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Abstract

Let R be the set of real numbers andD be a subset of the positive real numbers. Thedistance graph G(R, D) is a graph with the
vertex setR and two verticesx andy are adjacent if and only if|x − y| ∈ D. In this work, the vertex arboricity (i.e., the minimum
number of subsets into which the vertex setV (G) can be partitioned so that each subset induces an acyclic subgraph) ofG(R, D)

is determined forD being an interval between 1 andδ.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For a graphG = (V , E) and a mappingf : V (G) → {1, 2, . . . , k}, let Vi = {v ∈ V (G)| f (v) = i}. Such amapping
is often referred to as ak-coloring of G. Denote by〈Vi 〉 the subgraph induced byVi in G. Depending on the graphic
property enforced on each〈Vi 〉, wecan define different coloringconcepts. For instance, if eachVi is an independent set
(1 ≤ i ≤ k), then f is the well-knownproper k-coloring. If eachVi induces a forest (i.e., each connected component
of Vi is a tree), thenf is called ak-tree coloring. Clearly, every graph has a requiredk-coloring if the integerk
is large enough. It is interesting to find the smallest possiblek such that a graphG has a requiredk-coloring. The
minimum integerk suchthatG has a properk-coloring is called thechromatic number of G, often denoted byχ(G).
The minimum numberk for which G has ak-tree coloring is called thevertex arboricity and denoted byva(G). In
other words, the vertex arboricityva(G) of a graphG is the minimum number of subsets into which the vertex set
V (G) can be partitioned into acyclic subgraphs. Clearly,χ(G) ≥ va(G) for any graphG.

The vertex arboricityva(G) has been extensively studied. For instance, Kronk and Mitchem [4] proved that
va(G) ≤ 	∆(G)+1

2 
 for any graphG. Catlin and Lai [2] improved the upper bound tova(G) ≤ 	∆(G)
2 


for a graphG being neither a cycle nor a clique.Škrekovski [5] proved that locally planar graphs have vertex
arboricity ≤3 and that triangle-free locally planar graphs have vertex arboricity≤2. Chartrand et al. [1] proved
va(K (p1, p2, . . . , pn)) = n − max{k| ∑k

0 pi ≤ n − k} for a complete n-partite graphK (p1, p2, . . . , pn), where
p0 = 0, 1 ≤ p1 ≤ p2 ≤ · · · ≤ pn.
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Given any setD of positive real numbers, letG(R, D) denote the graph whose vertices are all the points of the
real number lineR, such that any two verticesx, y are adjacent if and only if|x − y| ∈ D. This graph iscalled a
distance graph and the setD is called thedistance set. Coloring problems on distance graphs are motivated by the
famous Hadwiger–Nelson coloring problem on the unit distance plane, which asks for the minimum number of colors
necessary to color the points of the Euclidean plane (i.e.,V (G) = R2) such that the pairs of points with unit distance
(i.e., D = {1}) are colored differently. Thebest known result is 4≤ χ(G(R2, {1})) ≤ 7 andno substantial progress
has been made on this problem for many years. Distance graphs with an interval set were introduced and studied by
Eggleton et al. in 1985. In [3], it was proved thatχ(G(R, D)) = n + 2, whereD is an interval between 1 andδ for
1 ≤ n < δ ≤ n +1. Recently distance graphs have been used to described various phenomena from different scientific
disciplines, such as gene sequences, sequential series, on-line computing and so on.

In this note, we attempt to determine the vertex arboricity of distance graphsG(R, D) with the distance setD
being an interval between 1 andδ. We show thatva(G(R, D)) = n + 2 if 1 ≤ n < δ ≤ n + 1.

2. Vertex arboricity of G(R, D)

The basic idea for determining the vertex arboricity ofG(R, D) is to find a subgraph ofG(R, D) which has a
relatively simple structure but whose vertex arboricity equalsva(G(R, D)). So, which subgraph ofG(R, D) is the
“core structure” responsible for its vertex arboricity? The answer is a complete multipartite graph,T (m, n), defined
below. SinceG(R, D) is an infinite graph, to find a finite subgraph as a framework for this infinite graph with the
same vertex arboricity is itself an interesting task.

Let G, H1, H2, . . . , Hm be vertex-disjoint graphs andV (G) = {v1, v2, . . . , vm}. The composition of G with
H1, H2, . . . , Hm, denoted byG[H1, H2, . . . , Hm], is the graph with the vertex set∪m

i=1 V (Hi) and the edge set
consisting of∪m

i=1 E(Hi) and all edges between every vertex ofHi and every vertex ofH j if viv j ∈ E(G). The
completen-partite graphK n

m can be expressed asKn[K m, K m , . . . , K m ], whereKn is the complete graph of ordern
andK m is an independent set ofm vertices.

Let T (m, n) = C2m+1[K n+2, K n
n+2, . . . , K n+2, K n

n+2, K n+2], that is, H2i+1 = K n+2(0 ≤ i ≤ m), H2i =
K n

n+2(1 ≤ i ≤ m), andhaveG an odd cycleC2m+1. It is clear thatT (m, 1) is C2m+1[K 3, K 3, . . . , K 3] andT (1, n)

is a complete(n + 2)-partite graphK n+2
n+2.

We need the following lemmas for our main result.

Lemma 2.1 (Eggleton et al. [3]). Let D be an interval between 1 and δ and 1 ≤ n < δ ≤ n + 1. Then
χ(G(R, D)) = n + 2.

Lemma 2.2 (Chartrand et al. [1]). va(K (p1, p2, . . . , pn)) = n − max{k| ∑k
0 pi ≤ n − k} for the complete n-partite

graph K (p1, p2, . . . , pn) where p0 = 0, 1 ≤ p1 ≤ p2 ≤ · · · ≤ pn.

It is clear that for eachn ≥ 1, va(K n
n+2) = n by Lemma 2.2.

Now we presentthe main result of this work.

Theorem 2.3. Let D be an interval between 1 and δ, and 1 ≤ n < δ ≤ n + 1. Then G(R, D) contains a subgraph
T (m, n) such that va(G(R, D)) = va(T (m, n)). Furthermore, va(G(R, D)) = n + 2.

Proof. The theorem follows from the following two claims.
Claim 1. G(R, D) contains a subgraphT (m, n).
For 1 ≤ n < δ ≤ n + 1, there exists an integerm suchthat n + 1

m < δ ≤ n + 1
m−1. We construct a subgraph

T (m, n) of G(R, D) for D ∈ {[1, δ], (1, δ), (1, δ], [1, δ)}. Let ε = δ−(n+ 1
m )

(n+2)2 . Then 0< ε ≤ 1
(n+2)2m(m−1)

. Define
verticesui j , wi j k of G(R, D) by

u0 j = j
ε

n + 2
, for 0 ≤ j ≤ n + 1,

ui j = i

m
+ ε + j

ε

n + 2
, for 1 ≤ i ≤ m, 0 ≤ j ≤ n + 1,

wi j k = k(1 + ε) + ui j , for 1 ≤ i ≤ m, 0 ≤ j ≤ n + 1, 1 ≤ k ≤ n.
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Let

Ui = {ui0, ui1, . . . , ui(n+1)} for i = 0, 1, . . . , m

and

Wi = ∪n
k=1{wi0k, wi1k , . . . , wi(n+1)k} for i = 1, 2, . . . , m.

It is easy to see thatUi and{wi0k, wi1k , . . . , wi(n+1)k} (1 ≤ i ≤ m, 1 ≤ k ≤ n) are independent sets. Next, we show
that the newly defined setsUi , Wi (i = 1, 2, . . . , m) satisfy the following properties:

(1) 〈Wi 〉 ⊇ K n
n+2; (2) 〈Wi ∪ Ui 〉 ⊇ K n+1

n+2; (3) 〈Ui−1 ∪ Wi 〉 ⊇ K n+1
n+2; and finally (4) 〈Um ∪ U0〉 ⊇ K 2

n+2.
Clearlyui0 < ui1 < · · · < ui(n+1) for 0 ≤ i ≤ m andwi0k < wi1k < · · · < wi(n+1)k for 1 ≤ i ≤ m, 1 ≤ k ≤ n.

The above four properties are verified below.

(1) We havewi0(k+1) − wi(n+1)k = (k + 1)(1 + ε) + i
m + ε − k(1 + ε) − i

m − ε − (n + 1) ε
n+2 = 1 + ε

n+2 > 1 for

k = 1, 2, . . . , n −1, i = 1, 2, . . . , m, andwi(n+1)n −wi01 = n(1+ ε)+ i
m + ε + (n +1) ε

n+2 − (1+ ε)− i
m − ε =

(n − 1)(1 + ε) + n+1
n+2ε = (n − 1) + (n − 1

n+2)ε < n + 1
m + (n + 2)ε < δ for i = 1, 2, . . . , m. Therefore

〈Wi 〉 ⊇ K n
n+2 for i = 1, 2, . . . , m.

(2) In this case,wi01 − ui(n+1) = (1 + ε) + i
m + ε − i

m − ε − (n + 1) ε
n+2 = 1 + ε

n+2 > 1 andwi(n+1)n − ui0 =
n(1 + ε) + i

m + ε + (n + 1) ε
n+2 − i

m − ε = n(1 + ε) + n+1
n+2ε = n + (n + n+1

n+2)ε < n + 1
m + (n + 2)ε < δ for

i = 1, 2, . . . , m. Therefore〈Wi ∪ Ui 〉 ⊇ K n+1
n+2 for i = 1, 2, . . . , m.

(3) Similarly, we havewi01−u(i−1)(n+1) = (1+ε)+ i
m +ε− i−1

m −ε−(n+1) ε
n+2 = 1+ ε

n+2+ 1
m > 1 for i = 2, . . . , m;

w101− u0(n+1) = (1+ ε) + 1
m + ε − (n + 1) ε

n+2 = 1+ n+3
n+2ε + 1

m > 1; wi(n+1)n − u(i−1)0 = n(1+ ε) + i
m + ε +

(n + 1) ε
n+2 − i−1

m − ε = n(1+ ε) + 1
m + n+1

n+2ε = n + 1
m + (n + n+1

n+2)ε < n + 1
m + (n + 2)ε < δ for i = 2, . . . , m

andw1(n+1)n − u00 = n(1+ ε) + 1
m + ε + (n + 1) ε

n+2 − 0 = n + 1
m + (n + 1+ n+1

n+2)ε < n + 1
m + (n + 2)ε < δ.

Thus〈Ui−1 ∪ Wi 〉 ⊇ K n+1
n+2 for i = 1, 2, . . . , m.

(4) Sinceum0 − u0(n+1) = m
m + ε − (n + 1) ε

n+2 = 1 + ε
n+2 > 1 andum(n+1) − u00 = m

m + ε + (n + 1) ε
n+2 − 0 =

1 + (1 + n+1
n+2)ε < n + 1

m + (n + 2)ε < δ, we have〈Um ∪ U0〉 ⊇ K 2
n+2.

From (1)–(4), we conclude thatUi (0 ≤ i ≤ m) andWi (1 ≤ i ≤ m) form the graphT (m, n) in G(R, D).
Claim 2. For anypositiveintegersm andn, va(T (m, n)) = n + 2.
Let Ui = V (H2i+1)(0 ≤ i ≤ m), Wi = V (H2i) and〈Wi ∪ Ui 〉 = Gi (1 ≤ i ≤ m). First, we construct an(n + 2)-

tree coloring ofT (m, n): let Ui be colored 0 for 0≤ i < m andUm be coloredn + 1. For 1≤ i ≤ m, let n parts of
Wi be colored 1, 2, . . . , n, respectively. It is not hard to verify that the given assignment is a tree coloring ofT (m, n)

and sova(T (m, n)) ≤ n + 2.
We show next that va(T (m, n)) ≥ n + 2. Otherwise,T (m, n) has a(n + 1)-tree coloring f . Let α be a color

assigned the most vertices, sayl0 vertices, inU0. Thenl0 > 1; otherwise there are at leastn + 2 colors appearing in
coloring f , a contradiction.

We claim that the colorα would colorl1 > 1 vertices inU1. Assume, to the contrary, thatα colors at most one
vertex inU1; then there are at most two vertices inG1 colored withα, so there are at least(n+1)(n+2)−2 remaining
vertices inG1 that induce a complete(n + 1)-partite graphK (n + 1, n + 1, n + 2, . . . , n + 2). By Lemma 2.2, we
have

va(K (n + 1, n + 1, n + 2, . . . , n + 2)) = n + 1.

Hence, there are at leastn + 1 colors appearing inG1 besidesα and so there are at leastn + 2 colors in f , a
contradiction. Thusα colorsl1 > 1 vertices inU1. Similarly, we conclude thatα colorsli > 1 vertices inUi for
1 ≤ i ≤ m. But thesel0 vertices inU0 andlm vertices inUm induce a subgraph containing a cycle, a contradiction
again.

Thus, we haveva(T (m, n)) = n + 2.
Sinceva(T (m, n)) ≤ va(G(R, D)) ≤ χ(G(R, D)) = n + 2 byLemma 2.1, T (m, n) is a tree chromatic subgraph

of G(R, D) for open intervalD and consequently for half-open and closed intervals.�
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