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Abstract

Let G be a graph with vertex set V (G). Let n and k be non-negative
integers such that n + 2k ≤ |V (G)| − 2 and |V (G)| − n is even. If when
deleting any n vertices of G the remaining subgraph contains a matching
of k edges and every k-matching can be extended to a 1-factor, then G
is called an (n, k)−extendable graph. In this paper we present several
results about (n, k)-extendable graphs and its subgraphs. In particular,
we proved that if G − V (e) is (n, k)-extendable graph for each e ∈ F
(where F is a fixed 1-factor in G), then G is (n, k)-extendable graph.
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Let G be a simple graph with the vertex set V (G) and the edge set E(G).
A matching M of G is a subset of E(G) such that any two edges of M have
no vertices in common. A matching of size k is called a k-matching. If M is
a matching so that every vertex (or except one) of G is incident with an edge
of M , then M is called 1-factor (or near 1-factor).
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Let S be a subset of V (G). Denote by G[S] the induced subgraph of G by
S and we write G−S for G[V (G)\S]. E(S, T ) denotes the edges between two
vertex sets S and T . The number of odd components of G is denoted by o(G).

Let M be a matching of G. If there is a matching M ′ of G such that
M ⊆ M ′, then we say that M can be extended to M ′ or M ′ is an extension
of M . If each k-matching can be extended to a 1-factor, then G is called
k-extendable. A graph G is called n-factor-critical if after deleting any
n vertices the remaining subgraph of G has a 1-factor. The properties of 2-
factor-critical and k-extendable graphs were studied extensively by Lovász and
Plummer. The history and applications of these topics can be found in [2] and
[5]. Liu and Yu [1] have introduced new concept, (n, k)-extendable graph, to
combine the n-factor-criticality and the k-extendability.

Let n and k be non-negative integers such that n + 2k ≤ |V (G)| − 2 and
|V (G)| − n is even. If when deleting any n vertices from G the remaining
subgraph of G contains a k-matching and each k-matching in the subgraph
can be extended to 1-factor, then G is called a (n, k)-extendable graph.
Clearly, a graph is (0, 0)-extendable if and only if it has a 1-factor. Similarly,
(0, k)-extendable graphs are precisely those k-extendable graphs and (n, 0)-
extendable graphs are exactly n-critical graphs. A characterization and basic
properties of (n, k)-extendable graphs were discussed in [1].

Nishimura and Saito [3] and Yu [7] studied the relationships between k-
extendable graphs and its subgraphs and proved the followings

Theorem A. (Nishimura and Saito [3]) Let G be a graph with a 1-factor. If
G− V (e) is k-extendable for each e ∈ E(G), then G is k-extendable.

Theorem B. (Yu [7]) A graph G is k-extendable if and only if for any match-
ing M of size i (1 ≤ i ≤ k) the graph G− V (M) is (k-i)-extendable.

Based on Theorem B, Theorem A can be improved to the following:

Theorem 1. Let G be a graph with a 1-factor. If G − V (e) is k-extendable
for each e ∈ E(G) and |V (G)| ≥ 2k + 4, then G is (k + 1)-extendable.
Proof: Let i = 1 in Theorem B, then the result follows. 2

In fact, the reverse of Theorem 1 is also true from Theorem B. Next we
generalize this result to (n, k)-extendable graphs.

Theorem 2. If G − V (e) is an (n, k)-extendable graph for each e ∈ E(G),
then G is (n, k + 1)-extendable graph but may not be an (n, k + 2)-extendable
or (n + 2, k)-extendable graph.
Proof: Consider any vertex set S and (k + 1)-matching M with |S| = n and
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V (M) ∩ S = ∅. Let e be an edge of M . Since G − V (e) is (n, k)-extendable,
there exists a 1-factor in (G − V (e))− (S ∪ V (M − {e}) = G − (S ∪ V (M)).
Therefore, G is an (n, k + 1)-extendable graph.

To see that G may not be (n, k + 2)-extendable, we consider the graph

H1 = (2K2n+1) + (Kn ∪ (k + 2)K2)

Then H1 is not an (n, k + 2)-extendable graph by considering S = V (Kn)
and (k + 2)-matching (k + 2)K2. In the mean time, it is not hard to verify
that for any e ∈ E(H1) H1 − V (e) is an (n, k)-extendable graph.

Similarly, to see that G may not be (n + 2, k)-extendable, we consider the
graph

H2 = (2K2n+1) + (Kn+2 ∪ kK2)

Then H2 is not an (n + 2, k)-extendable graph but for any e ∈ E(H2)
H2 − V (e) is an (n, k)-extendable graph. 2

Before proceeding further, we quote two results from [1] as lemmas.

Lemma 1. Let G be an (n, k)-extendable graph. Then it is also a (n−2, k+1)-
extendable graph.

Lemma 2. If G is an (n, k)-graph, then
(1) G is also (n− 2, k)-extendable for n ≥ 2;
(2) G is also (n, k − 1)-extendable for k ≥ 1.

For the convenience of the future arguments, we introduce one more term.
Let S be a vertex set and M a k-matching with S∩V (M) = ∅. If G−S−V (M)
has a 1-factor, then we say that G has a (S, M)-extension.

Since an (n + 2, k)-extendable or an (n, k + 2)-extendable graph must be
(n, k + 1)-extendable, Theorem 2 indicates that (n, k + 1)-extendability is the
best possible under the general conditions. But by introducing an additional
condition on the size of graph in Theorem 2, we can improve it to the following:

Theorem 3. If G − V (e) is an (n, k)-extendable graph (n > 1) for each
e ∈ E(G) and V (G) ≤ 2k + 3n + 4, then G is an (n + 2, k)-extendable graph.
Proof: Suppose that G is not an (n+2, k)-extendable graph. By the definition,
there exists a vertex set S with |S| = n + 2 and k-matching M so that G −
S − V (M) has no 1-factor.

Let G′ = G− S − V (M). From Tutte’s Theorem, there exists a vertex set
S ′ ⊆ V (G′) such that o(G′ − S ′) ≥ |S ′|+ 2.

Claim 1. G′ − S ′ has exactly |S ′|+ 2 odd components.
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Otherwise, if o(G′ − S ′) 6= |S ′| + 2, by parity, then we have o(G′ − S ′) ≥
|S ′| + 4. Set S1 = S − {a, b} (where a, b are any two vertices of S) and
S ′1 = S ′ ∪ {a, b}. Then

o(G−S1−V (M)−S ′1) = o(G−S−V (M)−S ′) = o(G′−S ′) ≥ |S ′|+4 = |S ′1|+2

That is, G − S1 − V (M) has no 1-factor or G has no (S1,M)-extension.
But |S1| = n and |M | = k, so it contradicts to that G is (n, k)-extendable.

Claim 2. S and S ′ are independent sets.
If S is not independent, let e be an edge of G[S] and S1 = S − V (e), then

G−V (e) has no (S1,M)-extension. This contradicts to the fact that G−V (e)
is an (n, k)-extendable graph.

Similarly, if S ′ is not independent, let e be an edge of G[S ′], S1 = S−{a, b}
(where a, b are any two vertices of S) and S ′1 = S ′ − V (e) ∪ {a, b}, then
o(G−V (e)−S1−V (M)−S ′1) = o(G−V (e)−S−V (M)−S ′) = o(G′−S ′) ≥
|S ′1|+2 or G−V (e) has no (S1,M)-extension. This contradicts to that G−V (e)
is an (n, k)-extendable graph.

Claim 3. E(S, S ′) = ∅.
Otherwise, let e = xy ∈ E(S, S ′) and x ∈ S, y ∈ S ′. Replacing the vertex

y by a vertex of S−{x} and moving y to S, then the new pair still have all of
the properties of the old pair S and S ′ have but the new pair is against Claim
2, a contradiction.

Claim 4. No vertex in an even component is adjacent to S ∪ S ′.
If there is an edge e = xy so that x ∈ S ′ and y is in an even component.

Set S ′1 = S ′ ∪ {y}. Then

o(G−S−V (M)−S ′1) = o(G−S−V (M)−S ′)+1 = o(G′−S ′)+1 ≥ |S ′|+2+1 = |S ′1|+2

But e = xy ∈ S ′1, a contradiction to Claim 2.
Similarly, if there is an edge e = xy so that x ∈ S and y is in an even

component. Set S ′1 = S ′ − ∪{y}. Then

o(G−S−V (M)−S ′1) = o(G−S−V (M)−S ′)+1 = o(G′−S ′)+1 ≥ |S ′|+2+1 = |S ′1|+2

But e = xy ∈ E(S, S ′1), a contradiction to Claim 3.

With the preparation above, we can proceed to the proof of the theorem
now.

From Theorem 2, G is (n, k+1)-extendable. Applying Lemma 1 repeatedly
we see that G is (ε, (k + 1 + bn/2c))-extendable, where ε = 0 or 1. When k-
matching M is extended to a 1-factor (or near 1-factor) then S ∪ S ′ has to
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match to the vertices of odd components ∪Oi. As o(G′ − S ′) = |S ′| + 2 and
n ≥ 2, so at least one of Oi’s has at least 3 vertices. Choose an edge e1 from
such an odd component, say O1, now we can extend (k+1)-matching M ∪{e1}
to a 1-factor (or near 1-factor). Thus S ∪ S ′ has to match to the vertices of
∪Oi−V (e1) and there exists an edge in ∪Oi−V (e1). If this process is repeated,
we can find bn/2c + 1 disjoint edges in ∪Oi, namely, {e1, e2, · · · , el} (where
l = bn/2c + 1). Since G is (ε, k + l)-extendable, M ∪ {e1, e2, · · · , el} can be
extended to a 1-factor (or near 1-factor), and thus S∪S ′ has to match to some
vertices of ∪Oi − V (e1)− V (e2)− · · · − V (el). Therefore, we have

|V (G)| ≥ 2|S ∪ S ′|+ 2k + 2(bn/2c+ 1)

≥ 2(n + 2) + 2k + (n− 1) + 2 = 2n + 4 + 2k + n + 1 = 3n + 2k + 5

which contradicts to the given condition. Hence, G is an (n + 2, k)-extendable
graph. 2

Recently, Nishimura improved Theorem A by reducing the conditions re-
quired in the theorem. Instead of checking the k-extendability of G−V (e) for
every edge e in G, now one needs only checking the k-extendability of G−V (e)
for the edges belonging to a 1-factor of G.

Theorem C. (Nishimura [4]) Let G be a graph with 1-factors and let F be an
arbitrary 1-factor of G. If G−V (e) is k-extendable graph (or n-factor-critical)
for each e ∈ F , then G is k-extendable (or n-factor-critical) graph.

We will generalize the above result to (n, k)-extendable graphs.

Theorem 4. Let G be a graph with 1-factors and let F be an arbitrary 1-
factor of G. If G − V (e) is (n, k)-extendable graph for each e ∈ F , then G is
(n, k)-extendable graph.
Proof: We may assume that n > 0 and k > 0.

We proceed to prove the theorem by contradiction. Suppose that there
exists a 1-factor F of G such that G− V (e) is (n, k)-extendable for any e ∈ F
but G is not (n, k)-extendable. Then there exists a k-matching M and a vertex
set S of size n, where V (M)∩S = ∅, such that G−V (M)−S has no 1-factor.
Let G′ = G − V (M) − S. Applying Tutte’s 1-Factor Theorem, there exists
S ′ ⊆ V (G′) so that o(G′−S ′) > |S ′|. By the parity, o(G′−S ′) ≥ |S ′|+2. Our
aim is to find an edge e ∈ F so that G − V (e) is not (n, k)-extendable and
thus leads to a contradiction.

At first, we show that 1-factor F can only match vertices from V (M) to
rest by the next claim.
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Claim 1. For the given F , S and G′, we have
(i) F ∩ E[S] = ∅;
(ii) F ∩ E(S ′) = ∅;
(iii) F ∩ E(S, S ′) = ∅;
To see (i), if e ∈ F ∩ E(S), then |S − V (e)| = n - 2 and G − V (e) is not

(n− 2, k)-extendable. Thus, G is not (n, k)-extendable, a contradiction.
To see (ii), if e ∈ F ∩E(S ′), then G′− V (e) has no 1-factor or G− V (e) is

not (n, k)-extendable, a contradiction.
To see (iii), if e ∈ F ∩ E(S, S ′), where e = ab and a ∈ S, b ∈ S ′, choosing

a vertex c from an odd component of G′ − S ′ and then S − {a} ∪ {c} and M
can not be extended to a 1-factor as o(G′ − V (e)− S ′) > |S ′|+ 2− 1.

From (i) - (iii), it follows that a 1-factor F is in E(S ∪ V (M), G′) or
E(S, V (M)) or E(G[V (M)]).

Claim 2. G′ has no even components.
Otherwise, let D be an even component and let e = ab be an edge of F ,

where a ∈ V (D).
If b ∈ S, choose c ∈ V (D)−{a}, then T = S−{b} and M can not extended

to a 1-factor in G − {a, b} as o((G′ − V (e) − T − V (M)) − S ′) ≥ |S ′| + 2, a
contradiction.

If b ∈ V (M), consider an alternating path of M ∪ F with end-vertex a. If
another end-vertex c of this alternating path is in S. Similarly to the previous
case, let T = S−{c}∪{x} (where x ∈ V (D)−{a} and M ′ = M−{bc′}∪{ab}.
Then G− {c, c′} (where cc′ ∈ F ) has no (T, M ′)-extension, a contradiction.

If c is in S ′, it is similar.
If c is in a component (either odd or even), let T = S and M ′ = M −

{bc′} ∪ {ab}, then G− {c, c′} has no (T, M ′)-extension as G′ − {a, c} − S ′ has
at least |S ′|+ 2 odd components.

Claim 3. S ′ = ∅.
If S ′ 6= ∅, let a ∈ S ′, then a is matched to a vertex b in the 1-factor F and

b must be in V (M). Consider an alternating path of M ∪ F , say abb′ · · · dd′c.
If c ∈ S ′, let T = S and M ′ = M − {bb′, dd′} ∪ {ab, b′d}, then G − {d′, c}

has no (T, M ′)-extension as G′ − {a, c} has no 1-factor.
If c ∈ S, let T = S − {c} ∪ {x} (where x is a vertex of a component) and

M ′ = M − {bb′, dd′} ∪ {ab, b′d}, then G − {d′, c} has no (T, M ′)-extension as
G′ − {a, c} − (S ′ − {a}) has o(G′ − S ′) - 1 odd components, a contradiction.

If c ∈ C (where C is any component), using the same argument we can see
that G′ − {a, c} − (S ′ − {a}) loses at most one odd component and obtain a
contradiction.

Claim 4. o(G′ − S ′) = o(G′) = 2.
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Suppose o(G′) > 2 (i.e., o(G′) ≥ 4). If there exists an edge e ∈ F and
e ∈ E(S, C1), choose c from an odd component C2, let T = S − {b} ∪ {c} and
M ′ = M , then o(G′ − {a, c}) ≥ 2 or G − {a, b} has no (T, M ′)-extension, a
contradiction.

Otherwise, all vertices in ∪Ci are matched into V (M). Consider the alter-
nating paths of F ∪M , there exists such a path starting with Ci and ending
Cj. Let cix1y1x2y2 · · ·xmymcj be the alternating path, where ci ∈ Ci, cj ∈ Cj

and cix1, y1x2, · · · , ymcj ∈ F , x1y1, x2y2, · · · , xmym ∈ M .
Let T = S and M ′ = M − {x1y1, · · · , xmym} ∪ {y1x2, · · · , ymcj}. Then

G− {ci, x1} has no (T, M ′)-extension as o(G′ − {ci, cj}) ≥ 2, a contradiction.

Claim 5. F ∩ E(S, V (M)) = ∅.
Consider the alternating path ab · · · c of F ∪M with end-vertex a. If c ∈ S,

let T = S − {a, c} and M ′ = M − {bb′} ∪ {cb′}, then G− {a, b} does not have
(T, M ′)-extension, that is G−{a, b} is not (n−2, k)-extendable, a contradiction.
If c ∈ C1 (where C1 is an odd component) and |C1| ≥ 3, choose d ∈ V (C1)−{c}
and let T = S−{a}∪{d} and M ′ = M−{bb′}∪{b′c}. Then G−{a, b} (where
ab ∈ F ) has no (T, M ′)-extension as o(G′ − {c, d}) ≥ 2.

If c ∈ C1 but |C1| = 1, then we have |C2| ≥ 3 because G′ has only two odd
components, no even component and |G′| ≥ 4. Suppose that F ∩E(S, C2) 6= ∅.
Let e = gh ∈ F ∩ E(S, C2), where g ∈ V (C2) and h ∈ S. Choose y ∈
V (C2)− {g} and set T = S − {h} ∪ {y} and M ′ = M , then G− {g, h} has no
(T, M ′)-extension as o(G′ − {g, y}) ≥ 2, a contradiction.

So we may assume F ∩ E(S, C2) = ∅. In this case, all vertices of C2 are
matched to V (M) in F . Considering F ∪ M , there must be an alternating
path with both end-vertices in V (C2) or an alternating path starting in V (C2)
and ending in S. In either case, it yields a contradiction.

Now we are ready to conclude the proof.

Since |S| ≥ 1 and F ∩ E(S, V (M)) = ∅, there exists an edge e = ab ∈ F
from S to an odd component C1 (where a ∈ S, b ∈ V (C1)). If |C1| ≥ 3, let
c ∈ V (C1) − {c} and set T = S − {a} ∪ {c} and M ′ = M , then G − {a, b}
has no (T, M ′)-extension, a contradiction. If |C1| = 1, then |C2| ≥ 3. Without
loss of generality, we assume F ∩E(S, C2) = ∅. Thus, all vertices of V (C2) are
matched to V (M) in F . Considering F ∪M , there exists an alternating path
P with both of ends in C2 or an alternating path P from C2 to S.

Let P = cx1y1d, where cx1, y1d ∈ F and x1y1 ∈ M . If c, d ∈ V (C2), let
T = S and M ′ = M−{x1y1}∪{dy1}, then G−{c, x1} has no (T, M ′)-extension
as o(G′ − {c, d}) ≥ 2. If c ∈ V (C2) and d ∈ S, let T = S − {d} ∪ {g} (where
g ∈ V (C2) − {e}) and M ′ = M − {x1y1} ∪ {dy1}, then G − {c, x1} has no
(T, M ′)-extension, a contradiction.
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The proof is completed. 2
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