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Abstract

The spread s(G) of a graph G is defined as s(G) = max; ; |\ — A,
where the maximum is taken over all pairs of eigenvalues of G. Let
U(n,k) denote the set of all unicyclic graphs on n vertices with a
maximum matching of cardinality k, and U*(n, k) the set of triangle-
free graphs in U(n, k). In this paper, we determine the graphs with the
largest and second largest spectral radius in U*(n, k), and the graph
with the largest spread in U(n, k).
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1 Introduction

All graphs G = (V, E) considered here are finite, undirected and simple.
Let G be a graph with n vertices and A(G) the adjacency matrix of G. The
characteristic polynomial of A(G) is ¢(G, \) = det(A] — A(G)). The roots
/\I(G)v /\2(G)’ s a/\n(G) (/\I(G) > /\2(G) =2 /\n(G)) of ¢(Gv /\) =0 are
called the eigenvalues of G. Since A(G) is symmetric, all the eigenvalues of
G are real.

The spread s(G) of a graph G is defined as s(G) = max; ; |\; — A},
where the maximum is taken over all pairs of eigenvalues of G. The spread
of G is also defined as s(G) = A\ — A\, where A1, \,, are the largest and
least eigenvalues of A(G), respectively. There have been some studies on



the spread of an arbitrary matrix and a graph (see [6, 12, 11, 9]).
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Let U(n, k) denote the set of all unicyclic graphs on n vertices with a
maximum matching of cardinality k, and U*(n, k) the set of triangle-free
graphs in U(n, k). For a unicyclic graph G, let C(G) denote the unique
cycle of G and g(G) the length of C(G).
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Let Si(n,k) denote the graph on n vertices obtained from Cj by at-
taching n — 2k + 1 pendant edges and k£ — 2 paths of length 2 to a vertex
of C3, and S3(n, k) the graph on n vertices obtained from Cj by attaching
n — 2k + 1 pendant edges and k£ — 3 paths of length 2 to a vertex of C3, and
one pendant edge to each of the other two vertices of C3. Let S3(n, k) denote
the graph on n vertices obtained from C'5 by attaching n — 2k pendant edges
and k — 2 paths of length 2 to a vertex of (3, and one pendant edge to one
of the other two vertices of C3 (see Fig. 1).

Let Si(n,k) denote the graph on n vertices obtained from Cy by at-
taching n — 2k + 1 pendant edges and k — 3 paths of length 2 to one vertex of



Cj, and one pendant edge to the adjacent vertex of Cy. Let S?(n, k) denote
the graph on n vertices obtained from Cy by attaching n — 2k pendant edges
and k — 2 paths of length 2 to one vertex of Cy. Let S(n,k) denote the
graph obtained from Si(n — 3, k) by attaching three pendant edges to the
three vertices of degree 2 in Cy. Let Sf(n,k) denote the graph obtained
from S}(n — 1,k) by attaching one pendant edge to the vertex f (see Fig.
2).

In this paper, we show that S}(n, k), S?(n,k)(n > 2k) are the graphs

with the largest and second largest spectral radius in U*(n, k) respectively,
and S3(n, k) is the graph with the largest spread in U(n, k).

2 Graphs with the largest and second largest spec-
tral radius in U*(n, k)

Lemma 1 [2] Let uv be an edge of G, then

GG N) = (G —uv,\) — (G —u—v,)) =2 Y $(G-C,\),

ceC(uv)

where C(uv) is the set of cycles that containing wv; In particular, if uwv is a
pendant edge with the pendant vertex v, then

O(G,A) = Ap(G — v, A\) — d(G —u— v, \).

Lemma 2 [10] Let G1 and Go be two graphs. If $(G1, ) < ¢(Ga, \) for all
A > )\1(G2), then )\(Gl) > )\1(G2)

Lemma 3 [10] Let G be a connected graph, and let G' be a proper spanning
subgraph of G. Then

(G N) > d(G,N) for all > M\ (G).

Furthermore, we have A\ (G) > M\ (G").

Unicyclic graphs are also viewed as planting some trees at vertices of
the unique cycle of G. So, we can view the vertices r;(i = 1,...,g) of Cyq)
as roots, and T; as planting tree at r;(r; € T;).

Let G € U*(2k, k). If v € V(T;) is a vertex furthest from the root r;,
and the distance is less than 2, then v is a pendant vertex. Let u be the
vertex adjacent to v. Then d(u) = 2. Otherwise, G has no perfect matching.
We define a transformation (F'): Deleting the other edge that incident to u
and adding an edge r;u. Carry out transformation (F) to T; repeatedly, we
can obtain the graph G’ such that only some paths of length 2 and at most
one edge are attached to r;.



Lemma 4 [1] Let G € U*(2k, k), G' be the graph as above. Then G' €
U*(2k, k) and

H(G,N) > o(G',N\)  for all X > M\(G).

In particular, \1(G') > \(G)

If we apply transform (F') to all planting trees T; (i = 1,2,...,9(G)) of
G repeatedly, we can finally obtain a graph G” such that for any vertex w
of C(G"), there are only some paths of length 2 and at most one pendant
vertex that are attached to w.

Lemma 5 [7] Let u and v be two vertices in a non-trivial connected graph
G, and suppose that s paths of length 2 are attached to G at u, and t paths
of length 2 are attached to G' at v to form a graph Gs;. Then either

M(Goqip—i) > M(Gsyr) (1 <i<t) or

M(Gs—itri) > M(Gsy) (1 <i <s).

Apply Lemma 4, 5, we can get a graph H in U(2k, k) such that all paths
of length 2 are attached to one vertex of C'(H), other vertices are pendant
ones, and just one of those is joining to one vertex of C(H).

Lemma 6 [1] Let G;,G(i = 1,2,3) be the graphs shown in Fig.3. Then
d(Gi, N) > o(Gi,N)  for all X > ANGy)

In particular, we have A\ (G;) < M\(G}) for i =1,2,3, respectively.
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By Lemmas 3, 4, by a series of transforms, we can obtain a graph
G* € U*(2k, k) such that g(G*) = 4, a vertex of Cy is attached by some
paths of length 2 and at most one pendant vertex, and other vertices of Cy
are attached by at most one pendant vertex. Thus G* must be a graph of
Fig.2.

< O(S2(2k,k),\)  for all X > N(S2(2k, k))
G(ST(2k, k), \) < @(S3(2k,k),\)  for all A > A\(SF(2k, k))
< G(S4(2k, k), \)  for all X > N(S}(2k, k).

In particular, \1(S}(2k, k) > A1 (S2(2k, k) > A1 (S3(2k, k)) > A1 (S§(2k, k)).

Proof. Let e = fc, e’ = pq as shown in Fig.2. Delete e, ¢’ from S} (2k, k), S3(2k, k),
respectively. By Lemma 1, we have

O(S1(2k, k), N) = &(Si(2k,k) — fe, N) — ¢(S{(2k, k) — f — ¢, )
—2¢(2K1 U (k — 3)Ka, \)

G(S3(2k,k),\) = H(S}(2k, k) — pa, \) — ¢(S3(2k, k) —p — ¢, \)
—20((k = 2)K, )

Obviously, ¢(S1(2k,k),\) < ¢(S3(2k,k),\) for all X > \i(S%(2k,k)),
since S}(2k,k) — f — ¢,2K; U (k — 3)Ky are subgraphs of S3(2k,k) —p —
q, (k — 2) Ky respectively, and S} (2k,k) — fc = S2(2k,k) — pq. By Lemma
2, we have A\(S1(2k,k)) > \1(S2(2k, k)).

Similarly, we can obtain

d(S3(2k, k),\) < o(SF(2k,k),\) for all X > \(S3(2k,k))
d(S3(2k, k), \) < H(S;(2k,k),\)  for all X > N(S$(2k,k)).

Furthermore, we have A1 (S7(2k,k)) > A1 (S3(2k, k) > A1 (S (2k, k)). O
In order to describe our results better, we first give the following lemma.

Lemma 8 Let G € U*(2k,k),G % S}(2k,k),S?(2k,k),v € V(C(Q)). If
there exist a path P = vvivy of length 2 attached to v and G — vy — vg 2
SH2k — 2,k — 1), then

H(G,N) > ¢(S2(2k, k), \)  for all X > A1 (S3(2k, k).

Proof. By induction on k. By Lemma 1, we have

(G, N) = ¢(G—vv,\) = d(G —v—v1, )
H(S3(2k, k), \) = (A2 —=1)p(S3(2k — 2,k —1),\) —p(PsUPLU (k- 3)P, \)
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Let G —vvy = G’ Uwvivg. Then G' € U*(2(k — 1),k — 1), and ¢(G,\) =
(A2 = 1)¢(G", \). By induction hypothesis, we have

AW = Dp(ST2(k — 1),k —1) < (A = 1D)(G',N),  for X > A\ (S3(2k,k)).
If there is no pendant vertex attached to v, then P3s U P} U (k — 3)P; is

subgraph of G — v — v1. Using the result above and Lemmas 2 and 3, we
can obtain the result.

If there exists a pendant vertex attached to v, then PyU2P, U (k—4)P,
is a subgraph of G — v — v;. For A > \(S3(2k, k)),
P(P3UPLU(k—3)P2,\) — d(PLU2P U (k — 4) Py, \)
=A2(A2 —2)(N2 = 1)F 3 = X2\ = 3N+ 1)(\2 — 1)k
=\ -1kt >0

Similarly, the result follows. U

Lemma 9 Let G € U*(2k, k), and G % S} (2k, k) or S3(2k,k). Then
¢(S7(2k, k), ) < @(G,\)  for all X > (S (2k, k).

In particular, \1(S3(2k,k)) > A1 (G).

Proof. It is trivial for k = 2. From the tables of [3, 4], we can obtain the
result for k£ = 3,4. Suppose now k > 5. If GG is finally transformed into one
of the graphs S%(2k, k), S3(2k, k) or S}(2k, k), then by Lemmas 5, 6, 7 and
8, the lemma holds. If G is transformed into S} (2k, k), let G’ be transformed
into S}(2k, k) at the last step, then g(G’) = 4 or g(G') = 5.

If g(G') = 5, then G’ satisfies the condition of Lemma 8. By Lemmas
5, 6 and 7, we can obtain the result.

If g(G') = 4, then either G’ satisfies the condition of Lemma 8 or G’ is
the graph obtained from S}(8,4) by attaching a path of length 2 to a vertex
of planting subtree Ps or a vertex of degree 3 in Cy. we can obtain the result
by simple computation and Lemmas 5, 6, 7 and 8. O

Applying Lemmas 7 and 9, we can obtain

Lemma 10 Let G € U*(2k, k), and G % S}(2k, k), then
S(S1(2k, k), \) < (G, A)  for all X > A(S}(2k, k).

In particular, \1(S}(2k,k)) > A\ (G).

Lemma 11 [14] Let G € U(n,k),G % Cy, (n > 2k). Then there is a mazi-
mal matching M and a pendant vertex v such that M does not meet v.



Theorem 12 S}(n,k) is the graph with the mazimal spectral radius in
U*(n, k).

Proof. By induction on n. The result holds for n = 2k by Lemma 7. Suppose
that it is true for n < m — 1. Let n = m (m > 2k). There exists a pendant
edge e that does not belong to a maximal matching M of G. Let e = wr
with pendant vertex r. By Lemma 1, we have

(;5(5&(71, k)’ >‘) = )\(JS(S&(TL - 17 k)’ >‘) - ¢(P4 U (’I’L - 2k7)K1 U (k - 3)K2, >‘)
d(G,\) = MG -1, —o(G—w—r,N)

where G € U*(n,k),G % Si(n,k),S3(n,k). By induction hypothesis, we
have ¢(Si(n — 1,k),\) < ¢(G — 1, \) for A > A\ (G — 7).

It suffices to prove ¢(PyU (n —2k)K1 U (k—3)K2,\) > ¢(G —w —r, \)
for A > A\ (G). Since any maximal matching M of G that misses r must
meet w, otherwise M U wr is a matching of G. G — w — r has a maximal
matching with value k — 1.

Case 1: PyU (n —2k)K;1 U (k — 3)K> is a subgraph of G — w — r. By
Lemma 3, the result holds.

)

Case 2: Py U (n — 2k)K; U (k — 3)K> is not a subgraph of G —w — r.
Let M’ be an maximal matching of G —w — r. Let V'’ be the vertex set of
M, and V' =V(G—-w—r)-V".

Claim 1. G[V"] is empty. Otherwise, let e; € E(G[V"]), then M’ U e,
is a matching of G — w — r with cardinality k.

Claim 2. G[V'] \ E(M’) is empty.

Claim 3. v € V" is adjacent to at most one vertex of V' in G —w — r.

Claim 4. For any edge ey = ij of M’, if i is adjacent to some vertices
of V", then j must not be adjacent to any vertex of G —w — r except for i.

Claim 5. G — w — r contains no cycle.

Claim 6. g(G) = 4. If g(G) > 5, then G — w — r can not satisfy the
above claims.

So, the components of G — w — r are isolated vertices, P», or stars.

Let gz be an pendant edge of G with pendant vertex z. If ¢ is not a
vertex on the cycle, but ¢ is adjacent to another pendant vertex in GG, we can
choose gz as deleting edge and x as deleting vertex. We know that G—¢—=
contains a cycle. Then Py U (n — 2k)K; U (k — 3) K2 must be a subgraph of
G — q — x. Thus the result hold.

If G contains no such construction, then G must be a graph G” as shown
in Fig.4. Since PsU(n—2k—1)K;U(k—2)K> is a subgraph of G” —r —z (or
G"—r'—2 or G" —r" —2"), we can easily obtain that A\;(S%(n,k)) > A\ (G")



by induction.
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In the following, we prove that A1(S}(n,k)) > A1 (S3(n,k)).

G/l

Let ¢, d be vertices of S}(n,k) and g, h be vertices of S?(n, k) as shown
in Fig.2. By Lemma 1, we have

k) —d,\) — (b(Si(n, k) —c—d,\)
(25(52(77‘7 k)? )‘) = A¢(SZ( n,

It is obvious that S}(n, k) —d = S3(n, k) — g, and that Sj(n,k) —c—d is a

subgraph of S?(n, k) — g — h. By Lemmas 3 and 4, we can obtain the result.
O

n,
n,

Theorem 13 S2(n, k) is the graph with the second mazimal spectral radius
in U*(n, k).

Proof. By induction on n. Let v be the pendant vertex of G not met by a
maximal matching M, u be its adjacent vertex. By Lemma 3, we have

d(S2(n, k), \) = Ap(S3(n—1,k),\) —¢((n—2k —1)K; UP3U (k —2)Ka, \)

d(G, ) = MG —v, ) — (G —u—wv,A)

where G € U*(n, k) and G % Si(n, k), S3(n, k).
Case 1: PsU(n —2k — 1)Ky U (k — 2)K> is a subgraph of G — u — v.
By Lemma 3, the result holds.

Case 2: P3U(n—2k—1)K; U (k—2)K> is not a subgraph of G —u —v.
M’ V' V" are defined as in Theorem 11. It is obvious that E[V’: V"] and
E(G[V"]) are empty. We also know that E(G[V']) \ E(M) is not empty,
otherwise we can not reconstruction GG such that it contains a cycle. So,
Py U (n—2k)K1 U (k—3)K; is a subgraph of G — u — v.

By Lemma 3, for A > A\ (G) > M\ (G —u —v)

(P U (n—2k) K1 U (k—=3)K2,A) > ¢(G —u—wv,A),



and since for A > \1(G)

P(P3U(n—2k = 1)Ky U(k—2)Kz,A) = ¢(Py U (n —2k) K1 U (k — 3) K3, k), A)
— /\n—2k(/\2 _ 2)(/\2 _ 1)k—2 _ /\n—2k(/\4 _ 3)\2 + 1)(/\2 _ 1)k—3
— An—Qk(AQ _ 1)k—3 >0

combining the induction hypothesis and Lemmas 3 and 5, we can obtain the
result. O

3 The graph with maximal spread in U(n,k)

In order to describe our results, we need give some definitions and lemmas.
Let T'(n, k) be the set of all trees on n vertices with a maximal matching of
cardinality k. Let A(n, k), B(n,k),C(n,k) be the trees as shown in Fig.5.

n-2k+1

B(n, k)
Fig. 5

Lemma 14 [8] A(n, k), B(n,k) (n > 2k) are the graphs with the mazimal
and second mazimal spectral radius in T (n, k), respectively; A(2k, k), C(2k, k)
are the graphs with the maximal and second mazximal spectral radius in
T(2k, k), respectively.

Lemma 15 [5] Let \1(G), A2(G), ..., \i(G) (M(G) > X2(G) > ... > M\(GQ))
be the eigenvalues of graph G. If G is connected, then

NG < M(G), i=1,2,....n.

If G is bipartite, then A\ (G) = =\, (G).

Lemma 16 [1/] Si(n,k) is the graph with the largest spectral radius in
U(n,k) except for n =2k = 6.

Lemma 17 Let G € U(n,k),g(G) = 3. Then there exists an edge e of
E(C3) such that \(G —e) < A\ (G).

Proof. Let X = (x1,22,73,...,2,)" be the unity eigenvector of \,(G),
where C3(G) = vjvaus and x1, 9,3 correspond to viveus, respectively.



Then there exist 4,5 (1 < ¢ < j < 3) such that z;z; > 0. Otherwise,
r1xy < 0,293 < 0,2371 < 0, which is impossible. By Rayleigh quotient,
we have
)\n(G — Uﬂ)j) < XTA(G — UZ"Uj)X = XTA(G)X - 21'1'1']'
)\n(G) — Ql‘iiﬂj § )\n(G)

Lemma 18 Let G € U(n, k), g(G) = 3, and G % Si(n, k). Then A\, (Sk(n,k))
< M(Q) for k > 3; \u(S3(n, k) < Ma(G) for k = 2.

Proof. By Lemma 4, we can obtain a tree G’ from G by deleting an edge of
C3 such that \,(G') < A\, (G).

If G’ € T(n,k), by Lemma 3 we have \;(A(n,k)) > A\ (G’). Since
A(n,k) is a subgraph of S}(n,k), by Lemma 3 we have A\;(S}(n,k) >
A1 (A(n, k)). Since S}(n,k), G’ are all bipartite, by Lemma 15 we have

/\n(Si(TL, k)) = —/\1(5&(’0, k)) < —)q(A(TL, k)) < —/\I(G/) = An(G/) < /\n(G)

If G’ € T(n,k—1), since G % Si(n, k) we know G' 2 A(n,k—1). Since
B(n, k—1) is a subgraph of S}(n, k), similarly, we can obtain /\ (Si(n,k)) <
Mn(G).

If k = 2, we can obtain that A (S?(n, k)) > A\ (B(n,k—1) easily. Similar
to the above proof, we can obtain the result. O

Lemma 19 \,(Si(n,k)) < M\ (Si(n, k) (k> 3), forn > 17; A, (Si(n, k)) <
A (S%(n, k) (k=2), forn >12.

Proof. By Lemma 3, we can get

B(SY(n k), A) = APTRO2 DE2M — (n— k4 2)A2 — 2X + (n — 2k + 1)]
(S2(n, k), N) = AT2R(AZ = 1)E3IN6 — (n — k4 3)M + (3n — 4k)A2 — (2n — 4K)]
B(SH(n, k), A) = A2 —1FADE — (n— k + 4N + (4n — Bk + 2)\?

—(4n — Tk +3)A\2 +n — 2k + 1]

f@) = a*—(n—k+4)2>+ (4n—5k+2)2® — (4n — Tk +3)z +n—2k +1
h(A) = X —(n—k+3)A+ (3n—4k)A\? — (2n — 4k)
gA) = M—(n—k+2)X =2\ + (n—2k+1).

—_\/5) = —23 < 0(z > 0),f(1) =

(
k—3>0,f358) = -3 <0 > 0),9(—vVn—k+2) =2Vn—k+2+
(n—2k+1)>0. Let n =2k +m (k> 3).

Weknowthatf(O):n—2k+l>0f3
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If 0 <m <k, then

g(—y/n—k+8)=-1dk—-m—-1-10\/k+m+ %) <0

(m<kk>24m<k—1k>22m<k—2k>?22
m<k—-3k>20m<k—4k>19m<k—5k> 17,
m<k—6k>16m<k—T7Tk>13m<k—8Fk>28)
fn—k+8) = L{(k+6m— %)(5k +5m —9) — 195] > 0
(m>0k>13,m>1k>8m>20k>5m>3k>3)

Combining the Appendix Table, We can obtain that A, (S3(n, k)) < \/n —k+ & <
A (SE(n, k), (n > 18).

If m > k—+1, then
g(—y/n—k+3)=—-1(/k+m+2%-3%—k+3+1<0
(k>4,k=3m>1)

fin—k+3)=%k+m+32)[Bk+3m—-7)(-k+2m—2) 75+ m+1>0
m>k+1k>Tm>k+2k>6m>k+3k>4,m>k+5k>3).

Combining the Appendix Table, we can obtain that A, (S3(n, k)) < /n —k + % <
Au(SL(n, ), (n = 18)

If k =2. h(z) = 2% — (m+5)z* + B3m +4)2? — 2m = (2 — 1)[2* —
(m 4+ 4)x? + 2m]. When m > 8,

g2+m+3) = —3(/24+m+3-22+1<0

M(S30,2)) = -y
Thus, we have A, (S3(n,2)) < —y/m + 5 < A\, (S3(n,2)). O

Theorem 20 Si(n,k)(n > 18 k > 2) is the graph with the largest spread
in U(n,k).

Proof. Let G € U(n, k). If g(G) = 3, by Lemmas 16 and 18, we can obtain
5(Si(n,k)) > s(G). If g(G) > 4, by Lemmas 12, 15, 16 and 19 we can obtain
s(S3(n,k)) > s(Si(n,k)) > s(G) for k > 3 and s(Si(n,k)) > s(S3(n, k)) >
s(G) for k = 2. O

Remark: Theorem 20 is still true except for a few graphs (see the Appendix
Table) with n < 17, for example, Si(15, 5). For convenience, we just consider
the case for n > 18.

Lemma 21 5(Si(n,k)) < s(Si(n,k—1))(n > 18 k > 3).

11



Proof. We first prove that A1(S3(n, k))

< M (S3(n,k —1)). We can delete
the pendant vertices v,b of Si(n,k — 1), 53 (n, k

, k) respectively (see Fig.6).

n—2k+1 n—2k+3

S(n, k) Si(n,k—1)
Fig. 6
Similar to the proof of Lemma 10, we can obtain the result. Since x,y
are symmetrical, by Lemma 17 we have A\, (S3(n, k) — zy) < A\, (Si(n, k)).
Since A\, (Si(n,k) — xy) is a subgraph of S%(n,k — 1), then A\, (S3(n, k) —
zy) > A\ (S3(n, k —1)). By Lemmas 11 and 19, we have \,,(S3(n,k — 1)) <
A (S3(n, k). Thus s(S3(n,k)) < s(Si(n,k —1)) (k > 3). O

Using Theorem 20 and Lemma 21, it is not difficult to obtain the fol-
lowing theorem.

Theorem 22 Si(n,2) (n > 18) is the unique graph with the largest spread
in the class of all unicyclic graphs with n vertices.
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e Appendix Table

n=2k+m An(Sk(n, k)) An(Sk(n, k))
k=6 m=8765 3.8256 3.6997 3.5705 3.4380 3.8570 3.7266 3.5917 3.4521
=7 m=7654 3.8347 3.7097 3.5815 3.4563 3.8662 3.7368 3.6032 3.4650
m=3 3.3160 3.3217
k=8 m=8765 4.0834 3.9649 3.8437 3.7195 4.1213 4.0000 3.8753 3.7468
m=4321 3.5923 3.4623 3.3205 3.1940 3.6144 3.4777 3.3363 3.1901
k=9 m=98765 4.3187 4.2060 4.0909 3.9730 3.8525  4.3607 4.2462 4.1287 4.0082 3.8843
m=4321 3.7202 3.6031 3.4742 3.3426 3.7568 3.6255 3.4901 3.3504
k=10 m=109876 4.7560 4.6529 4.5479 4.4407 4.3313  4.5871 4.4783 4.3669 4.2529 4.1361
m=5432 4.2196 4.1055 3.9890 3.8694 4.6162 3.8931 3.7666 3.6364
k=11 m=1110987 4.7560 4.6529 4.5479 4.4407 4.3313  4.8024 4.6985 4.5924 4.4840 4.3731
m=6543 4.2196 4.1055 3.9890 3.8694 4.2597 4.1434 4.0242 3.9019
k=12 m=12111098 4.9607 4.8616 4.7607 4.6580 4.5532  5.0083 5.9086 4.8071 4.7035 4.5977
m=76514 4.4464 4.3375 4.2263 4.1128 4.4897 4.3793 4.2663 4.1507
k=13 m=151413 12 5.1574 5.0619 4.9648 4.8660 5.2057 5.1099 5.0123 4.9130
m=111098 4.7634 4.6630 4.5586 4.4522 4.8117 4.7084 4.6030 4.4954
k=14 m=14131211 5.3471 5.2548 5.1611 5.0658 5.3958 5.3033 5.2003 5.1137
m=10987 4.9690 4.8704 4.7701 4.6679 5.0164 4.9173 4.8163 4.7133
k=15 m=151413 12 5.5303 5.4410 5.3504 5.2583 5.5792 5.4898 5.3990 5.3067
m=11109 8 5.1648 5.0697 4.9731 4.8748 5.2129 5.1175 5.0204 4.9216
k=16 m=16151413 5.7078 5.6211 5.5333 5.4442 5.7567 5.6700 5.8214 5.4929
m =12 11 10 5.3337 5.2618 5.1685 5.4023 5.3102 5.2165
k=17 m=17161514 5.8799 5.7958 5.7105 5.6240 5.9288 5.8447 5.7594 5.6729
m =13 12 5.5363 5.4473 5.5851 5.4960
k=18 m=18171615 6.0472 5.9653 5.8824 5.7984 6.0960 6.0141 5.9312 5.8472
m=14 13 5.7132 5.6268 5.7620 5.6757
k=19 m=19181716 15  6.2169 6.1303 6.0495 5.9677 5.8849  6.2586 6.1789 6.0982 6.0164 5.9337
k=20 m=20191817 16 6.3688 6.2909 6.2122 6.1325 6.0517  6.4170 6.3393 6.2607 6.1810 6.1004
k=21 m=21201918 6.524 6.4476 6.3707 6.2930 6.5716 6.4957 6.4190 6.3413
k=22 m=222120 6.6750 6.6006 6.5255 6.7226 6.6484 6.5734
k=23 m=23 6.8230 6.8703
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