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Abstract

We study the generating function for the number of involutions on n letters containing
exactly r > 0 occurrences of 231. It is shown that finding this function for a given r
amounts to a routine check of all involutions of length at most 2r + 2.
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1. Introduction

1.1. Permutations. Suppose that Sn is the set of permutations of [n] = {1, . . . , n},
written in one-line notation. Let π = π1π2 . . . πn ∈ Sn and τ = τ1τ2 . . . τk ∈ Sk be
two permutations. An occurrence of τ in π is a subsequence πi1πi2 . . . πik such that
1 ≤ i1 < i2 < · · · < ik 6 n and πis < πit if and only if τs < τt for any 1 6 s, t 6 k. In
such a context, τ is usually called a pattern. We denote the number of occurrences of
τ in π by τ(π) and the number of permutations π ∈ Sn with τ(π) = r by Sτ

r (n).

Most of the results in this area investigate only the case r = 0, Sτ
0 (n), the number of

permutations of length n avoiding the pattern τ (for example, see [1, 2, 3, 6, 13, 16,
17, 18, 19, 20]). Only a few results investigate the case of r > 0 and τ of length 3.
Noonan [15] showed that S123

1 (n) = 3
n

(
2n

n+3

)
. This result was also proved by Noonan

and Zeilberger [16]. Bóna [5] proved that S132
1 (n) =

(
2n−3
n−3

)
and Fulmek [10] showed

that

S123
2 (n) =

59n2 + 117n + 100

2n(2n− 1)(n + 5)

(
2n

n− 4

)
,

which were conjectured by Noonan and Zeilberger [16]. Bóna [4] pointed out that it
is a hard question to give an explicit expression for Sτ

r (n), τ ∈ S3, for any given r.
Mansour and Vainshtein [14] suggested a new approach to this problem in the case
τ = 132, which allows one to get an explicit expression for S132

r (n) for any given r.
More precisely, they presented an algorithm that computes the generating function∑

n>0 S132
r (n)xn for any r > 0. It is shown that finding this function for a given r

amounts to a routine check of all permutations of length at most 2r.
1
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1.2. Involutions. An involution π is a permutation in Sn such that π = π−1; let In

be the set of all the involutions in Sn. We denote by Iτ
r,n the number of involutions

π ∈ In with τ(π) = r, and Iτ
r (x) the corresponding generating function, that is,

Iτ
r (x) =

∑
n>0 Iτ

r,nx
n.

Again, most authors considered the case r = 0, namely involutions avoiding a given
pattern τ (see [7, 9, 11, 12] and references therein). For the case r > 0 there exist only
few results. Guibert and Mansour [12] gave an explicit expression for I132

1,n , namely

I132
1,n =

(
n−2

[(n−3)/2]

)
. Egge and Mansour [8] proved that I231

1,n = (n− 1)2n−6 for n > 5.

In the present paper we give a complete answer for this problem in the case of τ = 231,
which allows one to get an explicit expression for I231

r,n for any given r. More precisely,

we present an algorithm that computes the generating function I231
r (x) for any r > 0.

To get the result for a given r, the algorithm performs certain routine checks for each
element in

⋃2r+2
k=1 Ik. The algorithm has been implemented in C, and yielded explicit

results for 0 6 r 6 7.

2. Preliminary results

For any involution π ∈ In, we can define a bipartite graph Gπ in the following way
which is similar to [14].

341     342     895     897     695

3     4     1      2     8     6     9     5     7

Figure 1. The graph G341286957

The vertices in one part of Gπ, denoted V1, are the entries of π, and the vertices of the
second part, denoted V3, are the occurrences of 231 in π. Entry i ∈ V1 is connected
by an edge to occurrence j ∈ V3 if i enters j. For example, let π = 341286957, then π
contains 5 occurrences of 231, and the graph Gπ is presented in Figure 1.

Let G̃ be an arbitrary connected component of Gπ, let Ṽ be its vertex set, and set

Ṽ1 = Ṽ
⋂

V1, Ṽ3 = Ṽ
⋂

V3, t1 = |Ṽ1|, and t3 = |Ṽ3|. Denote by Gn
π the connected

component of Gπ containing entry n.

For any π ∈ In where πj = n and |V1(G
n
π)| > 1, suppose that ik is the minimal index

such that πik > j and ik < j. If there exists an index m with ik < m < j such that
πm < ik, then let i1 be the minimal index such that π contains a subsequence

(πi1 , πi2 , i1, πi3 , i2, . . . , ih, πih+2
, ih+1, . . . , πik , ik−1, πj, ik, j)

where i1 < i2 < i3 < . . . < ik < j. We call this subsequence the connected sequence
of π. Otherwise, i1 = ik and the connected sequence reduces to (πi1 , πj, i1, j). For our
convenience, we call i1 the initial index.
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Definition 2.1. For any π ∈ In and πj = n, we define the 231-tail by

χπ =

{
(n, πj+1, . . . , πn−1, j), if |V1(G

n
π)| = 1,

(πi1 , πi1+1, . . . , πn), if |V1(G
n
π)| > 1,

where i1 is the initial index of π.

For example, the 231-tail of the involution 216483957 is 6483957. Denote by lπ and cπ

the length of π and the number of occurrences of 231 in π.

For the simplicity of the notation, we denote by {n; λ} the permutation (n, n−1, . . . , n−
s + 1, λ), where λ is a nonempty permutation of {j + 1, j + 2, . . . , n− s} and does not
begin with n− s.

In fact, for any π ∈ In with |V1(G
n
π)| = 1, πj = n, and χπ = {n; λ}. For example, if

π = 213986754 ∈ I9 then χπ = 986754, s = 2, and λ = 6754. The following lemma
holds by the definition of the 231-tail and the initial index of π.

Lemma 2.2. Let π ∈ In. Then χπ is order-isomorphic to an involution, and there
exists an involution π′ such that π = (π′, χπ).

Lemma 2.3. Let π ∈ In with χπ = {n; λ} and cχπ = r (r > 0), then lχπ ≤ 2r + 2.

Proof. From Lemma 2.2 and the hypothesis about the form of χπ, we have χπ =
(n, n − 1, . . . , n − s + 1, µ, n + s − lχπ , . . . , n + 1 − lχπ), where µ is an involution and
does not begin with n− s. Note that each free rise (a free rise is a subsequence order-
isomorphic to the pattern 12) contributes s occurrences of 231 and cχπ = r. Hence
s ≤ r and the maximum length of χπ occurs when µ has just one free rise. Since χπ is an
involution, we have that µ is the appropriate sequence order-isomorphic to 12 and χπ is
the sequence order-isomorphic to (2r+2, 2r+1, . . . , r+3, r+1, r+2, r, r−1, . . . , 1). ¤
Lemma 2.4. For any π ∈ In with |V1(G

n
π)| > 1, we have Gχπ = Gn

π.

Proof. Let (πi1 , πi2 , i1, πi3 , i2, . . . , ih, πih+2
, ih+1, . . . , πik , ik−1, πj, ik, j) be the connected

sequence of π, where i1 is the initial index of π and πj = n. It is obvious that πit and it
are the vertices of the connected component Gn

π for 1 ≤ t ≤ k + 1 with the assumption
ik+1 = j. In order to prove Gχπ = Gn

π, we should prove that all the entries of χπ are
contained in the connected component Gn

π.

For i1 < s < i2, we have either i1 < πs < πi1 or πs > πi1 . In the first case, πsπi2i1
is order-isomorphic to the pattern 231. While in the second case, πi1πsi1 is order-
isomorphic to the pattern 231. Hence, πs is connected with i1 in Gχπ , which implies
that πs is a vertex of the connected component Gn

π.

For 2 ≤ t ≤ k + 1 and it < s < πit , we have either πs > πit−1 or πs < πit−1 . In the
first case, πit−1πsit is order-isomorphic to the pattern 231. While in the second case
πit−1πitπs is order-isomorphic to the pattern 231. Hence, πs is connected with πit−1 in
Gχπ , which implies that πs is a vertex of the connected component Gn

π.

The above arguments imply that all the vertices of χπ are the vertices of the connected
component Gn

π. According to the definition of the initial index, we have πs < i1 for
1 ≤ s < i1, which implies that πs is not contained in Gn

π. Hence, the bipartite graph
corresponding to χπ is Gn

π. ¤
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By [14, Lemma 2.1], for any permutation π and any connected component G̃ of Gπ we
have t1 ≤ 2t3 + 1. Since the involutions form a subset of the permutations, we have
the following result.

Lemma 2.5. For any connected component G̃ of Gπ, one has t1 ≤ 2t3 + 1.

The above lemmas lead to the following result.

Corollary 2.6. For any π ∈ In with cχπ = r (r > 0), if |V1(G
n
π)| = 1, then lχπ ≤ 2r+2;

otherwise lχπ ≤ 2r + 1.

3. Main Theorem and explicit results

Denote by Kt the subset of
⋃

k62t+2 Ik whose elements can be represented as {n; λ}
with cλ ≤ t. Let Ht be the subset of

⋃
k62t+1 Ik such that the corresponding bipartite

graph of each element is connected and each element contains at most t occurrences
of 231. It is obvious that Kt ∩ Ht = ∅. Then the main result of this paper can be
formulated as follows.

Theorem 3.1. For any r > 1,

I231
r (x) =

x

1− x
I231
r (x) +

∑
µ∈Kr∪Hr

xlµI231
r−cµ

(x). (∗)

Proof. Denote by F µ
r (x) the generating function for the number of involutions π ∈ In

that contain 231 exactly r times such that χπ is order-isomorphic to µ. We discuss
three cases to find F µ

r (x):

If π is an involution in In with χπ = (n, n − 1, . . . , n − s + 1), then lµ = s and
µ = (s, s− 1, . . . , 1). So we have

F µ
r (x) = xsI231

r (x).

If π is an involution in In with χπ = {n; λ} and cχπ = r, then µ ∈ Kr by Lemma 2.3.
Thus we have

F µ
r (x) = xlµI231

r−cµ
(x).

If π is an involution in In with χπ = (πi1 , πi1+1, . . . , πn) where i1 is the initial index of
π, then Lemma 2.5 and Lemma 2.4 yield µ ∈ Hr and

F µ
r (x) = xlµI231

r−cµ
(x).

Hence, summing over all µ ∈ {(s, s − 1, s − 2, . . . , 2, 1)|s > 1} ∪ Kr ∪ Hr we get the
desired result. ¤

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding I231
r (x)

for any given r > 0, since we have to consider all involutions in Ik, where k 6 2r + 2,
and to perform certain routine operations with all 231-tails found so far.
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Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all invo-
lutions in Ik, where k ≤ 2r + 1, since the involution of length 2r + 2 containing r
occurrences of the pattern 231 is (2r + 2, 2r + 1, . . . , r + 3, r + 1, r + 2, r, r − 1, . . . , 1).
As a consequence, Formula (∗) can be reduced as follows:

I231
r (x) =

x

1− x
I231
r (x) + x2r+2I231

0 (x) +
∑

µ∈K∗
r∪Hr

xlµI231
r−cµ

(x),

where K∗
r is the set of all involutions of the form (n, n−1, . . . , n− s+1, λ) in Ik where

k ≤ 2r + 1 and λ is nonempty.

Now, we show how our results apply for some small values of r. Let us start with the
case r = 0. Observe that (∗) remains valid for r = 0, provided that the left hand side is
replaced by I231

0 (x)− 1; subtracting 1 here accounts for the empty permutation. Note
that when r = 0, the set K0 ∪ H0 is empty. Hence we get I231

0 (x) − 1 = x
1−x

I231
0 (x),

equivalently

I231
0 (x) =

1− x

1− 2x
, (∗∗)

which is the result of Simion and Schmidt (see [17, Proposition 6]).

Now let r = 1. Observe that K1 ∪H1 = {4231}. Therefore, (∗) amounts to

I231
1 (x) =

x

1− x
I1(x) + x4I231

0 (x),

and we get the following result from Formula (∗∗).
Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function
I231
1 (x) for the number of involutions containing exactly one occurrence of the pattern

231 is given by

I231
1 (x) =

x4(1− x)2

(1− 2x)2
;

equivalently, for n ≥ 5,

I231
1,n = (n− 1)2n−6.

Now let r = 2. Exhaustive search adds four new elements to the previous list; these
are 653421, 52431, 53241, and 3412, therefore we get

Corollary 3.4. The generating function I231
2 (x) is given by

I231
2 (x) =

x4(1− x)2

(1− 2x)3

(
1− 3x2 − 2x3 + x4 − x5

)
;

equivalently, for n > 9,

I231
2,n = (n2 + 137n− 234)2n−12.

We have carried out exhaustive searches in I2r+2 with r = 3, 4, 5, 6, 7 and found that
I8, I10, I12, I14, I16 contain 13, 24, 41, 69, 103 elements, respectively, which leads to
the following corollary.
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Corollary 3.5. Let 3 6 r 6 7, then

I231
r (x) =

(1− x)2

(1− 2x)r+1
Qr(x),

where

Q3(x) = x5(4− 14x + 8x2 + 11x3 − 6x4 − 2x5 + 2x6 + 5x7 − 2x8 + x9);

Q4(x) = x6(6− 32x + 49x2 + 7x3 − 73x4 + 40x5 + 30x6 − 37x7 + 2x8 + 4x10

−9x11 + 3x12 − x13);

Q5(x) = x6(8− 58x + 146x2 − 120x3 − 40x4 − 24x5 + 290x6 − 184x7 − 197x8

+228x9 + 30x10 − 132x11 + 62x12 + 13x14 − 16x15 + 14x16 − 4x17 + x18);

Q6(x) = x6(4− 31x + 80x2 − 56x3 + 4x4 − 384x5 + 1097x6 − 830x7 − 483x8

+660x9 + 685x10 − 1091x11 − 59x12 + 722x13 − 195x14 − 338x15

+285x16 − 92x17 + 20x18 − 45x19 + 35x20 − 20x21 + 5x22 − x23);

Q7(x) = x7(17− 199x + 969x2 − 2502x3 + 3642x4 − 3274x5 + 3324x6 − 4714x7

+1874x8 + 6326x9 − 8262x10 − 231x11 + 5474x12 − 637x13 − 4022x14

+1933x15 + 1340x16 − 1129x17 − 518x18 + 982x19 − 498x20 + 166x21

−92x22 + 105x23 − 62x24 + 27x25 − 6x26 + x27).

Equivalently, for n ≥ 4r + 1,
I231
r,n = 2n ·Qr(n),

where

Q3(n) =
1

3 · 217
(n3 + 414n2 + 12227n− 30762)

Q4(n) =
1

3 · 224
(n4 + 830n3 + 108275n2 + 476710n− 3117432)

Q5(n) =
1

3 · 5 · 229
(n5 + 1385n4 + 416765n3 + 20952295n2 + 85955874n− 544257360)

Q6(n) =
1

32 · 5 · 235

(
n6 + 2079n5 + 1124515n4 + 158232165n3 + 3797599444n2+

+1475950836n− 72974470320
)

Q7(n) =
1

32 · 5 · 7 · 240

(
n7 + 2912n6 + 2476306n5 + 685388480n4 + 51462119569n3+

+764352578528n2 − 3749997108516n− 326124489600
)

4. Further results

As an easy consequence of Theorem 3.1 we get the following result.

Corollary 4.1. For any r ≥ 1 there exists a polynomial P5r−1(x) of degree 5r− 1 with
integer coefficients such that

I231
r (x) =

(1− x)2

(1− 2x)r+1
P5r−1(x).

In other words, for n →∞
I231
r,n ≈ 2n−5r−1nr

r!
.
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Proof. Immediately, by the above cases we have the corollary holds for 1 ≤ r ≤ 7. Let
us assume by induction that the corollary holds for 1, 2, . . . , r − 1; for r the equation
(∗) give

I231
r (x) =

(1− x)2

(1− 2x)r+1

∑
ρ∈Kr∪Hr

xlρ
(1− 2x)r

1− x
I231
r−cρ

(x).

By the induction assumption and I231
0 (x) = 1−x

1−2x
we have that xlρ (1−2x)r

1−x
Ir−cρ(x) is a

polynomial with integer coefficients of degree a. So Lemma 2.3 and Lemma 2.5 yield

a = max{bj|j = 1, . . . , r},
where bj = 2j + 2 + r − (r − j + 1) + 1 + 5(r − j) − 1 = 5r − 2j + 1, which means
a = 5r − 1, as claimed. ¤

Another direction would be to match the approach of this paper with the previous
results on restricted 231-avoiding involutions. Let Φr(x; k) be the generating function
for the number of involutions in In containing r occurrences of 231 and avoiding the
pattern 12 . . . k ∈ Sk. Our new approach allows to get a recursion for Φr(x; k) for any
given r > 0.

We denote by eλ the length of the longest increasing subsequence of any involution λ.
For example, let λ = 3412, then eλ = 2. We denote by Kt(k) ∪ Ht(k) the set of all
involutions λ ∈ Kt ∪Ht such that eλ ≤ k − 1.

Theorem 4.2. For any r > 1 and k > 3,

Φr(x; k) =
x

1− x
Φr(x; k − 1) +

∑

µ∈Kr(k)∪Hr(k)

xlµΦr−cµ(x; k − eµ).

Besides, Φr(x; 1) = Φr(x; 2) = 0, and Φ0(x; 1) = 1 and Φ0(x; 2) = 1
1−x

.

Proof. If we replace the sets Kr and Hr with the sets Kr(k) and Hr(k) in the proof
of Theorem 3.1, then we arrive to the recurrence relation of the generating function
Φr(x; k). The initial conditions hold directly from the definitions. ¤

Similar to the case of I231
r (x), the statement of the above theorem remains valid for

r = 0, provided the left hand side is replaced by Φr(x; k) − 1. This allows to recover
known explicit expressions for Φr(x; k) for r = 0, 1, as follows.

Corollary 4.3. (see Egge and Mansour [8]) For all k ≥ 1,

Φ0(x; k) =
k−1∑
j=0

(
x

1−x

)j
;

Φ1(x; k) = x4
k−3∑
j=0

(j + 1)
(

x
1−x

)j
.

Proof. Observe that Theorem 4.2 remains valid for r = 0, provided the left hand side
is replaced by Φ0(x; k)− 1; subtracting 1 here accounts for the empty involution. Note
that when r = 0, the set K0(k) ∪ H0(k) is empty. Hence, we obtain that Φ0(x; k) =
1 + x

1−x
Φ0(x; k − 1). Using induction on k with the initial condition Φ0(x; 1) = 1 we

get that Φ0(x; k) =
∑k−1

j=0

(
x

1−x

)j
.
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Now, note that when r = 1 and k ≥ 3, we have that K1(k) ∪ H1(k) = {4231} and
e4231 = 2. So, Theorem 4.2 gives φ1(x; k) = x

1−x
Φ1(x; k − 1) + x4Φ0(x; k − 2), which

is equivalent to φ1(x; k) = x
1−x

Φ1(x; k − 1) + x4
∑k−3

j=0

(
x

1−x

)j
. Hence, using the initial

conditions Φ1(x; 1) = Φ1(x; 2) = 0 and induction on k we get the desired result. ¤

This approach can be extended even further to cover involutions containing r occur-
rences of 231 and avoiding another pattern in Sk, for example k . . . 321.

We denote aλ be the length of maximal decreasing subsequence in an involution λ. For
example, if λ = 87645321, then aλ = 7. Let Ωr(x; k) be the generating function for the
number of involutions containing exactly r occurrences 231 and avoiding k . . . 321.

Theorem 4.4. For any r > 1 and k > 1,

Ωr(x; k) =
1

1− x− · · · − xk−1


 ∑

µ∈Kr∪Hr and aµ≤k−1

xlµΩr−cµ(x; k)


 .

Proof. Denote by V µ
r (x; k) the generating function for the number of involutions π ∈ In

that avoid k . . . 321 and contain 231 exactly r times such that χπ is order-isomorphic
to µ. We discuss three cases to find V µ

r (x; k):

If π is an involution in In with χπ = (n, n − 1, . . . , n − s + 1), then lµ = s and
µ = (s, s− 1, . . . , 1) with s ≤ k − 1, so we have

V µ
r (x; k) = xsI231

r (x).

If π is an involution in In such that χπ = {n; λ} and cχπ = r, then µ ∈ Kr by Lemma
2.3; thus if aµ ≤ k − 1 then we have

V µ
r (x; k) = xlµΩr−cµ(x).

If π is an involution in In with χπ = (πi1 , πi1+1, . . . , πn) where i1 is the initial index of
π, then Lemma 2.5 and Lemma 2.4 yield µ ∈ Hr, and if aµ ≤ k − 1 then

V µ
r (x; k) = xlµIr−cµ(x; k).

Hence, if we sum over all µ ∈ {(s, s−1, . . . , 1)|s ≤ k−1}∪{µ ∈ Kr ∪Hr | aµ ≤ k−1},
then we get the desired result. ¤

The final direction would be to match the approach of this note with the previous
results on restricted 231-avoiding even or odd involutions. We say π an even (resp;
odd) involution if the number of inversions in π, namely 21(π) is even (resp; odd). We
define the sign hλ of any permutation λ as (−1)21(λ). For example, if λ = (6, 5, 3, 4, 2, 1)
then hλ = 1. We denote by K+

r ∪H+
r the set of all the involutions λ ∈ Kr ∪Hr such

that hλ = 1 and denote by K−
r ∪H−

r the set of all involutions λ ∈ Kr ∪Hr such that
hλ = −1.

Let I+
r (x) (resp; I−r (x)) be the generating function for the number of even (resp; odd)

involutions in In containing r occurrences of 231. Our new approach allows us to get
an explicit expression for I+

r (x) (or I−r (x)) for any given r > 0.
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Theorem 4.5. For all r > 1,

I+
r (x) =

x + x4

1− x4
I+
r (x) +

x2 + x3

1− x4
I−r (x) +

∑

µ∈K+
r ∪H+

r

xlµI+
r−cµ

(x) +
∑

µ∈K−
r ∪H−

r

xlµI−r−cµ
(x);

I−r (x) =
x + x4

1− x4
I−r (x) +

x2 + x3

1− x4
I+
r (x) +

∑

µ∈K+
r ∪H+

r

xlµI−r−cµ
(x) +

∑

µ∈K−
r ∪H−

r

xlµI+
r−cµ

(x).

In particular, we have

I+
0 (x)− 1 =

x + x4

1− x4
I+
0 (x) +

x2 + x3

1− x4
I−0 (x)

and

I−0 (x) =
x + x4

1− x4
I−0 (x) +

x2 + x3

1− x4
I+
0 (x).

Proof. Here we only prove the result of I+
r (x) for any r ≥ 1. By the same method,

we can obtain the formula for I−r (x). Denote by Qµ
r (x) the generating function for the

number of involutions in π ∈ In such that χπ is order-isomorphic to µ and hπ = 1.

To find Qµ
r (x), we recall six cases. If π is an involution in In with χπ = (n, n−1, . . . , n−

s + 1) and hµ = ±1, then we have Qµ
r (x) = xsI±r (x), where µ = (s, s− 1, . . . , 1).

If π is an involution in In such that χπ = {n; λ} and µ ∈ K±
r , then Lemma 2.3 yields

Qµ
r (x) = xlµI±r−cµ

(x).

If π is an involution in In with χπ = (πi1 , πi1+1, . . . , πn) where i1 is the initial index
of π and hµ = ±1, then Lemma 2.4 and Lemma 2.5 yield Qµ

r (x) = xlµI±r−cµ
(x), where

µ ∈ H±
r .

Hence, if we sum over all µ ∈ Kr∪Hr∪{(s, s−1, s−2, . . . , 2, 1)|s ≥ 1} then we get the
desired result. When r = 0, subtracting 1 here accounts for the empty permutation. ¤

As an example of the above theorem we get

Corollary 4.6. For 0 6 r 6 2,

I+
r (x) =

Er(x)

(1− 2x)r+1(1− x + 2x2)r+1
, I−r (x) =

Or(x)

(1− 2x)r+1(1− x + 2x2)r+1
;

where

E0(x) = 1− 2x + 2x2 − 2x3;

E1(x) = 2x6(1− 2x + 2x2 − 2x3);

E2(x) = x4(1− 5x + 11x2 − 15x3 + 10x4 + 5x5 − 11x6 − 5x7 + 47x8 − 94x9 + 86x10 −
62x11 + 16x12);

O0(x) = x2;

O1(x) = x4(1− 4x + 8x2 − 12x3 + 13x4 − 8x5 + 4x6);

O2(x) = x6(2− 6x + 6x2 − 2x3 − 9x4 + 4x5 + 20x6 − 36x7 + 53x8 − 24x9 + 8x10).
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Again, as an easy consequence of Theorem 4.5 we get the following result.

Corollary 4.7. Let r ≥ 0. Then there exist number mr and rr and polynomials pmr(x)
and qnr(x) of degree mr and nr respectively such that

I+
r (x) =

pmr(x)

(1− 2x)r+1(1− x + 2x2)r+1
, I−r (x) =

qnr(x)

(1− 2x)r+1(1− x + 2x2)r+1
.

It can be proved by induction on r as the proof of Corollary 4.1. Here we delete its
proof.

As a remark we can derive other results from Theorem 4.5. For example, the generating
function for the number of even or odd involutions containing exactly r occurrences of
the pattern 231 and avoiding 12 . . . k (or avoiding k . . . 21).
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