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ABSTRACT

We study the generating function for the number of involutions on n letters containing
exactly » > 0 occurrences of 231. It is shown that finding this function for a given r
amounts to a routine check of all involutions of length at most 2r + 2.
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1. Introduction

1.1. Permutations. Suppose that S, is the set of permutations of [n] = {1,...,n},
written in one-line notation. Let @ = mymy... 1, € S, and 7 = Ty7»... 7, € S be
two permutations. An occurrence of T in 7 is a subsequence m;, 7, ... m;, such that
1<i <ig<---<ip<nandm, <m, if and only if 7, < 7y for any 1 < s,¢t < k. In
such a context, 7 is usually called a pattern. We denote the number of occurrences of
7 in w by 7(7) and the number of permutations = € S,, with 7(7) = r by ST (n).

Most of the results in this area investigate only the case r = 0, Sj(n), the number of
permutations of length n avoiding the pattern 7 (for example, see [1, 2, 3, 6, 13, 16,
17, 18, 19, 20]). Only a few results investigate the case of r > 0 and 7 of length 3.

Noonan [15] showed that S{*(n) = £( ). This result was also proved by Noonan

and Zeilberger [16]. Béna [5] proved that S{**(n) = (*'-)) and Fulmek [10] showed
that

59n2 4+ 117n + 100 / 2n
S12() = ()

2n(2n—1)(n+5) \n —4

which were conjectured by Noonan and Zeilberger [16]. Béna [4] pointed out that it
is a hard question to give an explicit expression for S7(n), 7 € S, for any given r.
Mansour and Vainshtein [14] suggested a new approach to this problem in the case
7 = 132, which allows one to get an explicit expression for S'*?(n) for any given r.
More precisely, they presented an algorithm that computes the generating function
D ns0 Si%(n)a™ for any r > 0. Tt is shown that finding this function for a given r

amounts to a routine check of all permutations of length at most 2r.
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1.2. Involutions. An involution 7 is a permutation in S, such that 7 = 7~ %; let Z,,
be the set of all the involutions in S,,. We denote by I7, the number of involutions
m € I, with 7(r) = r, and I7(z) the corresponding generating function, that is,
IT(z) = Zn>0 I ,x".

Again, most authors considered the case r = 0, namely involutions avoiding a given
pattern 7 (see [7, 9, 11, 12] and references therein). For the case r > 0 there exist only
few results. Guibert and Mansour [12] gave an explicit expression for I;3?, namely

1,n»

I3 = ([(7;1—?’))2/2])' Egge and Mansour [8] proved that It3) = (n — 1)2"7° for n > 5.

In the present paper we give a complete answer for this problem in the case of 7 = 231,
which allows one to get an explicit expression for I23! for any given r. More precisely,
we present an algorithm that computes the generating function I?*!(x) for any r > 0.
To get the result for a given r, the algorithm performs certain routine checks for each
element in Ui’:f 1. The algorithm has been implemented in C, and yielded explicit

results for 0 < r < 7.

2. PRELIMINARY RESULTS

For any involution = € Z,, we can define a bipartite graph G, in the following way
which is similar to [14].

3 4 1 2 7

341 342 895 897 695

FIGURE 1. The graph G341286957

The vertices in one part of GG, denoted Vi, are the entries of 7, and the vertices of the
second part, denoted V3, are the occurrences of 231 in 7. Entry ¢ € V] is connected
by an edge to occurrence j € V3 if ¢ enters j. For example, let m = 341286957, then 7
contains 5 occurrences of 231, and the graph G, is presented in Figure 1.

Let G ‘be an arbitrary connected component of G, let V be its vertex set, and set
Vi=VNOW, Vzs=VNVs t1 = |Vi], and t3 = |V3|. Denote by G? the connected
component of G containing entry n.

For any m € Z,, where m; = n and |V;(G?%)| > 1, suppose that i is the minimal index

such that m;, > j and 45 < j. If there exists an index m with i, < m < j such that
Tm < ik, then let 7; be the minimal index such that 7 contains a subsequence

(7Ti177ri272177ri37227 v 7Zha7rih+277/h+17 o 77Tik77/k7177rj72k’7j)

where i1 < i < 13 < ... < 1, < j. We call this subsequence the connected sequence
of m. Otherwise, i; = 44 and the connected sequence reduces to (m;,, 7;,41,j). For our
convenience, we call 7; the nitial index.
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Definition 2.1. For any m € Z,, and 7; = n, we define the 231-tail by

Xr = (n77Tj+17 S 77Tn—17j)7 Zf |‘/1(G;L)| - 17
" (ﬂ-iuﬂ-h—i-la--wﬂ—n)? Zf |Vv1(GZ)| > 17

where iy is the initial index of 7.

For example, the 231-tail of the involution 216483957 is 6483957. Denote by [, and ¢,
the length of m and the number of occurrences of 231 in 7.

For the simplicity of the notation, we denote by {n; A} the permutation (n,n—1,...,n—
s+ 1,A), where X is a nonempty permutation of {j + 1,7 +2,...,n — s} and does not
begin with n — s.

In fact, for any 7 € Z,, with |V1(G2)| = 1, m; = n, and x, = {n; A}. For example, if
m = 213986754 € Zgy then y, = 986754, s = 2, and A\ = 6754. The following lemma
holds by the definition of the 231-tail and the initial index of .

Lemma 2.2. Let 7 € Z,,. Then x, is order-isomorphic to an involution, and there
exists an involution ' such that ™ = (7', Xx)-

Lemma 2.3. Let 7 € I, with xr = {n;A\} and ¢,, =r (r >0), then l,, < 2r + 2.

Proof. From Lemma 2.2 and the hypothesis about the form of x,, we have y, =
(n,n—1,....n—s+1Lpun+s—1I,,...,n+1—1,), where p is an involution and
does not begin with n — s. Note that each free rise (a free rise is a subsequence order-
isomorphic to the pattern 12) contributes s occurrences of 231 and ¢,, = r. Hence
s < r and the maximum length of y, occurs when p has just one free rise. Since y; is an
involution, we have that u is the appropriate sequence order-isomorphic to 12 and . is
the sequence order-isomorphic to (2r+2,2r+1,...,r+3,r+1,7+2,r,r—1,...,1). O

Lemma 2.4. For any 7 € Z,, with |V1(GZ)| > 1, we have Gy, = GZ.

Proof. Let (7, Miy, i1, Tizs 92, - - - ths Tip o Uht1s - - - Wiy ik—1, W5, Ik, j) be the connected
sequence of m, where ¢; is the initial index of 7 and 7; = n. It is obvious that 7;, and 4,
are the vertices of the connected component G7 for 1 <¢ < k+ 1 with the assumption
ik+1 = J. In order to prove G,, = G2, we should prove that all the entries of . are
contained in the connected component G7.

For i; < s < 19, we have either i; < 7y < m;, or my > m;,. In the first case, mm;,i1
is order-isomorphic to the pattern 231. While in the second case, m;, 7y is order-
isomorphic to the pattern 231. Hence, 7, is connected with 4; in G, which implies
that 7 is a vertex of the connected component G7.

For 2 <t <k+1andi <s < m,, we have either 7y > m;, , or 7y < m;,_,. In the
first case, m;, ,7si; is order-isomorphic to the pattern 231. While in the second case
i, T, Ts 15 order-isomorphic to the pattern 231. Hence, 7, is connected with m;, | in
Gy, which implies that 7, is a vertex of the connected component G7.

The above arguments imply that all the vertices of y, are the vertices of the connected
component G?. According to the definition of the initial index, we have 7, < iy for
1 < s < 41, which implies that 7, is not contained in G7. Hence, the bipartite graph
corresponding to x, is G7. U

X7
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By [14, Lemma 2.1], for any permutation 7 and any connected component G of G, we
have t; < 2t3 + 1. Since the involutions form a subset of the permutations, we have
the following result.

Lemma 2.5. For any connected component G of G, one has t; < 2tz + 1.

The above lemmas lead to the following result.

Corollary 2.6. For any m € I, withc,, =7 (r > 0), if |V1(G2)| = 1, thenl,, < 2r+2;
otherwise l,, < 2r + 1.

3. Main Theorem and explicit results

Denote by K; the subset of | J;. <y, Zr whose elements can be represented as {n; A}
with ¢y <t. Let H; be the subset of J, <ot+1 Lk such that the corresponding bipartite
graph of each element is connected and each element contains at most ¢ occurrences
of 231. It is obvious that K; N H; = (). Then the main result of this paper can be
formulated as follows.

Theorem 3.1. For anyr > 1,

1331 (l’) _ — [231 Z a:l“1231 ) (*>

neEK-UH,

Proof. Denote by F*(x) the generating function for the number of involutions 7 € Z,,
that contain 231 exactly r times such that y, is order-isomorphic to u. We discuss
three cases to find F¥(x):

If 7 is an involution in Z,, with x. = (n,n —1,...,n — s+ 1), then [, = s and
p=(s,s—1,...,1). So we have
Fr(z) = 2° 12 ().

If 7 is an involution in Z,, with x. = {n; A} and ¢,, = r, then u € K, by Lemma 2.3.
Thus we have

Fi(z) = 213! (2).

T r—Cpu

If 7 is an involution in Z,, with x, = (m;,, T, 41, - - ., Tn) Where 4y is the initial index of
7, then Lemma 2.5 and Lemma 2.4 yield p € H, and

Fl!(z) = & I}, (2).

Hence, summing over all p € {(s,s — 1,s —2,...,2,1)|s > 1} U K, U H, we get the
desired result. 0

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding 123! (x)
for any given r > 0, since we have to consider all involutions in I, where k < 2r + 2,
and to perform certain routine operations with all 231-tails found so far.
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Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all invo-
lutions in Iy, where k < 2r + 1, since the involution of length 2r + 2 containing r
occurrences of the pattern 231 is (2r +2,2r+1,...;r+ 3,7+ 1L,r+2,r,r—1,...,1).
As a consequence, Formula (x) can be reduced as follows:

21,  _ L 1231 2r+2 231 b 281
PN @) = 1P (2) + 220 +Y AP (w),
peEK*UH,
where K is the set of all involutions of the form (n,n—1,...,n—s+1,\) in I where

k<2r+1 and X is nonempty.

Now, we show how our results apply for some small values of r. Let us start with the
case r = 0. Observe that (x) remains valid for » = 0, provided that the left hand side is
replaced by 123(z) — 1; subtracting 1 here accounts for the empty permutation. Note
that when r = 0, the set Ko U Hy is empty. Hence we get I?!(z) — 1 = 15" (z),
equivalently

1l—x

1—2x’

which is the result of Simion and Schmidt (see [17, Proposition 6]).

Now let 7 = 1. Observe that K; U Hy = {4231}. Therefore, (*) amounts to

L) + o [ @),

I§7(x) = (%)

1P () = -

and we get the following result from Formula (xx).

Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function
I3Y(x) for the number of involutions containing exactly one occurrence of the pattern
231 is given by
() = S0
(1 —2x)2
equivalently, for n > 5,
I =(n—1)2""°

Now let r = 2. Exhaustive search adds four new elements to the previous list; these
are 653421, 52431, 53241, and 3412, therefore we get

Corollary 3.4. The generating function I33'(x) is given by

(1 — z)?

LY@ =

(1—3x2—2x3+x4—x5);
equivalently, for n > 9,

133 = (n® 4 137n — 234)2" "2,

We have carried out exhaustive searches in 7y, o with r = 3,4,5,6,7 and found that
Is, 1o, I12, 114, T1¢ contain 13, 24, 41, 69, 103 elements, respectively, which leads to
the following corollary.
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Corollary 3.5. Let 3 <r <7, then
(1 —2)

L) = e

Qr (@),

where
Q3(z) = 2°(4 — 14z + 8% + 1123 — 62" — 22° + 225 + 527 — 228 + 29);

Qi(zr) = 256 — 32z + 492 + 72® — 73x* + 4025 4 3025 — 372" + 228 + 4210
—9z1! + 3212 — 213);

Qs(z) = 258 — 58z + 14622 — 1202 — 402" — 2425 + 29025 — 18427 — 1972®
+22879 + 3021 — 13221 4 622! + 132M — 16215 + 1420 — 4217 + 218);

Qo(z) = 2%(4 — 31z + 802% — 5623 + 42t — 3842° + 10972 — 83027 — 4832®
+6602° + 685210 — 10912 — 59212 + 72223 — 1952 — 33821
+285210 — 92217 + 20218 — 45219 + 35220 — 202! + 5?2 — 2?3);

Q:(r) = 27(17 — 1992 + 9692% — 250223 + 36422* — 327425 + 33242 — 471427
+18742% + 63262° — 8262210 — 2312t + 5474212 — 637213 — 402221
+1933z'° + 134026 — 11292'7 — 51828 + 982219 — 4982% + 1662*
—9222% + 1052 — 622%1 + 272%° — 62%° + 2%7).

Equivalently, forn > 4r + 1,
137:;1 =2"- QT (n>7

where
Qs(n) = 3 '1217 (n + 414n? + 12227n — 30762)
Qs(n) = ﬁ(n4 + 830n3 + 10827502 + 476710n — 3117432)
Qs(n) = ﬁ(ng’ + 1385n 4+ 41676513 + 209522951 + 85955874n — 544257360)
Qs(n) = ng% (n6 +2079n° 4+ 11245150 + 15823216513 + 3797599444n2+
+1475950836n — 72974470320)
Q7(n) = m (n7 +2912n% + 2476306n° + 685388480n* + 51462119569n3+

+764352578528n? — 3749997108516n — 326124489600)

4. Further results

As an easy consequence of Theorem 3.1 we get the following result.

Corollary 4.1. For any r > 1 there exists a polynomial Ps._1(x) of degree 5r — 1 with
integer coefficients such that

(1—xz)?
170 = § gy P (@)
In other words, for n — oo

n—5r—1,.r
7231 o 2 n
rm 7l
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Proof. Immediately, by the above cases we have the corollary holds for 1 <r < 7. Let
us assume by induction that the corollary holds for 1,2,...,r — 1; for r the equation

(%) give 1
Py = L Z o220 .

1—2:15’“+1 l—x

1—x

By the induction assumption and 133! (a:) = 122 we have that 12277 (1) is a

polynomial with integer coefficients of degree a. So Lemma 2.3 and Lemma 2.5 yield
a=max{b;|j =1,...,7},

where b; =2j+24+r—(r—j+1)+1+5(r—j)—1=>5r—2j+ 1, which means
a = br — 1, as claimed. ([l

Another direction would be to match the approach of this paper with the previous
results on restricted 231-avoiding involutions. Let ®,.(z;k) be the generating function
for the number of involutions in Z,, containing r occurrences of 231 and avoiding the
pattern 12...k € &;. Our new approach allows to get a recursion for ®,.(z; k) for any
given r = 0.

We denote by e, the length of the longest increasing subsequence of any involution A.
For example, let A = 3412, then e, = 2. We denote by K;(k) U H.(k) the set of all
involutions A € K; U H; such that ey < k — 1.

Theorem 4.2. For anyr > 1 and k > 3,
O, (v: k) = %Cbr(a@; =D+ Y ahd, ., (ark —e).
peK, (k)UH, (k)

Besides, ®,(x;1) = ®,(x;2) =0, and $o(x;1) =1 and Po(x;2) =

P

Proof. 1f we replace the sets K, and H, with the sets K, (k) and H,(k) in the proof
of Theorem 3.1, then we arrive to the recurrence relation of the generating function
®,.(x; k). The initial conditions hold directly from the definitions. 0

Similar to the case of I?%!(x), the statement of the above theorem remains valid for
r = 0, provided the left hand side is replaced by ®,(x; k) — 1. This allows to recover
known explicit expressions for ®,.(z; k) for r = 0,1, as follows.

Corollary 4.3. (see Egge and Mansour [8]) For all k > 1,
k-1 .

Do(2; k) = ZO (%)
‘7:

O (23 k) = :c4k2_:(j +1) (=)

j=

Proof. Observe that Theorem 4.2 remains valid for r = 0, provided the left hand side
is replaced by ®g(x; k) — 1; subtracting 1 here accounts for the empty involution. Note
that when r = 0, the set Ky(k) U Hy(k) is empty. Hence, we obtain that ®¢(z;k) =
1 + %=®(x;k — 1). Using induction on k& with the initial condition ®¢(z;1) = 1 we

get that Po(a; k) = Z?;S (ﬁy
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Now, note that when » = 1 and k& > 3, we have that K;(k) U Hy(k) = {4231} and
es3 = 2. So, Theorem 4.2 gives ¢ (2;k) = 2Py (2;k — 1) + 2'®g(2; k — 2), which
is equivalent to ¢y (z;k) = =P (z;k — 1) + 2* Zf;g (+£)’. Hence, using the initial

conditions ®(z;1) = ®;(z;2) = 0 and induction on k we get the desired result. O

This approach can be extended even further to cover involutions containing r occur-
rences of 231 and avoiding another pattern in &y, for example k... 321.

We denote ay be the length of maximal decreasing subsequence in an involution A. For
example, if A = 87645321, then a) = 7. Let ,(x; k) be the generating function for the
number of involutions containing exactly r occurrences 231 and avoiding k. .. 321.

Theorem 4.4. For anyr > 1 and k > 1,

1
Q. (x; k) = — Z Q. (73 k)

l—x—- — 2ok
peK,UH, and a,<k—1

Proof. Denote by V#(x; k) the generating function for the number of involutions = € Z,,
that avoid k...321 and contain 231 exactly r times such that y, is order-isomorphic
to p. We discuss three cases to find V*(x; k):

If 7 is an involution in Z,, with x. = (n,n —1,...,n — s+ 1), then [, = s and
p=(s,s—1,...,1) with s <k — 1, so we have

Vi (wk) = 2 [P ().

If 7 is an involution in Z,, such that x. = {n; A} and ¢,, = r, then u € K, by Lemma
2.3; thus if a, <k — 1 then we have

Vi k) = 2l Q,_. ().

If 7 is an involution in Z,, with x. = (m;,, 7,41, .. ., ™) Where 4y is the initial index of
7, then Lemma 2.5 and Lemma 2.4 yield u € H,, and if a, <k — 1 then

Vi k) = a2 I,_, (x5 k).

Hence, if we sum over all pp € {(s,s—1,...,1)|s <k—-1}U{pe K, UH, | a, < k—1},
then we get the desired result. 0

The final direction would be to match the approach of this note with the previous
results on restricted 231-avoiding even or odd involutions. We say m an even (resp;
odd) involution if the number of inversions in 7, namely 21() is even (resp; odd). We
define the sign hy of any permutation A as (—1)2!™. For example, if A = (6,5,3,4,2,1)
then h) = 1. We denote by K;F U H;" the set of all the involutions A € K, U H, such
that hy = 1 and denote by K,” U H,~ the set of all involutions A € K, U H, such that
hy=—1.

Let I (x) (resp; I (z)) be the generating function for the number of even (resp; odd)
involutions in Z,, containing r occurrences of 231. Our new approach allows us to get
an explicit expression for IF(z) (or I (z)) for any given r > 0.
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Theorem 4.5. For allr > 1,

2+3
F@="TTrw s T e Y s @ Y v ()

1—at" 1—a4 "

peK;TUHT peKUH,
-~ x + xt -~ x? 4 23 B
Ir ((L’) = mlr (.T) + 1 — 4 Ir+( ) Z Ilu]rfc#<x> + Z xlu‘[;tcu(x)‘
peKTUH peK UH;
In particular, we have
2 3
4 T +a: 4 xt+ a7
(@) =1 = T o) + T ()
and ) ) ,
_ r+x _ s
Iy (z) = T ilo (@) + 41— o Iy (2).

Proof. Here we only prove the result of IF(z) for any » > 1. By the same method,
we can obtain the formula for I~ (x). Denote by Q#(x) the generating function for the
number of involutions in 7 € [, such that x, is order-isomorphic to p and h, = 1.

To find Q¥ (x), we recall six cases. If 7 is an involution in I, with x, = (n,n—1,...,n—
s+ 1) and h, = £1, then we have Q*(z) = z°IF(z), where u = (s,s — 1,...,1).

If 7 is an involution in I,, such that x, = {n; A} and u € K*, then Lemma 2.3 yields
Qi(w) = a" L=, ().

If 7 is an involution in I, with x, = (7, 7,41, .., 7T,) where 7; is the initial index
of m and h, = %1, then Lemma 2.4 and Lemma 2.5 yield Q¥(z) = xlulf_% (x), where
p € HE.

Hence, if we sum over all p € K, UH, U{(s,s—1,5—2,...,2,1)|s > 1} then we get the
desired result. When r = 0, subtracting 1 here accounts for the empty permutation. [
As an example of the above theorem we get

Corollary 4.6. For 0 <r < 2,

E.(x) _
(1 _ 2x)r+1(1 —r+ 2$2)r+1’ I, (I) =

OT(SB) )
(1 _ Qx)’""’l(l — x4+ 2:[2)7*-&-1’

IT(x) =

where
Eo(x) =1 — 22 + 2% — 223;
Ei(z) = 22°(1 — 22 + 222 — 223);

Es(z) = 2*(1 — bz + 112* — 152°% + 102* + 52° — 1125 — 527 4 472® — 942° + 86210 —
622! + 16:1012),

Oo(z) = 2%;
O1(z) = 2*(1 — 4z + 82 — 122 + 132" — 82° + 4a5);
Oy(z) = 2%(2 — 62 + 622 — 223 — 92 + 425 + 2025 — 3627 + 5328 — 2429 + 8210).
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Again, as an easy consequence of Theorem 4.5 we get the following result.

Corollary 4.7. Let r > 0. Then there exist number m, and r, and polynomials p,, ()
and g, (x) of degree m, and n, respectively such that

]:_( ) = pmr(x) [-(z) = Qnr(x)

(1 —2z) (1 — x4 222417 7 (1 — 22) (1 — z + 222)7+1

It can be proved by induction on r as the proof of Corollary 4.1. Here we delete its

proof.

As a remark we can derive other results from Theorem 4.5. For example, the generating
function for the number of even or odd involutions containing exactly r occurrences of
the pattern 231 and avoiding 12...k (or avoiding k. ..21).
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