On (n, k)-extendable graphs and induced subgraphs

Guizhen Liu*
Department of Mathematics, Shandong University, Jinan, Shandong, P. R. China

Qinglin Yu^{\dagger}
Center for Combinatorics, LPMC
Nankai University, Tianjin, China
and

Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

Let G be a graph with vertex set $V(G)$. Let n and k be non-negative integers such that $n+2 k \leq|V(G)|-2$ and $|V(G)|-n$ is even. If when deleting any n vertices of G the remaining subgraph contains a matching of k edges and every k-matching can be extended to a 1 -factor, then G is called an ($n, k)$-extendable graph. In this paper we present several results about (n, k)-extendable graphs and its subgraphs. In particular, we proved that if $G-V(e)$ is (n, k)-extendable graph for each $e \in F$ (where F is a fixed 1-factor in G), then G is (n, k)-extendable graph.

Key Words: 1-factor, (n, k)-extendable graphs, induced subgraphs. AMS(1991) Subject Classification: 05C70

Let G be a simple graph with the vertex set $V(G)$ and the edge set $E(G)$. A matching M of G is a subset of $E(G)$ such that any two edges of M have no vertices in common. A matching of size k is called a k-matching. If M is a matching so that every vertex (or except one) of G is incident with an edge of M, then M is called 1-factor (or near 1-factor).

[^0]Let S be a subset of $V(G)$. Denote by $G[S]$ the induced subgraph of G by S and we write $G-S$ for $G[V(G) \backslash S] . E(S, T)$ denotes the edges between two vertex sets S and T. The number of odd components of G is denoted by $o(G)$.

Let M be a matching of G. If there is a matching M^{\prime} of G such that $M \subseteq M^{\prime}$, then we say that M can be extended to M^{\prime} or M^{\prime} is an extension of M. If each k-matching can be extended to a 1 -factor, then G is called k-extendable. A graph G is called n-factor-critical if after deleting any n vertices the remaining subgraph of G has a 1 -factor. The properties of 2 -factor-critical and k-extendable graphs were studied extensively by Lovász and Plummer. The history and applications of these topics can be found in [2] and [5]. Liu and Yu [1] have introduced new concept, (n, k)-extendable graph, to combine the n-factor-criticality and the k-extendability.

Let n and k be non-negative integers such that $n+2 k \leq|V(G)|-2$ and $|V(G)|-n$ is even. If when deleting any n vertices from G the remaining subgraph of G contains a k-matching and each k-matching in the subgraph can be extended to 1 -factor, then G is called a (n, k)-extendable graph. Clearly, a graph is $(0,0)$-extendable if and only if it has a 1 -factor. Similarly, $(0, k)$-extendable graphs are precisely those k-extendable graphs and $(n, 0)$ extendable graphs are exactly n-critical graphs. A characterization and basic properties of (n, k)-extendable graphs were discussed in [1].

Nishimura and Saito [3] and Yu [7] studied the relationships between k extendable graphs and its subgraphs and proved the followings

Theorem A. (Nishimura and Saito [3]) Let G be a graph with a 1 -factor. If $G-V(e)$ is k-extendable for each $e \in E(G)$, then G is k-extendable.

Theorem B. (Yu [7]) A graph G is k-extendable if and only if for any matching M of size i $(1 \leq i \leq k)$ the graph $G-V(M)$ is (k-i)-extendable.

Based on Theorem B, Theorem A can be improved to the following:
Theorem 1. Let G be a graph with a 1 -factor. If $G-V(e)$ is k-extendable for each $e \in E(G)$ and $|V(G)| \geq 2 k+4$, then G is $(k+1)$-extendable.
Proof: Let $i=1$ in Theorem B, then the result follows.
In fact, the reverse of Theorem 1 is also true from Theorem B. Next we generalize this result to (n, k)-extendable graphs.

Theorem 2. If $G-V(e)$ is an (n, k)-extendable graph for each $e \in E(G)$, then G is $(n, k+1)$-extendable graph but may not be an $(n, k+2)$-extendable or $(n+2, k)$-extendable graph.
Proof: Consider any vertex set S and $(k+1)$-matching M with $|S|=n$ and
$V(M) \cap S=\emptyset$. Let e be an edge of M. Since $G-V(e)$ is (n, k)-extendable, there exists a 1-factor in $(G-V(e))-(S \cup V(M-\{e\})=G-(S \cup V(M))$. Therefore, G is an $(n, k+1)$-extendable graph.

To see that G may not be ($n, k+2$)-extendable, we consider the graph

$$
H_{1}=\left(2 K_{2 n+1}\right)+\left(K_{n} \cup(k+2) K_{2}\right)
$$

Then H_{1} is not an $(n, k+2)$-extendable graph by considering $S=V\left(K_{n}\right)$ and $(k+2)$-matching $(k+2) K_{2}$. In the mean time, it is not hard to verify that for any $e \in E\left(H_{1}\right) H_{1}-V(e)$ is an (n, k)-extendable graph.

Similarly, to see that G may not be $(n+2, k)$-extendable, we consider the graph

$$
H_{2}=\left(2 K_{2 n+1}\right)+\left(K_{n+2} \cup k K_{2}\right)
$$

Then H_{2} is not an $(n+2, k)$-extendable graph but for any $e \in E\left(H_{2}\right)$ $H_{2}-V(e)$ is an (n, k)-extendable graph.

Before proceeding further, we quote two results from [1] as lemmas.
Lemma 1. Let G be an (n, k)-extendable graph. Then it is also a $(n-2, k+1)$ extendable graph.

Lemma 2. If G is an (n, k)-graph, then
(1) G is also $(n-2, k)$-extendable for $n \geq 2$;
(2) G is also $(n, k-1)$-extendable for $k \geq 1$.

For the convenience of the future arguments, we introduce one more term. Let S be a vertex set and M a k-matching with $S \cap V(M)=\emptyset$. If $G-S-V(M)$ has a 1 -factor, then we say that G has a (S, M)-extension.

Since an $(n+2, k)$-extendable or an ($n, k+2$)-extendable graph must be ($n, k+1$)-extendable, Theorem 2 indicates that ($n, k+1$)-extendability is the best possible under the general conditions. But by introducing an additional condition on the size of graph in Theorem 2, we can improve it to the following:

Theorem 3. If $G-V(e)$ is an (n, k)-extendable graph $(n>1)$ for each $e \in E(G)$ and $V(G) \leq 2 k+3 n+4$, then G is an $(n+2, k)$-extendable graph. Proof: Suppose that G is not an $(n+2, k)$-extendable graph. By the definition, there exists a vertex set S with $|S|=n+2$ and k-matching M so that $G-$ $S-V(M)$ has no 1-factor.

Let $G^{\prime}=G-S-V(M)$. From Tutte's Theorem, there exists a vertex set $S^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{\prime}\right|+2$.

Claim 1. $G^{\prime}-S^{\prime}$ has exactly $\left|S^{\prime}\right|+2$ odd components.

Otherwise, if $o\left(G^{\prime}-S^{\prime}\right) \neq\left|S^{\prime}\right|+2$, by parity, then we have $o\left(G^{\prime}-S^{\prime}\right) \geq$ $\left|S^{\prime}\right|+4$. Set $S_{1}=S-\{a, b\}$ (where a, b are any two vertices of S) and $S_{1}^{\prime}=S^{\prime} \cup\{a, b\}$. Then
$o\left(G-S_{1}-V(M)-S_{1}^{\prime}\right)=o\left(G-S-V(M)-S^{\prime}\right)=o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{\prime}\right|+4=\left|S_{1}^{\prime}\right|+2$
That is, $G-S_{1}-V(M)$ has no 1-factor or G has no (S_{1}, M)-extension. But $\left|S_{1}\right|=n$ and $|M|=k$, so it contradicts to that G is (n, k)-extendable.

Claim 2. S and S^{\prime} are independent sets.
If S is not independent, let e be an edge of $G[S]$ and $S_{1}=S-V(e)$, then $G-V(e)$ has no $\left(S_{1}, M\right)$-extension. This contradicts to the fact that $G-V(e)$ is an (n, k)-extendable graph.

Similarly, if S^{\prime} is not independent, let e be an edge of $G\left[S^{\prime}\right], S_{1}=S-\{a, b\}$ (where a, b are any two vertices of S) and $S_{1}^{\prime}=S^{\prime}-V(e) \cup\{a, b\}$, then $o\left(G-V(e)-S_{1}-V(M)-S_{1}^{\prime}\right)=o\left(G-V(e)-S-V(M)-S^{\prime}\right)=o\left(G^{\prime}-S^{\prime}\right) \geq$ $\left|S_{1}^{\prime}\right|+2$ or $G-V(e)$ has no $\left(S_{1}, M\right)$-extension. This contradicts to that $G-V(e)$ is an (n, k)-extendable graph.

Claim 3. $E\left(S, S^{\prime}\right)=\emptyset$.
Otherwise, let $e=x y \in E\left(S, S^{\prime}\right)$ and $x \in S, y \in S^{\prime}$. Replacing the vertex y by a vertex of $S-\{x\}$ and moving y to S, then the new pair still have all of the properties of the old pair S and S^{\prime} have but the new pair is against Claim 2 , a contradiction.

Claim 4. No vertex in an even component is adjacent to $S \cup S^{\prime}$.
If there is an edge $e=x y$ so that $x \in S^{\prime}$ and y is in an even component. Set $S_{1}^{\prime}=S^{\prime} \cup\{y\}$. Then
$o\left(G-S-V(M)-S_{1}^{\prime}\right)=o\left(G-S-V(M)-S^{\prime}\right)+1=o\left(G^{\prime}-S^{\prime}\right)+1 \geq\left|S^{\prime}\right|+2+1=\left|S_{1}^{\prime}\right|+2$
But $e=x y \in S_{1}^{\prime}$, a contradiction to Claim 2.
Similarly, if there is an edge $e=x y$ so that $x \in S$ and y is in an even component. Set $S_{1}^{\prime}=S^{\prime}-\cup\{y\}$. Then
$o\left(G-S-V(M)-S_{1}^{\prime}\right)=o\left(G-S-V(M)-S^{\prime}\right)+1=o\left(G^{\prime}-S^{\prime}\right)+1 \geq\left|S^{\prime}\right|+2+1=\left|S_{1}^{\prime}\right|+2$
But $e=x y \in E\left(S, S_{1}^{\prime}\right)$, a contradiction to Claim 3 .
With the preparation above, we can proceed to the proof of the theorem now.

From Theorem 2, G is ($n, k+1$)-extendable. Applying Lemma 1 repeatedly we see that G is $(\epsilon,(k+1+\lfloor n / 2\rfloor))$-extendable, where $\epsilon=0$ or 1 . When k matching M is extended to a 1-factor (or near 1-factor) then $S \cup S^{\prime}$ has to
match to the vertices of odd components $\cup O_{i}$. As $o\left(G^{\prime}-S^{\prime}\right)=\left|S^{\prime}\right|+2$ and $n \geq 2$, so at least one of O_{i} 's has at least 3 vertices. Choose an edge e_{1} from such an odd component, say O_{1}, now we can extend ($k+1$)-matching $M \cup\left\{e_{1}\right\}$ to a 1-factor (or near 1-factor). Thus $S \cup S^{\prime}$ has to match to the vertices of $\cup O_{i}-V\left(e_{1}\right)$ and there exists an edge in $\cup O_{i}-V\left(e_{1}\right)$. If this process is repeated, we can find $\lfloor n / 2\rfloor+1$ disjoint edges in $\cup O_{i}$, namely, $\left\{e_{1}, e_{2}, \cdots, e_{l}\right\}$ (where $l=\lfloor n / 2\rfloor+1)$. Since G is $(\epsilon, k+l)$-extendable, $M \cup\left\{e_{1}, e_{2}, \cdots, e_{l}\right\}$ can be extended to a 1-factor (or near 1-factor), and thus $S \cup S^{\prime}$ has to match to some vertices of $\cup O_{i}-V\left(e_{1}\right)-V\left(e_{2}\right)-\cdots-V\left(e_{l}\right)$. Therefore, we have

$$
\begin{gathered}
|V(G)| \geq 2\left|S \cup S^{\prime}\right|+2 k+2(\lfloor n / 2\rfloor+1) \\
\geq 2(n+2)+2 k+(n-1)+2=2 n+4+2 k+n+1=3 n+2 k+5
\end{gathered}
$$

which contradicts to the given condition. Hence, G is an $(n+2, k)$-extendable graph.

Recently, Nishimura improved Theorem A by reducing the conditions required in the theorem. Instead of checking the k-extendability of $G-V(e)$ for every edge e in G, now one needs only checking the k-extendability of $G-V(e)$ for the edges belonging to a 1-factor of G.

Theorem C. (Nishimura [4]) Let G be a graph with 1-factors and let F be an arbitrary 1 -factor of G. If $G-V(e)$ is k-extendable graph (or n-factor-critical) for each $e \in F$, then G is k-extendable (or n-factor-critical) graph.

We will generalize the above result to (n, k)-extendable graphs.
Theorem 4. Let G be a graph with 1-factors and let F be an arbitrary 1factor of G. If $G-V(e)$ is (n, k)-extendable graph for each $e \in F$, then G is (n, k)-extendable graph.
Proof: We may assume that $n>0$ and $k>0$.
We proceed to prove the theorem by contradiction. Suppose that there exists a 1 -factor F of G such that $G-V(e)$ is (n, k)-extendable for any $e \in F$ but G is not (n, k)-extendable. Then there exists a k-matching M and a vertex set S of size n, where $V(M) \cap S=\emptyset$, such that $G-V(M)-S$ has no 1-factor. Let $G^{\prime}=G-V(M)-S$. Applying Tutte's 1-Factor Theorem, there exists $S^{\prime} \subseteq V\left(G^{\prime}\right)$ so that $o\left(G^{\prime}-S^{\prime}\right)>\left|S^{\prime}\right|$. By the parity, $o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{\prime}\right|+2$. Our aim is to find an edge $e \in F$ so that $G-V(e)$ is not (n, k)-extendable and thus leads to a contradiction.

At first, we show that 1-factor F can only match vertices from $V(M)$ to rest by the next claim.

Claim 1. For the given F, S and G^{\prime}, we have
(i) $F \cap E[S]=\emptyset$;
(ii) $F \cap E\left(S^{\prime}\right)=\emptyset$;
(iii) $F \cap E\left(S, S^{\prime}\right)=\emptyset$;

To see (i), if $e \in F \cap E(S)$, then $|S-V(e)|=n-2$ and $G-V(e)$ is not ($n-2, k$)-extendable. Thus, G is not (n, k)-extendable, a contradiction.

To see (ii), if $e \in F \cap E\left(S^{\prime}\right)$, then $G^{\prime}-V(e)$ has no 1-factor or $G-V(e)$ is not (n, k)-extendable, a contradiction.

To see (iii), if $e \in F \cap E\left(S, S^{\prime}\right)$, where $e=a b$ and $a \in S, b \in S^{\prime}$, choosing a vertex c from an odd component of $G^{\prime}-S^{\prime}$ and then $S-\{a\} \cup\{c\}$ and M can not be extended to a 1-factor as $o\left(G^{\prime}-V(e)-S^{\prime}\right)>\left|S^{\prime}\right|+2-1$.

From (i) - (iii), it follows that a 1-factor F is in $E\left(S \cup V(M), G^{\prime}\right)$ or $E(S, V(M))$ or $E(G[V(M)])$.

Claim 2. G^{\prime} has no even components.
Otherwise, let D be an even component and let $e=a b$ be an edge of F, where $a \in V(D)$.

If $b \in S$, choose $c \in V(D)-\{a\}$, then $T=S-\{b\}$ and M can not extended to a 1 -factor in $G-\{a, b\}$ as $o\left(\left(G^{\prime}-V(e)-T-V(M)\right)-S^{\prime}\right) \geq\left|S^{\prime}\right|+2$, a contradiction.

If $b \in V(M)$, consider an alternating path of $M \cup F$ with end-vertex a. If another end-vertex c of this alternating path is in S. Similarly to the previous case, let $T=S-\{c\} \cup\{x\}$ (where $x \in V(D)-\{a\}$ and $M^{\prime}=M-\left\{b c^{\prime}\right\} \cup\{a b\}$. Then $G-\left\{c, c^{\prime}\right\}$ (where $c c^{\prime} \in F$) has no $\left(T, M^{\prime}\right)$-extension, a contradiction.

If c is in S^{\prime}, it is similar.
If c is in a component (either odd or even), let $T=S$ and $M^{\prime}=M-$ $\left\{b c^{\prime}\right\} \cup\{a b\}$, then $G-\left\{c, c^{\prime}\right\}$ has no $\left(T, M^{\prime}\right)$-extension as $G^{\prime}-\{a, c\}-S^{\prime}$ has at least $\left|S^{\prime}\right|+2$ odd components.

Claim 3. $S^{\prime}=\emptyset$.
If $S^{\prime} \neq \emptyset$, let $a \in S^{\prime}$, then a is matched to a vertex b in the 1 -factor F and b must be in $V(M)$. Consider an alternating path of $M \cup F$, say $a b b^{\prime} \cdots d d^{\prime} c$.

If $c \in S^{\prime}$, let $T=S$ and $M^{\prime}=M-\left\{b b^{\prime}, d d^{\prime}\right\} \cup\left\{a b, b^{\prime} d\right\}$, then $G-\left\{d^{\prime}, c\right\}$ has no $\left(T, M^{\prime}\right)$-extension as $G^{\prime}-\{a, c\}$ has no 1-factor.

If $c \in S$, let $T=S-\{c\} \cup\{x\}$ (where x is a vertex of a component) and $M^{\prime}=M-\left\{b b^{\prime}, d d^{\prime}\right\} \cup\left\{a b, b^{\prime} d\right\}$, then $G-\left\{d^{\prime}, c\right\}$ has no $\left(T, M^{\prime}\right)$-extension as $G^{\prime}-\{a, c\}-\left(S^{\prime}-\{a\}\right)$ has $o\left(G^{\prime}-S^{\prime}\right)-1$ odd components, a contradiction.

If $c \in C$ (where C is any component), using the same argument we can see that $G^{\prime}-\{a, c\}-\left(S^{\prime}-\{a\}\right)$ loses at most one odd component and obtain a contradiction.

Claim 4. $o\left(G^{\prime}-S^{\prime}\right)=o\left(G^{\prime}\right)=2$.

Suppose $o\left(G^{\prime}\right)>2$ (i.e., $o\left(G^{\prime}\right) \geq 4$). If there exists an edge $e \in F$ and $e \in E\left(S, C_{1}\right)$, choose c from an odd component C_{2}, let $T=S-\{b\} \cup\{c\}$ and $M^{\prime}=M$, then $o\left(G^{\prime}-\{a, c\}\right) \geq 2$ or $G-\{a, b\}$ has no $\left(T, M^{\prime}\right)$-extension, a contradiction.

Otherwise, all vertices in $\cup C_{i}$ are matched into $V(M)$. Consider the alternating paths of $F \cup M$, there exists such a path starting with C_{i} and ending C_{j}. Let $c_{i} x_{1} y_{1} x_{2} y_{2} \cdots x_{m} y_{m} c_{j}$ be the alternating path, where $c_{i} \in C_{i}, c_{j} \in C_{j}$ and $c_{i} x_{1}, y_{1} x_{2}, \cdots, y_{m} c_{j} \in F, x_{1} y_{1}, x_{2} y_{2}, \cdots, x_{m} y_{m} \in M$.

Let $T=S$ and $M^{\prime}=M-\left\{x_{1} y_{1}, \cdots, x_{m} y_{m}\right\} \cup\left\{y_{1} x_{2}, \cdots, y_{m} c_{j}\right\}$. Then $G-\left\{c_{i}, x_{1}\right\}$ has no $\left(T, M^{\prime}\right)$-extension as $o\left(G^{\prime}-\left\{c_{i}, c_{j}\right\}\right) \geq 2$, a contradiction.

Claim 5. $F \cap E(S, V(M))=\emptyset$.
Consider the alternating path $a b \cdots c$ of $F \cup M$ with end-vertex a. If $c \in S$, let $T=S-\{a, c\}$ and $M^{\prime}=M-\left\{b b^{\prime}\right\} \cup\left\{c b^{\prime}\right\}$, then $G-\{a, b\}$ does not have $\left(T, M^{\prime}\right)$-extension, that is $G-\{a, b\}$ is not $(n-2, k)$-extendable, a contradiction. If $c \in C_{1}$ (where C_{1} is an odd component) and $\left|C_{1}\right| \geq 3$, choose $d \in V\left(C_{1}\right)-\{c\}$ and let $T=S-\{a\} \cup\{d\}$ and $M^{\prime}=M-\left\{b b^{\prime}\right\} \cup\left\{b^{\prime} c\right\}$. Then $G-\{a, b\}$ (where $a b \in F)$ has no (T, M^{\prime})-extension as $o\left(G^{\prime}-\{c, d\}\right) \geq 2$.

If $c \in C_{1}$ but $\left|C_{1}\right|=1$, then we have $\left|C_{2}\right| \geq 3$ because G^{\prime} has only two odd components, no even component and $\left|G^{\prime}\right| \geq 4$. Suppose that $F \cap E\left(S, C_{2}\right) \neq \emptyset$. Let $e=g h \in F \cap E\left(S, C_{2}\right)$, where $g \in V\left(C_{2}\right)$ and $h \in S$. Choose $y \in$ $V\left(C_{2}\right)-\{g\}$ and set $T=S-\{h\} \cup\{y\}$ and $M^{\prime}=M$, then $G-\{g, h\}$ has no $\left(T, M^{\prime}\right)$-extension as $o\left(G^{\prime}-\{g, y\}\right) \geq 2$, a contradiction.

So we may assume $F \cap E\left(S, C_{2}\right)=\emptyset$. In this case, all vertices of C_{2} are matched to $V(M)$ in F. Considering $F \cup M$, there must be an alternating path with both end-vertices in $V\left(C_{2}\right)$ or an alternating path starting in $V\left(C_{2}\right)$ and ending in S. In either case, it yields a contradiction.

Now we are ready to conclude the proof.
Since $|S| \geq 1$ and $F \cap E(S, V(M))=\emptyset$, there exists an edge $e=a b \in F$ from S to an odd component C_{1} (where $a \in S, b \in V\left(C_{1}\right)$). If $\left|C_{1}\right| \geq 3$, let $c \in V\left(C_{1}\right)-\{c\}$ and set $T=S-\{a\} \cup\{c\}$ and $M^{\prime}=M$, then $G-\{a, b\}$ has no $\left(T, M^{\prime}\right)$-extension, a contradiction. If $\left|C_{1}\right|=1$, then $\left|C_{2}\right| \geq 3$. Without loss of generality, we assume $F \cap E\left(S, C_{2}\right)=\emptyset$. Thus, all vertices of $V\left(C_{2}\right)$ are matched to $V(M)$ in F. Considering $F \cup M$, there exists an alternating path P with both of ends in C_{2} or an alternating path P from C_{2} to S.

Let $P=c x_{1} y_{1} d$, where $c x_{1}, y_{1} d \in F$ and $x_{1} y_{1} \in M$. If $c, d \in V\left(C_{2}\right)$, let $T=S$ and $M^{\prime}=M-\left\{x_{1} y_{1}\right\} \cup\left\{d y_{1}\right\}$, then $G-\left\{c, x_{1}\right\}$ has no $\left(T, M^{\prime}\right)$-extension as $o\left(G^{\prime}-\{c, d\}\right) \geq 2$. If $c \in V\left(C_{2}\right)$ and $d \in S$, let $T=S-\{d\} \cup\{g\}$ (where $\left.g \in V\left(C_{2}\right)-\{e\}\right)$ and $M^{\prime}=M-\left\{x_{1} y_{1}\right\} \cup\left\{d y_{1}\right\}$, then $G-\left\{c, x_{1}\right\}$ has no $\left(T, M^{\prime}\right)$-extension, a contradiction.

The proof is completed.

References

[1] G. Liu and Q. Yu, Generalization of matching extensions in graphs, Discrete Math., 231 (2001), 311-320.
[2] L. Lovász and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[3] T. Nishimura and A. Saito, Two recursive theorems of extendibility, Discrete Math., 162 (1996), 319-323.
[4] T. Nishimura, On 1-factors and matching extension, Discrete Math., 222 (2000), 285-290.
[5] M.D. Plummer, Extending matchings in graphs: A survey, Discrete Math., 127 (1994), 277-292.
[6] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin., 7 (1993), 55-64.
[7] Q. Yu, A note on n-extendable graphs, J. Graph Theory, 16 (1992), 349353.

[^0]: *work supported by NNSF of China and NSF of Shandong Province
 ${ }^{\dagger}$ work supported by Natural Sciences and Engineering Research Council of Canada

