The spread of unicyclic graphs with given size of maximum matchings

Xueliang Li¹, Jianbin Zhang¹, Bo Zhou²

¹ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P.R. China
² Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

Abstract

The spread s(G) of a graph G is defined as $s(G) = \max_{i,j} |\lambda_i - \lambda_j|$, where the maximum is taken over all pairs of eigenvalues of G. Let U(n,k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and $U^*(n,k)$ the set of trianglefree graphs in U(n,k). In this paper, we determine the graphs with the largest and second largest spectral radius in $U^*(n,k)$, and the graph with the largest spread in U(n,k).

KEY WORDS: spread, unicyclic graph, characteristic polynomial, eigenvalue

AMS subject classification: 05C50, 15A42, 15A36

1 Introduction

All graphs G = (V, E) considered here are finite, undirected and simple. Let G be a graph with n vertices and A(G) the adjacency matrix of G. The characteristic polynomial of A(G) is $\phi(G, \lambda) = \det(\lambda I - A(G))$. The roots $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$ ($\lambda_1(G) \ge \lambda_2(G) \ge \ldots \ge \lambda_n(G)$) of $\phi(G, \lambda) = 0$ are called the eigenvalues of G. Since A(G) is symmetric, all the eigenvalues of G are real.

The spread s(G) of a graph G is defined as $s(G) = \max_{i,j} |\lambda_i - \lambda_j|$, where the maximum is taken over all pairs of eigenvalues of G. The spread of G is also defined as $s(G) = \lambda_1 - \lambda_n$, where λ_1, λ_n are the largest and least eigenvalues of A(G), respectively. There have been some studies on the spread of an arbitrary matrix and a graph (see [6, 12, 11, 9]).

Let U(n, k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and $U^*(n, k)$ the set of triangle-free graphs in U(n, k). For a unicyclic graph G, let C(G) denote the unique cycle of G and g(G) the length of C(G).

Let $S_3^1(n,k)$ denote the graph on n vertices obtained from C_3 by attaching n - 2k + 1 pendant edges and k - 2 paths of length 2 to a vertex of C_3 , and $S_3^2(n,k)$ the graph on n vertices obtained from C_3 by attaching n - 2k + 1 pendant edges and k - 3 paths of length 2 to a vertex of C_3 , and one pendant edge to each of the other two vertices of C_3 . Let $S_3^3(n,k)$ denote the graph on n vertices obtained from C_3 by attaching n - 2k pendant edges and k - 2 paths of length 2 to a vertex of C_3 , and one pendant edges of the other two vertices of C_3 (see Fig. 1).

Let $S_4^1(n,k)$ denote the graph on *n* vertices obtained from C_4 by attaching n-2k+1 pendant edges and k-3 paths of length 2 to one vertex of C_4 , and one pendant edge to the adjacent vertex of C_4 . Let $S_4^2(n, k)$ denote the graph on n vertices obtained from C_4 by attaching n-2k pendant edges and k-2 paths of length 2 to one vertex of C_4 . Let $S_4^3(n, k)$ denote the graph obtained from $S_4^1(n-3, k)$ by attaching three pendant edges to the three vertices of degree 2 in C_4 . Let $S_4^4(n, k)$ denote the graph obtained from $S_4^1(n-1, k)$ by attaching one pendant edge to the vertex f (see Fig. 2).

In this paper, we show that $S_4^1(n,k)$, $S_4^2(n,k)$ $(n \ge 2k)$ are the graphs with the largest and second largest spectral radius in $U^*(n,k)$ respectively, and $S_3^1(n,k)$ is the graph with the largest spread in U(n,k).

2 Graphs with the largest and second largest spectral radius in $U^*(n,k)$

Lemma 1 [2] Let uv be an edge of G, then

$$\phi(G,\lambda) = \phi(G - uv,\lambda) - \phi(G - u - v,\lambda) - 2\sum_{C \in \mathcal{C}(uv)} \phi(G - C,\lambda),$$

where C(uv) is the set of cycles that containing uv; In particular, if uv is a pendant edge with the pendant vertex v, then

$$\phi(G,\lambda) = \lambda\phi(G-v,\lambda) - \phi(G-u-v,\lambda).$$

Lemma 2 [10] Let G_1 and G_2 be two graphs. If $\phi(G_1, \lambda) < \phi(G_2, \lambda)$ for all $\lambda \ge \lambda_1(G_2)$, then $\lambda(G_1) > \lambda_1(G_2)$.

Lemma 3 [10] Let G be a connected graph, and let G' be a proper spanning subgraph of G. Then

$$\phi(G',\lambda) > \phi(G,\lambda)$$
 for all $\lambda \ge \lambda_1(G)$.

Furthermore, we have $\lambda_1(G) > \lambda_1(G')$.

Unicyclic graphs are also viewed as planting some trees at vertices of the unique cycle of G. So, we can view the vertices $r_i(i = 1, ..., g)$ of $C_{g(G)}$ as roots, and T_i as planting tree at $r_i(r_i \in T_i)$.

Let $G \in U^*(2k, k)$. If $v \in V(T_i)$ is a vertex furthest from the root r_i , and the distance is less than 2, then v is a pendant vertex. Let u be the vertex adjacent to v. Then d(u) = 2. Otherwise, G has no perfect matching. We define a transformation (F): Deleting the other edge that incident to uand adding an edge $r_i u$. Carry out transformation (F) to T_i repeatedly, we can obtain the graph G' such that only some paths of length 2 and at most one edge are attached to r_i . **Lemma 4** [1] Let $G \in U^*(2k,k)$, G' be the graph as above. Then $G' \in U^*(2k,k)$ and

$$\phi(G,\lambda) > \phi(G',\lambda)$$
 for all $\lambda \ge \lambda_1(G)$.

In particular, $\lambda_1(G') > \lambda_1(G)$

If we apply transform (F) to all planting trees T_i (i = 1, 2, ..., g(G)) of G repeatedly, we can finally obtain a graph G'' such that for any vertex w of C(G''), there are only some paths of length 2 and at most one pendant vertex that are attached to w.

Lemma 5 [7] Let u and v be two vertices in a non-trivial connected graph G, and suppose that s paths of length 2 are attached to G at u, and t paths of length 2 are attached to G at v to form a graph $G_{s,t}$. Then either

$$\lambda_1(G_{s+i,t-i}) > \lambda_1(G_{s,t}) \ (1 \le i \le t) \quad or$$
$$\lambda_1(G_{s-i,t+i}) > \lambda_1(G_{s,t}) \ (1 \le i \le s).$$

Apply Lemma 4, 5, we can get a graph H in U(2k, k) such that all paths of length 2 are attached to one vertex of C(H), other vertices are pendant ones, and just one of those is joining to one vertex of C(H).

Lemma 6 [1] Let $G_i, G'_i (i = 1, 2, 3)$ be the graphs shown in Fig.3. Then

 $\phi(G_i, \lambda) > \phi(G'_i, \lambda)$ for all $\lambda \ge \lambda(G_i)$

In particular, we have $\lambda_1(G_i) < \lambda_1(G'_i)$ for i = 1, 2, 3, respectively.

Fig.3

By Lemmas 3, 4, by a series of transforms, we can obtain a graph $G^* \in U^*(2k,k)$ such that $g(G^*) = 4$, a vertex of C_4 is attached by some paths of length 2 and at most one pendant vertex, and other vertices of C_4 are attached by at most one pendant vertex. Thus G^* must be a graph of Fig.2.

Lemma 7

$$\begin{array}{lll} \phi(S_4^1(2k,k),\lambda) &< & \phi(S_4^2(2k,k),\lambda) \quad for \ all \ \lambda \geq \lambda(S_4^2(2k,k)) \\ \phi(S_4^2(2k,k),\lambda) &< & \phi(S_4^3(2k,k),\lambda) \quad for \ all \ \lambda \geq \lambda(S_4^3(2k,k)) \\ \phi(S_4^3(2k,k),\lambda) &< & \phi(S_4^4(2k,k),\lambda) \quad for \ all \ \lambda \geq \lambda(S_4^4(2k,k)). \end{array}$$

In particular, $\lambda_1(S_4^1(2k,k)) > \lambda_1(S_4^2(2k,k)) > \lambda_1(S_4^3(2k,k)) > \lambda_1(S_4^4(2k,k)).$

Proof. Let e = fc, e' = pq as shown in Fig.2. Delete e, e' from $S_4^1(2k, k), S_4^2(2k, k)$, respectively. By Lemma 1, we have

$$\begin{split} \phi(S_4^1(2k,k),\lambda) &= \phi(S_4^1(2k,k) - fc,\lambda) - \phi(S_4^1(2k,k) - f - c,\lambda) \\ &- 2\phi(2K_1 \cup (k-3)K_2,\lambda) \\ \phi(S_4^2(2k,k),\lambda) &= \phi(S_4^2(2k,k) - pq,\lambda) - \phi(S_4^2(2k,k) - p - q,\lambda) \\ &- 2\phi((k-2)K_2,\lambda) \end{split}$$

Obviously, $\phi(S_4^1(2k,k),\lambda) < \phi(S_4^2(2k,k),\lambda)$ for all $\lambda \ge \lambda_1(S_4^2(2k,k))$, since $S_4^1(2k,k) - f - c, 2K_1 \cup (k-3)K_2$ are subgraphs of $S_4^2(2k,k) - p - q, (k-2)K_2$ respectively, and $S_4^1(2k,k) - fc = S_4^2(2k,k) - pq$. By Lemma 2, we have $\lambda(S_4^1(2k,k)) > \lambda_1(S_4^2(2k,k))$.

Similarly, we can obtain

$$\begin{array}{lll} \phi(S_4^2(2k,k),\lambda) &< & \phi(S_4^3(2k,k),\lambda) \quad for \ all \ \lambda \geq \lambda(S_4^3(2k,k)) \\ \phi(S_4^3(2k,k),\lambda) &< & \phi(S_4^4(2k,k),\lambda) \quad for \ all \ \lambda \geq \lambda(S_4^4(2k,k)). \end{array}$$

Furthermore, we have $\lambda_1(S_4^2(2k,k)) > \lambda_1(S_4^3(2k,k)) > \lambda_1(S_4^4(2k,k)).$

In order to describe our results better, we first give the following lemma.

Lemma 8 Let $G \in U^*(2k,k), G \not\cong S_4^1(2k,k), S_4^2(2k,k), v \in V(C(G))$. If there exist a path $P = vv_1v_2$ of length 2 attached to v and $G - v_1 - v_2 \not\cong S_4^1(2k-2,k-1)$, then

$$\phi(G,\lambda) > \phi(S_4^2(2k,k),\lambda) \quad for \ all \ \lambda \ge \lambda_1(S_4^2(2k,k)).$$

Proof. By induction on k. By Lemma 1, we have

$$\begin{split} \phi(G,\lambda) &= \phi(G - vv_1,\lambda) - \phi(G - v - v_1,\lambda) \\ \phi(S_4^2(2k,k),\lambda) &= (\lambda^2 - 1)\phi(S_4^2(2k - 2, k - 1),\lambda) - \phi(P_3 \cup P_1 \cup (k - 3)P_2,\lambda) \end{split}$$

Let $G - vv_1 = G' \cup v_1v_2$. Then $G' \in U^*(2(k-1), k-1)$, and $\phi(G, \lambda) = (\lambda^2 - 1)\phi(G', \lambda)$. By induction hypothesis, we have

$$(\lambda^2 - 1)\phi(S_4^2(2(k-1), k-1) \le (\lambda^2 - 1)\phi(G', \lambda), \text{ for } \lambda \ge \lambda_1(S_4^2(2k, k)).$$

If there is no pendant vertex attached to v, then $P_3 \cup P_1 \cup (k-3)P_2$ is subgraph of $G - v - v_1$. Using the result above and Lemmas 2 and 3, we can obtain the result.

If there exists a pendant vertex attached to v, then $P_4 \cup 2P_1 \cup (k-4)P_2$ is a subgraph of $G - v - v_1$. For $\lambda > \lambda_1(S_4^2(2k, k))$,

$$\begin{split} \phi(P_3 \cup P_1 \cup (k-3)P_2, \lambda) &- \phi(P_4 \cup 2P_1 \cup (k-4)P_2, \lambda) \\ &= \lambda^2 (\lambda^2 - 2)(\lambda^2 - 1)^{k-3} - \lambda^2 (\lambda^4 - 3\lambda^2 + 1)(\lambda^2 - 1)^{k-4} \\ &= \lambda^2 (\lambda^2 - 1)^{k-4} > 0. \end{split}$$

Similarly, the result follows.

Lemma 9 Let $G \in U^*(2k,k)$, and $G \not\cong S_4^1(2k,k)$ or $S_4^2(2k,k)$. Then

$$\phi(S_4^2(2k,k),\lambda) < \phi(G,\lambda) \quad for \ all \ \lambda \ge \lambda(S_4^2(2k,k)).$$

In particular, $\lambda_1(S_4^2(2k,k)) > \lambda_1(G)$.

Proof. It is trivial for k = 2. From the tables of [3, 4], we can obtain the result for k = 3, 4. Suppose now $k \ge 5$. If G is finally transformed into one of the graphs $S_4^2(2k, k), S_4^3(2k, k)$ or $S_4^4(2k, k)$, then by Lemmas 5, 6, 7 and 8, the lemma holds. If G is transformed into $S_4^1(2k, k)$, let G' be transformed into $S_4^1(2k, k)$ at the last step, then g(G') = 4 or g(G') = 5.

If g(G') = 5, then G' satisfies the condition of Lemma 8. By Lemmas 5, 6 and 7, we can obtain the result.

If g(G') = 4, then either G' satisfies the condition of Lemma 8 or G' is the graph obtained from $S_4^1(8, 4)$ by attaching a path of length 2 to a vertex of planting subtree P_3 or a vertex of degree 3 in C_4 . we can obtain the result by simple computation and Lemmas 5, 6, 7 and 8.

Applying Lemmas 7 and 9, we can obtain

Lemma 10 Let $G \in U^*(2k, k)$, and $G \not\cong S^1_4(2k, k)$, then

 $\phi(S_4^1(2k,k),\lambda) < \phi(G,\lambda) \quad for \ all \ \lambda \ge \lambda(S_4^1(2k,k)).$

In particular, $\lambda_1(S_4^1(2k,k)) > \lambda_1(G)$.

Lemma 11 [14] Let $G \in U(n,k), G \not\cong C_n$ (n > 2k). Then there is a maximal matching M and a pendant vertex v such that M does not meet v.

Theorem 12 $S_4^1(n,k)$ is the graph with the maximal spectral radius in $U^*(n,k)$.

Proof. By induction on n. The result holds for n = 2k by Lemma 7. Suppose that it is true for $n \leq m - 1$. Let n = m (m > 2k). There exists a pendant edge e that does not belong to a maximal matching M of G. Let e = wr with pendant vertex r. By Lemma 1, we have

$$\phi(S_4^1(n,k),\lambda) = \lambda \phi(S_4^1(n-1,k),\lambda) - \phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2,\lambda)$$

$$\phi(G,\lambda) = \lambda \phi(G-r,\lambda) - \phi(G-w-r,\lambda)$$

where $G \in U^*(n,k), G \not\cong S_4^1(n,k), S_4^2(n,k)$. By induction hypothesis, we have $\phi(S_4^1(n-1,k),\lambda) < \phi(G-r,\lambda)$ for $\lambda > \lambda_1(G-r)$.

It suffices to prove $\phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, \lambda) > \phi(G-w-r, \lambda)$ for $\lambda > \lambda_1(G)$. Since any maximal matching M of G that misses r must meet w, otherwise $M \cup wr$ is a matching of G. G-w-r has a maximal matching with value k-1.

Case 1: $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is a subgraph of G - w - r. By Lemma 3, the result holds.

Case 2: $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is not a subgraph of G - w - r. Let M' be an maximal matching of G - w - r. Let V' be the vertex set of M', and V'' = V(G - w - r) - V'.

Claim 1. G[V''] is empty. Otherwise, let $e_1 \in E(G[V''])$, then $M' \cup e_1$ is a matching of G - w - r with cardinality k.

Claim 2. $G[V'] \setminus E(M')$ is empty.

Claim 3. $v \in V''$ is adjacent to at most one vertex of V' in G - w - r.

Claim 4. For any edge $e_2 = ij$ of M', if *i* is adjacent to some vertices of V'', then *j* must not be adjacent to any vertex of G - w - r except for *i*.

Claim 5. G - w - r contains no cycle.

Claim 6. g(G) = 4. If $g(G) \ge 5$, then G - w - r can not satisfy the above claims.

So, the components of G - w - r are isolated vertices, P_2 , or stars.

Let qx be an pendant edge of G with pendant vertex x. If q is not a vertex on the cycle, but q is adjacent to another pendant vertex in G, we can choose qx as deleting edge and x as deleting vertex. We know that G-q-x contains a cycle. Then $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ must be a subgraph of G-q-x. Thus the result hold.

If G contains no such construction, then G must be a graph G'' as shown in Fig.4. Since $P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2$ is a subgraph of G'' - r - z (or G'' - r' - z' or G'' - r'' - z''), we can easily obtain that $\lambda_1(S_4^2(n,k)) > \lambda_1(G'')$ by induction.

Fig. 4

In the following, we prove that $\lambda_1(S_4^1(n,k)) > \lambda_1(S_4^2(n,k))$.

Let c, d be vertices of $S_4^1(n, k)$ and g, h be vertices of $S_4^2(n, k)$ as shown in Fig.2. By Lemma 1, we have

$$\begin{split} \phi(S_4^1(n,k),\lambda) &= \lambda \phi(S_4^1(n,k) - d,\lambda) - \phi(S_4^1(n,k) - c - d,\lambda) \\ \phi(S_4^2(n,k),\lambda) &= \lambda \phi(S_4^2(n,k) - g,\lambda) - \phi(S_4^2(n,k) - h - g,\lambda). \end{split}$$

It is obvious that $S_4^1(n,k) - d \cong S_4^2(n,k) - g$, and that $S_4^1(n,k) - c - d$ is a subgraph of $S_4^2(n,k) - g - h$. By Lemmas 3 and 4, we can obtain the result.

Theorem 13 $S_4^2(n,k)$ is the graph with the second maximal spectral radius in $U^*(n,k)$.

Proof. By induction on n. Let v be the pendant vertex of G not met by a maximal matching M, u be its adjacent vertex. By Lemma 3, we have

$$\phi(S_4^2(n,k),\lambda) = \lambda \phi(S_4^2(n-1,k),\lambda) - \phi((n-2k-1)K_1 \cup P_3 \cup (k-2)K_2,\lambda)$$

$$\phi(G,\lambda) = \lambda \phi(G-v,\lambda) - \phi(G-u-v,\lambda)$$

where $G \in U^*(n,k)$ and $G \not\cong S_4^1(n,k), S_4^2(n,k)$.

Case 1: $P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2$ is a subgraph of G-u-v. By Lemma 3, the result holds.

Case 2: $P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2$ is not a subgraph of G-u-v. M', V', V'' are defined as in Theorem 11. It is obvious that E[V':V''] and E(G[V'']) are empty. We also know that $E(G[V']) \setminus E(M)$ is not empty, otherwise we can not reconstruction G such that it contains a cycle. So, $P_4 \cup (n-2k)K_1 \cup (k-3)K_2$ is a subgraph of G-u-v.

By Lemma 3, for $\lambda > \lambda_1(G) > \lambda_1(G - u - v)$

$$\phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, \lambda) > \phi(G-u-v, \lambda),$$

and since for $\lambda > \lambda_1(G)$

$$\phi(P_3 \cup (n-2k-1)K_1 \cup (k-2)K_2, \lambda) - \phi(P_4 \cup (n-2k)K_1 \cup (k-3)K_2, k), \lambda)$$

= $\lambda^{n-2k}(\lambda^2 - 2)(\lambda^2 - 1)^{k-2} - \lambda^{n-2k}(\lambda^4 - 3\lambda^2 + 1)(\lambda^2 - 1)^{k-3}$
= $\lambda^{n-2k}(\lambda^2 - 1)^{k-3} > 0$

combining the induction hypothesis and Lemmas 3 and 5, we can obtain the result. $\hfill \Box$

3 The graph with maximal spread in U(n,k)

In order to describe our results, we need give some definitions and lemmas. Let T(n,k) be the set of all trees on n vertices with a maximal matching of cardinality k. Let A(n,k), B(n,k), C(n,k) be the trees as shown in Fig.5.

Lemma 14 [8] A(n,k), B(n,k) (n > 2k) are the graphs with the maximal and second maximal spectral radius in T(n,k), respectively; A(2k,k), C(2k,k)are the graphs with the maximal and second maximal spectral radius in T(2k,k), respectively.

Lemma 15 [5] Let $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$ ($\lambda_1(G) \ge \lambda_2(G) \ge \ldots \ge \lambda_n(G)$) be the eigenvalues of graph G. If G is connected, then

$$|\lambda_i(G)| \le \lambda_1(G), \quad i = 1, 2, \dots, n.$$

If G is bipartite, then $\lambda_1(G) = -\lambda_n(G)$.

Lemma 16 [14] $S_3^1(n,k)$ is the graph with the largest spectral radius in U(n,k) except for n = 2k = 6.

Lemma 17 Let $G \in U(n,k), g(G) = 3$. Then there exists an edge e of $E(C_3)$ such that $\lambda_n(G-e) \leq \lambda_n(G)$.

Proof. Let $X = (x_1, x_2, x_3, \dots, x_n)^T$ be the unity eigenvector of $\lambda_n(G)$, where $C_3(G) = v_1 v_2 v_3$ and x_1, x_2, x_3 correspond to $v_1 v_2 v_3$, respectively.

Then there exist $i, j (1 \le i \le j \le 3)$ such that $x_i x_j \ge 0$. Otherwise, $x_1 x_2 < 0, x_2 x_3 < 0, x_3 x_1 < 0$, which is impossible. By Rayleigh quotient, we have

$$\lambda_n(G - v_i v_j) \leq X^T A(G - v_i v_j) X = X^T A(G) X - 2x_i x_j$$
$$= \lambda_n(G) - 2x_i x_j \leq \lambda_n(G)$$

Lemma 18 Let $G \in U(n,k)$, g(G) = 3, and $G \not\cong S_3^1(n,k)$. Then $\lambda_n(S_4^1(n,k)) \leq \lambda_n(G)$ for $k \geq 3$; $\lambda_n(S_4^2(n,k)) \leq \lambda_n(G)$ for k = 2.

Proof. By Lemma 4, we can obtain a tree G' from G by deleting an edge of C_3 such that $\lambda_n(G') \leq \lambda_n(G)$.

If $G' \in T(n,k)$, by Lemma 3 we have $\lambda_1(A(n,k)) \geq \lambda_1(G')$. Since A(n,k) is a subgraph of $S_4^1(n,k)$, by Lemma 3 we have $\lambda_1(S_4^1(n,k)) \geq \lambda_1(A(n,k))$. Since $S_4^1(n,k), G'$ are all bipartite, by Lemma 15 we have

$$\lambda_n(S_4^1(n,k)) = -\lambda_1(S_4^1(n,k)) \le -\lambda_1(A(n,k)) \le -\lambda_1(G') = \lambda_n(G') \le \lambda_n(G)$$

If $G' \in T(n, k-1)$, since $G \not\cong S_3^1(n, k)$ we know $G' \not\cong A(n, k-1)$. Since B(n, k-1) is a subgraph of $S_4^1(n, k)$, similarly, we can obtain $\lambda_n(S_4^1(n, k)) \leq \lambda_n(G)$.

If k = 2, we can obtain that $\lambda_1(S_4^2(n,k)) > \lambda_1(B(n,k-1))$ easily. Similar to the above proof, we can obtain the result.

Lemma 19 $\lambda_n(S_3^1(n,k)) < \lambda_n(S_4^1(n,k)) \ (k \ge 3), \text{ for } n \ge 17; \lambda_n(S_3^1(n,k)) < \lambda_n(S_4^2(n,k)) \ (k = 2), \text{ for } n \ge 12.$

Proof. By Lemma 3, we can get

$$\begin{split} \phi(S_3^1(n,k),\lambda) &= \lambda^{n-2k}(\lambda^2-1)^{k-2}[\lambda^4-(n-k+2)\lambda^2-2\lambda+(n-2k+1)]\\ \phi(S_4^2(n,k),\lambda) &= \lambda^{n-2k}(\lambda^2-1)^{k-3}[\lambda^6-(n-k+3)\lambda^4+(3n-4k)\lambda^2-(2n-4k)]\\ \phi(S_4^1(n,k),\lambda) &= \lambda^{n-2k}(\lambda^2-1)^{k-4}[\lambda^8-(n-k+4)\lambda^6+(4n-5k+2)\lambda^4-(4n-7k+3)\lambda^2+n-2k+1] \end{split}$$

Let

$$\begin{aligned} f(x) &= x^4 - (n-k+4)x^3 + (4n-5k+2)x^2 - (4n-7k+3)x + n - 2k + 1\\ h(\lambda) &= \lambda^6 - (n-k+3)\lambda^4 + (3n-4k)\lambda^2 - (2n-4k)\\ g(\lambda) &= \lambda^4 - (n-k+2)\lambda^2 - 2\lambda + (n-2k+1). \end{aligned}$$

We know that $f(0) = n - 2k + 1 > 0, f(\frac{3-\sqrt{5}}{2}) = -x^3 < 0(x > 0), f(1) = k - 3 > 0, f(\frac{3+\sqrt{5}}{2}) = -x^3 < 0(x > 0), g(-\sqrt{n-k+2}) = 2\sqrt{n-k+2} + (n - 2k + 1) > 0.$ Let $n = 2k + m \ (k \ge 3).$

If $0 \le m \le k$, then

$$\begin{split} g(-\sqrt{n-k+\frac{6}{5}}) &= -\frac{1}{5}(4k-m-\frac{1}{5}-10\sqrt{k+m+\frac{6}{5}}) < 0\\ (m \leq k \ k \geq 24, m \leq k-1 \ k \geq 22, m \leq k-2 \ k \geq 22, \\ m \leq k-3 \ k \geq 20, m \leq k-4k \geq 19, m \leq k-5 \ k \geq 17, \\ m \leq k-6 \ k \geq 16, m \leq k-7 \ k \geq 13, m \leq k-8 \ k \geq 8)\\ f(n-k+\frac{6}{5}) &= \frac{1}{5}[(k+6m-\frac{44}{5})(5k+5m-9)-195] > 0\\ (m \geq 0 \ k \geq 13, m \geq 1 \ k \geq 8, m \geq 20 \ k \geq 5, m \geq 3 \ k \geq 3) \end{split}$$

Combining the Appendix Table, We can obtain that $\lambda_n(S_3^1(n,k)) < \sqrt{n-k+\frac{6}{5}} < \lambda_n(S_4^1(n,k)), \ (n \ge 18).$

If
$$m \ge k+1$$
, then

$$g(-\sqrt{n-k+\frac{2}{3}}) = -\frac{1}{3}(\sqrt{k+m+\frac{2}{3}}-3)^2 - k+3 + \frac{1}{3} < 0$$

$$(k \ge 4, k = 3 \ m \ge 1)$$

$$f(n-k+\frac{2}{3}) = \frac{1}{3}(k+m+\frac{2}{3})[(3k+3m-7)(-k+2m-\frac{20}{3})-75] + m+1 > 0$$

$$(m \ge k+1 \ k \ge 7, m \ge k+2 \ k \ge 6, m \ge k+3 \ k \ge 4, m \ge k+5 \ k \ge 3).$$

Combining the Appendix Table, we can obtain that $\lambda_n(S_3^1(n,k)) < \sqrt{n-k+\frac{2}{3}} < \lambda_n(S_4^1(n,k)), \ (n \ge 18).$

If k = 2. $h(x) = x^6 - (m+5)x^4 + (3m+4)x^2 - 2m = (x^2 - 1)[x^4 - (m+4)x^2 + 2m]$. When $m \ge 8$,

$$\begin{split} g(2+m+\frac{1}{2}) &= -\frac{1}{2}(\sqrt{2+m+\frac{1}{2}}-2)^2 + \frac{1}{2} < 0\\ \lambda_n(S_4^2(n,2)) &= -\sqrt{\frac{(m+4)+\sqrt{m^2+16}}{2}} > -\sqrt{m+\frac{5}{2}}. \end{split}$$
 Thus, we have $\lambda_n(S_3^1(n,2)) < -\sqrt{m+\frac{5}{2}} < \lambda_n(S_4^2(n,2)). \Box$

Theorem 20 $S_3^1(n,k)$ $(n \ge 18 \ k \ge 2)$ is the graph with the largest spread in U(n,k).

Proof. Let $G \in U(n, k)$. If g(G) = 3, by Lemmas 16 and 18, we can obtain $s(S_3^1(n, k)) > s(G)$. If $g(G) \ge 4$, by Lemmas 12, 15, 16 and 19 we can obtain $s(S_3^1(n, k)) > s(S_4^1(n, k)) \ge s(G)$ for $k \ge 3$ and $s(S_3^1(n, k)) > s(S_4^2(n, k)) \ge s(G)$ for k = 2. □

Remark: Theorem 20 is still true except for a few graphs (see the Appendix Table) with $n \leq 17$, for example, $S_4^1(15,5)$. For convenience, we just consider the case for $n \geq 18$.

Lemma 21 $s(S_3^1(n,k)) < s(S_3^1(n,k-1)) \ (n \ge 18 \ k \ge 3).$

Proof. We first prove that $\lambda_1(S_3^1(n,k)) < \lambda_1(S_3^1(n,k-1))$. We can delete the pendant vertices v, b of $S_3^1(n,k-1), S_3^1(n,k)$ respectively (see Fig.6).

Similar to the proof of Lemma 10, we can obtain the result. Since x, y are symmetrical, by Lemma 17 we have $\lambda_n(S_3^1(n,k) - xy) \leq \lambda_n(S_3^1(n,k))$. Since $\lambda_n(S_3^1(n,k) - xy)$ is a subgraph of $S_4^2(n,k-1)$, then $\lambda_n(S_3^1(n,k) - xy) > \lambda_n(S_4^2(n,k-1))$. By Lemmas 11 and 19, we have $\lambda_n(S_3^1(n,k-1)) < \lambda_n(S_3^1(n,k))$. Thus $s(S_3^1(n,k)) < s(S_3^1(n,k-1))$ ($k \geq 3$).

Using Theorem 20 and Lemma 21, it is not difficult to obtain the following theorem.

Theorem 22 $S_3^1(n,2)$ $(n \ge 18)$ is the unique graph with the largest spread in the class of all unicyclic graphs with n vertices.

References

- A. Chang, F. Tian, On the spectral radius of unicyclic graphs with perfect matchings, Linear Algebra Appl. 370 (2003), 237-250.
- [2] D. Cvetkoić, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
- [3] D. Cvetkoić, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984), 37-49.
- [4] D. Cvetkoić, P. Rowlinson, Spectra of unicyclic graphs, Graph Combin. 3 (1987), 7-23.
- [5] D. Cvetkoić, P. Rowlinson, S. Simić, *Eigenspaces of graphs*, Cambridge Univ. 1997.
- [6] D. Gergory, D. Hershkowitz, S. Kirkland, The spread of the spectrum of a graph, Linear Algebra Appl. 332-334 (2001), 23-35.
- [7] J. Guo, S. Tan, On the spectral radius of trees, Linear Algebra Appl. 329 (2001), 1-8.
- [8] Y. Hou, J. Li, Bounds on the largest eigenvalues of trees with a given size of matching. Linear Algebra Appl. 342 (2002), 203-217.

- [9] C. Johnson, R. Kumar, H. Wolkowicz, *Lower bounds for the spread of a matrix*, Linear Algebra Appl. 71 (1985), 161-173.
- [10] Q. Li, K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sinica 2 (1979), 167-175.
- [11] L. Mirsky, The spread of a matrix, Mathematika 3 (1956), 127-130.
- M. Petrović, On graphs whose spectral spread does not exceed 4, Publ. Inst. Math. (Beograd) 34 (48) (1983), 169-174.
- [13] S. Simić, On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math. (Beograd) 42 (56) (1987), 13-19.
- [14] A. Yu, F. Tian, On the spectral radius of unicyclic graphs, MATCH commun. Math. Comput. Chem. (51) (2004), 97-109.

• Appendix Table

n :	= 2k + m	$\lambda_n(S^1_4(n,k))$	$\lambda_n(S_3^1(n,k))$
k = 6	$m = 8 \ 7 \ 6 \ 5$	$3.8256 \ 3.6997 \ 3.5705 \ 3.4380$	$3.8570 \ 3.7266 \ 3.5917 \ 3.4521$
k = 7	$m = 7 \ 6 \ 5 \ 4$	$3.8347 \ 3.7097 \ 3.5815 \ 3.4563$	$3.8662 \ 3.7368 \ 3.6032 \ 3.4650$
	m = 3	3.3160	3.3217
k = 8	$m = 8 \ 7 \ 6 \ 5$	4.0834 3.9649 3.8437 3.7195	$4.1213 \ 4.0000 \ 3.8753 \ 3.7468$
	$m = 4 \ 3 \ 2 \ 1$	$3.5923 \ 3.4623 \ 3.3295 \ 3.1940$	$3.6144 \ 3.4777 \ 3.3363 \ 3.1901$
k = 9	$m = 9 \ 8 \ 7 \ 6 \ 5$	$4.3187 \ 4.2060 \ 4.0909 \ 3.9730 \ 3.8525$	$4.3607 \ 4.2462 \ 4.1287 \ 4.0082 \ 3.8843$
	$m = 4 \ 3 \ 2 \ 1$	$3.7292 \ 3.6031 \ 3.4742 \ 3.3426$	$3.7568 \ 3.6255 \ 3.4901 \ 3.3504$
k = 10	$m = 10 \ 9 \ 8 \ 7 \ 6$	$4.7560\ 4.6529\ 4.5479\ 4.4407\ 4.3313$	$4.5871 \ 4.4783 \ 4.3669 \ 4.2529 \ 4.1361$
	$m = 5 \ 4 \ 3 \ 2$	$4.2196 \ 4.1055 \ 3.9890 \ 3.8694$	$4.6162 \ 3.8931 \ 3.7666 \ 3.6364$
k = 11	$m=11\ 10\ 9\ 8\ 7$	$4.7560\ 4.6529\ 4.5479\ 4.4407\ 4.3313$	$4.8024 \ 4.6985 \ 4.5924 \ 4.4840 \ 4.3731$
	m = 6 5 4 3	$4.2196 \ 4.1055 \ 3.9890 \ 3.8694$	$4.2597 \ 4.1434 \ 4.0242 \ 3.9019$
k = 12	$m=12\ 11\ 10\ 9\ 8$	$4.9607 \ 4.8616 \ 4.7607 \ 4.6580 \ 4.5532$	$5.0083 \ 5.9086 \ 4.8071 \ 4.7035 \ 4.5977$
	$m = 7 \ 6 \ 5 \ 4$	$4.4464 \ 4.3375 \ 4.2263 \ 4.1128$	$4.4897 \ 4.3793 \ 4.2663 \ 4.1507$
k = 13	$m = 15 \ 14 \ 13 \ 12$	$5.1574 \ 5.0619 \ 4.9648 \ 4.8660$	$5.2057 \ 5.1099 \ 5.0123 \ 4.9130$
	$m = 11 \ 10 \ 9 \ 8$	$4.7634 \ 4.6630 \ 4.5586 \ 4.4522$	$4.8117\ 4.7084\ 4.6030\ 4.4954$
k = 14	$m = 14 \ 13 \ 12 \ 11$	$5.3471 \ 5.2548 \ 5.1611 \ 5.0658$	$5.3958 \ 5.3033 \ 5.2093 \ 5.1137$
	$m = 10 \ 9 \ 8 \ 7$	$4.9690 \ 4.8704 \ 4.7701 \ 4.6679$	$5.0164 \ 4.9173 \ 4.8163 \ 4.7133$
k = 15	$m = 15 \ 14 \ 13 \ 12$	$5.5303 \ 5.4410 \ 5.3504 \ 5.2583$	$5.5792 \ 5.4898 \ 5.3990 \ 5.3067$
	$m = 11 \ 10 \ 9 \ 8$	$5.1648 \ 5.0697 \ 4.9731 \ 4.8748$	$5.2129 \ 5.1175 \ 5.0204 \ 4.9216$
k = 16	$m = 16 \ 15 \ 14 \ 13$	$5.7078 \ 5.6211 \ 5.5333 \ 5.4442$	$5.7567 \ 5.6700 \ 5.8214 \ 5.4929$
	$m = 12 \ 11 \ 10$	5.3337 5.2618 5.1685	$5.4023 \ 5.3102 \ 5.2165$
k = 17	$m = 17 \ 16 \ 15 \ 14$	$5.8799 \ 5.7958 \ 5.7105 \ 5.6240$	$5.9288 \ 5.8447 \ 5.7594 \ 5.6729$
	$m = 13 \ 12$	$5.5363 \ 5.4473$	5.5851 5.4960
k = 18	$m = 18 \ 17 \ 16 \ 15$	$6.0472 \ 5.9653 \ 5.8824 \ 5.7984$	$6.0960 \ 6.0141 \ 5.9312 \ 5.8472$
	$m = 14 \ 13$	5.7132 5.6268	5.7620 5.6757
k = 19	$m=19\ 18\ 17\ 16\ 15$	$6.2169 \ 6.1303 \ 6.0495 \ 5.9677 \ 5.8849$	$6.2586 \ 6.1789 \ 6.0982 \ 6.0164 \ 5.9337$
k = 20	$m=20\ 19\ 18\ 17\ 16$	$6.3688 \ 6.2909 \ 6.2122 \ 6.1325 \ 6.0517$	$6.4170\ 6.3393\ 6.2607\ 6.1810\ 6.1004$
k=21	$m = 21 \ 20 \ 19 \ 18$	$6.524 \ 6.4476 \ 6.3707 \ 6.2930$	$6.5716 \ 6.4957 \ 6.4190 \ 6.3413$
k = 22	$m = 22 \ 21 \ 20$	6.6750 6.6006 6.5255	$6.7226 \ 6.6484 \ 6.5734$
k = 23	m = 23	6.8230	6.8703