C ∈ ΓB(B)}, (5)

which is a refinement of B, such that ΓQ is (G, 2)-arc transitive, Γ is a multicover of ΓQ,

ΓQ ∼= Γarc(ΓB) ∼= ` · K2 where ` = |E(ΓB)|, and the parameters with respect to (Γ,Q)

satisfy vQ = kQ = k = v/b and bQ = rQ = r = 1. Moreover, Q admits a G-invariant

partition B̂ induced by B such that (ΓQ)B̂
∼= ΓB, D(B̂) contains no repeated blocks (where

B̂ is a block of B̂), and the parameters with respect to (ΓQ, B̂) are given by v
B̂
= b

B̂
= b

and r
B̂
= k

B̂
= 1.

Proof Since ΓB is (G, 2)-arc transitive, D(B) contains no repeated blocks by Lemma 2.4.

Also, from Theorem 3.2 the assumption that D(B) contains two disjoint blocks implies

that any two blocks of D(B) are disjoint, that is, λ = 0. Hence the blocks of D(B) form
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a GB-invariant partition of B. From this it is straightforward to show that the blocks of

D(B), for B running over B, form a G-invariant partition of V (Γ), which is Q given in

(5). Clearly, Q is a refinement of B, vQ = kQ = k = v/b and bQ = rQ = r = 1 (noting

that vr = bk and vQrQ = bQkQ). Thus, ΓQ is a matching (and hence (G, 2)-arc transitive

automatically) and Γ is a multicover of ΓQ. Moreover, one can check that ΓQ ∼= Γarc(ΓB)

with respect to the bijection which maps the vertex “Γ(C) ∩ B” of ΓQ to the vertex

“(B,C)” of Γ
arc
(ΓB). Note that Γarc(ΓB) ∼= ` ·K2, where ` = |E(ΓB)|.

Let B̂ := {Γ(C) ∩ B : C ∈ ΓB(B)} and B̂ := {B̂ : B ∈ B}. It is straightforward to

show that B̂ is a G-invariant partition of Q and the parameters with respect to (ΓQ, B̂)

are given by v
B̂
= b

B̂
= b and r

B̂
= k

B̂
= 1. Furthermore, (ΓQ)B̂

∼= ΓB and D(B̂) contains

no repeated blocks. 2

Remark 3.6 Unless ΓB ∼= K2 the graph Γ in Theorem 3.5 is disconnected since it is a

multicover of the disconnected graph ΓQ ∼= `·K2, whilst ΓB is not necessarily disconnected.

Thus, for connected imprimitive G-symmetric graph (Γ, G,B) such that ΓB 6∼= K2 is (G, 2)-

arc transitive, Case 1 does not appear at all.

3.2 Case 2: λ = 0

In this subsection we will prove that Case 2 can be partially reduced to the 3-arc graph

construction. Let Σ be a regular graph, and let ∆ be a self-paired subset of Arc3(Σ), that

is, (τ, σ, σ′, τ ′) ∈ ∆ implies (τ ′, σ′, σ, τ) ∈ ∆. The 3-arc graph Ξ(Σ,∆) of Σ with respect

to ∆ [24, 32] is the graph with vertex set Arc(Σ) in which (σ, τ), (σ ′, τ ′) are adjacent if

and only if (τ, σ, σ′, τ ′) ∈ ∆. In the case where Σ is G-symmetric and G is transitive on

∆ under the induced action of G on Arc3(Σ), Γ := Ξ(Σ,∆) is a G-symmetric graph [24,

Section 6] which admits

B(Σ) := {B(σ) : σ ∈ V (Σ)}

as a G-invariant partition such that Σ ∼= ΓB(Σ) under the natural bijection σ 7→ B(σ),

where B(σ) := {(σ, τ) : τ ∈ Σ(σ)}.

In Theorem 2.2 we discussed Case 2 without assuming the (G, 2)-arc transitivity of ΓB.

By Lemma 3.1, under the assumption that ΓB is (G, 2)-arc transitive, Case 2 occurs if and

only if the blocks of D(B) form a partition of B, which in turn is true if and only if D(B)

contains two disjoint blocks. In this case the following theorem says that either both ΓB

and ΓP can be determined, or ΓP is isomorphic to a 3-arc graph of ΓB with respect to a

self-paired G-orbit on Arc3(ΓB), where P is as defined in (1). Note that Cases 1 and 2

have overlap, and this happens only when k = v/2.
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Theorem 3.7 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive

and λ = 0 (that is, D(B) contains two disjoint blocks). Then

(a) (2k − v)(b− 1) = k(r − 1);

(b) v − k divides v and k, r = k/(v − k), b = r + 1 = v/(v − k), and either k = v/2 or

k ≥ 2v/3.

Moreover, Γ admits a second G-invariant partition of block size v − k, namely P defined

in (1), which is a refinement of B, and P admits a natural G-invariant partition B̂ as

defined in (2), such that (ΓP)B̂
∼= ΓB, kB̂ = v

B̂
− 1 = r ≥ 1, b

B̂
= b, r

B̂
= r and D(B̂)

contains no repeated blocks (where B̂ is a block of B̂). In the case where k = v/2, we have

ΓB ∼= ` · Cn, ΓP ∼= (`n) ·K2 and Γ ∼= (`n) · Γ[B,C] for some integers ` ≥ 1, n ≥ 3. In the

general case where k ≥ 2v/3, there exists a self-paired G-orbit ∆ on Arc3(ΓB) such that

ΓP ∼= Ξ(ΓB,∆); moreover, ΓB ∼= Kb+1 if and only if ∆ contains a 3-cycle, and in this case

ΓP ∼= (b+ 1) ·Kb, ∆ is the set of all 3-cycles of ΓB, and G is 3-transitive on B.

Proof Since ΓB is (G, 2)-arc transitive, by Lemma 3.1 the assumption that D(B) contains

two disjoint blocks is equivalent to saying that λ = 0, or equivalently the blocks of D(B)

form a GB-invariant partition of B. In this case, Theorem 2.2(b) applies. Thus, V (Γ)

admits a second G-invariant partition P (defined in (1)) which is a refinement of B,

and P admits a natural G-invariant partition B̂ (defined in (2)) such that (ΓP)B̂
∼= ΓB,

k
B̂
= v

B̂
− 1 = k/(v−k) ≥ 1, b

B̂
= b, r

B̂
= r and D(B̂) contains no repeated blocks. Also,

since m = 1 by Lemma 3.1, from Theorem 2.2(b) it follows that v − k is a divisor of v

and k, r = k/(v − k), b = r + 1 = v/(v − k), and either k = v/2 or k ≥ 2v/3. Moreover,

since λ = 0, we have λ = 2k − v by (3) and hence (2k − v)(b− 1) = k(r − 1) by (4).

In the case where k = v/2, we have k
B̂
= 1, D(B) has precisely two blocks which

form a partition of B (hence λ = 0), and P is also the partition of V (Γ) consisting of

the blocks of D(B) for B running over B. In this case it is clear that b = 2 and hence

ΓB ∼= ` ·Cn, ΓP ∼= (`n) ·K2, Γ ∼= (`n) · Γ[B,C] for some integers ` ≥ 1, n ≥ 3, where B,C

are adjacent blocks of B. In the general case where k ≥ 2v/3, we have k
B̂
= v

B̂
− 1 ≥ 2.

Since ΓB is (G, 2)-arc transitive it follows from [24, Theorem 1] that ΓP ∼= Ξ(ΓB,∆) for

a self-paired G-orbit ∆ on Arc3(ΓB). The statements for the case ΓB ∼= Kb+1 follow from

[24, Theorems 8(b) and 10(c)] immediately. 2

In the case where k ≥ 2v/3 and ΓB ∼= Kb+1, from the classification of finite 3-transitive

groups (see e.g. [6, pp.8]) it follows that G/G(B) is one of Sb+1 (b ≥ 3), Ab+1 (b ≥ 4),
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Mb+1 (b = 10, 11, 21, 22, 23), M11 (b = 11), PSL(2, b) ≤ G ≤ PΓL(2, b) (b ≥ 3 a prime

power), G = AGL(d, 2) (b = 2d − 1 ≥ 3), or Z
4
2.A7 (b = 15). Each of these possibilities

can happen, as we will see in Example 3.9.

Parts (a) and (b) of Theorem 3.7 together imply the following inequalities:

b ≤ v, r ≤ k, v + r ≥ b+ k, (2k − v)(v − 1) ≤ k(k − 1). (6)

Since vr = bk, the second inequality is equivalent to each of the following:

v2 + r2 ≥ b2 + k2, (v − 1)(r − 1) ≤ (b− 1)(k − 1). (7)

Applying the 3-arc graph construction [24] and the covering graph construction [4,

Chapter 19] successively, we obtain the following construction of imprimitive symmetric

graphs (Γ, G,B) satisfying the conditions of Theorem 3.7.

Construction 3.8 Let Σ be an (H, 2)-arc transitive graph of valency vΣ ≥ 3 such that

a self-paired H-orbit ∆ on Arc3(Σ) exists. Let Ξ := Ξ(Σ,∆) be the 3-arc graph of Σ with

respect to ∆. Then Ξ is an H-symmetric graph which admits B(Σ) as an H-invariant

partition such that ΞB(Σ)
∼= Σ and kB(Σ) = vB(Σ) − 1 = vΣ − 1 ≥ 2 ([24, Theorem 1]),

where as before the blocks of B(Σ) are B(σ) := {στ : τ ∈ Σ(σ)}, σ ∈ V (Σ). (Here

we write an arc as στ instead of (σ, τ).) Let us take a covering graph Γ := Ξ̃(K,φ)

of Ξ, where K is a group and φ is a K-chain on Ξ such that H acts as a group of

automorphisms of K and that φ is compatible with the actions of H on K and Arc(Ξ).

Let G := K.H (semi-direct product of K by H). Then from [4, Proposition 19.4] it

follows that Γ is a G-symmetric graph which admits P(Ξ) := {P (στ) : στ ∈ Arc(Σ)} as

a natural G-invariant partition such that ΓP(Ξ) ∼= Ξ, where P (στ) := {(g, στ) : g ∈ K}

for στ ∈ Arc(Σ). (Note that the group G in [4, Proposition 19.4] is not necessarily the

full automorphism group of the underlying graph. It can be any subgroup of the full

automorphism group which is transitive on the t-arcs of the underlying graph.) Define

B = {A(σ) : σ ∈ V (Σ)}, where A(σ) :=
⋃

τ∈Σ(σ) P (στ). Then B is a G-invariant partition

of V (Γ) = K × V (Ξ) = K × Arc(Σ). For this partition B one can check that the blocks

of D(A(σ)) are precisely P (στ) for τ ∈ Σ(σ), and that (ΓP(Ξ))B(Σ) ∼= ΓB. Hence (Γ, G,B)

satisfies the conditions of Theorem 3.7 with P(Ξ) and B(Σ) playing the roles of P and B̂

(defined in (1) and (2)) respectively.

The graph Γ in Construction 3.8 is constructed through two “lifts”: we first “lift” Σ to

the 3-arc graph Ξ and then “lift” Ξ to the covering graph Γ. Note that not all imprimitive

G-symmetric graphs (Γ, G,B) satisfying the conditions of Theorem 3.7 can be obtained
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this way. For a discussion on the existence of ∆ needed in lifting Σ to Ξ(Σ,∆), see [24,

Remark 4] and also [37] when Σ is trivalent. From [4, Chapter 19] a pair (K,φ) required

in the construction above always exists.

Example 3.9 Let Kb+1 be the complete graph with vertex set [b+1] := {1, 2, . . . , b+1},

where b ≥ 3. Let H be a 3-transitive permutation group on [b+1]. From the classification

[6, pp.8] of 3-transitive groups, H is one of the following: (i) Sb+1 (b ≥ 3); (ii) Ab+1 (b ≥ 4);

(iii) Mb+1 (b = 10, 11, 21, 22, 23) or M11 (b = 11); (iv) AGL(d, 2) (b = 2
d − 1 ≥ 3); (v)

Z
4
2.A7 (b = 15); (vi) H is a 3-transitive subgroup of PΓL(2, b) (b ≥ 3 a prime power)

as given explicitly in [18, Theorem 2.1]. For each possibility, all self-paired H-orbits ∆

on Arc3(Kb+1) have been determined in [35]. Let Ξ := Ξ(Kb+1,∆), so that Ξ is an H-

symmetric graph with vertices ij (where i, j ∈ [b+ 1], i 6= j) in which two vertices ij and

i′j′ are adjacent if and only if (j, i, i′, j′) ∈ ∆. Let V (b+ 1, 2) be the (b+ 1)-dimensional

linear space over GF(2), so that its additive group is Z
b+1
2 . Let εi be the unit vector

of V (b + 1, 2) with the ith coordinate 1 and all other coordinates 0. Then H acts on

{ε1, . . . , εb+1} by (εi)
h := εih for h ∈ H and 1 ≤ i ≤ b+1, and this action can be extended

to Z
b+1
2 in the obvious way so that H acts on Z

b+1
2 as a group of automorphisms. Let K

be the subgroup of Z
b+1
2 generated by {εi + εi′ : 1 ≤ i < i′ ≤ b + 1}. It is easily shown

that K is H-invariant and K ∼= Z
b
2. Define

φ1 : Arc(Ξ)→ K, (ij, i′j′) 7→ εi + εi′ ;

φ2 : Arc(Ξ)→ K, (ij, i′j′) 7→ εi + εi′ + εj + εj′ .

Then both φ1 and φ2 are K-chains on Ξ. Moreover, one can check that φ1 and φ2 are

compatible with the actions of H on K and on Arc(Ξ). Thus, for each self-paired H-orbit

∆ on Arc3(Kb+1), from Construction 3.8 we obtain two imprimitive (Zb
2.H)-symmetric

graphs, namely Ξ̃(Zb
2, φ1) and Ξ̃(Z

b
2, φ2), which satisfy the conditions of Theorem 3.7.

For the self-paired H-orbit ∆0 on Arc3(Kb+1) consisting of all 3-cycles (j, i, i
′, j) of

Kb+1, we can construct a third graph using Construction 3.8. In fact, the 3-arc graph of

Kb+1 with respect to this orbit is Ξ0 ∼= (b+ 1) ·Kb. One can check that

φ0 : Arc(Ξ0)→ Z
b+1
2 , (ij, i′j) 7→ εj

defines a Z
b+1
2 -chain on Ξ0 which is compatible with the actions of H on Z

b+1
2 and on

Arc(Ξ0). Hence Ξ̃0(Z
b+1
2 , φ0) is a (Z

b+1
2 .H)-symmetric graph satisfying the conditions of

Theorem 3.7.

For each of (i)-(vi) above, all 3-arc graphs of the (H, 2)-arc transitive graph Kb+1 have

been determined in [35]. In the case where H is 4-transitive, we have either H = Sb+1
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(b ≥ 3), or H = Ab+1 (b ≥ 5), or H = Mb+1 (b = 10, 11, 22, 23); in this case there are

exactly two 3-arc graphs of Kb+1, namely Ξ0 above and the 3-arc graph with respect to

Arc3(Kb+1) \ ∆0 (which is self-paired by the 4-transitivity of H). The latter graph is

isomorphic to (K(b+1, 2))[K2] (see [35, Example 3.15]), the lexicographic product of the

Kneser graph K(b + 1, 2) by the empty graph K2. (For integers m,n with 2 ≤ 2m < n,

the Kneser graph K(n,m) is the graph with vertices the m-subsets of a given n-set such

that two vertices are adjacent if and only if they have no common element.)

4 Two constructions

This section is devoted to the general case, Case 3, for which λ ≥ 1, λ ≥ 1. By Theo-

rem 3.2 in this case D∗(B) and D
∗
(B) are 2-designs, and they admit GB as a group of

automorphisms acting 2-transitively on the points and transitively on the blocks. The

well-known Fisher’s inequality applied to D∗(B) gives:

b ≤ v, r ≤ k. (8)

Also, applying [26, Theorem 2] to D(B) we get:

λ(v − 1) ≤ k(k − 1), (9)

which is, by (4), equivalent to

v + r ≥ b+ k. (10)

The inequalities (8), (9) and (10) are the same as the ones in (6), noting by (3) that

λ = 2k − v when λ = 0.

Many interesting and natural problems arise in Case 3. For example, we may ask the

following general questions about the relationship between Γ, ΓB and D
∗(B) (or D

∗
(B)

equivalently).

Question 4.1 When can a 2-point-transitive, flag-transitive and block-transitive 2-design

occur as D∗(B)? When can a symmetric 2-point-transitive 2-design occur as D∗(B)? And

what can we say about the structure of Γ and ΓB if D
∗(B) is known?

Perhaps a complete solution to these questions for general symmetric graphs with 2-arc

transitive quotients is not accessible. In the following we will focus on the case where

D∗(B) or D
∗
(B) is the trivial Steiner system with block size 2, that is, a complete graph.

In other words, either λ = 1 and r = 2, or λ = 1 and b− r = 2. In each of these cases we

will give a construction which can be used to construct Γ from ΓB.
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For an integer s ≥ 1, an s-path in a graph is an s-arc identified with its reverse s-

arc. A 2-path with mid-vertex σ and end-vertices τ, τ ′ will be denoted by τστ ′, with the

understanding that τ ′στ represents the same 2-path. Thus, when we write τστ ′ = ηεη′

we mean σ = ε and {τ, τ ′} = {η, η′}. For each vertex σ of Σ, let B2(σ) denote the set of

2-paths of Σ with mid-vertex σ, that is,

B2(σ) := {τστ
′ : τ, τ ′ ∈ Σ(σ), τ 6= τ ′}.

Obviously,

B2(Σ) := {B2(σ) : σ ∈ V (Σ)}

is a partition of the 2-paths of Σ.

4.1 Construction 1: λ = 1 and r = 2

Let us first give the following construction in a general setting.

Construction 4.2 Let Σ be a regular graph with val(Σ) ≥ 2. Let ∆ be a self-paired

subset of Arc3(Σ). Define Γ2(Σ,∆) to be the graph with the set of 2-paths of Σ as vertex

set such that two distinct “vertices” τστ ′ and ηεη′ are adjacent if and only if they have

a common edge (that is, σ ∈ {η, η′} and ε ∈ {τ, τ ′}) and moreover the 3-arc formed by

“gluing” the common edge is in ∆. See Figure 1 below for an illustration.

For instance, if σ = η′, ε = τ ′, then the 3-arc thus formed is (τ, σ, ε, η), which should

be in ∆ if τστ ′ and ηεη′ are to be adjacent in Γ2(Σ,∆). The self-parity of ∆ ensures that

Γ2(Σ,∆) is a well-defined undirected graph.

τ

σ = η′ ε = τ′

η

τστ′ ηεη′

(a) (b)

Figure 1: (a) 2-paths τστ ′ and ηεη′; (b) τστ ′ and ηεη′ are adjacent in Γ2(Σ,∆).

The main results of this subsection can be summarised in the next theorem, which

follows from Theorems 4.4 and 4.10 immediately.
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Theorem 4.3 Let Σ be a (G, 2)-arc transitive graph with valency ≥ 3 and ∆ a self-paired

G-orbit on Arc3(Σ). Then Γ := Γ2(Σ,∆) is a G-symmetric graph admitting B := B2(Σ)

as a G-invariant partition such that ΓB is (G, 2)-arc transitive and not multi-covered by

Γ, and λ = 1, r = 2.

Conversely, any imprimitive G-symmetric graph (Γ,B) such that ΓB is (G, 2)-arc tran-

sitive and not multi-covered by Γ, and λ = 1, r = 2 is isomorphic to Γ2(ΓB,∆) for a

self-paired G-orbit on Arc3(ΓB).

A regular graph Σ with val(Σ) ≥ 2 is said [10] to be (G, 2)-path transitive if it admits

G as a group of automorphisms such that G is transitive on the set of 2-paths. Note that

such a graph Σ is necessarily G-vertex transitive because each vertex is a mid-vertex of

at least one 2-path of Σ and the elements of G permute the mid-vertices while permuting

the 2-paths. Note also that a (G, 2)-path transitive graph must be G-symmetric by [10,

Theorem 1].

Theorem 4.4 Let Σ be a regular graph of valency b ≥ 2, and let G be a group acting

on V (Σ) as a group of automorphisms of Σ. Let ∆ be a self-paired G-invariant subset of

Arc3(Σ). Then Γ := Γ2(Σ,∆) admits G as a group of automorphisms, and B := B2(Σ) is

a G-invariant partition of the vertex set of Γ with block size v = b(b− 1)/2. Moreover, if

G is faithful on the vertex set of Σ, then it is faithful on the vertex set of Γ. Furthermore,

the following (a)-(b) hold.

(a) Γ is G-vertex transitive if and only if Σ is (G, 2)-path transitive; and in this case

Σ ∼= ΓB with respect to the bijection σ 7→ B2(σ), σ ∈ V (Σ).

(b) Γ is G-symmetric if and only if Σ is (G, 2)-path transitive and ∆ is a self-paired

G-orbit on Arc3(Σ); in this case Σ must be (G, 2)-arc transitive, the parameters with

respect to (Γ,B) satisfy k = b− 1, r = 2, λ = 1 and λ = ((b− 1)(b− 4)/2) + 1, and

moreover Γ[B2(σ), B2(ε)] ∼= Kb−1,b−1 for adjacent blocks B2(σ), B2(ε) of B if and

only if Σ is (G, 3)-arc transitive.

Proof Since ∆ is G-invariant, the induced action of G on the 2-paths of Σ preserves

the adjacency of Γ, and hence Γ admits G as a group of automorphisms. It is readily

seen that B is a G-invariant partition of the 2-paths of Σ with block size v = b(b− 1)/2.

An element of G which fixes every 2-path of Σ must fix every vertex of Σ. Thus, if G is

faithful on V (Σ), then it must be faithful on V (Γ).

(a) Clearly, Γ is G-vertex transitive if and only if Σ is (G, 2)-path transitive. Let

B2(σ) and B2(ε) be blocks of B which are adjacent in ΓB. Then there exist τστ
′ ∈ B2(σ),
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ηεη′ ∈ B2(ε) such that τστ
′, ηεη′ are adjacent in Γ. That is, τστ ′ and ηεη′ share an edge,

and hence σ and ε are adjacent in Σ. Conversely, suppose Σ is (G, 2)-path transitive, and

let σ, ε be adjacent vertices of Σ. Let (τ0, σ0, ε0, η0) be a 3-arc in ∆. Since Σ is (G, 2)-

path transitive, it is G-symmetric and hence there exists g ∈ G such that (σ0, ε0)
g =

(σ, ε). Denote τ = τ g0 and η = ηg0 . Then (τ, σ, ε, η) = (τ0, σ0, ε0, η0)
g ∈ ∆ as ∆ is G-

invariant. Thus, τσε and σεη are adjacent in Γ. Hence B2(σ) and B2(ε) are adjacent in

ΓB. Therefore, σ 7→ B2(σ) for σ ∈ V (Σ) defines an isomorphism from Σ to ΓB, provided

that Σ is (G, 2)-path transitive. This completes the proof of (a).

(b) From construction 4.2 it is clear that Γ is G-symmetric if and only if Σ is (G, 2)-

path transitive and ∆ is a self-paired G-orbit on Arc3(Σ). Let us now prove that Σ

is (G, 2)-arc transitive if Γ is G-symmetric. Suppose Γ is G-symmetric, so that Σ is

(G, 2)-path transitive and ∆ is a self-paired G-orbit on Arc3(Σ). Then Σ is G-vertex

transitive. From construction 4.2 it follows that, for each “vertex” τσε of Γ, any vertex

of Γ adjacent to τσε must have mid-vertex τ or ε, and furthermore both cases can occur

since Σ is (G, 2)-path transitive. Thus, there are exactly two blocks, namely B2(τ) and

B2(ε), which contain neighbours of τσε and hence r := |ΓB(“τσε”)| = 2. Since ΓB ∼= Σ

as shown above, we have val(ΓB) = b; hence vr = bk, which implies k = b− 1 by noting

v = b(b − 1)/2. Also, since ΓB ∼= Σ, ΓB is G-vertex transitive and 2-path transitive, and

hence GB2(σ) is 2-homogeneous on ΓB(B2(σ)). In particular, GB2(σ) acts primitively on

ΓB(B2(σ)). Thus, from Lemma 2.4 the multiplicity m of D(B2(σ)) is equal to 1 or b.

If m = b, then we must have b = m = 2 since m is a divisor of r = 2. In this case,

we have v = k = 1, λ = 1, λ = 0, and Γ ∼= Σ ∼= ` · Cn for some integers ` ≥ 1 and

n ≥ 3. Thus, since Γ is G-symmetric, Σ is G-symmetric and hence (G, 2)-arc transitive

as it consists of cycles.

If m = 1, then we have b > 2 for otherwise we would have v = 1 and and m =

r = 2, a contradiction. Thus, k = b − 1 ≥ 2, and this implies that the b blocks of

D(B2(σ)) do not form a partition of B2(σ) as |B2(σ)| = b(b − 1)/2. Thus, there exist

B2(τ), B2(ε) ∈ B such that Γ(B2(τ)) ∩ Γ(B2(ε)) ∩ B2(σ) 6= ∅. It follows that there exist

ξ and η such that (ξ, τ, σ, ε, η) is a 4-arc of Σ with (ξ, τ, σ, ε), (τ, σ, ε, η) ∈ ∆. Since ∆ is

a self-paired G-orbit on Arc3(Σ), there exists g ∈ G such that (ξ, τ, σ, ε)g = (η, ε, σ, τ).

Thus, (τ, σ, ε)g = (ε, σ, τ). This together with the (G, 2)-path transitivity of Σ implies

that Σ is (G, 2)-arc transitive. Thus, ΓB (∼= Σ) is (G, 2)-arc transitive and hence Corollary

3.3 applies. Since v = b(b− 1)/2, k = b− 1 and r = 2, from (4) and (3) we get λ = 1 and

λ = ((b− 1)(b− 4)/2) + 1.

Let B2(σ) and B2(ε) be adjacent blocks of B. Suppose that Σ is (G, 3)-arc transitive.

Then ∆ = Arc3(Σ) since ∆ is a G-orbit on Arc3(Σ). Thus, for any τ ∈ Σ(σ) \ {ε}
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and η ∈ Σ(ε) \ {σ}, we have (τ, σ, ε, η) ∈ ∆ and hence “τσε” ∈ B2(σ) and “σεη” ∈

B2(ε) are adjacent. Therefore, Γ[B2(σ), B2(ε)] ∼= Kb−1,b−1. Suppose conversely that

Γ[B2(σ), B2(ε)] ∼= Kb−1,b−1. Then for any τ ∈ Σ(σ) \ {ε} and η ∈ Σ(ε) \ {σ}, “τσε” and

“σεη” are adjacent in Γ, and hence (τ, σ, ε, η) ∈ ∆. Since Σ is G-symmetric and ∆ is a

G-orbit on Arc3(Σ), this implies ∆ = Arc3(Σ) and hence Σ is (G, 3)-arc transitive. 2

Remark 4.5 (a) In Theorem 4.4(b) we have λ = 0 when b = 2 or 3, and λ ≥ 1 when

b ≥ 4. As shown above, in the case where b = 2, the partition B2(Σ) is trivial and Γ ∼= Σ

is a union of disjoint cycles. In the case where b = 3 (that is, Σ is trivalent), Γ2(Σ,∆) is

isomorphic to the 3-arc graph Ξ(Σ,∆′), where ∆′ := {(τ ′, σ, ε, η′) : τ ′ ∈ Σ(σ) \ {τ, ε}, η′ ∈

Σ(ε) \ {η, σ} for some (τ, σ, ε, η) ∈ ∆}, via the bijection τσε 7→ (τ ′, σ), for 2-paths τσε

of Σ. See Example 4.7 below for such graphs Γ2(Σ,∆) when b = 3.

(b) In the case where Σ is (G, 3)-arc transitive, the valency of Γ2(Σ,∆) is 2(b − 1)

by Theorem 4.4(b); and also Γ2(Σ,∆) is connected if Σ is connected. If Σ is (G, 2)-arc

but not (G, 3)-arc transitive, then the valency of Γ2(Σ,∆) is equal to 2|η
Gταε |, where

(τ, σ, ε, η) ∈ ∆.

(c) Construction 4.2 was inspired by a general construction, the flag graph construc-

tion, introduced in [34, 35] by the second-named author. After discovering construction

4.2, we found that a related construction exists in a completely different setting [5], where

the path graph Ps+1(Σ) is defined to be the graph with “strict s-paths” of Σ as vertices

such that two vertices are adjacent if and only if they overlap on an (s−1)-path. Here by

a strict s-path we mean an s-path containing no repeated vertex. (Such a path is called

a s-path in pure graph theory.) In the case where ∆ = Arc3(Σ), our graph Γ2(Σ,∆) is

precisely the path graph P3(Σ).

Example 4.6 A (G, 2)-arc transitive graph with girth 3 must be a complete graph Kb+1.

In this case the set ∆ of 3-cycles of Kb+1 is a self-paired G-orbit on Arc3(Kb+1). For this

∆ we have Γ2(Kb+1,∆) ∼= ((b− 1)b(b+1)/6) ·K3 and the bipartite subgraph between any

two blocks of B2(Kb+1) is a matching of b − 1 edges. In fact, each 3-cycle (τ, σ, ε, τ) of

Kb+1 induces a 3-cycle of Γ2(Kb+1,∆) with vertices τσε, σετ and ετσ.

Example 4.7 It is well-known [9, 13] that a connected trivalent G-symmetric graph Σ is

of one of seven types, G1, G
1
2, G

2
2, G3, G

1
4, G

2
4 or G5, with subscript s denoting (G, s)-arc

regularity and superscript indicating whether or not G contains an involution flipping an

edge. It is known [37] that Σ has a self-paired G-orbit on Arc3(Σ) if and only if it is

not of type G22. A graph Σ of type G1 must be (G, 2)-path transitive [10, Section 3], and
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it has [37] exactly two self-paired G-orbits ∆1,∆2 on Arc3(Σ). From Theorem 4.4(b),

the corresponding graphs Γ2(Σ,∆1) and Γ2(Σ,∆2) are both G-symmetric with valency 2.

For Σ 6= K4 of type G
1
2, there are also exactly two G-orbits ∆

′
1,∆

′
2 on Arc3(Σ) [37], and

by Theorem 4.4(b) the corresponding graphs Γ2(Σ,∆
′
1), Γ2(Σ,∆

′
2) are both G-symmetric

with valency 2. In the case where Σ is of typeG3, G
1
4, G

2
4 orG5, ∆ := Arc3(Σ) is the unique

self-paired G-orbit on 3-arcs of Σ, and Γ2(Σ,∆) is a connected 4-valent G-symmetric but

not (G, 2)-arc transitive graph.

In the case when Σ is (G, 3)-arc transitive of valency b ≥ 3, by Theorem 4.4(b) we have

Γ[B2(σ), B2(ε)] ∼= Kb−1,b−1 (where Γ = Γ2(Σ,∆)), which is not a matching, and hence Γ

cannot be (G, 2)-arc transitive. Note that in this case Γ has valency 2(b− 1) and it must

be connected if Σ is connected. Thus, we have the following corollary, of which the second

assertion follows from the fact that there are infinitely many 7-arc transitive graphs (see

e.g. [11]). Note that there exists no s-arc transitive graph of valency ≥ 3 if s ≥ 8 [31].

Corollary 4.8 Every connected (G, 3)-arc transitive graph Σ of valency b ≥ 3 is a quo-

tient graph of at least one connected G-symmetric but not (G, 2)-arc transitive graph Γ

of valency 2(b− 1). In particular, there are infinitely many connected symmetric but not

2-arc transitive graphs which have at least one 7-arc transitive quotient.

The same results also follow from [24, Theorem 2] and the 3-arc graph construction,

with Γ having valency b2 − 1 instead of 2(b − 1). They suggest that the level of s-arc

transitivity of the quotient graph can be much higher than that of the original graph,

although on the other hand the quotient may not even inherit 2-arc transitivity from the

original. It would be interesting to understand when an imprimitive symmetric graph

admits a highly arc-transitive quotient. The reader is referred to [20] for related questions

and discussion.

From [10, Theorem 2], if a (G, 2)-path transitive graph Σ is not (G, 2)-arc transitive,

then Gσ has odd order and is 2-homogenous but not 2-transitive on Σ(σ), and b ≡ 3 (mod

4) is a prime power, where b = val(Σ). For this case Theorem 4.4 implies the following

result, which will be used in the proof of Theorem 4.12.

Corollary 4.9 Let Σ be a (G, 2)-path but not (G, 2)-arc transitive graph. Then no ele-

ment of G can reverse a 3-arc of Σ; in other words, there exists no self-paired G-orbit on

Arc3(Σ).

The following theorem shows that any imprimitive G-symmetric graph (Γ,B) with

λ = 1, r = 2 and (G, 2)-arc transitive quotient ΓB can be constructed from ΓB by using

construction 4.2. By Example 4.6, if ΓB has girth 3, then Γ ∼= ((b− 1)b(b+ 1)/6) ·K3.
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Theorem 4.10 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive

with valency b ≥ 2. Suppose further that λ = 1 and r = 2. Then Γ ∼= Γ2(ΓB,∆) for a

self-paired G-orbit ∆ on Arc3(ΓB). Moreover, b ≥ 3, v = b(b− 1)/2, and k = b− 1.

Proof Since ΓB is (G, 2)-arc transitive, we have m = 1. Also, since λ = 1 and r = 2, by

(4) we have k = b− 1 and hence v = b(b− 1)/2. Note that b ≥ 3 for otherwise we would

have k = v = 1 and thus B is a trivial partition, a contradiction.

Since r = 2, for each α ∈ V (Γ) there exist precisely two blocks C(α), D(α) of B which

contain neighbours of α, that is, ΓB(α) = {C(α), D(α)}. Let B(α) denote the block of B

containing α. Then C(α)B(α)D(α) is a 2-path of ΓB. The (G, 2)-arc transitivity of ΓB

implies that any 2-path CBD of ΓB is of the form C(α)B(α)D(α), and moreover there is

a unique vertex α such that CBD = C(α)B(α)D(α) since λ = 1. Therefore,

φ : α 7→ C(α)B(α)D(α), α ∈ V (Γ)

defines a bijection from V (Γ) to the set of 2-paths of ΓB.

Let

∆ := {(C,B(α), B(β), D) : (α, β) ∈ Arc(Γ), C ∈ ΓB(α) \ {B(β)}, D ∈ ΓB(β) \ {B(α)}}.

Then obviously ∆ is a self-paired subset of Arc3(ΓB). Since r = 2, the mapping (α, β) 7→

(C,B(α), B(β), D) is a one-to-one correspondence between the arcs of Γ and the 3-arcs

in ∆. Since Γ is G-symmetric, it follows that ∆ is a self-paired G-orbit on Arc3(ΓB), and

hence Γ2(ΓB,∆) is G-symmetric by Theorem 4.4(b). Note that, for (α, β) ∈ Arc(Γ), we

have φ(α) = CB(α)B(β), φ(β) = B(α)B(β)D, and φ(α), φ(β) are adjacent in Γ2(ΓB,∆).

Conversely, if C(α)B(α)D(α) and C(β)B(β)D(β) are adjacent in Γ2(ΓB,∆), then B(α) ∈

{C(β), D(β)} and B(β) ∈ {C(α), D(α)}. Without loss of generality we may assume

that B(α) = C(β) and B(β) = D(α). Then (C(α), B(α), B(β), D(β)) ∈ ∆ by the

definition of Γ2(ΓB,∆). Thus, there exist (α
′, β′) ∈ Arc(Γ), C ∈ ΓB(α

′) \ {B(β ′)} and

D ∈ ΓB(β
′) \ {B(α′)} such that (C(α), B(α), B(β), D(β)) = (C,B(α′), B(β ′), D). This

implies α, α′ ∈ Γ(C(α)) ∩ Γ(B(β)) ∩ B(α). However, λ = 1, so we must have α = α′.

Similarly, β = β ′. Thus, α and β are adjacent in Γ. Therefore, φ is an isomorphism

between Γ and Γ2(ΓB,∆). 2

Using Theorem 4.3 the second-named author has classified all imprimitiveG-symmetric

graphs (Γ,B) such that λ = 1, r = 2, and ΓB is complete and (G, 2)-arc transitive. To keep

the present paper in a reasonable length, this classification will appear in a subsequent

paper [38].
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4.2 Construction 2: λ = 1 and b− r = 2

Two 2-paths τστ ′, ηεη′ of Σ are called joined if σ, ε are adjacent in Σ and σ, ε 6∈

{τ, τ ′, η, η′}. As illustrated in Figure 2, such a pair of joined 2-paths together with the

edge between σ and ε form an H-shape subgraph if {τ, τ ′} ∩ {η, η′} = ∅, an A-shape

subgraph if |{τ, τ ′} ∩ {η, η′}| = 1, and a θ-shape subgraph if {τ, τ ′} = {η, η′}, and we say

that (τστ ′, ηεη′) is of type H, A, θ accordingly. The last two types occur only when the

girth of Σ is 3. Denote by J(Σ) the set of ordered pairs of joined 2-paths of Σ. Note that

any group of automorphisms of Σ induces an action on J(Σ).

τ′ η′

(a) (b)

σ

τ

ε

η

τ′ = η′

σ

τ

ε

η

σ

τ = η

ε

τ′ = η′

(c)

Figure 2: A pair (τστ ′, ηεη′) of 2-paths: (a) type H; (b) type A; (c) type θ.

Construction 4.11 Let Σ be a regular graph with valency val(Σ) ≥ 3. Let ∆ be a

self-paired subset of J(Σ). Define Ψ2(Σ,∆) to be the graph with vertex set the set of

2-paths of Σ such that two distinct “vertices” τστ ′ and ηεη′ are adjacent if and only if

(τστ ′, ηεη′) ∈ ∆.

We say that ∆ is of type H, A or θ if all pairs of joined 2-paths in ∆ are of type H, A

or θ, respectively. Note that, if ∆ is a self-paired G-orbit on J(Σ), then all members of

∆ have the same type, which is the type of ∆.

The main results in this subsection are the following theorem and Theorem 4.14.

Theorem 4.12 Let Σ be a regular graph of valency b ≥ 3, and let G be a group acting

on V (Σ) as a group of automorphisms of Σ. Let ∆ be a self-paired G-invariant subset of

J(Σ). Then Ψ := Ψ2(Σ,∆) admits G as a group of automorphisms, and B := B2(Σ) is a

G-invariant partition of the vertex set of Γ with block size v = b(b− 1)/2. Moreover, if G

is faithful on the vertex set of Σ, then it is faithful on the vertex set of Ψ. Furthermore,

the following (a)-(b) hold.
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(a) Ψ is G-vertex transitive if and only if Σ is (G, 2)-path transitive; and in this case

Σ ∼= ΨB with respect to the bijection σ 7→ B2(σ), σ ∈ V (Σ).

(b) Ψ is G-symmetric if and only if Σ is (G, 2)-path transitive and ∆ is a self-paired

G-orbit on J(Σ); in this case Σ must be (G, 2)-arc transitive if ∆ is of type H or A.

Moreover, if Gσ is 3-transitive on Σ(σ), then the parameters with respect to (Ψ,B)

satisfy k = (b− 1)(b− 2)/2, r = b− 2, λ = (b− 2)(b− 3)/2 and λ = 1.

Proof Similar to Theorem 4.4, the statements before (a) can be verified easily, and hence

their proofs are omitted.

(a) From construction 4.11 it is clear that Ψ is G-vertex transitive if and only if Σ

is (G, 2)-path transitive. Let B2(σ) and B2(ε) be blocks of B which are adjacent in ΨB.

Then there exist τστ ′ ∈ B2(σ), ηεη
′ ∈ B2(ε) such that (τστ

′, ηεη′) ∈ ∆. In particular,

this implies that σ and ε are adjacent in Σ. Now suppose Σ is (G, 2)-path transitive,

and let σ, ε be adjacent vertices of Σ. Let (τ0σ0τ
′
0, η0ε0η

′
0) be a member of ∆. Since Σ

is (G, 2)-path transitive, it must be G-symmetric [10, Theorem 1]. Hence there exists

g ∈ G such that (σ0, ε0)
g = (σ, ε). Let τ = τ g0 , τ

′ = (τ ′0)
g, η = ηg0 and η

′ = (η′0)
g.

Then (τστ ′, ηεη′) = (τ0σ0τ
′
0, η0ε0η

′
0)

g ∈ ∆ since ∆ is G-invariant. Thus, τστ ′ and ηεη′ are

adjacent in Ψ. Hence B2(σ) and B2(ε) are adjacent in ΓB. Therefore, if Σ is (G, 2)-path

transitive, then σ 7→ B2(σ) for σ ∈ V (Σ) defines an isomorphism from Σ to ΨB.

(b) Clearly, Ψ is G-symmetric if and only if Σ is (G, 2)-path transitive and ∆ is a

self-paired G-orbit on J(Σ). Now let us prove that in this case Σ must be (G, 2)-arc

transitive provided that ∆ is of type H or A. Let (τστ ′, ηεη′) ∈ ∆ be an arc of Ψ. Since

∆ is self-paired, there exists g ∈ G such that (τστ ′, ηεη′)g = (ηεη′, τστ ′), that is, g

interchanges σ and ε, and also interchanges {τ, τ ′} and {η, η′}. Thus, g2 fixes σ and ε,

and fixes each of {τ, τ ′} and {η, η′} setwise. In the case where ∆ is of type H, the six

vertices involved in (τστ ′, ηεη′) are pairwise distinct and hence without loss of generality

we may assume τ g = η and (τ ′)g = η′. Then either (i) ηg = τ and (η′)g = τ ′, or (ii) ηg = τ ′

and (η′)g = τ . In the former case, g reverses the 3-arc (τ, σ, ε, η) of Σ, and hence Σ must

be (G, 2)-arc transitive by Corollary 4.9. In the latter case (ii), we have τ g2

= ηg = τ ′

and (τ ′)g
2

= (η′)g = τ , and hence g2 reverses the 2-arc (τ, σ, τ ′) of Σ. Since Σ is G-vertex

transitive and (G, 2)-path transitive, it follows that Σ must be (G, 2)-arc transitive. In

the case where ∆ is of type A, without loss of generality we may assume τ ′ = η′, so

that τ, τ ′, η are distinct. In this case g exchanges {τ, τ ′} and {η, τ ′}, which implies that

(τ ′)g = τ or τ ′. Hence τ g = η, (τ ′)g = τ ′ (= η′), and the argument above for type H

applies. Thus, for ∆ of type A, Σ must be (G, 2)-arc transitive as well.
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Now suppose Gσ is 3-transitive on Σ(σ). Then for any ε0 ∈ Σ(σ) \ {τ, τ
′} there exists

g ∈ Gσττ ′ such that εg = ε0. Let η0 := ηg and η′0 := (η′)g. Then (τστ ′, η0ε0η
′
0) =

(τστ ′, ηεη′)g ∈ ∆, and hence τστ ′ is adjacent to η0ε0η
′
0 ∈ B2(ε0) in Ψ. Since this is true

for any ε0 ∈ Σ(σ)\{τ, τ
′} and since τστ ′ is not adjacent to any vertex in B2(τ) or B2(τ

′),

we conclude that τστ ′ has neighbours in exactly b− 2 neighbouring blocks of B2(σ), that

is, r = b − 2. Recall that v = b(b − 1)/2 and vr = bk. Hence k = (b − 1)(b − 2)/2, and

λ = (b− 2)(b− 3)/2 by (4). Finally, we have λ = 1 by (3). 2

Example 4.13 Consider the complete graph Kb+1 on b + 1 ≥ 6 vertices. The set ∆ of

H-type pairs of joined 2-paths of Kb+1 is a self-paired Sb+1-orbit on J(Kb+1). By Theorem

4.12(b), Ψ2(Kb+1,∆) is an Sb+1-symmetric graph with valency (b− 2)(b− 3)(b− 4). This

graph has vertex set {(i, {j, j ′}) : i, j, j ′ ∈ [b+1] pairwise distinct} in which (i, {j, j ′}) and

(k, {`, `′}) are adjacent if and only {j, i, j ′}∩{`, k, `′} = ∅. Note that (i, {j, j ′}) 7→ {j, i, j ′}

defines a 3-to-1 mapping from the vertex set of Ψ2(Kb+1,∆) to the set of 3-subsets of [b+1].

Thus, Ψ2(Kb+1,∆) is isomorphic to (K(b + 1, 3))[K3], the lexicographic product of the

Kneser graph K(b+1, 3) with the empty graph K3 on three vertices. (See Example 3.9 for

the definition of a Kneser graph.) Two more Sb+1-symmetric graphs can be constructed

by considering the sets of pairs of type-A and type-θ, respectively.

The only 2-arc transitive graphs with girth 3 are complete graphs. Thus, in the

following theorem the self-paired G-orbit ∆ is of type A or θ only when ΓB ∼= Kb+1. Note

that the proof below applies to all types unanimously.

Theorem 4.14 Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant

partition B such that Γ is not a multicover of ΓB. Suppose that ΓB is (G, 2)-arc transitive

with valency b ≥ 3. Suppose further that λ = 1 and r = b − 2. Then Γ ∼= Ψ2(Σ,∆)

for a self-paired G-orbit ∆ on J(ΓB), and the parameters with respect to (Γ,B) satisfy

v = b(b− 1)/2, k = (b− 1)(b− 2)/2 and λ = (b− 2)(b− 3)/2.

Proof Since r = b− 2 ≥ 1, for each α ∈ V (Γ) there are exactly two blocks in ΓB(B(α))

but not in ΓB(α), where B(α) is the block of B containing α. Let us denote these two

blocks by C(α) and D(α). Then C(α)B(α)D(α) is a 2-path of ΓB. Since ΓB is (G, 2)-arc

transitive, any 2-path CBD of ΓB is of the form C(α)B(α)D(α). Moreover, since λ = 1,

there is a unique vertex α ∈ V (Γ) such that CBD = C(α)B(α)D(α). Thus,

φ : α 7→ C(α)B(α)D(α), α ∈ V (Γ)
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defines a bijection from V (Γ) to the set of 2-paths of ΓB. From (3) and λ = 1, we have

λ = 2k − v + 1. Plugging this into (4), and r = b− 2 into vr = bk, we get:







(b− 1)v − (b+ 1)k = b− 1

(b− 2)v − bk = 0.

Solving, we obtain v = b(b−1)/2 and k = (b−1)(b−2)/2, and hence λ = (b−2)(b−3)/2.

From the bijection φ and the value of v it follows that, for each block B ∈ B, the restriction

of φ to B (that is, φ|B : α 7→ C(α)BD(α), α ∈ B) is a bijection from B to the set of

2-paths of ΓB with mid-vertex B.

Define

∆ := {(C(α)B(α)D(α), C(β)B(β)D(β)) : (α, β) ∈ Arc(Γ)}.

Since Σ is G-symmetric, ∆ is a self-paired G-orbit on J(ΓB). Hence Ψ2(ΓB,∆) is G-

symmetric by Theorem 4.12(b). Clearly, for adjacent vertices α, β of Γ, φ(α) and φ(β)

are adjacent in Ψ2(ΓB,∆). Conversely, if φ(α) and φ(β) are adjacent in Ψ2(ΓB,∆) for

α, β ∈ V (Γ), then (C(α)B(α)D(α), C(β)B(β)D(β)) ∈ ∆. Since α is the unique vertex

in B(α) with φ(α) = C(α)B(α)D(α) and β is the unique vertex in B(β) with φ(β) =

C(β)B(β)D(β), from the definition of ∆ it follows that α and β must be adjacent in Γ.

Therefore, φ is an isomorphism between Γ and Ψ2(ΓB,∆). This completes the proof. 2

Remark 4.15 (a) The condition that Gσ is 3-transitive on Σ(σ) is sufficient but not

necessary to guarantee the specific values of k, r, λ, λ in (b) of Theorem 4.12. In fact, the

last paragraph of its proof shows that k, r, λ, λ achieve the same values if Σ is G-vertex

transitive and the stabiliser in G of a 2-path τστ ′ is transitive on Σ(σ) \ {τ, τ ′}.

(b) For an arbitrary pair (Σ,∆) with Σ a (G, 2)-arc transitive graph of valency ≥ 3

and ∆ a self-paired G-orbit on J(Σ), we do not know whether (Ψ2(Σ,∆),B2(Σ)) always

satisfies λ = 1 and r = b−2. It seems that the family of such graphs (Ψ2(Σ,∆),B2(Σ)) is

larger than the family of symmetric graphs (Γ,B) in Theorem 4.14. Further investigation

is needed regarding construction 4.11.
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