COUNTING OCCURRENCES OF 231 IN AN INVOLUTION

Toufik Mansour¹, Sherry H.F. Yan², and Laura L.M. Yang³

¹Department of Mathematics, University of Haifa, 31905 Haifa, Israel ^{1,2,3}Center for Combinatorics, LPMC, Nankai University, Tianjin 300071,P.R. China

 $^{1}toufik@math.haifa.ac.il, ^{2}huifangyan@eyou.com, ^{3}yanglm@hotmail.com$

Abstract

We study the generating function for the number of involutions on n letters containing exactly $r \ge 0$ occurrences of 231. It is shown that finding this function for a given ramounts to a routine check of all involutions of length at most 2r + 2.

Key words: Restricted involutions, Generating functions.

2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary 05A05, 05A15; Secondary 05C90

1. Introduction

1.1. **Permutations.** Suppose that S_n is the set of permutations of $[n] = \{1, \ldots, n\}$, written in one-line notation. Let $\pi = \pi_1 \pi_2 \ldots \pi_n \in S_n$ and $\tau = \tau_1 \tau_2 \ldots \tau_k \in S_k$ be two permutations. An *occurrence* of τ in π is a subsequence $\pi_{i_1}\pi_{i_2}\ldots\pi_{i_k}$ such that $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ and $\pi_{i_s} < \pi_{i_t}$ if and only if $\tau_s < \tau_t$ for any $1 \leq s, t \leq k$. In such a context, τ is usually called a *pattern*. We denote the number of occurrences of τ in π by $\tau(\pi)$ and the number of permutations $\pi \in S_n$ with $\tau(\pi) = r$ by $S_r^{\tau}(n)$.

Most of the results in this area investigate only the case r = 0, $S_0^{\tau}(n)$, the number of permutations of length *n* avoiding the pattern τ (for example, see [1, 2, 3, 6, 13, 16, 17, 18, 19, 20]). Only a few results investigate the case of r > 0 and τ of length 3. Noonan [15] showed that $S_1^{123}(n) = \frac{3}{n} {2n \choose n+3}$. This result was also proved by Noonan and Zeilberger [16]. Bóna [5] proved that $S_1^{132}(n) = {2n-3 \choose n-3}$ and Fulmek [10] showed that

$$S_2^{123}(n) = \frac{59n^2 + 117n + 100}{2n(2n-1)(n+5)} \binom{2n}{n-4},$$

which were conjectured by Noonan and Zeilberger [16]. Bóna [4] pointed out that it is a hard question to give an explicit expression for $S_r^{\tau}(n)$, $\tau \in S_3$, for any given r. Mansour and Vainshtein [14] suggested a new approach to this problem in the case $\tau = 132$, which allows one to get an explicit expression for $S_r^{132}(n)$ for any given r. More precisely, they presented an algorithm that computes the generating function $\sum_{n\geq 0} S_r^{132}(n)x^n$ for any $r \geq 0$. It is shown that finding this function for a given ramounts to a routine check of all permutations of length at most 2r. 1.2. Involutions. An involution π is a permutation in S_n such that $\pi = \pi^{-1}$; let \mathcal{I}_n be the set of all the involutions in S_n . We denote by $I_{r,n}^{\tau}$ the number of involutions $\pi \in \mathcal{I}_n$ with $\tau(\pi) = r$, and $I_r^{\tau}(x)$ the corresponding generating function, that is, $I_r^{\tau}(x) = \sum_{n \ge 0} I_{r,n}^{\tau} x^n$.

Again, most authors considered the case r = 0, namely involutions avoiding a given pattern τ (see [7, 9, 11, 12] and references therein). For the case r > 0 there exist only few results. Guibert and Mansour [12] gave an explicit expression for $I_{1,n}^{132}$, namely $I_{1,n}^{132} = \binom{n-2}{[(n-3)/2]}$. Egge and Mansour [8] proved that $I_{1,n}^{231} = (n-1)2^{n-6}$ for $n \ge 5$.

In the present paper we give a complete answer for this problem in the case of $\tau = 231$, which allows one to get an explicit expression for $I_{r,n}^{231}$ for any given r. More precisely, we present an algorithm that computes the generating function $I_r^{231}(x)$ for any $r \ge 0$. To get the result for a given r, the algorithm performs certain routine checks for each element in $\bigcup_{k=1}^{2r+2} I_k$. The algorithm has been implemented in C, and yielded explicit results for $0 \le r \le 7$.

2. Preliminary results

For any involution $\pi \in \mathcal{I}_n$, we can define a bipartite graph G_{π} in the following way which is similar to [14].

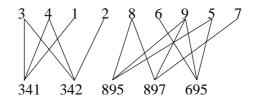


FIGURE 1. The graph $G_{341286957}$

The vertices in one part of G_{π} , denoted V_1 , are the entries of π , and the vertices of the second part, denoted V_3 , are the occurrences of 231 in π . Entry $i \in V_1$ is connected by an edge to occurrence $j \in V_3$ if i enters j. For example, let $\pi = 341286957$, then π contains 5 occurrences of 231, and the graph G_{π} is presented in Figure 1.

Let \widetilde{G} be an arbitrary connected component of G_{π} , let \widetilde{V} be its vertex set, and set $\widetilde{V}_1 = \widetilde{V} \bigcap V_1$, $\widetilde{V}_3 = \widetilde{V} \bigcap V_3$, $t_1 = |\widetilde{V}_1|$, and $t_3 = |\widetilde{V}_3|$. Denote by G_{π}^n the connected component of G_{π} containing entry n.

For any $\pi \in \mathcal{I}_n$ where $\pi_j = n$ and $|V_1(G_{\pi}^n)| > 1$, suppose that i_k is the minimal index such that $\pi_{i_k} > j$ and $i_k < j$. If there exists an index m with $i_k < m < j$ such that $\pi_m < i_k$, then let i_1 be the minimal index such that π contains a subsequence

$$(\pi_{i_1}, \pi_{i_2}, i_1, \pi_{i_3}, i_2, \dots, i_h, \pi_{i_{h+2}}, i_{h+1}, \dots, \pi_{i_k}, i_{k-1}, \pi_j, i_k, j)$$

where $i_1 < i_2 < i_3 < \ldots < i_k < j$. We call this subsequence the *connected sequence* of π . Otherwise, $i_1 = i_k$ and the connected sequence reduces to $(\pi_{i_1}, \pi_j, i_1, j)$. For our convenience, we call i_1 the *initial index*.

Definition 2.1. For any $\pi \in \mathcal{I}_n$ and $\pi_j = n$, we define the 231-tail by

$$\chi_{\pi} = \begin{cases} (n, \pi_{j+1}, \dots, \pi_{n-1}, j), & \text{if} \quad |V_1(G_{\pi}^n)| = 1, \\ (\pi_{i_1}, \pi_{i_1+1}, \dots, \pi_n), & \text{if} \quad |V_1(G_{\pi}^n)| > 1, \end{cases}$$

where i_1 is the initial index of π .

For example, the 231-tail of the involution 216483957 is 6483957. Denote by l_{π} and c_{π} the length of π and the number of occurrences of 231 in π .

For the simplicity of the notation, we denote by $\{n; \lambda\}$ the permutation $(n, n-1, \ldots, n-s+1, \lambda)$, where λ is a nonempty permutation of $\{j+1, j+2, \ldots, n-s\}$ and does not begin with n-s.

In fact, for any $\pi \in \mathcal{I}_n$ with $|V_1(G_{\pi}^n)| = 1$, $\pi_j = n$, and $\chi_{\pi} = \{n; \lambda\}$. For example, if $\pi = 213986754 \in \mathcal{I}_9$ then $\chi_{\pi} = 986754$, s = 2, and $\lambda = 6754$. The following lemma holds by the definition of the 231-tail and the initial index of π .

Lemma 2.2. Let $\pi \in \mathcal{I}_n$. Then χ_{π} is order-isomorphic to an involution, and there exists an involution π' such that $\pi = (\pi', \chi_{\pi})$.

Lemma 2.3. Let $\pi \in I_n$ with $\chi_{\pi} = \{n; \lambda\}$ and $c_{\chi_{\pi}} = r \ (r > 0)$, then $l_{\chi_{\pi}} \leq 2r + 2$.

Proof. From Lemma 2.2 and the hypothesis about the form of χ_{π} , we have $\chi_{\pi} = (n, n-1, \ldots, n-s+1, \mu, n+s-l_{\chi_{\pi}}, \ldots, n+1-l_{\chi_{\pi}})$, where μ is an involution and does not begin with n-s. Note that each free rise (a free rise is a subsequence order-isomorphic to the pattern 12) contributes s occurrences of 231 and $c_{\chi_{\pi}} = r$. Hence $s \leq r$ and the maximum length of χ_{π} occurs when μ has just one free rise. Since χ_{π} is an involution, we have that μ is the appropriate sequence order-isomorphic to 12 and χ_{π} is the sequence order-isomorphic to $(2r+2, 2r+1, \ldots, r+3, r+1, r+2, r, r-1, \ldots, 1)$.

Lemma 2.4. For any $\pi \in \mathcal{I}_n$ with $|V_1(G_\pi^n)| > 1$, we have $G_{\chi_\pi} = G_\pi^n$.

Proof. Let $(\pi_{i_1}, \pi_{i_2}, i_1, \pi_{i_3}, i_2, \ldots, i_h, \pi_{i_{h+2}}, i_{h+1}, \ldots, \pi_{i_k}, i_{k-1}, \pi_j, i_k, j)$ be the connected sequence of π , where i_1 is the initial index of π and $\pi_j = n$. It is obvious that π_{i_t} and i_t are the vertices of the connected component G_{π}^n for $1 \leq t \leq k+1$ with the assumption $i_{k+1} = j$. In order to prove $G_{\chi_{\pi}} = G_{\pi}^n$, we should prove that all the entries of χ_{π} are contained in the connected component G_{π}^n .

For $i_1 < s < i_2$, we have either $i_1 < \pi_s < \pi_{i_1}$ or $\pi_s > \pi_{i_1}$. In the first case, $\pi_s \pi_{i_2} i_1$ is order-isomorphic to the pattern 231. While in the second case, $\pi_{i_1} \pi_s i_1$ is order-isomorphic to the pattern 231. Hence, π_s is connected with i_1 in $G_{\chi_{\pi}}$, which implies that π_s is a vertex of the connected component G_{π}^n .

For $2 \leq t \leq k+1$ and $i_t < s < \pi_{i_t}$, we have either $\pi_s > \pi_{i_{t-1}}$ or $\pi_s < \pi_{i_{t-1}}$. In the first case, $\pi_{i_{t-1}}\pi_s i_t$ is order-isomorphic to the pattern 231. While in the second case $\pi_{i_{t-1}}\pi_{i_t}\pi_s$ is order-isomorphic to the pattern 231. Hence, π_s is connected with $\pi_{i_{t-1}}$ in $G_{\chi_{\pi}}$, which implies that π_s is a vertex of the connected component G_{π}^n .

The above arguments imply that all the vertices of χ_{π} are the vertices of the connected component G_{π}^{n} . According to the definition of the initial index, we have $\pi_{s} < i_{1}$ for $1 \leq s < i_{1}$, which implies that π_{s} is not contained in G_{π}^{n} . Hence, the bipartite graph corresponding to χ_{π} is G_{π}^{n} .

By [14, Lemma 2.1], for any permutation π and any connected component \tilde{G} of G_{π} we have $t_1 \leq 2t_3 + 1$. Since the involutions form a subset of the permutations, we have the following result.

Lemma 2.5. For any connected component \widetilde{G} of G_{π} , one has $t_1 \leq 2t_3 + 1$.

The above lemmas lead to the following result.

Corollary 2.6. For any $\pi \in I_n$ with $c_{\chi_{\pi}} = r$ (r > 0), if $|V_1(G_{\pi}^n)| = 1$, then $l_{\chi_{\pi}} \leq 2r+2$; otherwise $l_{\chi_{\pi}} \leq 2r+1$.

3. Main Theorem and explicit results

Denote by K_t the subset of $\bigcup_{k \leq 2t+2} \mathcal{I}_k$ whose elements can be represented as $\{n; \lambda\}$ with $c_{\lambda} \leq t$. Let H_t be the subset of $\bigcup_{k \leq 2t+1} \mathcal{I}_k$ such that the corresponding bipartite graph of each element is connected and each element contains at most t occurrences of 231. It is obvious that $K_t \cap H_t = \emptyset$. Then the main result of this paper can be formulated as follows.

Theorem 3.1. For any $r \ge 1$,

$$I_r^{231}(x) = \frac{x}{1-x} I_r^{231}(x) + \sum_{\mu \in K_r \cup H_r} x^{l_\mu} I_{r-c_\mu}^{231}(x).$$
(*)

Proof. Denote by $F_r^{\mu}(x)$ the generating function for the number of involutions $\pi \in \mathcal{I}_n$ that contain 231 exactly r times such that χ_{π} is order-isomorphic to μ . We discuss three cases to find $F_r^{\mu}(x)$:

If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (n, n - 1, \dots, n - s + 1)$, then $l_{\mu} = s$ and $\mu = (s, s - 1, \dots, 1)$. So we have

$$F_r^{\mu}(x) = x^s I_r^{231}(x).$$

If π is an involution in \mathcal{I}_n with $\chi_{\pi} = \{n; \lambda\}$ and $c_{\chi_{\pi}} = r$, then $\mu \in K_r$ by Lemma 2.3. Thus we have

$$F_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x)$$

If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (\pi_{i_1}, \pi_{i_1+1}, \ldots, \pi_n)$ where i_1 is the initial index of π , then Lemma 2.5 and Lemma 2.4 yield $\mu \in H_r$ and

$$F_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x)$$

Hence, summing over all $\mu \in \{(s, s - 1, s - 2, \dots, 2, 1) | s \ge 1\} \cup K_r \cup H_r$ we get the desired result.

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding $I_r^{231}(x)$ for any given r > 0, since we have to consider all involutions in I_k , where $k \leq 2r + 2$, and to perform certain routine operations with all 231-tails found so far.

Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all involutions in I_k , where $k \leq 2r + 1$, since the involution of length 2r + 2 containing r occurrences of the pattern 231 is (2r + 2, 2r + 1, ..., r + 3, r + 1, r + 2, r, r - 1, ..., 1). As a consequence, Formula (*) can be reduced as follows:

$$I_r^{231}(x) = \frac{x}{1-x} I_r^{231}(x) + x^{2r+2} I_0^{231}(x) + \sum_{\mu \in K_r^* \cup H_r} x^{l_\mu} I_{r-c_\mu}^{231}(x),$$

where K_r^* is the set of all involutions of the form $(n, n-1, \ldots, n-s+1, \lambda)$ in I_k where $k \leq 2r+1$ and λ is nonempty.

Now, we show how our results apply for some small values of r. Let us start with the case r = 0. Observe that (*) remains valid for r = 0, provided that the left hand side is replaced by $I_0^{231}(x) - 1$; subtracting 1 here accounts for the empty permutation. Note that when r = 0, the set $K_0 \cup H_0$ is empty. Hence we get $I_0^{231}(x) - 1 = \frac{x}{1-x}I_0^{231}(x)$, equivalently

$$I_0^{231}(x) = \frac{1-x}{1-2x},\tag{**}$$

which is the result of Simion and Schmidt (see [17, Proposition 6]).

Now let r = 1. Observe that $K_1 \cup H_1 = \{4231\}$. Therefore, (*) amounts to

$$I_1^{231}(x) = \frac{x}{1-x}I_1(x) + x^4 I_0^{231}(x),$$

and we get the following result from Formula (**).

Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function $I_1^{231}(x)$ for the number of involutions containing exactly one occurrence of the pattern 231 is given by

$$I_1^{231}(x) = \frac{x^4(1-x)^2}{(1-2x)^2};$$

equivalently, for $n \geq 5$,

 $I_{1,n}^{231} = (n-1)2^{n-6}.$

Now let r = 2. Exhaustive search adds four new elements to the previous list; these are 653421, 52431, 53241, and 3412, therefore we get

Corollary 3.4. The generating function $I_2^{231}(x)$ is given by

$$I_2^{231}(x) = \frac{x^4(1-x)^2}{(1-2x)^3} \left(1 - 3x^2 - 2x^3 + x^4 - x^5\right);$$

equivalently, for $n \ge 9$,

$$I_{2,n}^{231} = (n^2 + 137n - 234)2^{n-12}$$

We have carried out exhaustive searches in \mathcal{I}_{2r+2} with r = 3, 4, 5, 6, 7 and found that \mathcal{I}_8 , \mathcal{I}_{10} , \mathcal{I}_{12} , \mathcal{I}_{14} , \mathcal{I}_{16} contain 13, 24, 41, 69, 103 elements, respectively, which leads to the following corollary.

Corollary 3.5. Let $3 \leq r \leq 7$, then

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}}Q_r(x),$$

where

$$Q_{3}(x) = x^{5}(4 - 14x + 8x^{2} + 11x^{3} - 6x^{4} - 2x^{5} + 2x^{6} + 5x^{7} - 2x^{8} + x^{9});$$

$$Q_{4}(x) = x^{6}(6 - 32x + 49x^{2} + 7x^{3} - 73x^{4} + 40x^{5} + 30x^{6} - 37x^{7} + 2x^{8} + 4x^{10} - 9x^{11} + 3x^{12} - x^{13});$$

$$Q_{4}(x) = x^{6}(8 - 58x + 146x^{2} - 120x^{3} - 40x^{4} - 24x^{5} + 200x^{6} - 184x^{7} - 107x^{8});$$

$$Q_{5}(x) = x^{6}(8 - 58x + 146x^{2} - 120x^{3} - 40x^{4} - 24x^{5} + 290x^{6} - 184x^{\prime} - 197x^{8} + 228x^{9} + 30x^{10} - 132x^{11} + 62x^{12} + 13x^{14} - 16x^{15} + 14x^{16} - 4x^{17} + x^{18});$$

$$Q_{6}(x) = x^{6}(4 - 31x + 80x^{2} - 56x^{3} + 4x^{4} - 384x^{5} + 1097x^{6} - 830x^{7} - 483x^{8} + 660x^{9} + 685x^{10} - 1091x^{11} - 59x^{12} + 722x^{13} - 195x^{14} - 338x^{15} + 285x^{16} - 92x^{17} + 20x^{18} - 45x^{19} + 35x^{20} - 20x^{21} + 5x^{22} - x^{23});$$

$$\begin{aligned} Q_7(x) &= x^7 (17 - 199x + 969x^2 - 2502x^3 + 3642x^4 - 3274x^5 + 3324x^6 - 4714x^7 \\ &+ 1874x^8 + 6326x^9 - 8262x^{10} - 231x^{11} + 5474x^{12} - 637x^{13} - 4022x^{14} \\ &+ 1933x^{15} + 1340x^{16} - 1129x^{17} - 518x^{18} + 982x^{19} - 498x^{20} + 166x^{21} \\ &- 92x^{22} + 105x^{23} - 62x^{24} + 27x^{25} - 6x^{26} + x^{27}). \end{aligned}$$

Equivalently, for $n \ge 4r + 1$,

$$I_{r,n}^{231} = 2^n \cdot Q_r(n),$$

where

$$Q_{3}(n) = \frac{1}{3 \cdot 2^{17}} (n^{3} + 414n^{2} + 12227n - 30762)$$

$$Q_{4}(n) = \frac{1}{3 \cdot 2^{24}} (n^{4} + 830n^{3} + 108275n^{2} + 476710n - 3117432)$$

$$Q_{5}(n) = \frac{1}{3 \cdot 5 \cdot 2^{29}} (n^{5} + 1385n^{4} + 416765n^{3} + 20952295n^{2} + 85955874n - 544257360)$$

$$Q_{6}(n) = \frac{1}{3^{2} \cdot 5 \cdot 2^{35}} (n^{6} + 2079n^{5} + 1124515n^{4} + 158232165n^{3} + 3797599444n^{2} + 1475950836n - 72974470320)$$

$$Q_{6}(n) = \frac{1}{3^{2} \cdot 5 \cdot 2^{35}} (n^{2} + 2012n^{6} + 2476206n^{5} + 685288480n^{4} + 51462110560n^{3} + 10827560n^{5} + 1124515n^{4} + 158232165n^{3} + 51462110560n^{3} + 1082756n^{5} + 585288480n^{4} + 51462110560n^{3} + 1082756n^{5} + 585288480n^{4} + 51462110560n^{3} + 1082756n^{5} + 585288480n^{4} + 51462110560n^{3} + 1082756n^{5} + 1082756n^{5} + 585288480n^{4} + 51462110560n^{3} + 1082756n^{5} + 1082756n^$$

$$Q_{7}(n) = \frac{1}{3^{2} \cdot 5 \cdot 7 \cdot 2^{40}} \left(n^{\prime} + 2912n^{6} + 2476306n^{3} + 685388480n^{4} + 51462119569n^{3} + 764352578528n^{2} - 3749997108516n - 326124489600\right)$$

4. Further results

As an easy consequence of Theorem 3.1 we get the following result.

Corollary 4.1. For any $r \ge 1$ there exists a polynomial $P_{5r-1}(x)$ of degree 5r-1 with integer coefficients such that

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}} P_{5r-1}(x).$$

In other words, for $n \to \infty$

$$I_{r,n}^{231} \approx \frac{2^{n-5r-1}n^r}{r!}.$$

Proof. Immediately, by the above cases we have the corollary holds for $1 \le r \le 7$. Let us assume by induction that the corollary holds for $1, 2, \ldots, r - 1$; for r the equation (*) give

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}} \sum_{\rho \in K_r \cup H_r} x^{l_\rho} \frac{(1-2x)^r}{1-x} I_{r-c_\rho}^{231}(x).$$

By the induction assumption and $I_0^{231}(x) = \frac{1-x}{1-2x}$ we have that $x^{l_{\rho}} \frac{(1-2x)^r}{1-x} I_{r-c_{\rho}}(x)$ is a polynomial with integer coefficients of degree a. So Lemma 2.3 and Lemma 2.5 yield

$$a = \max\{b_j | j = 1, \dots, r\},\$$

where $b_j = 2j + 2 + r - (r - j + 1) + 1 + 5(r - j) - 1 = 5r - 2j + 1$, which means a = 5r - 1, as claimed.

Another direction would be to match the approach of this paper with the previous results on restricted 231-avoiding involutions. Let $\Phi_r(x;k)$ be the generating function for the number of involutions in \mathcal{I}_n containing r occurrences of 231 and avoiding the pattern $12 \dots k \in \mathfrak{S}_k$. Our new approach allows to get a recursion for $\Phi_r(x;k)$ for any given $r \ge 0$.

We denote by e_{λ} the length of the longest increasing subsequence of any involution λ . For example, let $\lambda = 3412$, then $e_{\lambda} = 2$. We denote by $K_t(k) \cup H_t(k)$ the set of all involutions $\lambda \in K_t \cup H_t$ such that $e_{\lambda} \leq k - 1$.

Theorem 4.2. For any $r \ge 1$ and $k \ge 3$,

$$\Phi_r(x;k) = \frac{x}{1-x} \Phi_r(x;k-1) + \sum_{\mu \in K_r(k) \cup H_r(k)} x^{l_\mu} \Phi_{r-c_\mu}(x;k-e_\mu).$$

Besides, $\Phi_r(x;1) = \Phi_r(x;2) = 0$, and $\Phi_0(x;1) = 1$ and $\Phi_0(x;2) = \frac{1}{1-x}$.

Proof. If we replace the sets K_r and H_r with the sets $K_r(k)$ and $H_r(k)$ in the proof of Theorem 3.1, then we arrive to the recurrence relation of the generating function $\Phi_r(x;k)$. The initial conditions hold directly from the definitions.

Similar to the case of $I_r^{231}(x)$, the statement of the above theorem remains valid for r = 0, provided the left hand side is replaced by $\Phi_r(x;k) - 1$. This allows to recover known explicit expressions for $\Phi_r(x;k)$ for r = 0, 1, as follows.

Corollary 4.3. (see Egge and Mansour [8]) For all $k \ge 1$,

$$\Phi_0(x;k) = \sum_{j=0}^{k-1} \left(\frac{x}{1-x}\right)^j;$$

$$\Phi_1(x;k) = x^4 \sum_{j=0}^{k-3} (j+1) \left(\frac{x}{1-x}\right)^j.$$

Proof. Observe that Theorem 4.2 remains valid for r = 0, provided the left hand side is replaced by $\Phi_0(x;k) - 1$; subtracting 1 here accounts for the empty involution. Note that when r = 0, the set $K_0(k) \cup H_0(k)$ is empty. Hence, we obtain that $\Phi_0(x;k) =$ $1 + \frac{x}{1-x}\Phi_0(x;k-1)$. Using induction on k with the initial condition $\Phi_0(x;1) = 1$ we get that $\Phi_0(x;k) = \sum_{j=0}^{k-1} \left(\frac{x}{1-x}\right)^j$. Now, note that when r = 1 and $k \ge 3$, we have that $K_1(k) \cup H_1(k) = \{4231\}$ and $e_{4231} = 2$. So, Theorem 4.2 gives $\phi_1(x;k) = \frac{x}{1-x}\Phi_1(x;k-1) + x^4\Phi_0(x;k-2)$, which is equivalent to $\phi_1(x;k) = \frac{x}{1-x}\Phi_1(x;k-1) + x^4\sum_{j=0}^{k-3} \left(\frac{x}{1-x}\right)^j$. Hence, using the initial conditions $\Phi_1(x;1) = \Phi_1(x;2) = 0$ and induction on k we get the desired result. \Box

This approach can be extended even further to cover involutions containing r occurrences of 231 and avoiding another pattern in \mathfrak{S}_k , for example $k \dots 321$.

We denote a_{λ} be the length of maximal decreasing subsequence in an involution λ . For example, if $\lambda = 87645321$, then $a_{\lambda} = 7$. Let $\Omega_r(x; k)$ be the generating function for the number of involutions containing exactly r occurrences 231 and avoiding $k \dots 321$.

Theorem 4.4. For any $r \ge 1$ and $k \ge 1$,

$$\Omega_r(x;k) = \frac{1}{1 - x - \dots - x^{k-1}} \left(\sum_{\mu \in K_r \cup H_r \text{ and } a_\mu \le k-1} x^{l_\mu} \Omega_{r-c_\mu}(x;k) \right).$$

Proof. Denote by $V_r^{\mu}(x;k)$ the generating function for the number of involutions $\pi \in \mathcal{I}_n$ that avoid $k \dots 321$ and contain 231 exactly r times such that χ_{π} is order-isomorphic to μ . We discuss three cases to find $V_r^{\mu}(x;k)$:

If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (n, n - 1, \dots, n - s + 1)$, then $l_{\mu} = s$ and $\mu = (s, s - 1, \dots, 1)$ with $s \leq k - 1$, so we have

$$V_r^{\mu}(x;k) = x^s I_r^{231}(x).$$

If π is an involution in \mathcal{I}_n such that $\chi_{\pi} = \{n; \lambda\}$ and $c_{\chi_{\pi}} = r$, then $\mu \in K_r$ by Lemma 2.3; thus if $a_{\mu} \leq k - 1$ then we have

$$V_r^{\mu}(x;k) = x^{l_{\mu}} \Omega_{r-c_{\mu}}(x)$$

If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (\pi_{i_1}, \pi_{i_1+1}, \ldots, \pi_n)$ where i_1 is the initial index of π , then Lemma 2.5 and Lemma 2.4 yield $\mu \in H_r$, and if $a_{\mu} \leq k - 1$ then

$$V_r^{\mu}(x;k) = x^{l_{\mu}} I_{r-c_{\mu}}(x;k).$$

Hence, if we sum over all $\mu \in \{(s, s-1, \dots, 1) | s \leq k-1\} \cup \{\mu \in K_r \cup H_r \mid a_\mu \leq k-1\}$, then we get the desired result. \Box

The final direction would be to match the approach of this note with the previous results on restricted 231-avoiding even or odd involutions. We say π an even (resp; odd) involution if the number of inversions in π , namely $21(\pi)$ is even (resp; odd). We define the sign h_{λ} of any permutation λ as $(-1)^{21(\lambda)}$. For example, if $\lambda = (6, 5, 3, 4, 2, 1)$ then $h_{\lambda} = 1$. We denote by $K_r^+ \cup H_r^+$ the set of all the involutions $\lambda \in K_r \cup H_r$ such that $h_{\lambda} = 1$ and denote by $K_r^- \cup H_r^-$ the set of all involutions $\lambda \in K_r \cup H_r$ such that $h_{\lambda} = -1$.

Let $I_r^+(x)$ (resp; $I_r^-(x)$) be the generating function for the number of even (resp; odd) involutions in \mathcal{I}_n containing r occurrences of 231. Our new approach allows us to get an explicit expression for $I_r^+(x)$ (or $I_r^-(x)$) for any given $r \ge 0$.

Theorem 4.5. For all $r \ge 1$,

$$I_{r}^{+}(x) = \frac{x + x^{4}}{1 - x^{4}}I_{r}^{+}(x) + \frac{x^{2} + x^{3}}{1 - x^{4}}I_{r}^{-}(x) + \sum_{\mu \in K_{r}^{+} \cup H_{r}^{+}} x^{l_{\mu}}I_{r-c_{\mu}}^{+}(x) + \sum_{\mu \in K_{r}^{-} \cup H_{r}^{-}} x^{l_{\mu}}I_{r-c_{\mu}}^{-}(x);$$

$$I_{r}^{-}(x) = \frac{x + x^{4}}{1 - x^{4}}I_{r}^{-}(x) + \frac{x^{2} + x^{3}}{1 - x^{4}}I_{r}^{+}(x) + \sum_{\mu \in K_{r}^{+} \cup H_{r}^{+}} x^{l_{\mu}}I_{r-c_{\mu}}^{-}(x) + \sum_{\mu \in K_{r}^{-} \cup H_{r}^{-}} x^{l_{\mu}}I_{r-c_{\mu}}^{+}(x).$$

In particular, we have

$$I_0^+(x) - 1 = \frac{x + x^4}{1 - x^4} I_0^+(x) + \frac{x^2 + x^3}{1 - x^4} I_0^-(x)$$

and

$$I_0^{-}(x) = \frac{x + x^4}{1 - x^4} I_0^{-}(x) + \frac{x^2 + x^3}{1 - x^4} I_0^{+}(x)$$

Proof. Here we only prove the result of $I_r^+(x)$ for any $r \ge 1$. By the same method, we can obtain the formula for $I_r^-(x)$. Denote by $Q_r^{\mu}(x)$ the generating function for the number of involutions in $\pi \in I_n$ such that χ_{π} is order-isomorphic to μ and $h_{\pi} = 1$.

To find $Q_r^{\mu}(x)$, we recall six cases. If π is an involution in I_n with $\chi_{\pi} = (n, n-1, \ldots, n-s+1)$ and $h_{\mu} = \pm 1$, then we have $Q_r^{\mu}(x) = x^s I_r^{\pm}(x)$, where $\mu = (s, s-1, \ldots, 1)$.

If π is an involution in I_n such that $\chi_{\pi} = \{n; \lambda\}$ and $\mu \in K_r^{\pm}$, then Lemma 2.3 yields $Q_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{\pm}(x)$.

If π is an involution in I_n with $\chi_{\pi} = (\pi_{i_1}, \pi_{i_1+1}, \dots, \pi_n)$ where i_1 is the initial index of π and $h_{\mu} = \pm 1$, then Lemma 2.4 and Lemma 2.5 yield $Q_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{\pm}(x)$, where $\mu \in H_r^{\pm}$.

Hence, if we sum over all $\mu \in K_r \cup H_r \cup \{(s, s-1, s-2, \ldots, 2, 1) | s \ge 1\}$ then we get the desired result. When r = 0, subtracting 1 here accounts for the empty permutation. \Box

As an example of the above theorem we get

Corollary 4.6. For $0 \leq r \leq 2$,

$$I_r^+(x) = \frac{E_r(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}}, \quad I_r^-(x) = \frac{O_r(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}};$$

where

$$\begin{split} E_0(x) &= 1 - 2x + 2x^2 - 2x^3; \\ E_1(x) &= 2x^6(1 - 2x + 2x^2 - 2x^3); \\ E_2(x) &= x^4(1 - 5x + 11x^2 - 15x^3 + 10x^4 + 5x^5 - 11x^6 - 5x^7 + 47x^8 - 94x^9 + 86x^{10} - 62x^{11} + 16x^{12}); \\ O_0(x) &= x^2; \\ O_1(x) &= x^4(1 - 4x + 8x^2 - 12x^3 + 13x^4 - 8x^5 + 4x^6); \\ O_2(x) &= x^6(2 - 6x + 6x^2 - 2x^3 - 9x^4 + 4x^5 + 20x^6 - 36x^7 + 53x^8 - 24x^9 + 8x^{10}). \end{split}$$

Again, as an easy consequence of Theorem 4.5 we get the following result.

Corollary 4.7. Let $r \ge 0$. Then there exist number m_r and r_r and polynomials $p_{m_r}(x)$ and $q_{n_r}(x)$ of degree m_r and n_r respectively such that

$$I_r^+(x) = \frac{p_{m_r}(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}}, \quad I_r^-(x) = \frac{q_{n_r}(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}}$$

It can be proved by induction on r as the proof of Corollary 4.1. Here we delete its proof.

As a remark we can derive other results from Theorem 4.5. For example, the generating function for the number of even or odd involutions containing exactly r occurrences of the pattern 231 and avoiding $12 \dots k$ (or avoiding $k \dots 21$).

References

- N. Alon and E. Friedgut, On the number of permutations avoiding a given pattern, J. Combin. Theory Ser. A 89 (2000)133–140.
- [2] M.D. Atkinson, Restricted permutations, Discrete Math. 195 (1999) 27–38.
- [3] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A 80 (1997) 257–272.
- [4] M. Bóna, The number of permutations with exactly r 132-subsequences is P-recursive in the size! Adv. Appl. Math. 18 (1997) 510–522.
- [5] M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267– 274.
- [6] T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, *Discrete Math.* 204 (1999) 119–128.
- [7] E.S. Egge, Restricted 3412-avoiding involutions: Continued fractions, Chebyshev polynomials and enumerations, *Adv. in Appl. Math.*, to appear.
- [8] E. Egge and T. Mansour, 231-Avoiding involutions and Fibonacci numbers, Australasian Journal of Combinatorics 30 (2004) 75–84.
- [9] E.S. Egge and T. Mansour, Involutions restricted by 3412, Continued fractions, and Chebyshev polynomials, *Adv. in Appl. Math.*, to appear.
- [10] M. Fulmek, Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three, Adv. Appl. Math. 30 (2003) 607–632.
- [11] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, *PHD-thesis, University Bordeaux 1, France* (1995).
- [12] O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire 48 (2002), Article B48a (23pp.).
- [13] T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, *Electron. J. Combin.* 7 (2000) #R17.
- [14] T. Mansour and A. Vainshtein, Counting occurences of 132 in a permutation, Adv. Appl. Math. 28 (2002) 185–195.
- [15] J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, *Discrete Math.* 152 (1996) 307–313.
- [16] J. Noonan and D. Zeilberger, The enumeration of permutations with a prescribed number of "forbidden" patterns, Adv. Appl. Math. 17 (1996) 381–407.
- [17] R. Simion, F.W. Schmidt, Restricted Permutations, Europ. J. of Combin. 6 (1985) 383–406.
- [18] Z. Stankova, Forbidden subsequences, Discrete Math. 132 (1994) 291–316.
- [19] Z. Stankova, Classification of forbidden subsequences of length 4, European J. Combin. 17 (1996) 501–517.
- [20] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995) 247–262.