
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 35, No. 5, pp. 1023–1058

FINDING FOUR INDEPENDENT TREES∗

SEAN CURRAN† , ORLANDO LEE‡ , AND XINGXING YU§

Abstract. Motivated by a multitree approach to the design of reliable communication protocols,
Itai and Rodeh gave a linear time algorithm for finding two independent spanning trees in a 2-
connected graph. Cheriyan and Maheshwari gave an O(|V |2) algorithm for finding three independent
spanning trees in a 3-connected graph. In this paper we present an O(|V |3) algorithm for finding
four independent spanning trees in a 4-connected graph. We make use of chain decompositions of
4-connected graphs.

Key words. Connectivity, chain decomposition, numbering, independent trees, algorithm

AMS subject classifications. 05C40, 05C85, 05C38, 05C75

DOI. 10.1137/S0097539703436734

1. Introduction. We consider simple graphs only. For a graph G, we use V (G)
and E(G) to denote the vertex set and edge set of G, respectively.

For a tree T and x, y ∈ V (T), let T [x, y] denote the unique path from x to y in T .
A rooted tree is a tree with a specified vertex called the root of T . Let G be a graph,
let r ∈ V (G), and let T and T ′ be trees of G rooted at r. We say that T and T ′ are
independent if for every x ∈ V (T) ∩ V (T ′), the paths T [r, x], T ′[r, x] have no vertex
in common except r and x.

The study of independent spanning trees started with Itai and Rodeh [11], where
they proposed a multitree approach to reliability in distributed networks (see also [5]).
They developed a linear time algorithm that, given any vertex r in a 2-connected
graph G, finds two independent spanning trees of G rooted at r. Later, Cheriyan
and Maheshwari [1] proved that for any vertex r in a 3-connected graph G, there
exist three independent spanning trees of G rooted at r. Furthermore, they gave an
O(|V (G)|2) algorithm for finding these trees.

Itai and Zehavi [12] also proved that every 3-connected graph contains three
independent spanning trees (rooted at any vertex), and they conjectured that for any
k-connected graph G and for any r ∈ V (G), there exist k independent spanning trees
of G rooted at r. According to Schrijver [14], the Itai-Zehavi conjecture is part of
a more general conjecture by Frank [6]. Huck [9] proved this conjecture for planar
4-connected graphs. Later, Miura et al. [13] gave a linear time algorithm for finding
four independent rooted spanning trees in a planar 4-connected graph.

Our main result is the following.

∗Received by the editors October 28, 2003; accepted for publication (in revised form) August 15,
2005; published electronically March 3, 2006.

http://www.siam.org/journals/sicomp/35-5/43673.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 (curran@math.

gatech.edu). The work of this author was partially supported by an NSF VIGRE grant.
‡Instituto de Computação, Universidade Estadual de Campinas, Avenida Albert Einstein, 1251,

Caixa Postal 6176, 13083–971 Campinas - SP, Brazil (lee@ic.unicamp.br). The work of this author
was supported by CNPq (Proc: 200611/00-3)—Brazil.

§School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 and Center of Com-
binatorics, LPMC, Nankai University, Tianjin 300071, China (yu@math.gatech.edu) The work of the
third author was partially supported by NSF grant DMS-0245530 and by NSA grant MDA-904-03-
1-0052.

1023

1024 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Theorem 1.1. Let G be a 4-connected graph, and let r ∈ V (G). Then there exist
four independent spanning trees of G rooted at r. Moreover, such trees can be found
in O(|V (G)|3) time.

To provide motivation for our method, we first describe Itai and Rodeh’s method
for constructing two independent spanning trees rooted at a vertex r in a 2-connected
graph. Let G be a 2-connected graph, and let r and t be two adjacent vertices of G.
An r-t numbering is a function g : V (G) �→ {1, . . . , n} with n ≥ |V (G)| satisfying the
following properties:

(i) g(r) = 1 and g(t) = n.
(ii) Every vertex v ∈ V (G) − {r, t} has a neighbor u with g(u) < g(v) and a

neighbor w with g(w) > g(v).
An r-t numbering can be produced from an ear decomposition of G. From an r-t
numbering g, Itai and Rodeh define two independent spanning trees T1 and T2 of G
rooted at r as follows. For each vertex v ∈ V (G) − {r}, specify its parent in each
tree. In tree T1, for each v ∈ V (G) − {r}, the parent of v is a neighbor u for which
g(u) < g(v). In tree T2, the parent of t is r and, for each v ∈ V (G)−{r, t}, the parent
of v is a neighbor w for which g(w) > g(u). It is not hard to show that T1 and T2 are
independent spanning trees in G rooted at r.

The idea for constructing four independent spanning trees in a 4-connected graph
is inspired by the 2-connected case. The main difference is that we need to use two
numberings instead of one. This idea can be roughly described as follows. Let G be
a 4-connected graph, and let r ∈ V (G). First, we compute a decomposition of G into
“planar chains,” a generalization of ear decomposition, which we describe in section 2.
From this decomposition, we find two numberings g and f . We then construct these
trees from these numberings.

The main difficulty with this idea lies in the fact that it is not possible to num-
ber all vertices of G, because the “chains” in our decomposition need not be paths.
Fortunately, the nonpath part of the chains are planar, and we can compute four
independent spanning trees in each one of these planar parts using the algorithm of
Miura et al. [13] mentioned above. These trees are then used to number every vertex
in the planar parts that has neighbors outside its chain. Once these numberings are
computed, we can construct four independent spanning trees.

The rest of this paper is organized as follows. The remainder of this section is
devoted to notation and terminology. In section 2 we describe chain decomposition of
a graph and state the main decomposition result from [4] (also see [3]). In section 3
we describe known results for the planar case and give some auxiliary lemmas. In
section 4 we give algorithms for constructing the required numberings. In section 5
we describe an algorithm for constructing four independent spanning trees in a 4-
connected graph, and we prove its correctness in section 6.

Throughout this paper, we use A := B to rename B as A or to define A as B.
We use the notation xy (or yx) to represent an edge with ends x and y. Let G be
a graph. For any S ⊆ V (G), let G[S] denote the subgraph of G with V (G[S]) = S
and E(G[S]) consisting of the edges of G with both ends in S; we say that G[S] is
the subgraph of G induced by S. Let G − S := G[V (G) − S]. A subgraph H of G
is an induced subgraph of G if G[V (H)] = H. We also say that H is induced in G.
For any H ⊆ G and S ⊆ V (G) ∪ E(G), H + S denotes the graph with vertex set
V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ {uv ∈ S : {u, v} ⊆ V (H) ∪ (S ∩ V (G))}.

A graph G is k-connected, where k is a positive integer, if |V (G)| ≥ k + 1 and,
for any S ⊆ V (G) with |S| ≤ k − 1, G − S is connected. A subgraph H of G is
nonseparating in G if G− V (H) is connected.

FINDING FOUR INDEPENDENT TREES 1025

v0 v1 v2 v3 v4 v5

B1
B2 B3 B4

B5

Fig. 1. Example of a chain.

.

Let G be a graph. For S ⊆ V (G), let NG(S) := {x ∈ V (G) − S : xy ∈ E(G) for
some y ∈ S}. For a subgraph H of G, let NG(H) := NG(V (H)). When S = {x},
we let NG(x) := NG({x}). When there exists no ambiguity, we may simply use
N(S), N(H), and N(x), instead of NG(S), NG(H), and NG(x), respectively.

We describe a path in G as a sequence P = (v1, v2, . . . , vk) of distinct vertices of
G such that vivi+1 ∈ E(G), 1 ≤ i ≤ k − 1. The vertices v1 and vk are called the
ends of the path P , and the vertices in V (P)−{v1, vk} are called the internal vertices
of P . For 1 ≤ i ≤ j ≤ k, let P [vi, vj] := (vi, . . . , vj), and for 1 ≤ i < j ≤ k, let
P (vi, vj) := P [vi+1, vj−1]. For A,B ⊆ V (G), we say that a path P is an A-B path if
one end of P is in A, the other end is in B, and no internal vertex of P is in A ∪ B.
If P is a path with ends a and b, we say that P is a path from a to b, or P is an a-b
path. Two paths P and Q are disjoint if V (P)∩ V (Q) = ∅. Two paths are internally
disjoint if no internal vertex of one path is contained in the other. Given a path P in
G and a set S ⊆ V (G) (respectively, a subgraph S of G), we say that P is internally
disjoint from S if no internal vertex of P is contained in S (respectively, V (S)). We
also describe a cycle in G as a sequence C = (v1, v2, . . . , vk, v1) such that the vertices
v1, . . . , vk are distinct, vivi+1 ∈ E(G), for 1 ≤ i ≤ k − 1, and vkv1 ∈ E(G).

2. Chain decomposition. In order to prove Theorem 1.1, we rely on the ex-
istence of a nonseparating chain decomposition of a 4-connected graph, proved in [4]
(also see [3]). Such a decomposition is similar to an ear decomposition. An ear de-
composition of a graph G is a sequence (P0, P1, . . . , Pt) such that (i) P0 is a cycle in
G, (ii) P1, . . . , Pt are paths in G, (iii)

⋃t
i=0 Pi = G, and (iv) for each 0 ≤ i ≤ t − 1,

Gi :=
⋃i

j=0 Pj is 2-connected and Pi+1 ∩ Gi consists of the ends of Pi+1. In a non-
separating chain decomposition, the Pi’s will be chains and cycle chains, which may
be thought of as a generalization of paths and cycles.

Definition 2.1. A connected graph H is a chain if its blocks can be labeled as
B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as v1, . . . , vk−1

such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1, and
(ii) V (Bi) ∩ V (Bj) = ∅ if |i− j| ≥ 2 and 1 ≤ i, j ≤ k.

We let H := B1v1B2v2 . . . vk−1Bk denote this situation. If k ≥ 2, let v0 ∈ V (B1) −
{v1} and vk ∈ V (Bk) − {vk−1}, or, if k = 1, let v0, vk ∈ V (B1) with v0 �= vk; then
we say that H is a v0-vk chain, and we denote this by H := v0B1v1 . . . vk−1Bkvk. We
usually fix v0 and vk, and we refer to them as the ends of Hi. See Figure 1 for an
example with k = 5.

Definition 2.2. A connected graph H is a cyclic chain if for some integer k ≥ 2,
there exist subgraphs B1, . . . , Bk of H and vertices v1, . . . , vk of H such that

(i) for 1 ≤ i ≤ k, Bi is 2-connected or Bi is induced by an edge of H,

(ii) V (H) =
⋃k

i=1 V (Bi) and E(H) =
⋃k

i=1 E(Bi),
(iii) if k = 2, then V (B1) ∩ V (B2) = {v1, v2} and E(B1) ∩ E(B2) = ∅, and
(iv) if k ≥ 3, then V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k, where Bk+1 := B1,

and V (Bi) ∩ V (Bj) = ∅ for 1 ≤ i < i + 2 ≤ j ≤ k and (i, j) �= (1, k).

1026 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

v0 = v6 v1 v2 v3 v4 v5

B1
B2 B3 B4

B5

B6

Fig. 2. Example of a cyclic chain.

v0 v0

v1
v1

v2

v2

v3

v3

v4 v4

v5v5

B1 B1

B2

B2B2

B3 B3

B4

B4B4

B5

B5B5

x2x2

y2 = x4
y2 = x4

y4y4

x5x5

y5

y5

G− V (H)

G− V (H)

Fig. 3. A planar chain H := v0B1v1B2v2B3v3B4v4B5v5 in a graph G.

For notational convenience, we usually fix one of the vertices v1, . . . , vk as the root of
H, say vk, and write H := v0B1v1 . . . vk−1Bkvk to indicate that H is a cyclic chain
rooted at v0 (= vk). Each subgraph Bi is called a piece of H. We sometimes write
I(H) := V (H). See Figure 2 for an example with k = 6.

In the chain decompositions we will work with, the blocks and pieces have a
planar structure. Let G be a graph with distinct vertices a, b, c, and d. We say that
the quintuple (G, a, b, c, d) is planar if G can be drawn in a closed disc in the plane
with no pair of edges crossing such that a, b, c, d occur in cyclic order on the boundary
of the disc. For a graph G and x, y ∈ V (G), we use G− xy to denote the graph with
vertex set V (G) and edge set E(G) − {xy} (note that xy need not be an edge of G).

Definition 2.3. Let G be a graph, and let H := v0B1v1 . . . vk−1Bkvk be a chain
(respectively, cyclic chain). If H is an induced subgraph of G, then we say that H is a
chain in G (respectively, cyclic chain in G). We say that H is planar in G if, for each
1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equivalently, Bi is 2-connected), there exist distinct
vertices xi, yi ∈ V (G) − V (H) such that (G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is
planar, and Bi − {vi−1, vi} is a component of G− {xi, yi, vi−1, vi}. We also say that
H is a planar v0-vk chain (respectively, planar cyclic chain). See Figure 3 for two
drawings of an example with k = 5. The dashed edges may or may not exist, but they
are not part of H.

FINDING FOUR INDEPENDENT TREES 1027

v1 v2

v3

x1 x2 x3

y1

y2

y3

FF

FF

rr

rr

(a) (b)

(c) (d)

x

x

x

y

y

y

H
H

H
H

G

G

G

G

Fig. 4. (a) An up F -chain, (b) a down F -chain, (c) an elementary F -chain, and (d) a triangle
F -chain. The dashed edges need not exist.

We can now describe the chains in nonseparating chain decompositions. See
Figure 4 for illustrations.

Definition 2.4. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F).
Let H be a planar x-y chain in G such that V (H) − {x, y} ⊆ V (G) − V (F). We say
that

(i) H is an up F -chain if {x, y} ⊆ V (F) and NG(H−{x, y}) ⊆ (V (G)−V (F −
r)) ∪ {x, y},

(ii) H is a down F -chain if {x, y} ⊆ V (G) − V (F − r) and NG(H − {x, y}) ⊆
V (F − r) ∪ {x, y}, and

(iii) H is an elementary F -chain if {x, y} ⊆ V (F) and H is an x-y path of length
two.

In any of the three cases we say that H is a planar x-y F -chain in G (or simply a
planar F -chain). Let I(H) := V (H) − {x, y}.

Definition 2.5. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F).
Suppose that {v1, v2, v3} ⊆ V (G) − V (F) induces a triangle T in G and, for each
1 ≤ i ≤ 3, vi has exactly one neighbor xi in V (F − r) and exactly one neighbor
yi in V (G) − (V (F) ∪ V (T)), and each vi has degree four in G. Moreover, assume
that x1, x2, x3 are distinct and y1, y2, y3 are distinct. Then we say that H := T +
{x1, x2, x3, v1x1, v2x2, v3x3} is a triangle F -chain in G. We let I(H) := {v1, v2, v3}.

1028 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Note that Definitions 2.4 and 2.5 depend on the choice of r and F , but in spite
of this, whenever we use these concepts in this paper, it should be clear which pair
r, F we refer to.

Definition 2.6. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F).
By a good F -chain in G, we mean an up F -chain or a down F -chain, or an elementary
F -chain or a triangle F -chain.

We are now ready to describe a chain decomposition, which is similar to an ear
decomposition.

Definition 2.7. Let G be a graph, let r ∈ V (G), and let H1, . . . , Ht be chains
in G, where t ≥ 2. We say that (H1, . . . , Ht) is a nonseparating chain decomposition
of G rooted at r if the following conditions hold:

(i) H1 is a planar cyclic chain in G rooted at r.

(ii) For each i = 2, . . . , t− 1, Hi is a good G[
⋃i−1

j=1 I(Hj)]-chain in G.

(iii) Ht := G− (
⋃t−1

j=1 I(Hj) − {r}) is a planar cyclic chain in G rooted at r.

(iv) For each i = 1, . . . , t− 1, both G[
⋃i

j=1 I(Hj)] and G− ((
⋃i

j=1 I(Hj))− {r})
are 2-connected.

The chains H2, . . . , Ht−1 are called internal chains of the nonseparating chain decom-
position. If ra is a piece of H1, then we say that H1, . . . , Ht is a nonseparating chain
decomposition of G starting at ra.

The following result is proved in [4] (also see [3]).
Theorem 2.8. Let G be a 4-connected graph, let r ∈ V (G), and let ra ∈ E(G).

Then G has a nonseparating chain decomposition rooted at r and starting at ra, and
such a decomposition can be found in O(|V (G)|2|E(G)|) time.

The basic idea for constructing four independent spanning trees (rooted at r) can
be described as follows. By Theorem 2.8, G has a nonseparating chain decomposition
(H1, . . . , Ht) rooted at r. For 1 ≤ i ≤ t, let Gi := G

[⋃i
j=1 I(Hj)

]
. We compute two

numberings g, f defined on V (G) which resemble r-t numberings. From g we compute
two independent spanning trees T1, T2 such that for each i = 1, . . . , t, the restriction
of T1 and T2 to Gi are independent spanning trees in Gi rooted at r. Similarly, from
f we compute two spanning trees T3, T4 such that for each i = 1, . . . , t, the restriction
of T3 and T4 to G− (V (Gi − r)) are independent spanning trees rooted at r.

3. Planar graphs. Let G be a 4-connected graph, and let r ∈ V (G). To use a
nonseparating chain decomposition of G for constructing four independent spanning
trees rooted at r, we must be able to find four independent spanning trees in the
planar blocks and pieces. Unlike the original problem, these trees are not rooted at
the same vertex, but they are rooted at four distinct vertices. Before we describe this
result, we introduce some definitions.

Definition 3.1. Let T and T ′ be two trees in a graph G with roots r and r′,
respectively. We say that T and T ′ are independent if, for each x ∈ V (T) ∩ V (T ′),
the paths T [r, x] and T ′[r′, x] have no vertex in common except x (and r if r = r′).

Let G be a graph, and let S := {t1, . . . , t4} be a set of vertices of G. A 4-tuple
T := {T1, . . . , T4} is an S-system of G if, for 1 ≤ i ≤ 4, Ti is a tree of G rooted at
ti, V (Ti) ⊆ V (G) − (S − {ti}), and ti ∈ V (Ti). An S-system T := {T1, . . . , T4} is
independent if the trees in the system are pairwise independent, and an S-system T
is spanning if V (Ti) = V (G)− (S −{ti}) for 1 ≤ i ≤ 4. See Figure 5 for an example,
where the darkened edges are in the trees.

Let G be a graph, let S ⊆ V (G), and let k be a positive integer. We say that G
is (k, S)-connected if |V (G)| ≥ |S| + 1, G is connected, and for any T ⊆ V (G) with
|T | ≤ k − 1, every component of G− T contains an element of S.

FINDING FOUR INDEPENDENT TREES 1029

t1 t2

t3
t4

Fig. 5. Four independent trees in a plane graph forming an independent spanning system.

Theorem 3.2. Let (G, a, b, c, d) be a planar graph, and suppose that G is
(4, {a, b, c, d})-connected. Then there exists an independent spanning {a, b, c, d}-system
of G. Moreover, one can find such a system in linear time.

The existence of an independent system in Theorem 3.2 was proved by Huck [9].
Huck’s proof is not based on a decomposition of a planar graph, but through a careful
analysis of his proof, one can extract an O(|V (G)|3) algorithm. Miura et al. [13] gave
a linear algorithm for finding such a system based on a decomposition of 4-connected
planar graphs. In fact, the decomposition they obtained can be viewed as a special
case of a nonseparating chain decomposition.

Before we proceed, let us recall that the problem of finding an embedding of a
planar graph can be solved in linear time [7, 8]. Moreover, the following problem
can be solved in linear time: find a drawing of a planar quintuple (G, a, b, c, d) in a
closed disc in the plane with no pair of edges crossing such that a, b, c, d occur in cyclic
order on the boundary of the disc. We make no further mention of this fact, but it is
implicitly used throughout this section.

In what follows we will use Theorem 3.2 to prove some results concerning “order-
ings” of certain vertices of a planar graph (G, a, b, c, d). These results correspond to
Lemmas 3.4, 3.5, 3.6, and 3.7. They will be used in the next section to compute two
numberings of subsets of V (G).

Definition 3.3. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be
an independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each
v ∈ {a, b, c, d}. Let U ⊆ (NG(b) ∪ NG(d)) − {a, c}. We say that a permutation
u1, . . . , up of the elements of U is a (Ta, Tc)-ordering of U if, for i, j ∈ {1, . . . , p}
with i < j, Ta[a, ui] and Tc[c, uj] are (vertex) disjoint. We also say that u1, . . . , up is
(Ta, Tc)-ordered.

Our first lemma concerns (Ta, Tc)-orderings restricted to elements in NG(b) −
{a, c}. In this case, this ordering corresponds to a total order.

Lemma 3.4. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Then there exists a unique (Ta, Tc)-ordering of NG(b)− {a, c}. Moreover,
such an ordering can be found in O(|V (G)|) time.

1030 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

a

b

c

d

u1
u2

u3

u4

u5

up

Fig. 6. u1, . . . , up is the unique (Ta, Tc)-ordering of NG(b) − {a, c}.

Proof. Let G′ := G − {ab, bc}. If b has at most one neighbor in G′, then the
result follows immediately. So assume b has at least two neighbors in G′. Take an
embedding of G′ in a closed disc such that a, b, c, d occur in clockwise order on the
boundary of the disc (such an embedding for G can be computed in linear time).
Let u1, . . . , up (p ≥ 2) denote the neighbors of b in G′ in that cyclic order around b
such that a, u1, b, up, c, d occur in clockwise order on the boundary of the disc (see
Figure 6). Since Ta, Tc are independent, we have that for each i ∈ {1, . . . , p}, Ta[a, ui]
and Tc[c, ui] are internally disjoint. Then by planarity one can see that, for every
i, j ∈ {1, . . . , p} with i �= j, Ta[a, ui] and Tc[c, uj] are disjoint if and only if i < j.
Thus, u1, . . . , up is the unique (Ta, Tc)-ordering of NG(b) − {a, c}. Clearly, such an
ordering can be computed in O(|V (G)|) time.

In the next lemma we show that it is possible to extend a (Ta, Tc)-ordering of
NG(b) − {a, c} and a (Ta, Tc)-ordering of NG(d) − {a, c} to a (Ta, Tc)-ordering of
(NG(b) ∪NG(d)) − {a, c}.

Lemma 3.5. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Then there exists a (Ta, Tc)-ordering of (NG(b)∪NG(d))−{a, c}. Moreover,
such an ordering can be found in O(|V (G)|2) time.

Proof. Take an embedding of G in a closed disc such that a, b, c, d occur in
clockwise order on the boundary of the disc. Consider the following relation. For
u, v ∈ (NG(b)∪NG(d))−{a, c}, we say that u ≺ v if either one of the following holds:

(i) u ∈ NG(b) and Ta[a, u] ∩ Tc[c, v] = ∅.
(ii) u ∈ NG(d), Ta[a, u] ∩ Tc[c, v] = ∅, and Ta[a, v] ∩ Tc[c, u] �= ∅.
See Figure 7 for an illustration of conditions (i) and (ii). The bold lines denote

the paths in Ta and the dashed lines denote the paths in Tc. Next, we show that ≺
defines a total order on (NG(b) ∪NG(d)) − {a, c}.

First, we show that for any distinct x, y ∈ (NG(b) ∪ NG(d)) − {a, c}, either x ≺
y, or y ≺ x, but not both. If x, y ∈ NG(b) or x, y ∈ NG(d), then by planarity,
either Ta[a, x] ∩ Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, x] �= ∅, or Ta[a, x] ∩ Tc[c, y] �= ∅ and
Ta[a, y] ∩ Tc[c, x] = ∅. So by (i) or (ii), either x ≺ y, or y ≺ x, but not both. Thus,
we may assume that x ∈ NG(b) and y ∈ NG(d). If Ta[a, x] ∩ Tc[c, y] = ∅, then x, y
satisfy (i) (as u, v) but not (ii) (as v, u), and we have x ≺ y and y �≺ x. So assume
Ta[a, x]∩Tc[c, y] �= ∅. Then x, y does not satisfy (i) (as u, v), and hence, x �≺ y. Since
Ta and Tc are independent, Ta[a, y] and Tc[c, y] are internally disjoint, and Ta[a, x]
and Tc[c, x] are internally disjoint. By planarity, Ta[a, y] ∩ Tc[c, x] = ∅. Therefore,
y ≺ x.

FINDING FOUR INDEPENDENT TREES 1031

a a

b b

c c

d d

uu

v

v w
w

condition (i) condition (ii)

Fig. 7. u ≺ v and u ≺ w.

It remains to show that ≺ is transitive. Let x, y, z ∈ (NG(b) ∪ NG(d)) − {a, c},
and assume that x ≺ y and y ≺ z. We will show that x ≺ z. We have eight cases by
considering which of x, y, z are in NG(b).

(1) x, y, z ∈ NG(b). Since x ≺ y and y ≺ z, it follows from (i) that Ta[a, x] ∩
Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, z] = ∅. So by planarity, Ta[a, x] ∩ Tc[c, z] = ∅,
and by (i), x ≺ z.

(2) x, y, z ∈ NG(d). Since x ≺ y and y ≺ z, it follows from (ii) that Ta[a, x] ∩
Tc[c, y] = ∅, Ta[a, y]∩Tc[c, x] �= ∅, Ta[a, y]∩Tc[c, z] = ∅, and Ta[a, z]∩Tc[c, y] �=
∅. So by planarity, Ta[a, x] ∩ Tc[c, z] = ∅ and Ta[a, z] ∩ Tc[c, x] �= ∅. By (ii),
x ≺ z.

(3) y, z ∈ NG(b) and x ∈ NG(d). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G−{b, d}. Note that P divides the disc into two closed
regions, say B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(d),
it follows from (ii) that Ta[a, x]∩Tc[c, y] = ∅ and Ta[a, y]∩Tc[c, x] �= ∅. Since
y ≺ z and y ∈ NG(b), it follows from (i) that Ta[a, y]∩Tc[c, z] = ∅. So Tc[c, z]
lies in B and Ta[a, x] lies in D. Therefore, by planarity, Ta[a, x]∩Tc[c, z] = ∅.
Since Ta[a, y]∩ Tc[c, x] �= ∅, it follows by planarity that Ta[a, z]∩ Tc[c, x] �= ∅.
Therefore, x ≺ z.

(4) y, z ∈ NG(d) and x ∈ NG(b). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(b), it
follows from (i) that Ta[a, x]∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(d), it
follows from (ii) that Ta[a, y] ∩ Tc[c, z] = ∅. So Tc[c, z] lies in D and Ta[a, x]
lies in B. By planarity, Ta[a, x] ∩ Tc[c, z] = ∅, and hence by (i), x ≺ z.

(5) x, y ∈ NG(d) and z ∈ NG(b). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(d), it
follows from (ii) that Ta[a, x] ∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(d),
it follows from (ii) that Ta[a, y] ∩ Tc[c, z] = ∅. Thus, Ta[a, x] lies in D and
Tc[c, z] lies in B. By planarity, Ta[a, x] ∩ Tc[c, z] = ∅. Moreover, since y ≺ z
and y ∈ NG(d), it follows from (ii) that Ta[a, z] ∩ Tc[c, y] �= ∅. By planarity,
Ta[a, z] ∩ Tc[c, x] �= ∅. Therefore by (ii), x ≺ z.

(6) x, y ∈ NG(b) and z ∈ NG(d). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed

1032 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

a

b

c

d

x

y

Fig. 8. Two disjoint paths, one in Ta and the other in Td.

regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(b), it
follows from (i) that Ta[a, x]∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(b), it
follows from (i) that Ta[a, y] ∩ Tc[c, z] = ∅. So Ta[a, x] lies in B and Tc[c, z]
lies in D. By planarity Ta[a, x] ∩ Tc[c, z] = ∅. Therefore by (i), x ≺ z.

(7) x, z ∈ NG(b) and y ∈ NG(d). We have shown that either x ≺ z or z ≺ x.
Suppose for a contradiction that z ≺ x. Then by (i), Ta[a, z] ∩ Tc[c, x] =
∅, and by planarity, Ta[a, x] ∩ Tc[c, z] �= ∅. Since y ≺ z and y ∈ NG(d),
Ta[a, z] ∩ Tc[c, y] �= ∅. But then, by planarity, Ta[a, x] ∩ Tc[c, y] �= ∅, which is
a contradiction to (i) since x ≺ y and x ∈ NG(b). Therefore, x ≺ z.

(8) x, z ∈ NG(d) and y ∈ NG(b). We have shown that either x ≺ z or z ≺ x.
Suppose for a contradiction that z ≺ x. Then by (ii), Ta[a, z] ∩ Tc[c, x] = ∅
and Ta[a, x] ∩ Tc[c, z] �= ∅. Since x ≺ y and x ∈ NG(d), Ta[a, y] ∩ Tc[c, x] �= ∅.
But then, by planarity, Ta[a, y] ∩ Tc[c, z] �= ∅, which is a contradiction to (i)
since y ≺ z and y ∈ NG(b). Therefore, x ≺ z.

Thus, ≺ defines a total order on (NG(b) ∪ NG(d)) − {a, c}. Hence, the required
(Ta, Tc)-ordering exists.

Furthermore, this ordering can be found as follows. Let b1, . . . , bp be the (Ta, Tc)-
ordering of NG(b)−{a, c}, and let d1, . . . , dq be the (Ta, Tc)-ordering of NG(d)−{a, c}.
Both exist by Lemma 3.4. Theses sequences are ordered under ≺. We can decide in
O(|V (G)|) time whether bi ≺ dj or dj ≺ bi (by checking which of (i) or (ii) holds) for
any pair bi, dj , 1 ≤ i ≤ p, 1 ≤ j ≤ q. Thus, using the so-called merge technique in [2],
we can merge the two sequences to obtain a sequence ordered under ≺ in O(|V (G)|2)
time.

The last two lemmas of this section will also be needed in section 5. Figure 8
illustrates Lemma 3.6, and Figure 9 illustrates Lemma 3.7.

Lemma 3.6. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Assume that b has at least two neighbors in V (G) − {a, c}. Then for any
(Ta, Tc)-ordered pair x, y ∈ NG(b) − {a, c}, Ta[a, x] ∩ Td[d, y] = ∅.

Proof. Take an embedding of G in a disc such that a, b, c, d occur in clockwise
order on the boundary of the disc. Let x, y ∈ NG(b)−{a, c} such that x, y is (Ta, Tc)-
ordered (see Figure 8). Hence, Ta[a, x]∩Tc[c, y] = ∅. Since Ta and Td are independent,
P := Ta[a, x] ∪ Td[d, x] is an a-d path in G − {a, c}, and P divides the disc into two
closed regions B and C, with b in B. By planarity and since Ta[a, x] ∩ Tc[c, y] = ∅,
Td[d, y] lies in B. Then by planarity, Ta[a, x] ∩ Td[d, y] = ∅.

Lemma 3.7. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈

FINDING FOUR INDEPENDENT TREES 1033

a

b

c

d

x

y

z

Fig. 9. Three disjoint paths contained in Ta, Tc, and Td, respectively.

{a, b, c, d}. Assume that b has at least three neighbors in V (G) − {a, c}. Then for
any (Ta, Tc)-ordered triple x, y, z ∈ NG(b) − {a, c}, Ta[a, x], Td[d, y], and Tc[c, z] are
pairwise disjoint.

Proof. Take an embedding of G in a disc such that a, b, c, d occur in clockwise order
on the boundary of the disc. Let x, y, z ∈ NG(b) such that x, y, z is (Ta, Tc)-ordered
(see Figure 9). Hence, Ta[a, x] ∩ Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, z] = ∅.

By Lemma 3.4, Ta[a, x] ∩ Tc[c, z] = ∅. Hence, the path P := Td[d, y] + {b, yb}
divides the disc into closed regions A and C, with Ta[a, x] in A and Tc[c, z] in C. By
Lemma 3.6, Ta[a, x]∩Td[d, y] = ∅. By applying a mirror image version of Lemma 3.6,
we can show that Td[d, y] ∩ Tc[c, z] = ∅.

4. Numberings. By Theorem 2.8, G has a nonseparating chain decomposition
rooted at r. In this section we will combine this decomposition with Theorem 3.2 to
produce a numbering of a subset of V (G). This numbering will be used in the next
section to construct four independent spanning trees rooted at r.

In the rest of this section we fix the following notation.

Notation 4.1. Let G be a 4-connected graph, and let r ∈ V (G). Fix a nonsepa-
rating chain decomposition of G rooted at r, say C := (H1, . . . , Ht), t ≥ 2. Define the
sequences G0, G1, . . . , Gt−1 and Ḡ1, . . . , Ḡt as follows:

(i) G0 := Ḡt := ({r}, ∅).
(ii) For i = 1, . . . , t− 1, Gi := G[

⋃i
j=1 I(Hj)] and Ḡi := G− (V (Gi) − {r}).

Notation 4.2. Suppose that Hi (1 ≤ i ≤ t) is an up Gi−1-chain in G or a
down Gi−1-chain in G. Let Hi := v0B1v1B2v2 . . . vk−1Bkvk. For each 2-connected
Bj there exist uj , wj (both on V (Gi−1) or both on V (Ḡi)) such that Bj − {vj−1, vj}
is a component of G − {vj−1, vj , uj , wj}, and (B+

j , vj−1, uj , vj , wj}) is planar, where

B+
j := G[V (Bj)∪{uj , wj}]−ujwj . We refer to each such B+

j as a planar section in C.

The vertices vj−1, vj , uj , wj are the terminals of B+
j . See Figure 10 for an illustration.

Note that the notation above depends on i. For the sake of clarity we will not make
it explicit in the notation, but whenever we use this we will make clear which i we
refer to. Furthermore, the algorithms we will describe deal with each Hi separately,
and thus no confusion should arise.

Definition 4.3. Suppose that Hi (1 ≤ i ≤ t) is a triangle Gi−1-chain in G. See
Figure 4. Let I(Hi) := {v1, v2, v3}, let V (Hi) − I(Hi) := {x1, x2, x3}, and suppose
that xjvj ∈ E(G) for j = 1, 2, 3. We say that vjxj (j = 1, 2, 3) are the legs of Hi.

Definition 4.4. Let D ⊆ V (G). A numbering of D is a function from D to
{1, . . . , |D|}. Let g be a numbering of D, let v1, . . . , vk be a sequence of distinct vertices
in V (G) −D, and let v0 ∈ D. The extension g′ of g to v1, . . . , vk from v0 is defined
as follows:

1034 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

v0

v0
v1

v1
v2

v2

v3

v3

v4

v4
u3

u3

w3

w3r r

B+
3

B+
3

Gi−1 Gi−1

Ḡi
Ḡi

Fig. 10. v2, v3, u3, w3 are the terminals of B+
3 .

(i) for 1 ≤ i ≤ k, let g′(vi) := g(v0) + i;
(ii) for each v ∈ D with g(v) ≤ g(v0) let g′(v) = g(v); and
(iii) for each v ∈ D with g(v) > g(v0) let g′(v) := g(v) + k.

Note that g′ is a numbering of D ∪ {v1, . . . , vk}. For convenience, if D ⊆ V (G)
and σ denotes a sequence v1, . . . , vk of vertices in V (G) − D, we let D ∪ {σ} :=
D ∪ {v1, . . . , vk}.

In order to compute the desired numberings g and f from a nonseparating chain
decomposition, we need to find independent spanning systems in the planar sections
in C.

Assumption 4.5. For each planar section B+
j in C, with terminals vj−1, vj , uj , wj ,

we compute an independent spanning {vj−1, vj , uj , wj}-system of B+
j . By Theo-

rem 3.2, such a system can be computed in O(|V (B+
j)| + |E(B+

j)|) time. Since two
distinct planar sections are edge-disjoint, the overall time consumed in this phase (for
all planar sections in C) is O(|V (G)| + |E(G)|).

Next, we describe the algorithm for computing a numbering g of a subset of V (G).
It also computes a sequence {r} = D0 ⊂ D1 ⊂ · · · ⊂ Dt−1 of subsets of V (G) such
that for i = 1, . . . , t, NG(Hi) ∩ V (Gi−1) ⊆ Di−1. When the algorithm stops, g is a
numbering of Dt−1. We note that keeping track of this sequence is not necessary for
computing g, but its inclusion will make proofs easier in section 6.

Algorithm numbering g.
Description. The algorithm executes t − 1 iterations, where t is the number of

chains in C. At the beginning of the first iteration, we have i = 1, D0 := {r}, and
g(r) := 1. At the beginning of each iteration, we have an integer i with 1 ≤ i ≤ t− 1,
a subset Di−1 ⊆ V (Gi−1) such that NG(Hi) ∩ V (Gi−1) ⊆ Di−1, and a numbering g
of Di−1.

Each iteration consists of the following: update g and define Di according to the
following cases (depending on the type of Hi), and, if i < t − 1, then set i ← i + 1
and start a new iteration.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, and assume that v0, v2 are labeled so that g(v0) < g(v2).
Extend g to v1 from v0, and let Di := Di−1 ∪ {v1}.
Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, and suppose that v0, . . . , vk and B1, . . . , Bk are

labeled so that v0 = vk = r when i = 1 and g(v0) < g(vk) when i �= 1. For
each 2-connected Bj , let uj , wj denote the terminals of B+

j other than vj−1, vj . Let

T j
vj−1

, T j
vj

denote the trees rooted, respectively, at vj−1, vj in the independent spanning

{vj−1, vj , uj , wj}-system of B+
j computed in Assumption 4.5.

FINDING FOUR INDEPENDENT TREES 1035

v0

v1

v2

v3

v4

v5

u1

w1

u4

w4

r

B1

B4

Gi−1

σ1

σ4

vertices
added to
Di

Fig. 11. Extending the numbering g to an up Gi−1-chain.

v0

v1

v2

v3

v4v5

u1w1 u4
w4

r

B1

B4

Gi−1

σ

vertices
added to
Di

Fig. 12. Extending the numbering g to a down Gi−1-chain.

For each j = 1, . . . , k, compute a sequence σj as follows. If Bj is 2-connected,
then let σj be a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj} (the existence of

this ordering is guaranteed by Lemma 3.5). If Bj is trivial, then let σj denote the
empty sequence.

Extend g to σ := σ1, v1, σ2, v2, . . . , vk−1, σk from v0, and let Di := Di−1 ∪ {σ}.
See Figure 11 for an illustration.

Case 3. Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.

Let Hi := v0B1v1 . . . vk−1Bkvk. For each 2-connected block Bj let uj , wj denote
the terminals of B+

j other than vj−1, vj with g(uj) < g(wj). Let T j
uj
, T j

wj
denote trees

rooted, respectively, at uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let Di := Di−1 ∪NB1
(v0) ∪NBk

(vk). See Figure 12 for an illustration. Extend
g according to the following three subcases.

Subcase 3.1. k = 1 (thus, B1 is 2-connected).

1036 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Let σ denote a (T 1
u1
, T 1

w1
)-ordering of NB+

1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NBk

(vk) (the existence of this ordering is guaranteed by Lemma 3.5). Extend g
to σ from u1.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
Note that since Hi is not an elementary Gi−1-chain, B1 or B2 is nontrivial.
Assume then (renaming B1 and B2 if necessary) that B1 is 2-connected and B2

is trivial. Extend g according to the following cases.
(i) v1 has no neighbor in V (Gi−1). Let q1, q2, q3 be neighbors of v1 in B1 (they

exist since G is 4-connected), and assume that q1, q2, q3 is (T 1
u1
, T 1

w1
)-ordered

(this is possible by Lemma 3.4). By Lemma 3.7, T 1
u1

[u1, q1], T
1
v0

[v0, q2], and

T 1
w1

[w1, q3] are disjoint. Let H := B+
1 ∪B2 (note that H − {v0, v2, u1, w1} is

a component of G − {v0, v2, u1, w1}). Then (H, v0, u1, v2, w1) is planar, and
{T 1

v0
+{v1, v1q2}, T 1

v1
+{v2, v1v2}, T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3}} forms an

independent spanning {v0, u1, v2, w1}-system of H.
Let σ denote a (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordering of NH({v0, v2})−

{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.5). Extend
g to σ from u1.
Comment: we also keep track of q1, q2, q3 for the construction of the indepen-
dent spanning trees.

• v1 has a neighbor in V (Gi−1). Let x ∈ NG(v1)∩V (Gi−1) with g(x) minimum,
and let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0) − {u1, w1} (the existence

of this ordering is guaranteed by Lemma 3.4). If g(x) > g(u1), then extend
g to σ, v1 from u1, where σ, v1 is the sequence obtained from σ by adding v1

at the end. If g(x) ≤ g(u1), then extend g to v1, σ from x, where v1, σ is the
sequence obtained from σ by adding v1 in the front.

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.
Extend g to NB1

(v0) according to the following cases.
• B1 is 2-connected. Let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0)−{u1, w1} =

NB1(v0) (the existence of this ordering is guaranteed by Lemma 3.4). Extend
g to σ from u1.

• Both B1 and B2 are trivial. Let x ∈ NG(v1) ∩ V (Gi−1) with g(x) minimum.
Extend g to v1 from x.

• B1 is trivial and B2 is 2-connected.
– If v1 has no neighbor in V (Gi−1), extend g to v1 from u2.
– If v1 has a neighbor in V (Gi−1), let x ∈ NG(v1) ∩ V (Gi−1) with g(x)

minimum. If g(x) > g(u2), then extend g to v1 from u2. If g(x) ≤ g(u2),
then extend g to v1 from x.

Extend (the resulting) g to NBk
(vk) according to the following cases.

• Bk is 2-connected. Let σ be a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk) − {uk, wk} =

NBk
(vk) (the existence of this ordering is guaranteed by Lemma 3.4). Extend

g to σ from uk.
• Both Bk and Bk−1 are trivial. Let x ∈ NG(vk−1) ∩ V (Gi−1) with g(x)

minimum. Extend g to vk−1 from x.
• Bk is trivial and Bk−1 is 2-connected.

– If vk−1 has no neighbor in V (Gi−1), extend g to vk−1 from uk−1.
– If vk−1 has a neighbor in V (Gi−1), let x ∈ NG(vk−1) ∩ V (Gi−1) with

g(x) minimum. If g(x) > g(uk−1), then extend g to vk−1 from uk−1. If
g(x) ≤ g(uk−1), then extend g to vk−1 from x.

Case 4. Hi is a triangle Gi−1-chain in G.

FINDING FOUR INDEPENDENT TREES 1037

Let I(Hi) := {v1, v2, v3}, and let vjxj (j = 1, 2, 3) be the legs of Hi. Suppose that
v1, v2, v3 are labeled so that g(x1) < g(x2) < g(x3). Let Di := Di−1 ∪ {v1, v2, v3}.
Extend g to v1, v2, v3 from x2.

This concludes the description of the algorithm for computing g.

Lemma 4.6. Algorithm Numbering g runs in O(|V (G)|3) time.

Proof. Observe that at the ith iteration, Algorithm Numbering g extends the
current numbering gi to a sequence σ from a previously numbered vertex v ∈ Di−1.
Clearly, given gi, σ, and v, this extension can be computed in O(|V (G)|) time. We
now analyze the time spent at each iteration of Algorithm Numbering g according to
Cases 1–4. We use the same notation as in the algorithm.

If Case 1 occurs (Hi is an elementary Gi−1-chain in G), then Algorithm Number-
ing g extends g to v1. This can be done in O(|V (G)|) time.

If Case 2 occurs (Hi is an up Gi−1-chain but not an elementary Gi−1-chain), then
Algorithm Numbering g computes sequences σ1, . . . , σk, where σj denotes the empty
sequence when Bj is trivial, and σj is a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) −

{vj−1, vj} when Bj is 2-connected. In the latter case, by Lemma 3.5 the sequence σj

can be computed in O(|V (B+
j)|2) time. Thus, the algorithm spends O(|V (G)|2) time

to compute σ1, . . . , σk. After that, the algorithm extends g to v0, σ1, v1, . . . , vk−1, σk, vk,
which can be done in O(|V (G)|) time. Therefore, the algorithm spends O(|V (G)|2)
time if Case 2 occurs.

If Case 3 occurs (Hi is a down Gi−1-chain but not an elementary Gi−1-chain),
then Algorithm Numbering g considers three cases.

• If Subcase 3.1 occurs (k = 1), then the algorithm computes a (T 1
u1
, T 1

w1
)-

ordering σ of NB+
1
({v0, v1}) − {u1, w1} and extends g to σ from u1. The

sequence σ can be computed in O(|V (G)|2) time by Lemma 3.5, and the
extension of g can be computed in O(|V (G)|) time, resulting in O(|V (G)|2)
time for this iteration.

• If Subcase 3.2 occurs (k = 2, and B1 or B2 is trivial), then the algorithm
considers two subcases, according to whether or not v1 has a neighbor in
V (Gi−1).

– If v1 has no neighbor in V (Gi−1), the algorithm chooses neighbors
q1, q2, q3 of v1 in B1 and computes a (T 1

u1
+ {v1, v1q1}, T 1

w1
+ {v1, v1q3})-

ordering σ of NB1(v0) ∪NBk
(vk) = NH({v0, v2}) − {u1, w1} as in Sub-

case 3.1 and extends g to σ from u1. Thus, the algorithm spends
O(|V (G)|2) time in this case.

– If v1 has a neighbor in V (Gi−1), then the algorithm computes a (T 1
u1
, T 1

w1
)-

ordering σ of NB+
1
(v0) − {u1, w1}, and it performs an extension on g.

The sequence σ can be computed in O(|V (G)|) time by Lemma 3.4, and
the extension can be computed in O(|V (G)|) time. Thus, the algorithm
spends O(|V (G)|) time in this case.

• If Subcase 3.3 occurs (k ≥ 3, or k = 2 and both B1, B2 are 2-connected),
then the algorithm extends g to NB1(v0) and extends g to NBk

(vk). The
algorithm may need to compute a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0)− {u1, w1}

and a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk) − {uk, wk}, but both can be done in

O(|V (G)|) time by Lemma 3.4. It is not hard to check that the algorithm
spends O(|V (G)|) time in this case.

If Case 4 occurs (Hi is a triangle chain), then Algorithm Numbering g extends g
to v1, v2, v3. This can be done in O(|V (G)|) time.

1038 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

From the analysis above, it follows that Algorithm Numbering g spends O(|V (G)|2)
time in each iteration. Since the number of iterations is t < n → t < |V (G)|, the
numbering g can be computed in O(|V (G)|3) time.

Note that the extension operation does not affect the order of the vertices pre-
viously numbered, although their actual g values may have changed. Thus, at each
iteration the algorithm orders the vertices in Di − Di−1 without affecting the order
of the vertices in Di−1. In fact, it does not affect the order of the vertices in Dj for
every 1 ≤ j ≤ i− 1.

The numbering g will be used to construct two independent spanning trees rooted
at r from C = (H1, . . . , Ht) in order from H1 to Ht. For constructing the other two
spanning trees we compute a numbering f by examining the chains of C in reverse
order.

The algorithm for computing f is analogous to Algorithm Numbering g when it
deals with an up Gi−1-chain or a down Gi−1-chain or elementary Gi−1-chain. The
differences appear when it deals with a triangle Gi−1-chain. The algorithm also
computes a sequence {r} = D′

t+1 ⊂ D′
t ⊂ · · · ⊂ D′

2 of subsets of V (G) such that
for t ≥ i ≥ 1, NG(Hi) ∩ V (Ḡi) ⊆ D′

i+1.
Algorithm numbering f .
Description. The algorithm executes t − 1 iterations, where t is the number of

chains in C′ := (H1, . . . , Ht). At the beginning of the first iteration, we have i = t,
D′

t+1 := {r}, and f(r) := 1. At the beginning of each iteration, we have an integer
i with t ≥ i ≥ 2, a subset D′

i+1 ⊆ V (Ḡi) such that NG(Hi) ∩ V (Ḡi) ⊆ D′
i+1, and a

numbering f of D′
i+1.

Each iteration consists of the following: update f and define D′
i according to the

following cases (depending on the chain type of Hi), and, if i > 2, then set i ← i− 1
and start a new iteration.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, and let v′0, v

′
2 be neighbors of v1 in V (Ḡi) with f(v′0) <

f(v′2). Extend f to v1 from v′0, and let D′
i := D′

i+1 ∪ {v1}.
Case 2. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, and suppose that v0, . . . , vk and B1, . . . , Bk are

labeled so that v0 = vk = r when i = t and f(v0) < f(vk) when i �= t. For
each 2-connected Bj , let uj , wj be the terminals of B+

j other than vj−1, vj . Let

T j
vj−1

, T j
vj

denote the trees rooted, respectively, at vj−1, vj in the independent spanning

{vj−1, vj , uj , wj}-system of B+
j computed in Assumption 4.5.

For each j = 1, . . . , k compute a sequence σj as follows. If Bj is 2-connected, then
let σj be a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj} (the existence of this

ordering is guaranteed by Lemma 3.5). If Bj is trivial, then let σj denote the empty
sequence.

Extend f to σ := σ1, v1, σ2, v2, . . . , vk−1, σk from v0, and let D′
i := D′

i+1 ∪ {σ}.
See Figure 13 for an illustration.

Case 3. Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain in G.
Let Hi := v0B1v1 . . . vk−1Bkvk. For each 2-connected Bj , let uj , wj denote the

terminals of B+
j other than vj−1, vj , with f(uj) < f(wj). Let T j

uj
, T j

wj
denote the trees

rooted, respectively, at uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.
Let D′

i := D′
i+1 ∪NB1(v0) ∪NBk

(vk). See Figure 14 for an illustration. Extend
f according to the following three subcases.

Subcase 3.1. k = 1 (thus, B1 is 2-connected).

FINDING FOUR INDEPENDENT TREES 1039

v0

v1

v2

v3

v4v5

u1w1 u4
w4

r

σ1

B1

B4

Gi−1

œ4

vertices
added to
D′

i

Fig. 13. Extending the numbering f to a down Gi−1-chain.

s

v0

v1

v2

v3

v4

v5

u1

w1

u4

w4

r

B1

B4

Gi−1

vertices
added to
D′

i

Fig. 14. Extending the numbering f to an up Gi−1-chain.

Let σ denote a (T 1
u1
, T 1

w1
)-ordering of NB+

1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NBk

(vk) (the existence of this ordering is guaranteed by Lemma 3.5). Extend f
to σ from u1.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
Note that since Hi is not an elementary chain, B1 or B2 is nontrivial.
Assume then (renaming B1 and B2 if necessary) that B1 is 2-connected and B2

is trivial. Extend f according to the following cases.
• v1 has no neighbor in V (Ḡi). Let q1, q2, q3 be distinct neighbors of v1 in B1

(they exist since G is 4-connected), and assume that q1, q2, q3 is (T 1
u1
, T 1

w1
)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T 1
u1

[u1, q1], T
1
v0

[v0, q2],

and T 1
w1

[w1, q3] are disjoint. Let H := B+
1 ∪B2. Note that H−{v0, v2, u1, w1}

is a component of G−{v0, v2, u1, w1}, (H, v0, u1, v2, w1) is planar, and {T 1
v0

+
{v1, v1q2}, T 1

v1
+{v2, v1v2}, T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3}} is an independent

spanning {v0, v2, u1, w1}-system of H.
Let σ denote a (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordering of NH({v0, v2})−

{u1, w1} = NB1(v0) ∪ NBk
(vk) (the existence of this ordering is guaranteed

by Lemma 3.5). Extend f to σ from u1.

1040 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Comment: we also keep track of q1, q2, q3 for the construction of the indepen-
dent spanning trees.

• v1 has a neighbor in V (Ḡi). Let x ∈ NG(v1) ∩ V (Ḡi) with f(x) minimum,
and let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB1(v0) = NB+

1
(v0)−{u1, w1} (the

existence of this ordering is guaranteed by Lemma 3.4). If f(x) > f(u1), then
extend f to σ, v1 from u1. If f(x) ≤ f(u1), then extend f to v1, σ from x.

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.
Extend f to NB1(v0) according to the following cases.
• B1 is 2-connected. Let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB1(v0) = NB+

1
(v0)−

{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to σ from u1.

• Both B1 and B2 are trivial. Let x ∈ NG(v1) ∩ V (Ḡi) with f(x) minimum.
Extend f to v1 from x.

• B1 is trivial and B2 is 2-connected.
– If v1 has no neighbor in V (Ḡi), extend f to v1 from u2.
– If v1 has a neighbor in V (Ḡi), let x ∈ NG(v1) ∩ V (Ḡi) with f(x) min-

imum. If f(x) > f(u2), then extend f to v1 from u2. If f(x) ≤ f(u2),
then extend f to v1 from x.

Extend (the resulting) f to NBk
(vk) according to the following cases.

• Bk is 2-connected. Let σ denote a (T k
uk
, T k

wk
)-ordering of NBk

(vk) = NB+
k
(vk)−

{uk, wk} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to σ from uk.

• Both Bk and Bk−1 are trivial. Let x ∈ NG(vk−1)∩V (Ḡi) with f(x) minimum.
Extend f to vk−1 from x.

• Bk is trivial and Bk−1 is 2-connected.
– If vk−1 has no neighbor in V (Ḡi), extend f to vk−1 from uk−1.
– If vk−1 has a neighbor in V (Ḡi), let x ∈ NG(vk−1) ∩ V (Ḡi) with f(x)

minimum. If f(x) > f(uk−1), then extend f to vk−1 from uk−1. If
f(x) ≤ f(uk−1), then extend f to vk−1 from x.

Case 4. Hi is a triangle Gi−1-chain in G.
Let I(Hi) := {v1, v2, v3}, let vjxj (j = 1, 2, 3) be the legs of Hi, and let y1, y2, y3 ∈

V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G). Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3). Let D′

i := D′
i+1 ∪ {v1, v2, v3}.

• If f(y1) < f(y2) and f(y1) < f(y3), then extend f to v1, v2, v3 from y1.
• If f(y2) < f(y1) and f(y2) < f(y3), then extend f to v2, v1, v3 from y2.
• If f(y3) < f(y1) < f(y2), then extend f to v3 from y3 and extend (the

resulting) f to v1, v2 from y1.
• If f(y3) < f(y2) < f(y1), then extend f to v3 from y3 and extend (the

resulting) f to v2, v1 from y2.
This concludes the description of the algorithm for computing f . The proof of

the next lemma is similar to the proof of Lemma 4.6, and we omit it.
Lemma 4.7. Algorithm Numbering f runs in O(|V (G)|3) time.

5. Construction of spanning trees. We now describe how to use Theorem 3.2
and the two numberings of the last section to produce four independent spanning trees.
This will follow from Algorithm Trees. The proof of its correction and analysis of its
complexity will be given in the next section.

Algorithm trees.

Description. Let G be a 4-connected graph, let r ∈ V (G), and let C = (H1, . . . , Ht)
be a nonseparating chain decomposition of G rooted at r. Let G0 = Ḡt = ({r}, ∅),

FINDING FOUR INDEPENDENT TREES 1041

and for 1 ≤ i ≤ t − 1, let Gi := G[
⋃i

j=1 I(Hj)] and Ḡi = G − (V (Gi) − {r}). The
algorithm executes t iterations, where t is the number of chains in C. At the first
iteration, we have i = 1 and T1 = T2 = T3 = T4 = G0. At the beginning of each
iteration, we have an integer i with 1 ≤ i ≤ t, spanning trees T1, T2 in Gi−1 and
spanning forests T3, T4 in Gi−1 − r.

Each iteration consists of the following: update T1, T2, T3, T4 by adding certain
vertices and edges of Hi to T1, T2, T3, T4 according to the following four cases (de-
pending on the type of Hi), and, if i < t, then set i ← i+1 and start a new iteration.
After t iterations, T1, T2, T3, T4 will be independent spanning trees in G rooted at r.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2 with g(v0) < g(v2). Let v′0, v

′
2 be neighbors of v1 in V (Ḡi)

with f(v′0) < f(v′2).
Set T1 ← T1 + {v1, v0v1}, T2 ← T2 + {v1, v1v2}, T3 ← T3 + {v′0, v1, v

′
0v1}, and

T4 ← T4 + {v′2, v1, v
′
2v1}.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)
when i �= 1.

For each 2-connected block Bj , let uj , wj denote the terminals of B+
j other than

vj−1, vj with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let J := {j : 1 ≤ j ≤ k,Bj is 2-connected}, and let J̄ := {1, . . . , k} − J .
First, set

T1 ← T1 ∪

⎛
⎝ ⋃

j∈J̄−{k}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj−1

⎞
⎠ ,

T2 ← T2 ∪

⎛
⎝ ⋃

j∈J̄−{1}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj

⎞
⎠ ,

T3 ← T3 ∪

⎛
⎝⋃

j∈J

T j
uj

⎞
⎠ , and

T4 ← T4 ∪

⎛
⎝⋃

j∈J

T j
wj

⎞
⎠ .

Now for each j = 1, . . . , k − 1 add vj and edges incident to vj to T1, T2, T3, T4

according to the following cases (at this stage, v0, vk /∈ V (T3 ∪ T4)).
Subcase 2.1. Bj and Bj+1 are trivial.
Let p3, p4 be neighbors of vj in V (Ḡi) with f(p3) minimum (hence f(p3) < f(p4)).
Set T3 ← T3 + {vj , p3, vjp3} and T4 ← T4 + {vj , p4, vjp4}.
Subcase 2.2. Bj is 2-connected and Bj+1 is trivial.
• If vj has no neighbor in V (Ḡi), then let p1, p3, p4 be neighbors of vj in Bj (they

exist since G is 4-connected), and assume that p3, p1, p4 is (T j
uj
, T j

wj
)-ordered

(this is possible by Lemma 3.4). By Lemma 3.7, T j
uj

[uj , p3], T
j
vj−1

[vj−1, p1],

1042 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

and T j
wj

[wj , p4] are disjoint. If k = 2, then we also require that p3, p1, p4

be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of Algorithm
Numbering f .
Set T1 ← T1 + {vj , vjp1}, T3 ← T3 + {vj , vjp3}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Ḡi), then let x ∈ NG(vj) ∩ V (Ḡi) with f(x) mini-
mum.

– If f(x) > f(uj), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

vj−1
[vj−1, p1] and T j

uj
[uj , p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1+{vj , vjp1}, T3 ← T3+{vj , vjp3}, and T4 ← T4+{vj , x, vjx}.

– If f(x) ≤ f(uj), then let p1, p4 be neighbors of vj in Bj such that the
paths T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1+{vj , vjp1}, T3 ← T3+{vj , x, vjx}, and T4 ← T4+{vj , vjp4}.

Subcase 2.3. Bj is trivial and Bj+1 is 2-connected.
• If vj has no neighbor in V (Ḡi), then let p2, p3, p4 be neighbors of vj in Bj+1

(they exist since G is 4-connected), and assume that p3, p2, p4 is (T j+1
uj+1

, T j+1
wj+1

)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T j+1
uj+1

[uj+1, p3],

T j+1
vj+1

[vj+1, p2], and T j+1
wj+1

[wj+1, p4] are disjoint. If k = 2, then we also require
that p3, p2, p4 be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering f .
Set T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Ḡi), then let x ∈ NG(vj) ∩ V (Ḡi) with f(x) mini-
mum.

– If f(x) > f(uj+1), then let p2, p3 be neighbors of vj in Bj+1 such that
the paths T j+1

vj+1
[vj+1, p2] and T j+1

uj+1
[uj+1, p3] are disjoint (they exist by

Lemma 3.6).
Set T2 ← T2+{vj , vjp2}, T3 ← T3+{vj , vjp3}, and T4 ← T4+{vj , x, vjx}.

– If f(x) ≤ f(uj+1), then let p2, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

vj+1
[vj+1, p2] and T j+1

wj+1
[wj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T2 ← T2+{vj , vjp2}, T3 ← T3+{vj , x, vjx}, and T4 ← T4+{vj , vjp4}.

Subcase 2.4. Bj and Bj+1 are 2-connected.
Note that f(uj) < f(wj+1) or f(uj+1) < f(wj).
• If f(uj) < f(wj+1), then let p1, p3 be neighbors of vj in Bj such that the

paths T j
vj−1

[vj−1, p1] and T j
uj

[uj , p3] are disjoint (they exist by Lemma 3.6),

and let p2, p4 be neighbors of vj in Bj+1 such that the paths T j+1
vj+1

[vj+1, p2]

and T j+1
wj+1

[wj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

• If f(uj) ≥ f(wj+1), then f(uj+1) < f(wj). Let p1, p4 be neighbors of vj in
Bj such that the paths T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are disjoint (they exist

by Lemma 3.6), and let p2, p3 be neighbors of vj in Bj+1 such that the paths
T j+1
vj+1

[vj+1, p2] and T j+1
uj+1

[uj+1, p3] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

Case 3. i = t, or Hi is a down Gi−1-chain in G.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)

when i �= t.

FINDING FOUR INDEPENDENT TREES 1043

For each 2-connected block Bj , let uj , wj denote the terminals of B+
j other than

vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let J := {j : 1 ≤ j ≤ k,Bj is 2-connected}, and let J̄ := {1, . . . , k} − J .
First, set

T1 ← T1 ∪

⎛
⎝⋃

j∈J

T j
uj

⎞
⎠ ,

T2 ← T2 ∪

⎛
⎝⋃

j∈J

T j
wj

⎞
⎠ ,

T3 ← T3 ∪

⎛
⎝ ⋃

j∈J̄−{k}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj−1

⎞
⎠ , and

T4 ← T4 ∪

⎛
⎝ ⋃

j∈J̄−{1}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj

⎞
⎠ .

Now for each j = 1, . . . , k − 1 add vj and edges incident to vj to T1, T2, T3, T4

according to the following cases (at this stage v0, vk /∈ V (T1 ∪ T2).
Subcase 3.1. Bj and Bj+1 are trivial blocks.
Let p1, p2 be neighbors of vj in V (Gi−1) with g(p1) minimum (hence g(p1) <

g(p2)).
Set T1 ← T1 + {vj , vjp1} and T2 ← T2 + {vj , vjp2}.
Subcase 3.2. Bj is 2-connected and Bj+1 is trivial.
• If vj has no neighbor in V (Gi−1), then let p1, p2, p3 be neighbors of vj in Bj

(they exist since G is 4-connected), and assume that p1, p3, p2 is (T j
uj
, T j

wj
)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T j
uj

[uj , p1],

T j
vj−1

[vj−1, p3], and T j
wj

[wj , p2] are disjoint. If k = 2, then we also require
that p1, p3, p2 be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering g.
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, and T3 ← T3 + {vj , vjp3}.

• If vj has a neighbor in V (Gi−1), then let x ∈ NG(vj) ∩ V (Gi−1) with g(x)
minimum.

– If g(x) > g(uj), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1 +{vj , vjp1}, T2 ← T2 +{vj , vjx}, and T3 ← T3 +{vj , vjp3}.

– If g(x) ≤ g(uj), then let p2, p3 be neighbors of vj in Bj such that the
paths T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1 +{vj , vjx}, T2 ← T2 +{vj , vjp2}, and T3 ← T3 +{vj , vjp3}.

Subcase 3.3. Bj is trivial and Bj+1 is 2-connected.
• If vj has no neighbor in V (Gi−1), then let p1, p2, p4 be neighbors of vj

in Bj+1 (they exist since G is 4-connected), and assume that p1, p4, p2 is
(T j+1

uj+1
, T j+1

wj+1
)-ordered (this is possible by Lemma 3.4). By Lemma 3.7,

T j+1
uj+1

[uj+1, p1], T
j+1
vj+1

[vj+1, p4], and T j+1
wj+1

[wj+1, p2] are disjoint. If k = 2, then

1044 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

we also require that p1, p4, p2 be the vertices q1, q2, q3, respectively, chosen in
Subcase 3.2 of Algorithm Numbering g.
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Gi−1), then let x ∈ NG(vj) ∩ V (Gi−1) with g(x)
minimum.

– If g(x) > g(uj+1), then let p1, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

uj+1
[uj+1, p1] and T j+1

vj+1
[vj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T1 ← T1 +{vj , vjp1}, T2 ← T2 +{vj , vjx}, and T4 ← T4 +{vj , vjp4}.

– If g(x) ≤ g(uj+1), then let p2, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

wj+1
[wj+1, p2] and T j+1

vj+1
[vj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T1 ← T1 +{vj , vjx}, T2 ← T2 +{vj , vjp2}, and T4 ← T4 +{vj , vjp4}.

Subcase 3.4. Bj and Bj+1 are 2-connected.

Note that g(uj) < g(wj+1) or g(uj+1) < g(wj).

• If g(uj) < g(wj+1), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma 3.6),

and let p2, p4 be neighbors of vj in Bj+1 such that the paths T j+1
wj+1

[wj+1, p2]

and T j+1
vj+1

[vj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

• If g(uj) ≥ g(wj+1), then g(uj+1) < g(wj). Let p2, p3 be neighbors of vj in
Bj such that the paths T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint (they exist

by Lemma 3.6), and let p1, p4 be neighbors of vj in Bj+1 such that the paths
T j+1
uj+1

[uj+1, p1] and T j+1
vj+1

[vj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

Case 4. Hi is a triangle Gi−1-chain in G.

Let I(Hi) := {v1, v2, v3}, let vjxj (j = 1, 2, 3) be the legs of Hi, and let y1, y2, y3 ∈
V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G). Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3).

Update T1, T2, T3, T4 according to the following four possibilities.

• If f(y1) < f(y2) and f(y1) < f(y3) then set
T1 ← T1 +{v1, v2, v3, x1v1, x2v2, v2v3}, T2 ← T2 +{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y1v1, v1v2, v1v3}, T4 ← T4 +{v1, v2, v3, y2v2, v2v1, y3v3}.

• If f(y2) < f(y1) and f(y2) < f(y3) then set
T1 ← T1 +{v1, v2, v3, x1v1, x2v2, v1v3}, T2 ← T2 +{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y2v2, v2v1, v2v3}, T4 ← T4 +{v1, v2, v3, y1v1, v1v2, y3v3}.

• If f(y3) < f(y1) < f(y2) then set
T1 ← T1 +{v1, v2, v3, x1v1, x2v2, v1v3}, T2 ← T2 +{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y1v1, v1v2, y3v3}, T4 ← T4 +{v1, v2, v3, y2v2, v2v1, v2v3}.

• If f(y3) < f(y2) < f(y1) then set
T1 ← T1 +{v1, v2, v3, x1v1, x2v2, v2v3}, T2 ← T2 +{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y2v2, v2v1, y3v3}, T4 ← T4 +{v1, v2, v3, y1v1, v1v2, v1v3}.

6. Correctness of Algorithm Trees. In this section we will prove Theo-
rem 1.1. More precisely, we will show that the subgraphs T1, T2, T3, T4 returned by
Algorithm Trees are independent spanning trees of G rooted at r, and they can be
computed in O(|V (G)|3) time.

FINDING FOUR INDEPENDENT TREES 1045

Notation 6.1. Let G be a 4-connected graph, let r ∈ V (G), and let C =
(H1, . . . , Ht) be a nonseparating chain decomposition of G rooted at r. Let G0 = Ḡt =

({r}, ∅), and for 1 ≤ i ≤ t− 1, let Gi := G[
⋃i

j=1 I(Hj)] and Ḡi = G− (V (Gi)− {r}).
Let T1, T2, T3, T4 denote the subgraphs returned by Algorithm Trees. Let D,D′ denote
the sets of vertices returned by Algorithm Numbering g and Algorithm Numbering
f , respectively.

We start with a series of seven simple lemmas which follow from the cases of Algo-
rithm Trees. The first lemma follows immediately by inspecting Case 1 of Algorithm
Trees.

Lemma 6.2. Let Hi := v0B1v1B2v2 be an elementary Gi−1-chain in G, with
g(v0) < g(v2). Then v1 has neighbors v′0, v

′
2 in V (Ḡi), with f(v′0) < f(v′2), such that

(1) E(T1 ∩Hi) = {v0v1} and E(T2 ∩Hi) = {v1v2}, and
(2) E(T3 ∩H ′

i) = {v′0v1} and E(T4 ∩H ′
i) = {v1v

′
2}, where H ′

i = v′0B
′
1v1B

′
2v

′
2 is

an elementary Ḡi-chain in G.

The next lemma follows by inspecting Case 2 (for i = 1) of Algorithm Trees.

Lemma 6.3. Let H1 := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r, and for each 2-
connected Bj, let uj , wj denote the terminals of B+

j other than vj−1, vj, with f(uj) <

f(wj). Let H+
1 be the graph obtained from H1 by adding NG(H1 − r) − {r} and the

edges of G from V (H1) to NG(H1 − r) − {r}. Then

(1) T1 ∩H1 is a spanning tree of H1 rooted at r and contains no edge from r to
NBk

(r),
(2) T2 ∩H1 is a spanning tree of H1 rooted at r and contains no edge from r to

NB1(r),
(3) T3∩(H+

1 −r) is a spanning forest of H+
1 −r, and each component of T3∩(H+

1 −
r) either is a tree in B+

j −wj rooted at uj for some j ∈ {1, . . . , k} or is induced

by a single edge with one end in V (Ḡ1) and the other in {v1, . . . , vk−1}, and
(4) T4∩(H+

1 −r) is a spanning forest of H+
1 −r, and each component of T4∩(H+

1 −
r) either is a tree in B+

j −uj rooted at wj for some j ∈ {1, . . . , k} or is induced

by a single edge with one end in V (Ḡ1) and the other in {v1, . . . , vk−1}.
By inspecting Case 2 (for i �= 1) of Algorithms Trees, we have the following

lemma.

Lemma 6.4. Let Hi := v0B1v1 . . . vk−1Bkvk be an up Gi−1-chain in
G (2 ≤ i ≤ t − 1), with g(v0) < g(vk), and for each 2-connected block Bj, let uj , wj

denote the terminals of B+
j other than vj−1, vj, with f(uj) < f(wj). Let H+

i be the
graph obtained from Hi by adding NG(Hi − {v0, vk}) − {v0, vk} and the edges of G
from V (Hi) to NG(Hi − {v0, vk}) − {v0, vk}. Then

(1) T1 ∩ (Hi − vk) is a spanning tree of Hi − vk rooted at v0, and T1 contains no
edge from vk to NBk

(vk),
(2) T2 ∩ (Hi − v0) is a spanning tree of Hi − v0 rooted at vk, and T2 contains no

edge from v0 to NB1
(v0),

(3) T3∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T3 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − wj rooted at uj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Ḡi) and the
other in {v1, . . . , vk−1}, and

(4) T4∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T4 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − uj rooted at wj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Ḡi) and the
other in {v1, . . . , vk−1}.

1046 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

By a simple inspection of Case 3 (for i = t) of Algorithm Trees, we have the
following lemma.

Lemma 6.5. Let Ht := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r, and for each 2-
connected Bj, let uj , wj denote the terminals of B+

j other than vj−1, vj, with g(uj) <

g(wj). Let H+
t be the graph obtained from Ht by adding NG(Ht − r) − {r} and the

edges of G from V (Ht) to NG(Ht − r) − {r}. Then

(1) T1 ∩ (H+
t − r) is a spanning forest of H+

t − r, and each component of T1 ∩
(H+

t − r) either is a tree in B+
j − wj rooted at uj for some j ∈ {1, . . . , k}

or is induced by a single edge with one end in V (Gt−1) and the other in
{v1, . . . , vk−1},

(2) T2 ∩ (H+
t − r) is a spanning forest of H+

t − r, and each component of T2 ∩
(H+

t − r) either is a tree in B+
j − uj rooted at wj for some j ∈ {1, . . . , k}

or is induced by a single edge with one end in V (Gt−1) and the other in
{v1, . . . , vk−1},

(3) T3 ∩Ht is a spanning tree of Ht rooted at r and contains no edge from r to
NBk

(r), and
(4) T4 ∩Ht is a spanning tree of Ht rooted at r and contains no edge from r to

NB1(r).

The next lemma follows from a simple inspection of Case 3 (for i �= t) of Algorithm
Trees.

Lemma 6.6. Let Hi := v0B1v1 . . . vk−1Bkvk be a down Gi−1-chain in
G (2 ≤ i ≤ t − 1), with f(v0) < f(vk), and for each 2-connected block Bj, let uj , wj

denote the terminals of B+
j other than vj−1, vj, with g(uj) < g(wj). Let H+

i be the
graph obtained from Hi by adding NG(Hi − {v0, vk}) − {v0, vk} and the edges of G
from V (Hi) to NG(Hi − {v0, vk}) − {v0, vk}. Then

(1) T1∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T1 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − wj rooted at uj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Gi−1) and the
other in {v1, . . . , vk−1},

(2) T2∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T2 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − uj rooted at wj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Gi−1) and the
other in {v1, . . . , vk−1},

(3) T3 ∩ (Hi − vk) is a spanning tree of Hi − vk rooted at v0, and T3 contains no
edge from vk to NBk

(vk), and
(4) T4 ∩ (Hi − v0) is a spanning tree of Hi − v0 rooted at vk, and T4 contains no

edge from v0 to NB1(v0).

Finally, by a simple inspection of Case 4 of Algorithm Trees, we have the following
lemma.

Lemma 6.7. Let Hi be a triangle Gi−1-chain in G (2 ≤ i ≤ t − 1). Let
I(Hi) := {v1, v2, v3}, let y1, y2, y3 ∈ V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G), and
let vjxj (j = 1, 2, 3) be the legs of Hi, with g(x1) < g(x2) < g(x3). Let H+

i :=
Hi + {y1, y2, y3, y1v1, y2v2, y3v3}.

• If f(y1) < f(y2) and f(y1) < f(y3), then
E(T1 ∩H+

i) = {x1v1, x2v2, v2v3}, E(T2 ∩H+
i) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i) = {y1v1, v1v2, v1v3}, and E(T4 ∩H+

i) = {y2v2, v2v1, y3v3}.
• If f(y2) < f(y1) and f(y2) < f(y3), then
E(T1 ∩H+

i) = {x1v1, x2v2, v1v3}, E(T2 ∩H+
i) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i) = {y2v2, v2v1, v2v3}, and E(T4 ∩H+

i) = {y1v1, v1v2, y3v3}.

FINDING FOUR INDEPENDENT TREES 1047

• If f(y3) < f(y1) < f(y2), then
E(T1 ∩H+

i) = {x1v1, x2v2, v1v3}, E(T2 ∩H+
i) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i) = {y1v1, v1v2, y3v3}, and E(T4 ∩H+

i) = {y2v2, v2v1, v2v3}.
• If f(y3) < f(y2) < f(y1), then
E(T1 ∩H+

i) = {x1v1, x2v2, v2v3}, E(T2 ∩H+
i) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i) = {y2v2, v2v1, y3v3}, and E(T4 ∩H+

i) = {y1v1, v1v2, v1v3}.
We can now show that T1, T2, T3, and T4 are spanning trees of G.
Lemma 6.8. For every i = 1, . . . , t, T1 ∩Gi and T2 ∩Gi are spanning trees of Gi.
Proof. Note that every v ∈ V (G) − {r} is an internal vertex of some chain Hi in

C. The result follows by induction on i with the help of (1) of Lemma 6.2, (1) and
(2) of Lemma 6.3, (1) and (2) of Lemma 6.4, (1) and (2) of Lemma 6.5, (1) and (2)
of Lemma 6.6, and Lemma 6.7.

Lemma 6.9. For every i = t, . . . , 1, T3 ∩ Ḡi and T4 ∩ Ḡi are spanning trees of Ḡi.
Proof. The result follows by induction on t− i with the help of (2) of Lemma 6.2,

(3) and (4) of Lemma 6.3, (3) and (4) of Lemma 6.4, (3) and (4) of Lemma 6.5, (3)
and (4) of Lemma 6.6, and Lemma 6.7.

Lemmas 6.8 and 6.9 imply the following.
Corollary 6.10. T1, T2, T3, T4 are spanning trees of G.
Now we proceed to show that T1, T2, T3, T4 are independent spanning trees of G

rooted at r. The proof consists of several lemmas.
Lemma 6.11. For any 1 ≤ i ≤ t and for any v ∈ I(Hi)−{r}, there exist vertices

z1, z2, z3, z4 such that
(1) z1, z2 ∈ V (Gi−1), and either z1 = z2 = r or g(z1) < g(z2) (and g(z1) <

g(v) < g(z2) if v ∈ D),
(2) z3, z4 ∈ V (Ḡi), and either z3 = z4 = r or f(z3) < f(z4) (and f(z3) < f(v) <

f(z4) if v ∈ D′), and
(3) Ti[zi, v], i = 1, 2, 3, 4, are internally disjoint paths in G, and V (Ti[zi, v])−zi ⊆

I(Hi).
Proof. Let 1 ≤ i ≤ t and v ∈ I(Hi)−{r}. We consider the four cases of Algorithm

Trees.
Case 1. Hi is an elementary Gi−1-chain in G.
In this case, 2 ≤ i ≤ t−1. Let Hi := v0B1v1B2v2, with g(v0) < g(v2). This is the

same as in Case 1 of Algorithm Trees. Then v0, v2 ∈ V (Gi−1), v = v1, and by Case 1
of Algorithm Numbering g, we have g(v0) < g(v1) < g(v2). By Lemma 6.2, there exist
v′0, v

′
2 ∈ V (Ḡi), with f(v′0) < f(v′2), such that v0v ∈ E(T1), v2v ∈ E(T2), v

′
0v ∈ E(T3),

and v′2v ∈ E(T4). By Case 1 of Algorithm Numbering f , f(v′0) < f(v1) < f(v′2).
Thus, the result follows by taking z1 := v0, z2 := v2, z3 := v′0, and z4 := v′2.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)

when i �= 1. For each 2-connected Bj , let uj , wj denote the terminals of B+
j other

than vj−1, vj , with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.
Let j ∈ {1, . . . , k − 1}. If i = 1, then by (1) and (2) of Lemma 6.3, T1[r, vj] ⊆⋃j

l=1 Bl and T2[r, vj] ⊆
⋃k

l=j+1 Bl. If i �= 1, then vj is a cut vertex of Hi, and hence,

by (1) and (2) of Lemma 6.4, T1[v0, vj] ⊆
⋃j

l=1 Bl and T2[vk, vj] ⊆
⋃k

l=j+1 Bl.
First, let us consider the case when v �= vj for j = 1, . . . , k − 1. Thus, there

exists some j, 1 ≤ j ≤ k, such that Bj is 2-connected and v ∈ V (Bj) − {vj−1, vj}.
By Case 2 of Algorithm Numbering g, we know that g(v0) ≤ g(vj−1) < g(vj) ≤

1048 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

g(vk), and if v ∈ D, then g(v0) ≤ g(vj−1) < g(v) < g(vj) ≤ g(vk). Further-
more, T j

vj−1
[vj−1, v], T

j
vj

[vj , v], T
j
uj

[uj , v], and T j
wj

[wj , v] are internally disjoint, be-

cause {T j
vj−1

, T j
vj
, T j

uj
, T j

wj
} is an independent spanning {vj−1, vj , uj , wj}-system of

B+
j . By the construction in Case 2 of Algorithm Trees, T1[vj−1, v] = T j

vj−1
[vj−1, v],

T2[vj , v] = T j
vj

[vj , v], T3[uj , v] = T j
uj

[uj , v], and T4[wj , v] = T j
wj

[wj , v]. By Case
3 of Algorithm Numbering f , if v ∈ D′, then f(uj) < f(v) < f(wj). Moreover,

T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj] ⊆
⋃k

l=j+1 Bl. Let z1 := v0, z2 := vk, z3 := uj ,
and z4 := wj . Clearly, (1)–(3) hold.

So assume that v = vj for some j, 1 ≤ j ≤ k−1. Let z1 := v0 and z2 := vk. Then
by Case 2 of Algorithm Numbering g, g(z1) < g(v) < g(z2). We will define z3 and z4

and prove that (1)–(3) hold. We do this by analyzing how Algorithm Trees chooses
the neighbors p3, p4 of vj in the trees T3, T4, respectively.

Subcase 2.1. Bj and Bj+1 are trivial (Subcase 2.1 in Algorithm Trees).
Then Algorithm Trees chooses neighbors p3, p4 of vj in V (Ḡi) with f(p3) minimum

(and hence f(p3) < f(p4)). If vj ∈ D′, then by Case 3 of Algorithm Numbering f , we
have f(p3) < f(vj) < f(p4). Let z3 := p3 and z4 := p4. Clearly, (1)–(3) hold.

Subcase 2.2. Bj is 2-connected and Bj+1 is trivial (Subcase 2.2 in Algorithm
Trees).

• If vj has no neighbor in V (Ḡi), then Algorithm Trees chooses three neighbors
p1, p3, p4 of vj in Bj such that T j

vj−1
[vj−1, p1], T j

uj
[uj , p3], and T j

wj
[wj , p4]

are disjoint. By construction, T1[vj−1, vj] = T j
vj−1

[vj−1, p1] + {vj , vjp1},
T3[uj , vj] = T j

uj
[uj , p3] + {vj , vjp3}, and T4[wj , vj] = T j

wj
[wj , p4] + {vj , vjp4}.

Moreover, T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore,
T1[v0, vj], T2[vk, vj], T3[uj , vj], and T4[wj , vj] are internally disjoint. If vj ∈
D′, then by Case 3 of Algorithm Numbering f , we have j = k − 1 and
f(uj) < f(v) < f(wj). Let z3 := uj and z4 := wj . Clearly, (1)–(3) hold.

• If vj has a neighbor in V (Ḡi), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Ḡi) with f(x) minimum.

– If f(x) > f(uj), then the algorithm chooses neighbors p1, p3 of vj in
Bj such that T j

vj−1
[vj−1, p1] and T j

uj
[uj , p3] are disjoint. By construc-

tion, T1[vj−1, vj] = T j
vj−1

[vj−1, p1] + {vj , vjp1}, T3[uj , vj] = T j
uj

[uj , p3] +
{vj , vjp3}, and T4[x, vj] is induced by the edge xvj . Moreover, T1[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T2[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore, T1[v0, vj], T2[vk, vj],
T3[uj , vj], and T4[x, vj] are internally disjoint. If vj ∈ D′, then by Case 3
of Algorithm Numbering f , we have f(uj) < f(v) < f(x). Let z3 := uj

and z4 := x. Clearly, (1)–(3) hold.
– If f(x) ≤ f(uj), then Algorithm Trees chooses neighbors p1, p4 of vj in

Bj such that T j
vj−1

[vj−1, p1] and T j
wj

[wj , p4] are disjoint. By construc-

tion, T1[vj−1, vj] = T j
vj−1

[vj−1, p1]+{vj , vjp1}, T4[wj , vj] = T j
wj

[wj , p4]+
{vj , vjp4}, and T3[x, vj] is induced by the edge xvj . Moreover, T1[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T2[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore, T1[v0, vj], T2[vk, vj],
T3[x, vj], and T4[wj , vj] are internally disjoint. If vj ∈ D′, then by Case
3 of Algorithm Numbering f , we have f(x) < f(v) < f(wj). Let z3 := x
and z4 := wj . Clearly, (1)–(3) hold.

Subcase 2.3. Bj is trivial and Bj+1 is 2-connected (Subcase 2.3 in Algorithm
Trees).

In this case, if vj ∈ D′, then j = 1 by Case 3 of Algorithm Numbering f . The
arguments for the proof are similar to Subcase 2.2, and we indicate only the choice of

FINDING FOUR INDEPENDENT TREES 1049

z3 and z4. In each case below, one can show that (1)–(3) hold for the corresponding
choice of z3, z4.

• If vj has no neighbor in V (Ḡi), then let z3 := uj+1 and z4 := wj+1.
• If vj has a neighbor in V (Ḡi), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Ḡi) with f(x) minimum.

– If f(x) > f(uj+1), then let z3 := uj+1 and z4 := x.
– If f(x) ≤ f(uj+1), then let z3 := x and z4 := wj+1.

Subcase 2.4. Both Bj and Bj+1 are 2-connected (Subcase 2.4 in Algorithm Trees).
Since G is 4-connected and (B+

j , vj−1, uj , vj , wj) and (B+
j+1, vj , uj+1, vj+1, wj+1)

are both planar, vj /∈ NBj (vj−1)∪NBj+1(vj+1). Hence, vj /∈ D′ by Case 3 of Algorithm
Numbering f . Note that f(uj) < f(wj+1) or f(uj+1) < f(wj).

• If f(uj) < f(wj+1), then Algorithm Trees chooses neighbors p1, p3 of vj in Bj

such that T j
vj−1

[vj−1, p1], T
j
uj

[uj , p3] are disjoint and neighbors p2, p4 of vj in

Bj+1 such that T j
vj+1

[vj+1, p2], T
j
wj+1

[wj+1, p4] are disjoint. By construction,

T1[vj−1, vj] = T j
vj−1

[vj−1, p1]+{vj , vjp1}, T3[uj , vj] = T j
uj

[uj , p3]+{vj , vjp3},
T2[vj+1, vj] = T j+1

vj+1
[vj+1, p2]+{vj , vjp2}, and T4[wj+1, vj] = T j+1

wj+1
[wj+1, p4]+

{vj , vjp4}. Moreover, T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj+1] ⊆
⋃k

l=j+2 Bl.
Thus, T1[v0, vj], T2[vk, vj], T3[uj , vj], and T4[wj+1, vj] are internally disjoint.
Let z3 := uj and z4 := wj+1. Clearly, (1)–(3) hold.

• If f(uj) ≥ f(wj+1), then f(uj+1) < f(wj), and Algorithm Trees chooses
neighbors p1, p4 of vj in Bj such that T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are

disjoint and neighbors p2, p3 of vj in Bj+1 such that T j+1
vj+1

[vj+1, p2] and

T j+1
uj+1

[uj+1, p3] are disjoint. Let z3 := uj+1 and z4 := wj . One can show as
in the above paragraph that T1[v0, vj], T2[vk, vj], T3[uj+1, vj], and T4[wj , vj]
are internally disjoint and (1)–(3) hold.

Case 3. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)

when i �= t. For each 2-connected Bj , let uj , wj denote the terminals of B+
j other

than vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.
Let j ∈ {1, . . . , k − 1}. If i = t, then by (3) and (4) of Lemma 6.5, T3[v0, vj] ⊆⋃j

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl. If i �= t, then vj is a cut vertex of Hi, and hence,

by (3) and (4) of Lemma 6.6, T3[v0, vj] ⊆
⋃j

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl.
First, let us consider the case when v �= vj for j = 1, . . . , k − 1. Thus, there

exists some j, 1 ≤ j ≤ k, such that Bj is 2-connected and v ∈ V (Bj) − {vj−1, vj}.
By Case 2 of Algorithm Numbering f , we know that f(v0) ≤ f(vj−1) < f(vj) ≤
f(vk), and if vj ∈ D′, then f(v0) ≤ f(vj−1) < f(v) < f(vj) ≤ f(vk). Further-
more, T j

vj−1
[vj−1, v], T

j
vj

[vj , v], T
j
uj

[uj , v], and T j
wj

[wj , v] are internally disjoint because

{T j
vj−1

, T j
vj
, T j

uj
, T j

wj
} is an independent spanning {vj−1, vj , uj , wj}-system of B+

j . By

the construction in Case 3 of Algorithm Trees, T1[uj , v] = T j
uj

[uj , v], T2[wj , v] =

T j
wj

[wj , v], T3[vj−1, v] = T j
vj−1

[vj−1, v], and T4[vj , v] = T j
vj

[vj , v]. Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl. Let z1 := uj , z2 := wj , z3 := v0, and z4 := vk.
Clearly, (1)–(3) hold.

So assume that v = vj for some j, 1 ≤ j ≤ k − 1. Let z3 := v0 and z4 := vk. By
Case 2 of Algorithm Numbering f , we have f(z2) < f(v) < f(z4). We will define z1

and z2 and prove that (1)–(3) hold. We do this by analyzing how Algorithm Trees
chooses the neighbors p1, p2 of vj in the trees T1, T2, respectively.

1050 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Subcase 3.1. Bj and Bj+1 are trivial (Subcase 3.1 in Algorithm Trees).
Then Algorithm Trees chooses neighbors p1, p2 of vj in V (Gi−1) with g(p1) min-

imum (and so g(p1) < g(p2)). By Subcase 3.3 of Algorithm Numbering g, we have
g(p1) < g(v) < g(p2). Let z1 := p1 and z2 := p2. Clearly, (1)–(3) hold.

Subcase 3.2. Bj is 2-connected and Bj+1 is trivial (Subcase 3.2 in Algorithm
Trees).

• If vj has no neighbor in V (Gi−1), then Algorithm Trees chooses three neigh-
bors p1, p2, p3 of vj in Bj such that T j

uj
[uj , p1], T

j
wj

[wj , p2], and T j
vj−1

[vj−1, p3]

are disjoint. By construction, T1[uj , vj] = T j
uj

[uj , p1]+{vj , vjp1}, T2[wj , vj] =

T j
wj

[wj , p2]+ {vj , vjp2}, and T3[vj−1, vj] = T j
vj−1

[vj−1, p3]+ {vj , vjp3}. More-

over, T3[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore, T1[uj , vj],
T2[wj , vj], T3[v0, vj], and T4[vk, vj] are internally disjoint. In this case, if
vj ∈ D, then by Case 3 of Algorithm Numbering g, we have j = k − 1 and
g(uj) < g(v) < g(wj). Let z1 := uj and z2 := wj . Clearly, (1)–(3) hold.

• If vj has a neighbor in V (Gi−1), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Gi−1) with g(x) minimum.

– If g(x) > g(uj), then the algorithm chooses neighbors p1, p3 of vj in
Bj such that T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint. By construc-

tion, T1[uj , vj] = T j
uj

[uj , p1] + {vj , vjp1}, T3[vj−1, vj] = T j
vj−1

[vj−1, p3] +
{vj , vjp3}, and T2[x, vj] is induced by the edge xvj . Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore, T1[uj , vj], T2[x, vj],
T3[v0, vj], and T4[vk, vj] are internally disjoint. If vj ∈ D, then by Case
3 of Algorithm Numbering g, we have j = k−1 and g(uj) < g(v) < g(x).
Let z1 := uj and z4 := x. Clearly, (1)–(3) hold.

– If g(x) ≤ g(uj), then Algorithm Trees chooses neighbors p2, p3 of vj in
Bj such that T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint. By construc-

tion, T2[wj , vj] = T j
wj

[wj , p2]+{vj , vjp2}, T3[vj−1, vj] = T j
vj−1

[vj−1, p3]+
{vj , vjp3}, and T1[x, vj] is induced by the edge xvj . Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj] ⊆
⋃k

l=j+1 Bl. Therefore, T1[x, vj], T2[wj , vj],
T3[v0, vj], and T4[vk, vj], are internally disjoint. If vj ∈ D, then by Case
3 of Algorithm Numbering g, we have j = k−1 and g(x) < g(v) < g(wj).
Let z1 := x and z2 := wj . Clearly, (1)–(3) hold.

Subcase 3.3. Bj is trivial and Bj+1 is 2-connected (Subcase 3.3 in Algorithm
Trees).

In this case, if vj ∈ D, then j = 1 by Case 3 of Algorithm Numbering g. The
arguments for this case are similar to Subcase 3.2, and we indicate only the choice of
z1 and z2. In each case below, one can show that (1)–(3) hold for the corresponding
choice of z1, z2.

• If vj has no neighbor in V (Gi−1), then let z1 := uj+1 and z2 := wj+1.
• If vj has a neighbor in V (Gi−1), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Gi−1) with g(x) minimum.

– If g(x) > g(uj+1), then let z1 := uj+1 and z2 := x.
– If g(x) ≤ g(uj+1), then let z1 := x and z2 := wj+1.

Subcase 3.4. Bj and Bj+1 are 2-connected (Subcase 3.4 in Algorithm Trees).
Since G is 4-connected and (B+

j , vj−1, uj , vj , wj) and (B+
j+1, vj , uj+1, vj+1, wj+1)

are both planar, vj /∈ NBj (vj−1) ∪NBj+1(vj+1). So by Case 3 of Algorithm Number-
ing g, vj /∈ D. Note that g(uj) < g(wj+1) or g(uj+1) < g(wj).

• If g(uj) < g(wj+1), then Algorithm Trees chooses neighbors p1, p3 of vj
in Bj such that T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint and neighbors

FINDING FOUR INDEPENDENT TREES 1051

p2, p4 of vj in Bj+1 such that T j+1
wj+1

[wj+1, p2] and T j+1
vj+1

[vj+1, p4] are dis-

joint. By construction, T1[uj , vj] = T j
uj

[uj , p1] + {vj , vjp1}, T3[vj−1, vj] =

T j
vj−1

[vj−1, p3] + {vj , vjp3}, T2[wj+1, vj] = T j+1
wj+1

[wj+1, p2] + {vj , vjp2}, and

T4[vj+1, vj] = T j+1
vj+1

[vj+1, p4] + {vj , vjp4}. Moreover, T3[v0, vj−1] ⊆
⋃j−1

l=1 Bl

and T4[vk, vj+1] ⊆
⋃k

l=j+2 Bl. Thus, T1[uj , vj], T2[wj+1, vj], T3[v0, vj], and
T4[vk, vj] are internally disjoint. Let z1 := uj and z2 := wj+1. Clearly,
(1)–(3) hold.

• If g(uj) ≥ g(wj+1), then g(uj+1) < g(wj), and Algorithm Trees chooses neigh-
bors p2, p3 of vj in Bj such that T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint

and neighbors p1, p4 of vj in Bj+1 such that T j+1
uj+1

[uj+1, p1] and T j+1
vj+1

[vj+1, p4]
are disjoint. Let z1 := uj+1 and z2 := wj . One can show as in the above
paragraph that T1[uj+1, vj], T2[wj , vj], T3[v0, vj], and T4[vk, vj] are internally
disjoint and (1)–(3) hold.

Case 4. Hi is a triangle Gi−1-chain in G.
Let I(Hi) := {v1, v2, v3}, let y1, y2, y3 ∈ V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G),

and let vjxj (j = 1, 2, 3) be the legs of Hi. Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3).

The proof can be done by inspecting a small number of cases (Case 4 in Algorithm
Trees) and using Lemma 6.7 and Case 4 of Algorithm Numbering g and Algorithm
Numbering f . For the sake of completeness, we list for each case the choice for
z1, z2, z3, and z4. The verification that they satisfy (1)–(3) is straightforward, and we
omit it.

• If f(y1) < f(y2) and f(y1) < f(y3), then let z2 := x3 and z3 := y1.
If v = v1, then let z1 := x1 and z4 := y2.
If v = v2, then let z1 := x2 and z4 := y2.
If v = v3, then let z1 := x2 and z4 := y3.

• If f(y2) < f(y1) and f(y2) < f(y3), then let z2 := x3 and z3 := y2.
If v = v1, then let z1 := x1 and z4 := y1.
If v = v2, then let z1 := x2 and z4 := y1.
If v = v3, then let z1 := x1 and z4 := y3.

• If f(y3) < f(y1) < f(y2), then let z2 := x3 and z4 := y2.
If v = v1, then let z1 := x1 and z3 := y1.
If v = v2, then let z1 := x2 and z3 := y1.
If v = v3, then let z1 := x1 and z3 := y3.

• If f(y3) < f(y2) < f(y1), then let z2 := x3 and z4 := y1.
If v = v1, then let z1 := x1 and z3 := y2.
If v = v2, then let z1 := x2 and z3 := y2.
If v = v3, then let z1 := x2 and z3 := y3.

This completes the proof of Lemma 6.11.
Lemma 6.12. Let i ∈ {1, . . . , t − 1}. Then for any u, v ∈ Di, with g(u) < g(v),

T1[r, u] and T2[r, v] are internally disjoint paths in Gi.
Proof. We will prove the lemma by induction on i. The basis of induction is i = 0

with D0 := {r} and G0 := ({r}, ∅). So assume that i > 0 and the lemma holds for
i− 1. We consider the four cases of Algorithm Numbering g.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, with g(v0) < g(v2). By (1) of Lemma 6.2, E(T1 ∩Hi) =

{v0v1} and E(T2 ∩Hi) = {v1v2}. Recall that Di = Di−1 ∪ {v1}.
If u, v ∈ Di−1 and g(u) < g(v), then by the induction hypothesis, T1[r, u] and

T2[r, v] are internally disjoint paths in Gi−1. Thus, it suffices to prove the following:

1052 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

for any u, v ∈ Di, with g(u) < g(v) and v1 ∈ {u, v}, T1[r, u] and T2[r, v] are internally
disjoint paths in Gi.

Assume first that u = v1. Then v = v ∈ Di−1. Since g(v0) < g(v1) < g(v), it
follows from the induction hypothesis that T1[r, v0] and T2[r, v] are internally disjoint
paths in Gi−1. Therefore, T1[r, v1] = T1[r, v0] + {v1, v1v0} and T2[r, v] are internally
disjoint paths in Gi.

Now suppose v = v1. Then u ∈ Di−1. Since g(u) < g(v1) < g(v2), it follows
from the induction hypothesis that T1[r, u] and T2[r, v2] are internally disjoint paths
in Gi−1. Therefore, T1[r, u] and T2[r, v1] = T2[r, v2]+{v1, v1v2} are internally disjoint
paths in Gi.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)
when i �= 1. For each 2-connected Bj , let uj , wj denote the terminals of B+

j other

than vj−1, vj , with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.
Let u, v ∈ Di with g(u) < g(v).

If u, v ∈ Di−1, then by the induction hypothesis, T1[r, u] and T2[r, v] are internally
disjoint paths in Gi−1.

If u ∈ Di −Di−1 and v ∈ Di−1, then by the construction in Case 2 of Algorithm
Numbering g, g(v0) < g(u) < g(v). By the induction hypothesis, T1[r, v0] and T2[r, v]
are internally disjoint paths in Gi−1. Since T1[v0, u] is a path in Hi − vk by (1) of
Lemma 6.3 when i = 1, or by (1) of Lemma 6.4 when i �= 1, T1[r, v] and T2[r, v] are
internally disjoint paths in Gi.

If u ∈ Di−1 and v ∈ Di −Di−1, then by the construction in Case 2 of Algorithm
Numbering g, g(u) < g(v) < g(vk). By the induction hypothesis, T1[r, u] and T2[r, vk]
are internally disjoint paths in Gi−1. Since T2[vk, v] is a path in Hi − v0 by (2) of
Lemma 6.3 when i = 1, or by (2) of Lemma 6.4 when i �= 1, T1[r, v] and T2[r, v] are
internally disjoint paths in Gi.

So we may assume that u, v ∈ Di − Di−1. Let gi denote the function g at the
start of iteration i of Algorithm Numbering g (when it examines Hi in Case 2). Recall
that for each j = 1, . . . , k the algorithm computes a sequence σj as follows. If Bj is
2 connected, then σj is a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj}. If Bj

is trivial, then σj is the empty sequence. Moreover, the algorithm extends gi to
σ := σ1, v1, σ2, . . . , vk−1, σk from v0 and set Di := Di−1 ∪ {σ}. Thus, u, v ∈ {σ}.
Note that since g(u) < g(v), u precedes v in the sequence σ.

First, suppose that there exists no j ∈ {1, . . . , k−1} such that u, v ∈ {σj}. Hence,
there is some j ∈ {1, . . . , k − 1} such that either

• u appears in the sequence σ1, v1, . . . , σj , vj and v appears in the sequence
σj+1, vj+1, . . . , vk−1, σk or

• u appears in the sequence σ1, v1, . . . , σj and v appears in the sequence
vj , σj+1, vj+1, . . . , vk−1, σk.

By (1) and (2) of Lemma 6.3 when i = 1 or by (1) and (2) of Lemma 6.4 when
i �= 1, T1[v0, u] and T2[vk, v] are internally disjoint paths in Hi, and by the induction
hypothesis, T1[r, v0] and T2[r, vk] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

So, we may assume that there exists some j ∈ {1, . . . , k − 1} such that u, v are
in the sequence σj . Since the sequence σj is (T j

vj−1
, T j

vj
)-ordered and u precedes v in

FINDING FOUR INDEPENDENT TREES 1053

σj , T
j
vj−1

[vj−1, u] and T j
vj

[vj , v] are disjoint. By the construction in Algorithm Trees,

T1[vj−1, u] = T j
vj−1

[vj−1, u] and T2[vj , v] = T j
vj

[vj , v]. By (1) and (2) of Lemma 6.3
when i = 1, or by (1) and (2) of Lemma 6.4 when i �= 1, T1[v0, vj−1] and T2[vk, vj]
are internally disjoint paths in Hi. Moreover, by the induction hypothesis, T1[r, v0]
and T2[r, vk] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

Case 3. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)
when i �= t. For each 2-connected Bj , let uj , wj denote the terminals of B+

j other

than vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.
Let u, v ∈ Di with g(u) < g(v). Recall that Di = Di−1 ∪NB1(v0) ∪NBk

(vk).
If u, v ∈ Di−1, then by the induction hypothesis, T1[r, u] and T2[r, v] are internally

disjoint paths in Gi−1 ⊂ Gi.
If u ∈ Di −Di−1 and v ∈ Di−1, then u ∈ NB1(v0) ∪NBk

(vk). By (1) and (3) of
Lemma 6.11, there exists z1 ∈ V (Gi−1) such that g(z1) < g(u) and V (T1[z1, u]−z1) ⊆
I(Hi). Since z1, v ∈ Di−1 and g(z1) < g(u) < g(v), it follows from the induction
hypothesis that T1[r, z1] and T2[r, v] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

If u ∈ Di−1 and v ∈ Di −Di−1, then v ∈ NB1(v0) ∪NBk
(vk). By (1) and (3) of

Lemma 6.11, there exists z2 ∈ V (Gi−1) such that g(v) < g(z2) and V (T2[z2, v]−z2) ⊆
I(Hi). Since z2, u ∈ Di−1 and g(u) < g(v) < g(z2), it follows from the induction
hypothesis that T1[r, u] and T2[r, z2] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

So, we need only to prove the case when u, v ∈ Di − Di−1. Let gi denote the
function g at the start of iteration i of Algorithm Numbering g (when it examines Hi

in Case 3). Now we consider the three subcases of Case 3 of Algorithm Numbering g.
Subcase 3.1. k = 1 (thus, B1 is 2-connected).
Since (B+

1 , v0, u1, v1, w1) is planar and G is 4-connected, v0, v1 /∈ NB1(v0) ∪
NB1

(v1). Hence, in this case, Di − Di−1 = NB+
1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NB1

(v1). Moreover, Algorithm Numbering g produces a (T 1
u1
, T 1

w1
)-ordering σ of

NB+
1
({v0, v1}) − {u1, w1} and extends gi to σ from u1.

Let u, v ∈ Di −Di−1, with g(u) < g(v). Then both u and v are in the sequence
σ, and u precedes v in σ. Since σ is (T 1

u1
, T 1

w1
)-ordered, T 1

u1
[u1, u] and T 1

w1
[w1, v] are

disjoint. By the construction in Case 3 of Algorithm Trees, T1[u1, u] = T 1
u1

[u1, u]
and T2[w1, v] = T 1

w1
[w1, v]. By the induction hypothesis, T1[r, u1] and T2[r, w1] are

internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint
paths in Gi.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
By symmetry we assume that B2 is trivial (the arguments are analogous if B1 is

trivial). Note that B1 is 2-connected because Hi is not an elementary Gi−1-chain in
G. Thus, Di −Di−1 = NB1(v0) ∪ {v1}.

• If v1 has no neighbor in V (Gi−1), then Algorithm Numbering g chooses neigh-
bors q1, q2, q3 of v1 in B1 such that T 1

u1
[u1, q1], T

1
v0

[v0, q2], and T 1
w1

[w1, q3] are
disjoint and then computes a (T 1

u1
+ {v1, v1q1}, T 1

w1
+ {v1, v1q3})-ordering σ

of NB1(v0)∪ {v1} in B+
1 ∪B2 (recall that (B+

1 ∪B2, v0, u1, v2, w1) is planar).
Then Algorithm Numbering g extends gi to σ from u1.

1054 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Let u, v ∈ Di − Di−1, with g(u) < g(v). Then both u and v are in the
sequence σ, and u precedes v in σ.

Let us consider first the case when u �= v1 and v �= v1. Thus, u, v ∈
NB1(v0). Since σ is (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordered and u precedes

v in σ, T 1
u1

[u1, u] and T 1
w1

[w1, v] are disjoint. By construction (Case 3 of
Algorithm Trees), T1[u1, u] = T 1

u1
[u1, u] and T2[w1, v] = T 1

w1
[w1, v]. By the

induction hypothesis, T1[r, u1] and T2[r, w1] are internally disjoint paths in
Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

Now suppose that u = v1. Since σ is (T 1
u1

+ {v1, v1q1}, T 1
w1

+ {v1, v1q3})-
ordered and u precedes v in σ, T 1

u1
[u1, q1] + {v1, v1q1} and T 1

w1
[w1, v] are dis-

joint. By construction (Case 3 of Algorithm Trees), T1[u1, v1] = T 1
u1

[u1, q1] +
{v1, v1q1} and T2[w1, v] = T 1

w1
[w1, v]. By the induction hypothesis, T1[r, u1]

and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and
T2[r, v] are internally disjoint paths in Gi.

So assume v = v1. Since σ is (T 1
u1

+ {v1, v1q1}, T 1
w1

+ {v1, v1q3})-ordered
and u precedes v in σ, T 1

u1
[u1, u] and T 1

w1
[w1, q3] + {v1, v1q3} are disjoint.

By construction (Case 3 of Algorithm Trees), T1[u1, u] = T 1
u1

[u1, u] and
T2[w1, v1] = T 1

w1
[w1, q3] + {v1, v1q3}. By the induction hypothesis, T1[r, u1]

and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and
T2[r, v] are internally disjoint paths in Gi.

• If v1 has a neighbor in V (Gi−1), then Algorithm Numbering g chooses a vertex
x ∈ (NG(v1) ∩ V (Gi−1)) with gi(x) minimum and computes a (T 1

u1
, T 1

w1
)-

ordering σ of NB+
1
(v0) − {u1, w1}.

Let u, v ∈ Di −Di−1, with g(u) < g(v).
Let us consider first the case when u �= v1 and v �= v1. Then both u and v

are in σ, and u precedes v in σ. Since σ is (T 1
u1
, T 1

w1
)-ordered and u precedes

v in σ, T 1
u1

[u1, u] and T 1
w1

[w1, v] are disjoint. By construction (Case 3 of
Algorithm Trees), T1[u1, u] = T 1

u1
[u1, u] and T2[w1, v] = T 1

w1
[w1, v]. By the

induction hypothesis, T1[r, u1] and T2[r, w1] are internally disjoint paths in
Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

Now suppose that u = v1. Thus, v is in the sequence σ. Recall how
Algorithm Numbering g extends gi in Subcase 3.2 of Algorithm Numbering g.

If g(x) > g(u1), then gi(x) > gi(u1), and Algorithm Numbering g ex-
tends gi to σ, v1 from u1. But then g(v) < g(v1) = g(u), contradicting the
assumption that g(u) < g(v).

If g(x) ≤ g(u1), then gi(x) ≤ gi(u1), and Algorithm Numbering g extends
gi to v1, σ from x. By construction (Subcase 3.2 of Algorithm Trees with
j = 1), xv1 ∈ E(T1) and T2[w1, v] = T 1

w1
[w1, v]. Since g(x) < g(w1), by

the induction hypothesis, T1[r, x] and T2[r, w1] are internally disjoint paths
in Gi−1. Therefore, T1[r, v1] and T2[r, v] are internally disjoint paths in Gi.

The case v = v1 can be treated analogously (g(x) ≤ g(u1) cannot occur).

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.

In this case, Di −Di−1 = NB1(v0) ∪NBk
(vk). Let u, v ∈ Di −Di−1 with g(u) <

g(v).

Let us consider first the case when u, v ∈ NB1(v0). Thus, B1 is 2-connected, and
Algorithm Numbering g (Subcase 3.3) computes a (T 1

u1
, T 1

w1
)-ordering σ of NB+

1
(v0)−

{u1, w1} = NB1
(v0) and extends gi to σ from u1. Thus, g(u1) < g(u) < g(v).

Since σ is (T 1
u1
, T 1

w1
)-ordered and u precedes v in σ, T 1

u1
[u1, u] and T 1

w1
[w1, v] are

disjoint. By construction (Case 3 of Algorithm trees), T1[u1, u] = T 1
u1

[u1, u] and

FINDING FOUR INDEPENDENT TREES 1055

T2[w1, v] = T 1
w1

[w1, v]. Since g(u1) < g(w1) and by the induction hypothesis, T1[r, u1]
and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

Suppose, now, that u, v ∈ NBk
(vk). Then Bk is 2-connected, and Algorithm

Numbering g (Subcase 3.3) computes a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk)− {uk, wk} =

NBk
(vk) and extends gi to σ from uk. Thus, g(uk) < g(u) < g(v). Since σ is

(T k
uk
, T k

wk
)-ordered and u precedes v in σ, T k

uk
[uk, u] and T k

wk
[wk, v] are disjoint. By

construction (Case 3 of Algorithm Trees), T1[uk, u] = T k
uk

[uk, u] and T2[wk, v] =

T k
wk

[wk, v]. Since g(uk) < g(wk) and by the induction hypothesis, T1[r, uk] and
T2[r, wk] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

So we may assume that u ∈ NB1(v0) and v ∈ NBk
(vk), or u ∈ NBk

(vk) and
v ∈ NB1(v0). By symmetry, assume that u ∈ NB1(v0) and v ∈ NBk

(vk). We will prove
that there exist vertices z1, z2 ∈ V (Gi−1), with g(z1) < g(z2), such that T1[z1, u] and
T2[z2, v] are internally disjoint paths in G, V (T1[z1, u]−z1) ⊆ I(Hi), and V (T2[z2, v]−
z2) ⊆ I(Hi).

Consider the following cases for u and B1.
• B1 is 2-connected. Then, by construction in Algorithm Trees, T1[u1, u] =
T 1
u1

[u1, u], and let z1 := u1.
• B1 is trivial. Thus, u = v1. If B2 is trivial, then by construction in Subcase 3.1

of Algorithm Trees (with j = 1), there exists a neighbor p1 of v1 in V (Gi−1)
such that g(p1) is minimum and p1v1 ∈ E(T1). In this case, let z1 := p1.
So assume that B2 is 2-connected.

– If v1 has no neighbor in V (Gi−1), then by construction in Subcase 3.3
(with j = 1) of Algorithm Trees, there exists a neighbor p1 of v1 in B2

such that T1[u2, v1] = T 2
u2

[u2, p1] + {v1, v1p1}. In this case, let z1 := u2.
– If v1 has a neighbor in V (Gi−1), then Algorithm Trees in Subcase 3.3

(with j = 1) chooses x ∈ NG(v1) ∩ V (Gi−1) with g(x) minimum. If
g(x) > g(u2), then by construction there exists a neighbor p1 of v1 in B2

such that T1[u2, v1] = T 2
u2

[u2, p1] + {v1, v1p1}. In this case, let z1 := u2.
If g(x) ≤ g(u2), then xv1 ∈ E(T1). In this case, let z1 := x.

Consider the analogous cases for v and Bk.
• Bk is 2-connected. Then by construction in Algorithm Trees, T2[wk, v] =

T k
wk

[wk, v], and let z2 := wk.
• Bk is trivial. Thus, v = vk−1. If Bk−1 is trivial, then by construction in

Subcase 3.1 of Algorithm Trees (with j = k − 1), there exists a neighbor p2

of vk−1 in V (Gi−1) such that g(p2) is not minimum and p2vk−1 ∈ E(T2). In
this case, let z2 := p2.
So assume that Bk−1 is 2-connected.

– If vk−1 has no neighbor in V (Gi−1), then by construction in Subcase 3.2
(with j = k − 1) of Algorithm Trees, there exists a neighbor p2 of vk−1

in Bk−1 such that T2[wk−1, vk−1] = T k−1
wk−1

[wk−1, p2] + {vk−1, vk−1p2}.
In this case, let z2 := wk−1.

– If vk−1 has a neighbor in V (Gi−1), then Algorithm Trees in Subcase 3.2
chooses x ∈ NG(vk−1)∩V (Gi−1) with g(x) minimum. If g(x) > g(uk−1),
then xvk−1 ∈ E(T2). In this case, let z2 := x. If g(x) ≤ g(uk−1),
then by construction there exists a neighbor p2 of vk−1 in Bk−1 such
that T2[wk−1, vk−1] = T k−1

wk−1
[wk−1, p2]+{vk−1, vk−1p2}. In this case, let

z2 := wk−1 (this is the same as in the previous paragraph).

1056 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

So T1[z1, u] either is contained in B+
1 , or is contained in B+

2 , or is induced by a
single edge. Hence, g(z1) < g(u). Similarly, T2[z2, v] either is contained in B+

k , or is
contained in B+

k−1, or is induced by a single edge. So g(v) < g(z2). Since g(u) < g(v),
g(z1) < g(z2).

Note that if k = 3, B2 is 2-connected, and both paths T1[z1, u] and T2[z2, v] are
contained in B+

2 , then u = v1, v = v2 = vk−1, T1[u2, u] = T 2
u2

[u2, p1] + {v1, v1p1}
for some neighbor p1 of v1 in B2, and T2[w2, v] = T 2

w2
[w2, p2] + {v2, v2p2} for some

neighbor p2 of v2 in B2. In this case, since u, v are (T 2
u2
, T 2

w2
)-ordered, T1[u2, u] and

T2[w2, v] are disjoint.

Therefore, since k ≥ 3, it is not hard to see that T1[z1, u] and T2[z2, v] are disjoint
paths in G, V (T1[z1, u] − z1) ⊆ I(Hi), and V (T2[z2, v] − z2) ⊂ I(Hi).

Since g(z1) < g(z2), by the induction hypothesis, T1[r, z1] and T2[r, z2] are in-
ternally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint
paths in Gi.

Case 4. Hi is a triangle Gi−1-chain in G.

By Algorithm Numbering g, Di −Di−1 = {v1, v2, v3} and g(v1) < g(v2) < g(v3).
Thus, it suffices to show that the following pairs are internally disjoint: T1[r, v1]
and T2[r, v2], T1[r, v2] and T2[r, v3], and T1[r, v1] and T2[r, v3]. This can be done by
inspecting Case 4 of Algorithm Trees.

Recall that Algorithm Numbering f with input C := (H1, . . . , Ht) computes a
numbering f and sets D′

t+1, D
′
t, D

′
t−1, . . . , D

′
2. The next lemma can be proved, anal-

ogously to Lemma 6.12. We give only some detail for Case 4, as f and g are not
symmetric in that case.

Lemma 6.13. Let i ∈ {1, . . . , t}. Then for any u, v ∈ D′
i with f(u) < f(v),

T3[r, u] and T4[r, v] are internally disjoint paths in Ḡi.

Proof. We use the notation in the proof of Lemma 6.12 and assume Hi is a triangle
Gi−1-chain in G. By inspecting Case 4 of Algorithm Numbering f and Algorithm
Trees, we have the following.

• If f(y1) < f(y2) and f(y1) < f(y3), then f(v1) < f(v2) < f(v3). So we can
show that T3[r, v1] and T4[r, v2] are internally disjoint, T3[r, v1] and T4[r, v3]
are internally disjoint, and T3[r, v2] and T4[r, v3] are internally disjoint.

• If f(y2) < f(y1) and f(y2) < f(y3), then f(v2) < f(v1) < f(v3). So we can
show that T3[r, v2] and T4[r, v1] are internally disjoint, T3[r, v2] and T4[r, v3]
are internally disjoint, and T3[r, v1] and T4[r, v3] are internally disjoint.

• If f(y3) < f(y1) < f(y2), then f(v3) < f(v1) < f(v2). So we can show
that T3[r, v3] and T4[r, v1] are internally disjoint, T3[r, v3] and T4[r, v2] are
internally disjoint, and T3[r, v1] and T4[r, v2] are internally disjoint.

• If f(y3) < f(y2) < f(y1), then f(v3) < f(v2) < f(v1). So we can show
that T3[r, v3] and T4[r, v2] are internally disjoint, T3[r, v3] and T4[r, v1] are
internally disjoint, and T3[r, v2] and T4[r, v1] are internally disjoint.

Theorem 6.14. Given a 4-connected graph G, r ∈ V (G), and a nonseparating
chain decomposition C := (H1, . . . , Ht) of G rooted at r, Algorithm Trees computes
four independent spanning trees rooted at r.

Proof. By Corollary 6.10, T1, T2, T3, T4 are spanning trees of G. Let us prove
that they are independent with r as root. Let v ∈ V (G) − {r}. Suppose that v is
an internal vertex of a good chain Hi in the decomposition C. By Lemma 6.11 there
exist z1, z2, z3, z4 ∈ V (G) such that

(i) z1, z2 ∈ V (Gi−1), and either g(z1) < g(z2) or z1 = z2 = r,
(ii) z3, z4 ∈ V (Ḡi), and either f(z3) < f(z4) or z3 = z4 = r, and

FINDING FOUR INDEPENDENT TREES 1057

(iii) Ti[zi, v], i = 1, 2, 3, 4, are internally disjoint paths and V (Ti[zi, v] − zi) ⊆
I(Hi).

By Lemma 6.12, if g(z1) < g(z2), then T1[r, z1] and T2[r, z2] are internally disjoint
paths in Gi−1. Obviously, the same holds if z1 = z2 = r. Similarly, by Lemma 6.13,
if f(z3) < f(z4), then T3[r, z3] and T4[r, z4] are internally disjoint paths in Ḡi, and
the same holds if z3 = z4 = r. Therefore, T1[r, v], T2[r, v], T3[r, v], and T4[r, v] are
internally disjoint. Hence, T1, T2, T3, and T4 are independent spanning trees of G
rooted at r.

Lemma 6.15. Algorithm Trees runs in O(|V (G)|3) time.

Proof. By Lemmas 4.6 and 4.7, given C we can compute numberings g and f in
O(|V (G)|3) time. By Theorem 3.2 we can compute independent spanning systems for
all planar sections in C in O(|V (G)| + |E(G)|) time.

We will show that at each iteration the time spent by Algorithm Trees is O(|V (G)|2)
time. Since the number of iterations is at most |V (G)|, this implies the result.

Suppose we are at iteration i of Algorithm Trees.

One can see easily that if Case 1 or Case 4 occurs, then Algorithm Trees uses
constant time. Thus, we may assume that Case 2 or Case 3 occurs.

Suppose that Case 2 occurs. The initial updating of T1, T2, T3, T4 (before Subcases
2.1–2.4 are dealt with) can be done in O(|V (G)|) time. Then for each j ∈ {1, . . . , k}
the algorithm inserts vj into the subgraphs T1, T2, T3, T4 according to Subcases 2.1–
2.4. One can see that Subcase 2.1 can be executed in O(1) time. In the other cases,
the algorithm has to solve one of the following problems (at most twice).

(1) Given a planar graph (B, v′, u, v, w) and an independent spanning {v′, u, v, w}-
system {Tv′ , Tu, Tv, Tw} of B (with Tv′ , Tu, Tv, Tw rooted, respectively, at
v′, u, v, w), find three neighbors p1, p2, p3 of v in B such that Tv′ [v′, p1], Tu[u, p2],
and Tw[w, p3] are disjoint.

(2) Given a planar graph (B, v′, u, v, w) and an independent spanning {v′, u, v, w}-
system {Tv′ , Tu, Tv, Tw} of B (with Tv′ , Tu, Tv, Tw rooted, respectively, at
v′, u, v, w), find two neighbors p1, p2 of v in B such that Tv′ [v′, p1] and Tu[u, p2]
are disjoint.

By Lemmas 3.6 and 3.7, both problems can be solved in O(|V (B)|) time. Thus, it is
not hard so see that the time spent by Algorithm Trees in Case 2 is O(|V (G)|2).

Case 3 is analogous to Case 2, and by an argument similar to the last paragraph,
one can show that Algorithm Trees uses O(|V (G)|2) time in this case as well.

Now we are almost ready to prove Theorem 1.1, except that if we apply Theo-
rem 2.8 directly to a 4-connected graph G to find a nonseparating chain decomposition
of G, we spend O(|V (G)|2|E(G)|) time. We can obtain an O(|V (G)|3) algorithm by
using the following result of Ibaraki and Nagamochi [10].

Theorem 6.16. Let G be a k-connected graph for some integer k ≥ 1. Then
one can find in O(|V (G)| + |E(G)|) time a spanning k-connected subgraph of G with
O(|V (G)|) edges.

Proof of Theorem 1.1. Let G be a 4-connected graph, and let r ∈ V (G). Apply
Theorem 6.16 to G, and let G′ be the resulting spanning 4-connected subgraph of G.

Applying Theorem 2.8 to G′, we can find a nonseparating chain decomposition C
of G′ in O(|V (G′)|3) time (and hence in O(|V (G)|3) time).

Finally, apply Theorem 6.14 to G, C and find four independent spanning trees
T1, T2, T3, T4 of G′ rooted at r. By Lemma 6.15, this is done in O(|V (G′)|3) time, and
hence in O(|V (G)|3) time. Clearly, T1, T2, T3, T4 are independent spanning trees of G
rooted at r.

1058 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Acknowledgment. We thank an anonymous referee for correcting our mistakes
and bringing references [6] and [14] to our attention.

REFERENCES

[1] J. Cheriyan and S. N. Maheshwari, Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507–537.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and S. Clifford, Introduction to Algo-
rithms, 2nd ed., McGraw–Hill, Boston, MA, 2001.

[3] S. Curran, Independent Trees in 4-Connected Graphs, Ph.D. thesis, Georgia Institute of
Technology, Atlanta, GA, 2003.

[4] S. Curran, O. Lee, and X. Yu, Chain decomposition of 4-connected graphs, SIAM J.
Discrete Math., 19 (2005), pp. 848–880.

[5] D. Dolev, J. Y Halpern, B. Simons, and R. Strong, A new look at fault tolerant network
routing, in Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
1984, pp. 526–535.

[6] A. Frank, Connectivity and network flows, in Handbook of Combinatorics 1, R. L. Graham,
M. Grötschel, and L. Lovász, eds., Elsevier, Amsterdam, 1995, pp. 111–177.

[7] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach.,
21 (1974), pp. 549–568.

[8] W.-L. Hsu and W.-K. Shih, A new planarity test, Theoret. Comput. Sci., 223 (1999), pp.
179–191.

[9] A. Huck, Independent trees in graphs, Graphs Combin., 10 (1994), pp. 29–45.
[10] T. Ibaraki and H. Nagamochi, A linear-time algorithm for finding a sparse k-connected

spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.
[11] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, in

Proceedings of the 25th Annual IEEE Symposium on the Foundations of Computer
Science, 1984, pp. 137–147.

[12] A. Itai and A. Zehavi, Three tree-paths, J. Graph Theory, 13 (1989), pp. 175–188.
[13] K. Miura, S. Nakano, T. Nishizeki, and D. Takahashi, A linear-time algorithm to find

four independent spanning trees in four connected planar graphs, Internat. J. Found.
Comput. Sci., 10 (1999), pp. 195–210.

[14] A. Schrijver, Problem 32, in Combinatorial Optimization Volume C, Springer-Verlag,
Berlin, 2003, pp. 1456–1457.

