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Abstract. Motivated by a multitree approach to the design of reliable communication protocols,
Itai and Rodeh gave a linear time algorithm for finding two independent spanning trees in a 2-
connected graph. Cheriyan and Maheshwari gave an O(|V'|?) algorithm for finding three independent
spanning trees in a 3-connected graph. In this paper we present an O(|V|?) algorithm for finding
four independent spanning trees in a 4-connected graph. We make use of chain decompositions of
4-connected graphs.
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1. Introduction. We consider simple graphs only. For a graph G, we use V(G)
and E(G) to denote the vertex set and edge set of G, respectively.

For a tree T and x,y € V(T), let T'[x, y] denote the unique path from = to y in 7.
A rooted tree is a tree with a specified vertex called the root of T. Let G be a graph,
let r € V(G), and let T and T” be trees of G rooted at r. We say that T and 7" are
independent if for every x € V(T) NV (T"), the paths T[r, z], T'[r, z] have no vertex
in common except r and .

The study of independent spanning trees started with Itai and Rodeh [11], where
they proposed a multitree approach to reliability in distributed networks (see also [5]).
They developed a linear time algorithm that, given any vertex r in a 2-connected
graph G, finds two independent spanning trees of G rooted at r. Later, Cheriyan
and Maheshwari [1] proved that for any vertex r in a 3-connected graph G, there
exist three independent spanning trees of G rooted at r. Furthermore, they gave an
O(|V(G)|?) algorithm for finding these trees.

Itai and Zehavi [12] also proved that every 3-connected graph contains three
independent spanning trees (rooted at any vertex), and they conjectured that for any
k-connected graph G and for any r € V(G), there exist k independent spanning trees
of G rooted at r. According to Schrijver [14], the Itai-Zehavi conjecture is part of
a more general conjecture by Frank [6]. Huck [9] proved this conjecture for planar
4-connected graphs. Later, Miura et al. [13] gave a linear time algorithm for finding
four independent rooted spanning trees in a planar 4-connected graph.

Our main result is the following.
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THEOREM 1.1. Let G be a 4-connected graph, and let r € V(G). Then there exist
four independent spanning trees of G rooted at r. Moreover, such trees can be found
in O(|[V(G)|?) time.

To provide motivation for our method, we first describe Itai and Rodeh’s method
for constructing two independent spanning trees rooted at a vertex r in a 2-connected
graph. Let G be a 2-connected graph, and let r and ¢ be two adjacent vertices of G.
An r-t numbering is a function g : V(G) — {1,...,n} with n > |V(G)| satisfying the
following properties:

(i) g(r) =1 and g(t) = n.

(ii) Every vertex v € V(G) — {r,t} has a neighbor u with g(u) < g(v) and a

neighbor w with g(w) > g(v).

An r-t numbering can be produced from an ear decomposition of G. From an r-t
numbering ¢, Itai and Rodeh define two independent spanning trees T and T of G
rooted at r as follows. For each vertex v € V(G) — {r}, specify its parent in each
tree. In tree T3, for each v € V(G) — {r}, the parent of v is a neighbor u for which
g(u) < g(v). In tree T, the parent of ¢ is r and, for each v € V/(G) —{r,t}, the parent
of v is a neighbor w for which g(w) > g(u). It is not hard to show that T and T are
independent spanning trees in G rooted at r.

The idea for constructing four independent spanning trees in a 4-connected graph
is inspired by the 2-connected case. The main difference is that we need to use two
numberings instead of one. This idea can be roughly described as follows. Let G be
a 4-connected graph, and let r € V(G). First, we compute a decomposition of G into
“planar chains,” a generalization of ear decomposition, which we describe in section 2.
From this decomposition, we find two numberings g and f. We then construct these
trees from these numberings.

The main difficulty with this idea lies in the fact that it is not possible to num-
ber all vertices of G, because the “chains” in our decomposition need not be paths.
Fortunately, the nonpath part of the chains are planar, and we can compute four
independent spanning trees in each one of these planar parts using the algorithm of
Miura et al. [13] mentioned above. These trees are then used to number every vertex
in the planar parts that has neighbors outside its chain. Once these numberings are
computed, we can construct four independent spanning trees.

The rest of this paper is organized as follows. The remainder of this section is
devoted to notation and terminology. In section 2 we describe chain decomposition of
a graph and state the main decomposition result from [4] (also see [3]). In section 3
we describe known results for the planar case and give some auxiliary lemmas. In
section 4 we give algorithms for constructing the required numberings. In section 5
we describe an algorithm for constructing four independent spanning trees in a 4-
connected graph, and we prove its correctness in section 6.

Throughout this paper, we use A := B to rename B as A or to define A as B.
We use the notation zy (or yz) to represent an edge with ends x and y. Let G be
a graph. For any S C V(G), let G[S] denote the subgraph of G with V(G[S]) = S
and E(G[S]) consisting of the edges of G with both ends in S; we say that G[S] is
the subgraph of G induced by S. Let G — S := G[V(G) — S]. A subgraph H of G
is an induced subgraph of G if G[V(H)] = H. We also say that H is induced in G.
For any H C G and S C V(G) U E(G), H + S denotes the graph with vertex set
V(H)U(SNV(G)) and edge set E(H)U {uv € S : {u,v} CV(H)U(SNV(G))}.

A graph G is k-connected, where k is a positive integer, if |V(G)| > k + 1 and,
for any S C V(G) with |S| < k-1, G — S is connected. A subgraph H of G is
nonseparating in G if G — V(H) is connected.
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Fic. 1. Example of a chain.

Let G be a graph. For S C V(G), let Ng(S) :={z € V(G) — S : zy € E(G) for
some y € S}. For a subgraph H of G, let Ng(H) := Ng(V(H)). When S = {z},
we let Ng(z) := Ng({z}). When there exists no ambiguity, we may simply use
N(S),N(H), and N(x), instead of Ng(S), N¢(H), and Ng(z), respectively.

We describe a path in G as a sequence P = (v1,vg,...,v;) of distinct vertices of
G such that v;v,41 € E(G), 1 < i < k — 1. The vertices v; and vy are called the
ends of the path P, and the vertices in V(P) —{v1, v} are called the internal vertices
of P. For 1 < i < j <k, let Plv,v;] := (v;,...,v05), and for 1 < i < j < k, let
P(v;,v;) := Plvi41,vj-1]. For A, B C V(G), we say that a path P is an A-B path if
one end of P is in A, the other end is in B, and no internal vertex of P is in AU B.
If P is a path with ends a and b, we say that P is a path from a to b, or P is an a-b
path. Two paths P and Q are disjoint if V(P) NV (Q) = 0. Two paths are internally
disjoint if no internal vertex of one path is contained in the other. Given a path P in
G and a set S C V(G) (respectively, a subgraph S of G), we say that P is internally
disjoint from S if no internal vertex of P is contained in S (respectively, V(S)). We
also describe a cycle in G as a sequence C' = (v, va, ..., v, v1) such that the vertices
v1,. .., U are distinct, v;v;41 € E(G), for 1 <i <k —1, and vgv; € E(G).

2. Chain decomposition. In order to prove Theorem 1.1, we rely on the ex-
istence of a nonseparating chain decomposition of a 4-connected graph, proved in [4]
(also see [3]). Such a decomposition is similar to an ear decomposition. An ear de-
composition of a graph G is a sequence (P, Py, ..., P;) such that (i) Py is a cycle in
G, (ii) Py,..., P, are paths in G, (iii) UE:O P, = G, and (iv) for each 0 < ¢ <t —1,
G; = U;:o P;j is 2-connected and P11 N G; consists of the ends of Pi4q. In a non-
separating chain decomposition, the P;’s will be chains and cycle chains, which may
be thought of as a generalization of paths and cycles.

DEFINITION 2.1. A connected graph H is a chain if its blocks can be labeled as
Bi,..., By, where k > 1 is an integer, and its cut vertices can be labeled as vy, ..., vik_1
such that

(i) V(B;)NV(Bit1) ={vi} for 1 <i<k-—1, and

(i) V(B)NV(By)=0if|i—j|>2and 1 <i,j <k.

We let H := Byv1Bavs ... vk_1 By denote this situation. If k > 2, let vo € V(By) —
{v1} and v, € V(By) — {vk_1}, or, if k =1, let vo, v, € V(B1) with vo # vg; then
we say that H is a vg-vi chain, and we denote this by H := vgB1vy ... vp_1Brv. We
usually fix vo and vg, and we refer to them as the ends of H;. See Figure 1 for an
example with k = 5.

DEFINITION 2.2. A connected graph H is a cyclic chain if for some integer k > 2,

there exist subgraphs B, ..., By of H and vertices v1,...,vx of H such that
(i) for 1 <i <k, B; is 2-connected or B; is induced by an edge of H,
(i) V(H) = UL, V(By) and B(H) = U}, E(By),

(111) ka = 2, then V(Bl) N V(BQ) = {1)171)2} and E(Bl) N E(BQ) = @, and

(iv) if k > 3, then V(B;) N V(Biy1) = {v;} for 1 <i <k, where By1 := By,
and V(B)NV(Bj) =0 for1 <i<i+2<j<kand (i,j) # (1, k).
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Fic. 3. A planar chain H := vgB1v1 Bava Bsvs Bqvy Bsvs in a graph G.

For notational convenience, we usually fix one of the vertices vy, ...,vg as the root of
H, say v, and write H := vgByvy ... vp_1Brvui to indicate that H is a cyclic chain
rooted at vy (= vi). Each subgraph B; is called a piece of H. We sometimes write
I(H) :=V(H). See Figure 2 for an example with k = 6.

In the chain decompositions we will work with, the blocks and pieces have a
planar structure. Let G be a graph with distinct vertices a, b, ¢, and d. We say that
the quintuple (G, a,b,c,d) is planar if G can be drawn in a closed disc in the plane
with no pair of edges crossing such that a, b, ¢, d occur in cyclic order on the boundary
of the disc. For a graph G and z,y € V(G), we use G — xy to denote the graph with
vertex set V(G) and edge set E(G) — {xy} (note that xy need not be an edge of G).

DEFINITION 2.3. Let G be a graph, and let H := vgBjvy ... vp_1 Byvg be a chain
(respectively, cyclic chain). If H is an induced subgraph of G, then we say that H is a
chain in G (respectively, cyclic chain in G). We say that H is planar in G if, for each
1 <i <k with |V(B;)| > 3 (or equivalently, B; is 2-connected), there exist distinct
vertices x;,y; € V(G) — V(H) such that (G[V(B;) U {xi, yi}] — iV, Tiy Vie1, Yi, Vi) 1S
planar, and B; — {v;_1,v;} is a component of G — {x;,y;, vi—1,v;}. We also say that
H is a planar vp-vy chain (respectively, planar cyclic chain). See Figure 3 for two
drawings of an example with k = 5. The dashed edges may or may not exist, but they
are not part of H.
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F1G. 4. (a) An up F-chain, (b) a down F'-chain, (c) an elementary F-chain, and (d) a triangle
F-chain. The dashed edges need not exist.

We can now describe the chains in nonseparating chain decompositions. See
Figure 4 for illustrations.

DEFINITION 2.4. Let G be a graph, let F' be a subgraph of G, and let r € V(F).
Let H be a planar xz-y chain in G such that V(H) — {z,y} CV(G) — V(F). We say
that

(i) H is an up F-chain if {z,y} C V(F) and Ng(H —{z,y}) C (V(G) -V (F —
) U {z,y},
(ii) H is a down F-chain if {z,y} C V(G) — V(F —r) and Ng(H — {z,y}) C
V(F —r)U{z,y}, and
(iil) H is an elementary F-chain if {x,y} C V(F) and H is an x-y path of length
two.
In any of the three cases we say that H is a planar x-y F-chain in G (or simply a
planar F-chain). Let I(H) :=V(H) — {x,y}.

DEFINITION 2.5. Let G be a graph, let F be a subgraph of G, and let r € V(F).
Suppose that {vy,va,v3} C V(G) — V(F) induces a triangle T in G and, for each
1 < i < 3, v; has exactly one neighbor x; in V(F —r) and exactly one neighbor
yi in V(G) — (V(F)UV(T)), and each v; has degree four in G. Moreover, assume
that x1, 2,3 are distinct and y1,y2,ys are distinct. Then we say that H == T +
{1, 22, 3, V171, V22, V323 } is a triangle F-chain in G. We let I(H) := {v1,v2,v3}.
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Note that Definitions 2.4 and 2.5 depend on the choice of r and F, but in spite
of this, whenever we use these concepts in this paper, it should be clear which pair
r, F' we refer to.

DEFINITION 2.6. Let G be a graph, let F be a subgraph of G, and let r € V(F).
By a good F-chain in G, we mean an up F-chain or a down F-chain, or an elementary
F-chain or a triangle F-chain.

We are now ready to describe a chain decomposition, which is similar to an ear
decomposition.

DEFINITION 2.7. Let G be a graph, let r € V(G), and let Hy,...,H; be chains
in G, where t > 2. We say that (Hy, ..., H;) is a nonseparating chain decomposition
of G rooted at r if the following conditions hold:

(i) Hy is a planar cyclic chain in G rooted at r.
(ii) For eachi=2,. —1, H; is a good G[U;;ll I(H;)]-chain in G.

(i) Hy =G — (U; 11[(Hj) —{r}) is a planar cyclic chain in G rooted at r.

(iv) For eachi=1,. — 1, both G[Uj_, I(H;)] and G — (U=, I(Hj)) —{r})

are 2- connected,
The chains Hs, ..., Hi_1 are called internal chains of the nonseparating chain decom-
position. If ra is a piece of Hyi, then we say that Hy, ..., Hy is a nonseparating chain
decomposition of G starting at ra.

The following result is proved in [4] (also see [3]).

THEOREM 2.8. Let G be a 4-connected graph, let r € V(G), and let ra € E(G).
Then G has a nonseparating chain decomposition rooted at r and starting at ra, and
such a decomposition can be found in O(|V(G)|*|E(G)|) time.

The basic idea for constructing four independent spanning trees (rooted at r) can
be described as follows. By Theorem 2.8, G' has a nonseparating chain decomposition
(Hy,...,H;) rooted at r. For 1 <i <¢, let G; := G[U;Zl I(H;)]. We compute two
numberings g, f defined on V(G) which resemble r-¢ numberings. From g we compute

two independent spanning trees 77,75 such that for each ¢ = 1,... ¢, the restriction
of T and T5 to G; are independent spanning trees in G; rooted at r. Similarly, from
f we compute two spanning trees T3, 7T, such that for each ¢ = 1,... ¢, the restriction

of T5 and Ty to G — (V(G; — r)) are independent spanning trees rooted at r.

3. Planar graphs. Let G be a 4-connected graph, and let r € V(G). To use a
nonseparating chain decomposition of G for constructing four independent spanning
trees rooted at r, we must be able to find four independent spanning trees in the
planar blocks and pieces. Unlike the original problem, these trees are not rooted at
the same vertex, but they are rooted at four distinct vertices. Before we describe this
result, we introduce some definitions.

DEFINITION 3.1. Let T and T’ be two trees in a graph G with roots r and ',
respectively. We say that T and T’ are independent if, for each x € V(T) NV (T"),
the paths T|r,x] and T'[r', z] have no vertex in common except x (and r if r =1').

Let G be a graph, and let S := {t1,...,t4} be a set of vertices of G. A 4-tuple
T :={Th,...,Ts} is an S-system of G if, for 1 <i <4, T; is a tree of G rooted at
t;, V(T;) CV(G) = (S = {t:}), and t; € V(T;). An S-system T = {T1,..., Ty} is
independent if the trees in the system are pairwise independent, and an S-system T
is spanning if V(T;) = V(G) — (S = {t;}) for 1 <i < 4. See Figure 5 for an example,
where the darkened edges are in the trees.

Let G be a graph, let S C V(G), and let k be a positive integer. We say that G
is (k, S)-connected if |V(G)| > |S| + 1, G is connected, and for any T C V(G) with
|T| <k — 1, every component of G — T contains an element of S.
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Fic. 5. Four independent trees in a plane graph forming an independent spanning system.

THEOREM 3.2. Let (G,a,b,c,d) be a planar graph, and suppose that G is
(4,{a, b, c,d})-connected. Then there exists an independent spanning {a, b, ¢, d}-system
of G. Moreover, one can find such a system in linear time.

The existence of an independent system in Theorem 3.2 was proved by Huck [9].
Huck’s proof is not based on a decomposition of a planar graph, but through a careful
analysis of his proof, one can extract an O(|V(G)|3) algorithm. Miura et al. [13] gave
a linear algorithm for finding such a system based on a decomposition of 4-connected
planar graphs. In fact, the decomposition they obtained can be viewed as a special
case of a nonseparating chain decomposition.

Before we proceed, let us recall that the problem of finding an embedding of a
planar graph can be solved in linear time [7, 8]. Moreover, the following problem
can be solved in linear time: find a drawing of a planar quintuple (G, a,b,¢,d) in a
closed disc in the plane with no pair of edges crossing such that a, b, ¢, d occur in cyclic
order on the boundary of the disc. We make no further mention of this fact, but it is
implicitly used throughout this section.

In what follows we will use Theorem 3.2 to prove some results concerning “order-
ings” of certain vertices of a planar graph (G, a,b, ¢,d). These results correspond to
Lemmas 3.4, 3.5, 3.6, and 3.7. They will be used in the next section to compute two
numberings of subsets of V(G).

DEFINITION 3.3. Let (G,a,b,c,d) be a planar graph, and let {T,, Ty, Te, Tq} be
an independent spanning {a,b,c,d}-system of G, where T, is rooted at v for each
v € {a,b,e,d}. Let U C (N, (b) U Ng(d)) — {a,c}. We say that a permutation
u1,...,up of the elements of U is a (Ta,T;)-ordering of U if, for i,j € {1,...,p}
with © < j, Tola,u;| and T,[c,u;] are (vertex) disjoint. We also say that uy,. .., up is
(T,,T.)-ordered.

Our first lemma concerns (T,,T.)-orderings restricted to elements in Ng(b) —
{a,c}. In this case, this ordering corresponds to a total order.

LEMMA 3.4. Let (G,a,b,c,d) be a planar graph, and let {Ty, Ty, Te, T4} be an
independent spanning {a,b,c,d}-system of G, where T, is rooted at v for each v €
{a,b,c,d}. Then there exists a unique (T,,T.)-ordering of N (b) — {a,c}. Moreover,
such an ordering can be found in O(|V(G)|) time.
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FiG. 6. u1,...,up is the unique (Tq,Tc)-ordering of Ng(b) — {a,c}.

Proof. Let G’ := G — {ab,bc}. If b has at most one neighbor in G’, then the
result follows immediately. So assume b has at least two neighbors in G’. Take an
embedding of G’ in a closed disc such that a,b,c,d occur in clockwise order on the
boundary of the disc (such an embedding for G' can be computed in linear time).
Let u1,...,up (p > 2) denote the neighbors of b in G’ in that cyclic order around b
such that a,u1,b,u,,c,d occur in clockwise order on the boundary of the disc (see
Figure 6). Since T,, T, are independent, we have that for each ¢ € {1,...,p}, T,[a, u;]
and T¢[e,u;] are internally disjoint. Then by planarity one can see that, for every
i,j € {1,...,p} with i # j, Ty[a,u;] and Ti[c,u;] are disjoint if and only if ¢ < j.
Thus, u1,...,u, is the unique (T,,T,)-ordering of Ng(b) — {a,c}. Clearly, such an
ordering can be computed in O(|V(G)|) time. a

In the next lemma we show that it is possible to extend a (T,,T.)-ordering of
Ng(b) — {a,c} and a (T,,T.)-ordering of Ng(d) — {a,c} to a (Ty,T.)-ordering of
(Ng(b) U Ne(d)) — {a, c}.

LEMMA 3.5. Let (G,a,b,c,d) be a planar graph, and let {Ty, Ty, Te, T4} be an
independent spanning {a,b,c,d}-system of G, where T, is rooted at v for each v €
{a,b,c,d}. Then there exists a (T, T.)-ordering of (Ng(b)UNg(d))—{a,c}. Moreover,
such an ordering can be found in O(|V(G)|?) time.

Proof. Take an embedding of G in a closed disc such that a,b,c,d occur in
clockwise order on the boundary of the disc. Consider the following relation. For
u,v € (Ng(b)UNg(d)) —{a, c}, we say that u < v if either one of the following holds:

(i) uw € Ng(b) and T,[a,u] N Te[e,v] = 0.

(i) w € Ng(d), Tyla, u] N T,[e,v] = 0, and T,[a,v] N Te[c, u] # 0.

See Figure 7 for an illustration of conditions (i) and (ii). The bold lines denote
the paths in T, and the dashed lines denote the paths in T,.. Next, we show that <
defines a total order on (Ng(b) U Ng(d)) — {a,c}.

First, we show that for any distinct z,y € (Ng(b) U Ng(d)) — {a,c}, either z <
y, or y < x, but not both. If 2,y € Ng(b) or z,y € Ng(d), then by planarity,
either Ty [a, z] N Te[c,y] = 0 and Tyla,y] N Tele,z] # O, or Tyla,z] N Tele,y] # O and
Tula,y) N Tele,z] = 0. So by (i) or (ii), either < y, or y < x, but not both. Thus,
we may assume that © € Ng(b) and y € Ng(d). If Tyla, 2] N Tele,y] = 0, then z,y
satisfy (i) (as u,v) but not (ii) (as v,u), and we have x < y and y £ z. So assume
Tola, z] NTelc,y] # 0. Then z,y does not satisfy (i) (as u,v), and hence, z £ y. Since
T, and T, are independent, Ty[a,y] and T.[c,y] are internally disjoint, and T,[a, x]
and T¢[c, z] are internally disjoint. By planarity, T,[a,y] N Te[c, 2] = . Therefore,
Yy <.
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condition (i) condition (ii)

Fic. 7. u < v and u < w.

It remains to show that < is transitive. Let x,y,z € (Ng(b) U Ng(d)) — {a,c},
and assume that x < y and y < z. We will show that z < z. We have eight cases by
considering which of x,y, z are in N¢(b).

(1)

(2)

(3)

x,y,z2 € Ng(b). Since z < y and y < z, it follows from (i) that T,[a,z] N
T.le,y] = 0 and T,[a,y] N Te[c, z] = 0. So by planarity, T,[a,z] N Te[c, 2] = 0,
and by (i), z < z.

z,y,2 € Ng(d). Since z < y and y < z, it follows from (ii) that T,[a,z] N
Tele,y] =0, Tola, y|NTelc, x] # 0, Tyla, y|NTelc, 2] = 0, and Ty [a, 2]NT:[c, y]

#. So by planarity, T,[a,z] N Te[c, 2] = @ and T,[a, z] N T.[c,z] # 0. By (ii),
T < z.

Y,z € Ng(b) and x € Ng(d). Since T, and T, are independent, P := Ty [a, y|U
Te[c,y] is an a-c path in G—{b, d}. Note that P divides the disc into two closed
regions, say B and D, with b in B and d in D. Since z < y and z € Ng(d),
it follows from (ii) that Ty [a, 2] NT.[c,y] = O and Ty [a, y] N T:[c, z] # 0. Since
y < z and y € Ng(b), it follows from (i) that T,[a,y]NT.[c, 2] = 0. So T.[c, 2]
lies in B and T,[a, z] lies in D. Therefore, by planarity, T,[a, x] N Te[c, 2] = 0.
Since Tyla, y) N Tele, z] # 0, it follows by planarity that Ty [a, z] N T.[c, x| # 0.
Therefore, x < z.

y,z € Ng(d) and = € Ng(b). Since T, and T, are independent, P := Ty [a, y]U
T.[c,y] is an a-c path in G — {b,d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since z < y and = € Ng(b), it
follows from (i) that Ty [a, 2] N Te[c,y] = 0, and since y < z and y € Ng(d), it
follows from (ii) that Ty[a,y] N Tele, 2] = 0. So Te[c, 2] lies in D and T,[a, z]
lies in B. By planarity, T,[a, z] N T¢[c, z] = 0, and hence by (i), = < z.

x,y € Ng(d) and z € Ng(b). Since T, and T, are independent, P := Ty [a, y]U
Te[c,y] is an a-c path in G — {b,d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since < y and « € Ng(d), it
follows from (ii) that T,[a,x] N T¢[c,y] = 0, and since y < z and y € Ng(d),
it follows from (ii) that T,[a,y] N Tec[c, 2] = 0. Thus, T,[a,z] lies in D and
Te[c, 2] lies in B. By planarity, T,[a,z] N Te[c, 2] = 0. Moreover, since y < z
and y € Ng(d), it follows from (ii) that T,[a, 2] N T;[c,y] # 0. By planarity,
Tola, z] N Tele,xz] # 0. Therefore by (ii), z < =.

z,y € Ng(b) and z € Ng(d). Since T, and T, are independent, P := Ty [a, y|U
Te[c,y] is an a-c path in G — {b,d}, and P divides the disc into two closed
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regions B and D, with b in B and d in D. Since z < y and = € Ng(b), it
follows from (i) that Ty[a, z] NTe[c,y] = 0, and since y < z and y € Ng(b), it
follows from (i) that T,[a,y] N T:[c, z] = 0. So T,[a,z] lies in B and T.[c, 2]
lies in D. By planarity T,[a,z] N T;[c, z] = 0. Therefore by (i), = < z.

(7) x,z € Ng(b) and y € Ng(d). We have shown that either z < 2z or z < x.
Suppose for a contradiction that z < z. Then by (i), Tya, z] N Tc[c,z] =
(), and by planarity, T,[a,z] N T.[c,z] # 0. Since y < z and y € Ng(d),
Tula, z] N Telc,y] # 0. But then, by planarity, T,[a, x] N T.[c, y] # @, which is
a contradiction to (i) since < y and = € Ng(b). Therefore, = < z.

(8) z,2 € Ng(d) and y € Ng(b). We have shown that either z < 2z or 2z < x.
Suppose for a contradiction that z < x. Then by (ii), Ty[a, 2] N Te[c,z] = 0
and T,[a, 2] N T,[e, 2] # 0. Since < y and © € Ng(d), Tula,y] N Telc, x] # 0.
But then, by planarity, T,[a,y] N T:[c, z] # 0, which is a contradiction to (i)
since y < z and y € Ng(b). Therefore, x < z.

Thus, < defines a total order on (Ng(b) U Ng(d)) — {a,c}. Hence, the required
(T,, T;)-ordering exists.

Furthermore, this ordering can be found as follows. Let by, ..., b, be the (T,,T;)-
ordering of Ng(b)—{a,c}, and let dy, . .., dq be the (T,, T;)-ordering of Ng(d)—{a, c}.
Both exist by Lemma 3.4. Theses sequences are ordered under <. We can decide in
O(|V(G)|) time whether b; < d; or d; < b; (by checking which of (i) or (ii) holds) for
any pair b;,dj, 1 <i <p, 1 < j <q. Thus, using the so-called merge technique in [2],
we can merge the two sequences to obtain a sequence ordered under < in O(|V(G)|?)
time. ]

The last two lemmas of this section will also be needed in section 5. Figure 8
illustrates Lemma 3.6, and Figure 9 illustrates Lemma 3.7.

LEMMA 3.6. Let (G,a,b,c,d) be a planar graph, and let {To, Ty, Te, Ty} be an
independent spanning {a,b,c,d}-system of G, where T, is rooted at v for each v €
{a,b,c,d}. Assume that b has at least two neighbors in V(G) — {a,c}. Then for any
(To, Te)-ordered pair x,y € Ng(b) — {a, c}, Tula, z] N Ty[d, y] = 0.

Proof. Take an embedding of G in a disc such that a,b,c,d occur in clockwise
order on the boundary of the disc. Let z,y € Ng(b) — {a, ¢} such that x,y is (T, T¢.)-
ordered (see Figure 8). Hence, Ty [a, z]NTe[c,y] = (. Since T, and T} are independent,
P :=T,la,z] UTy[d,z] is an a-d path in G — {a,c}, and P divides the disc into two
closed regions B and C, with b in B. By planarity and since Ty[a,z] N T;[c,y] = 0,
Tyld,y] lies in B. Then by planarity, Ty[a, x] N Ty|d, y] = 0. O

LEMMA 3.7. Let (G,a,b,c,d) be a planar graph, and let {T,, Ty, Te, T4} be an
independent spanning {a, b, c,d}-system of G, where T, is rooted at v for each v €
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{a,b,c,d}. Assume that b has at least three neighbors in V(G) — {a,c}. Then for
any (Tg, Te)-ordered triple x,y,z € Ng(b) — {a,c}, Tala,z], T4[d,y], and T,[c,z] are
pairwise disjoint.

Proof. Take an embedding of GG in a disc such that a, b, ¢, d occur in clockwise order
on the boundary of the disc. Let z,y,z € Ng(b) such that z,y, z is (T,, T¢.)-ordered
(see Figure 9). Hence, Ty[a, z] N Te[c,y] = 0 and Tyla, y] N Tee, 2] = 0.

By Lemma 3.4, T,[a,z] N T.[c,z] = 0. Hence, the path P := Ty[d,y] + {b,yb}
divides the disc into closed regions A and C, with T,[a,z] in A and T,[c, 2] in C. By
Lemma 3.6, T,[a, z] N Ty[d,y] = 0. By applying a mirror image version of Lemma 3.6,
we can show that Ty[d, y] N Te[c, 2] = 0. 0

4. Numberings. By Theorem 2.8, G has a nonseparating chain decomposition
rooted at r. In this section we will combine this decomposition with Theorem 3.2 to
produce a numbering of a subset of V' (G). This numbering will be used in the next
section to construct four independent spanning trees rooted at r.

In the rest of this section we fix the following notation.

Notation 4.1. Let G be a 4-connected graph, and let € V(G). Fix a nonsepa-
rating chain decomposition of G rooted at r, say C := (Hy, ..., H;), t > 2. Define the
sequences G, G1,...,Gi—1 and G4, ..., G, as follows:

(i) Go =Gy := ({r}0). ‘

(ii) Fori=1,...,t—1, G;:= G[Uj_, I(H;)] and Gi:=G— (V(G;) — {r}).

Notation 4.2. Suppose that H; (1 < i < ¢) is an up G;_;1-chain in G or a
down G;_q-chain in G. Let H; := vgB1v1Bavs...vp_1Byvg. For each 2-connected
B; there exist u;,w; (both on V(G;_1) or both on V(G;)) such that B; — {v;_1,v;}
is a component of G — {v;_1,v;,u;,w;}, and (Bf,vj_l,uj,vj,wj}) is planar, where
Bj = GV (Bj)U{u;, w;}] —ujw;. We refer to each such B;T as a planar section in C.
The vertices vj_1,v;, u;, w; are the terminals of BJ‘-F. See Figure 10 for an illustration.
Note that the notation above depends on ¢. For the sake of clarity we will not make
it explicit in the notation, but whenever we use this we will make clear which i we
refer to. Furthermore, the algorithms we will describe deal with each H; separately,
and thus no confusion should arise.

DEFINITION 4.3. Suppose that H; (1 <1i <t) is a triangle G;_1-chain in G. See
Figure 4. Let I(H;) := {v1,v2,vs}, let V(H;) — I(H;) := {x1, 22,23}, and suppose
that z;v; € E(G) for j =1,2,3. We say that vixz; (j =1,2,3) are the legs of H;.

DEFINITION 4.4. Let D C V(G). A numbering of D is a function from D to
{1,...,|D|}. Let g be a numbering of D, let vy, ..., v be a sequence of distinct vertices
in V(G) — D, and let vg € D. The extension g’ of g to vy,...,vx from vy is defined
as follows:



1034 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

- U(
\y KN

Fic. 10. va,v3,us, w3 are the terminals of B;r.

(i) for1<i <k, let g'(v;) := g(vo) +
(ii) for each v € D with g(v) < g(vp) let g (v) =g(v); and

(iii) for each v € D with g(v) > g(vg) let ¢'(v) := g(v) + k.

Note that ¢’ is a numbering of D U {v1,...,vx}. For convenience, if D C V(G)
and o denotes a sequence vi,...,v, of vertices in V(G) — D, we let DU {o} =
Du{vy,...,vg}.

In order to compute the desired numberings g and f from a nonseparating chain
decomposition, we need to find independent spanning systems in the planar sections
in C.

Assumption 4.5. For each planar section B;r in C, with terminals v;_1,vj, u;, w;,
we compute an independent spanning {vj_1,v;,u;, w;}-system of B;r. By Theo-
rem 3.2, such a system can be computed in O(|V(B]+)| + |E(B]+)|) time. Since two
distinct planar sections are edge-disjoint, the overall time consumed in this phase (for
all planar sections in C) is O(|V(G)| + |E(GQ)|)-

Next, we describe the algorithm for computing a numbering g of a subset of V(G).
It also computes a sequence {r} = Dy C Dy C --- C D;_; of subsets of V(G) such
that for i = 1,...,t, No(H;) N V(G;—1) € D;—1. When the algorithm stops, g is a
numbering of D;_;. We note that keeping track of this sequence is not necessary for
computing g, but its inclusion will make proofs easier in section 6.

ALGORITHM NUMBERING g.

Description. The algorithm executes ¢t — 1 iterations, where ¢ is the number of
chains in C. At the beginning of the first iteration, we have i = 1, Dy := {r}, and
g(r) := 1. At the beginning of each iteration, we have an integer ¢ with 1 <i <t¢—1,
a subset D;_1 C V(G;_1) such that Ng(H;) N V(G;-1) C D;_1, and a numbering g
of Di—l .

Each iteration consists of the following: update g and define D; according to the
following cases (depending on the type of H;), and, if i« < ¢t — 1, then set ¢ « i + 1
and start a new iteration.

Case 1. H; is an elementary GG;_1-chain in G.

Let H; := vgBiv1 Bava, and assume that vg, ve are labeled so that g(vg) < g(vs).

Extend g to v1 from vy, and let D; := D;_1 U {v1}.

Case 2. i =1, or H; is an up G;_1-chain in G but not an elementary G;_1-chain.

Let H; := vgByv1...vr_1Brvk, and suppose that vg,...,vr and By,..., By are
labeled so that vog = v = r when ¢ = 1 and g(v9) < ¢(vx) when i # 1. For
each 2-connected By, let uj,w; denote the terminals of Bf other than v;_1,v;. Let
Tg] o ng denote the trees rooted, respectively, at v;_1, v; in the independent spanning
{vj—1,vj,u;j, w;}-system of B;r computed in Assumption 4.5.
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For each j = 1,...,k, compute a sequence o; as follows. If B; is 2-connected,
then let o; be a (T3, _,, T} )-ordering of ]\7Bj+({uj7 w;}) — {vj_1,v;} (the existence of
this ordering is guaranteed by Lemma 3.5). If B; is trivial, then let o; denote the
empty sequence.

Extend ¢ to ¢ := 01,v1,092,02,...,Vk_1,0% from vy, and let D; := D;_1 U{o}.
See Figure 11 for an illustration.

Case 3. H; is a down (G;_1-chain in G but not an elementary G;_;-chain.

Let H; := vgByvy ... vp_1Bvg. For each 2-connected block B; let u;,w; denote
the terminals of Bj+ other than v;_1, v; with g(u;) < g(w;). Let ng , Tg)j denote trees
rooted, respectively, at u;,w; in the independent spanning {v;_1,v;,u;, w;}-system
of B;' computed in Assumption 4.5.

Let D; := D;_1 U Np, (vg) U Np, (vr). See Figure 12 for an illustration. Extend
g according to the following three subcases.

Subcase 3.1. k =1 (thus, By is 2-connected).
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Let o denote a (7}, ,T,,)-ordering of Ny ({vo,v1}) — {ur,w1} = Np, (vo) U
N, (v;) (the existence of this ordering is guaranteed by Lemma 3.5). Extend g
to o from wu;.

Subcase 3.2. k = 2, and By or By is trivial.

Note that since H; is not an elementary G;_;-chain, B; or By is nontrivial.

Assume then (renaming B; and Bs if necessary) that B; is 2-connected and Bs
is trivial. Extend g according to the following cases.

(i) vy has no neighbor in V(G;_1). Let g1, g2, g3 be neighbors of v; in B; (they

exist since G is 4-connected), and assume that g1, go, g3 is (T} , T} )-ordered

u? T wq

(this is possible by Lemma 3.4). By Lemma 3.7, Ty [u1, 1], T} [vo, ¢2], and

Vo
T} [wi,qs) are disjoint. Let H := B U By (note that H — {vo, va, w1, w1 } is
a component of G — {vg, va,us,w1}). Then (H,vg,u1,vs,wr) is planar, and
{1, +{v1,v102}, T, + {vo, viva}, T, + {v1, vign }, Ty, +{v1,v1g3}} forms an
independent spanning {vg, u1, v2, w; }-system of H.
Let o denote a (T}, 4+ {v1,v1q1}, Ty, +{v1,v1g3})-ordering of Ny ({vo,v2}) —
{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.5). Extend
g to o from u;.
Comment: we also keep track of q1, ¢2, g3 for the construction of the indepen-
dent spanning trees.

e v; has a neighbor in V(G;_1). Let x € Ng(v1)NV(G;-1) with g(z) minimum,
and let o denote a (T , T, )-ordering of Np:+(vo) — {u1, w1} (the existence
of this ordering is guaranteed by Lemma 3.4). If g(z) > g(u1), then extend
g to o,v; from wuy, where o, vy is the sequence obtained from ¢ by adding vy
at the end. If g(z) < g(uy), then extend g to vy, o from z, where vy, 0 is the
sequence obtained from o by adding vy in the front.

Subcase 3.3. k> 3, or k = 2 and both By, By are 2-connected.
Extend g to Np, (vg) according to the following cases.

e B is 2-connected. Let o denote a (T} , T )-ordering of Np+ (vo)—{u1, w1} =
N, (vo) (the existence of this ordering is guaranteed by Lemma 3.4). Extend
g to o from u;.

e Both By and By are trivial. Let € Ng(v1) NV(G;-1) with g(z) minimum.
Extend g to v; from =x.

e Bj is trivial and By is 2-connected.

— If v1 has no neighbor in V(G;_1), extend g to v from us.

— If vy has a neighbor in V(G;_1), let z € Ng(v1) N V(G;—1) with g(z)
minimum. If g(z) > g(uz), then extend g to vy from ug. If g(x) < g(uz),
then extend g to vy from =x.

Extend (the resulting) g to Np, (vi) according to the following cases.

e By is 2-connected. Let o be a (T , Tk )-ordering of Np+ (vg) — {ug, wr} =
N, (vg) (the existence of this ordering is guaranteed by Lemma 3.4). Extend
g to o from uy.

e Both Bj and Bj_; are trivial. Let © € Ng(vip—1) N V(Gi—1) with g(x)
minimum. Extend g to vi_; from .

e B, is trivial and Bj_1 is 2-connected.

— If vi—1 has no neighbor in V(G;_1), extend g to vi—1 from wuy_1.

— If vi—1 has a neighbor in V(G;_1), let € Ng(vp—1) N V(Gi—1) with
g(x) minimum. If g(x) > g(ug—_1), then extend g to vg_; from ug_;. If
g(x) < g(ug—1), then extend g to vy from =.

Case 4. H; is a triangle G;_1-chain in G.
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Let I(H;) := {v1,v2,v3}, and let vjz; (j = 1,2, 3) be the legs of H;. Suppose that
v1, Vg, v3 are labeled so that g(z1) < g(x2) < g(x3). Let D; := D;—1 U {v1,vq,vs}.
Extend ¢ to v, vs,v3 from zs.

This concludes the description of the algorithm for computing g.

LEMMA 4.6. Algorithm Numbering g runs in O(|V (GQ)|?) time.

Proof. Observe that at the ith iteration, Algorithm Numbering g extends the
current numbering ¢* to a sequence ¢ from a previously numbered vertex v € D;_1.
Clearly, given g*, 0, and v, this extension can be computed in O(|V(G)|) time. We
now analyze the time spent at each iteration of Algorithm Numbering g according to
Cases 1-4. We use the same notation as in the algorithm.

If Case 1 occurs (H; is an elementary G;_1-chain in G), then Algorithm Number-
ing g extends g to v;. This can be done in O(|V(G)]) time.

If Case 2 occurs (H; is an up G;_1-chain but not an elementary G;_;-chain), then

Algorithm Numbering g computes sequences o1, ..., 0y, where o; denotes the empty
sequence when Bj is trivial, and o; is a (T3 _,, T} )-ordering of Np+({u;,w;}) —
J

{vj—1,v;} when Bj is 2-connected. In the latter case, by Lemma 3.5 the sequence o
can be computed in O(|V(Bj+)|2) time. Thus, the algorithm spends O(|V(G)|?) time
to compute o1, ..., 0. After that, the algorithm extends g to vy, o1, v1, ..., Vk—1, Ok, Uk,
which can be done in O(|V(G)]|) time. Therefore, the algorithm spends O(|V(G)|?)
time if Case 2 occurs.

If Case 3 occurs (H; is a down G;_j-chain but not an elementary G;_;-chain),
then Algorithm Numbering ¢g considers three cases.

e If Subcase 3.1 occurs (k = 1), then the algorithm computes a (T} , T}, )-

ordering o of NBlJr({vo,vl}) — {u1, w1} and extends g to o from ui The
sequence o can be computed in O(|V(G)[?) time by Lemma 3.5, and the
extension of g can be computed in O(|V(G)|) time, resulting in O(|V(G)|?)
time for this iteration.

e If Subcase 3.2 occurs (k = 2, and By or B is trivial), then the algorithm
considers two subcases, according to whether or not v; has a neighbor in
V(Gi-1).

— If v; has no neighbor in V(G;_1), the algorithm chooses neighbors
q1,q2,q3 of v1 in By and computes a (Ti}1 + {Ul,vlql},Tuljl + {v1,v1q3})-
ordering o of Np, (vg) U Np, (vi) = Ng({vo,v2}) — {u1, w1} as in Sub-
case 3.1 and extends g to ¢ from w;. Thus, the algorithm spends
O(|V(G)]?) time in this case.

— If vy has a neighbor in V(G;_1), then the algorithm computes a (T, , T, )-
ordering o of NB{“ (vg) — {u1, w1}, and it performs an extension on g.
The sequence o can be computed in O(]V(G)|) time by Lemma 3.4, and
the extension can be computed in O(|]V(G)|) time. Thus, the algorithm
spends O(|V(G)|) time in this case.

e If Subcase 3.3 occurs (k > 3, or k = 2 and both Bj, By are 2-connected),
then the algorithm extends g to Np,(vg) and extends g to Np, (vg). The
algorithm may need to compute a (T} , T, )-ordering of Ny (vo) — {u1, w1}
and a (T% , Tk )-ordering of Np+ (vg) — {ug,wr}, but both can be done in
O(|]V(G)|) time by Lemma 3.4. It is not hard to check that the algorithm
spends O(|V(G)|) time in this case.

If Case 4 occurs (H; is a triangle chain), then Algorithm Numbering g extends g
to vy, v2,v3. This can be done in O(|V(G)]) time.
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From the analysis above, it follows that Algorithm Numbering g spends O(|V (G)|?)
time in each iteration. Since the number of iterations is t < n — t < |V(G)], the
numbering g can be computed in O(|V(G)|?) time. ad

Note that the extension operation does not affect the order of the vertices pre-
viously numbered, although their actual g values may have changed. Thus, at each
iteration the algorithm orders the vertices in D; — D;_; without affecting the order
of the vertices in D;_;. In fact, it does not affect the order of the vertices in D; for
every 1 <j <i¢—1.

The numbering g will be used to construct two independent spanning trees rooted
at r from C = (Hy,..., H;) in order from H; to H;. For constructing the other two
spanning trees we compute a numbering f by examining the chains of C in reverse
order.

The algorithm for computing f is analogous to Algorithm Numbering g when it
deals with an up G;_1-chain or a down G;_;-chain or elementary G;_i-chain. The
differences appear when it deals with a triangle G;_;-chain. The algorithm also
computes a sequence {r} = Dj,; C D; C --- C Dj of subsets of V(G) such that
for ¢ > 7 > 17 Ng(Hl) N V(GZ) - D,/L-Jrl.

ALGORITHM NUMBERING f.

Description. The algorithm executes t — 1 iterations, where ¢ is the number of
chains in C’' := (Hy,..., H;). At the beginning of the first iteration, we have i = t,
Di,y :={r}, and f(r) := 1. At the beginning of each iteration, we have an integer
i with ¢t >4 > 2, a subset Dj,; C V(G;) such that Ng(H;) N V(G;) € Dj,,, and a
numbering f of Dj ;.

Each iteration consists of the following: update f and define D} according to the
following cases (depending on the chain type of H;), and, if ¢ > 2, then set ¢ «— i — 1
and start a new iteration.

Case 1. H; is an elementary G;_1-chain in G.

Let H; := vgByviBavg, and let v}, v} be neighbors of vy in V(G;) with f(v)) <
f(vy). Extend f to vy from vy, and let D] := Dj,; U{v1}.

Case 2. i =t,or H; is a down G;_1-chain in G but not an elementary G;_1-chain.

Let H; := vgByvy ... vp_1Brvk, and suppose that vg,...,v;r and By,..., By are
labeled so that vg = vy = r when ¢ = ¢t and f(vg) < f(vx) when i # t. For
each 2-connected Bj, let u;,w; be the terminals of B;f other than v;_;,v;. Let

ng_ T3 denote the trees rooted, respectively, at v;_1, v; in the independent spanning
{vj—1,vj,u;,w;}-system of B} computed in Assumption 4.5.

For each j =1,...,k compute a sequence o; as follows. If B; is 2-connected, then
let o; be a (ng_l,ng)—ordering of NB;({uj, w;}) — {vj_1,v;} (the existence of this
ordering is guaranteed by Lemma 35) If B; is trivial, then let o; denote the empty
sequence.

Extend f to o := 01,v1,02,02,...,Vk_1,0k from vy, and let D := D; , U {o}.
See Figure 13 for an illustration.

Case 3. H; is an up G;_1-chain in G but not an elementary G;_1-chain in G.

Let H; := vgByv1 ... vp_1Bgvg. For each 2-connected Bj, let u;,w; denote the
terminals of Bj other than v;_1, v;, with f(u;) < f(w;). Let Tl{j ) Tl{j denote the trees
rooted, respectively, at u;,w; in the independent spanning {v;_1,v;, u;, w; }-system
of Bf computed in Assumption 4.5.

Let D; := D;,; UNp, (vo) U N, (vr). See Figure 14 for an illustration. Extend
f according to the following three subcases.

Subcase 3.1. k =1 (thus, B; is 2-connected).
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Fic. 14. Extending the numbering f to an up G;—1-chain.

Let o denote a (T}

T )-ordering of N+ ({vo,v1}) — {u1, w1} = Np,(vo) U
Np, (vr) (the existence of this ordering is guaranteed by Lemma 3.5). Extend f
to o from uj.
Subcase 3.2. k = 2, and By or By is trivial.
Note that since H; is not an elementary chain, By or By is nontrivial.
Assume then (renaming By and Bs if necessary) that By is 2-connected and Bs
is trivial. Extend f according to the following cases.
e v; has no neighbor in V(G;). Let q1,¢2, g3 be distinct neighbors of v; in By
(they exist since G is 4-connected), and assume that g1, qa, g3 is (le,Tlil)—
ordered (this is possible by Lemma 3.4). By Lemma 3.7, T} [u1, q1], T, [vo, g2],
and Tj)l [w1, g3] are disjoint. Let H := B UB,. Note that H —{vg, v2, u1,w; }
is a component of G —{vg, vy, u1, w1}, (H, v, u1,v2,ws) is planar, and {TJO +
{v1,v102}, T} +{v2, v1v2}, T, +{v1, v1qu }, Ty, +{v1, v1g3}} is an independent
spanning {vg, va, u1,w }-system of H.
Let o denote a (T, +{v1,v1q1}, Ty, +{v1, v1g3})-ordering of N ({vo,v2}) —
{u1,w1} = Np,(vo) U Np, (vr) (the existence of this ordering is guaranteed
by Lemma 3.5). Extend f to o from u;.
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Comment: we also keep track of q1, g2, g3 for the construction of the indepen-
dent spanning trees.

e v; has a neighbor in V(G;). Let x € Ng(v1) N V(G;) with f(x) minimum,
and let o denote a (T, , T, )-ordering of Np, (vo) = Np+ (vg) — {u1, w1} (the

uy
existence of this ordering is guaranteed by Lemma 3.4). If f(z) > f(uq), then
extend f to o,vy from uy. If f(x) < f(u1), then extend f to vy, o from z.
Subcase 3.3. k> 3, or k = 2 and both By, By are 2-connected.
Extend f to Np, (vg) according to the following cases.
e B is 2-connected. Let o denote a (T , T,y )-ordering of N, (vg) = Np+ (vo)—
{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to o from u;.
e Both B; and Bs are trivial. Let x € Ng(v1) N V(G;) with f(x) minimum.
Extend f to vy from z.
e B is trivial and Bs is 2-connected.
— If v; has no neighbor in V(G;), extend f to vy from us.
— If v; has a neighbor in V(G}), let z € Ng(v1) N V(G;) with f(z) min-
imum. If f(z) > f(u2), then extend f to vy from wug. If f(x) < f(uz),
then extend f to v; from z.
Extend (the resulting) f to Np, (v;) according to the following cases.
e By is 2-connected. Let o denote a (T}F, , Tk )-ordering of N, (vy) = Ng+ (vg)—
{ug, wy} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to o from wuy.
e Both By and By are trivial. Let x € Ng(v,_1)NV(G;) with f(z) minimum.
Extend f to vi_; from .
e B, is trivial and Bj_1 is 2-connected.

— If vi—1 has no neighbor in V(G;), extend f to vi_; from wug_1.

— If v;—1 has a neighbor in V(G;), let € Ng(vg—1) N V(G;) with f(z)
minimum. If f(z) > f(ug—1), then extend f to vi—1 from wp_q. If
f(z) < f(ug—1), then extend f to vi_1 from z.

Case 4. H; is a triangle G;_1-chain in G.

Let I(H;) := {v1,v2,v3}, let viz; (j = 1,2,3) be the legs of H;, and let y1, y2,y3 €
V(G;) such that yiv1,yove,ysv3 € E(G). Assume that vy, vs,v3 are labeled so that
g(x1) < g(w2) < g(x3). Let Dj := Dj,  U{vi,v2,v3}.

If f(y1) < f(y2) and f(y1) < f(ys), then extend f to v1,va,v3 from yi.

If f(y2) < f(y1) and f(y2) < f(y3), then extend f to vy, vy, vs from ys.

If f(ys) < f(y1) < f(y2), then extend f to vs from y3 and extend (the
resulting) f to vy, vs from y;.

If f(ys) < f(y2) < f(y1), then extend f to vz from y3 and extend (the
resulting) f to ve,v; from yso.

This concludes the description of the algorithm for computing f. The proof of
the next lemma is similar to the proof of Lemma 4.6, and we omit it.

LEMMA 4.7. Algorithm Numbering f runs in O(|V(G)[?) time.

5. Construction of spanning trees. We now describe how to use Theorem 3.2
and the two numberings of the last section to produce four independent spanning trees.
This will follow from Algorithm Trees. The proof of its correction and analysis of its
complexity will be given in the next section.

ALGORITHM TREES.

Description. Let G be a 4-connected graph, let r € V(G), and let C = (Hy, ..., Hy)

be a nonseparating chain decomposition of G rooted at r. Let Go = Gy = ({r},0),
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and for 1 <i <t —1,let G; := GU;_, I(Hj)] and G; = G— (V(G;) —{r}). The
algorithm executes t iterations, where ¢ is the number of chains in C. At the first
iteration, we have i = 1 and T} = Ty, = T3 = T, = Gy. At the beginning of each
iteration, we have an integer ¢ with 1 < i < ¢, spanning trees 77,75 in G;_1 and
spanning forests 13,7y in G;_1 — 7.

Each iteration consists of the following: update Ty,T5,T5, T, by adding certain
vertices and edges of H; to Ty, Ts,T5, Ty according to the following four cases (de-
pending on the type of H;), and, if i < ¢, then set ¢ «+ i+ 1 and start a new iteration.
After t iterations, 11, Ts, T3, Ty will be independent spanning trees in G rooted at r.

Case 1. H; is an elementary G;_1-chain in G.

Let H; := voB1v1 Bovy with g(vg) < g(v2). Let v)), v} be neighbors of vy in V(G;)
with f(v5) < f(v}).

Set T7 «— T1 + {’Ul,’Uo’Ul},TQ — Ty + {Ul,’l)lvg},Tg — T3 + {U67U1,U6U1}, and
Ty — Ty + {vh,v1,v501 }.

Case 2. i =1, or H; is an up G;_1-chain in G but not an elementary G;_;-chain
in G.

Let H; := vgByv1 ... vg_1Brvg, with vg = v, = r when i = 1, and g(vg) < g(vi)
when ¢ # 1.

For each 2-connected block Bj, let u;,w; denote the terminals of Bj+ other than
vj-1,v; with f(u;) < f(w;), and let TJ |, T7,T; ,Tj denote the trees rooted,
respectively, at v;_1,v;, u;,w; in the independent spanning {v;_1, v;, u;, w; }-system
of B;-' computed in Assumption 4.5.

Let J:={j:1<j <k,Bjis 2-connected}, and let J :={1,...,k} — J.

First, set

T1HT1U

U Bj |V Ung—l )

jeT—{k} =

jeJ—{1} =

Ty —T50 | | T4, |, and

jeJ

T2<—T2U< U Bi|u UTg’j :

Ty —T,u | T,
j€J

Now for each j = 1,...,k — 1 add v; and edges incident to v; to T1,7T%,T3,Ty
according to the following cases (at this stage, vo,vi & V(T5 U Ty)).

Subcase 2.1. B; and Bjy; are trivial.

Let p3, pa be neighbors of v; in V(G;) with f(ps) minimum (hence f(ps) < f(pa)).

Set T3 «— T3 + {v;, p3,vjps} and Ty — Ty + {v;, pa, vjpa}.

Subcase 2.2. Bj is 2-connected and Bj;, is trivial.

e If v; has no neighbor in V(G;), then let p1, ps, p4 be neighbors of v; in B; (they
exist since G is 4-connected), and assume that ps, p1,ps4 is (ng,Tg)j)—ordered

(this is possible by Lemma 3.4). By Lemma 3.7, ng [uj,p3]7ng_l [vj—1,p1],
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and ng]_ [wj, pa] are disjoint. If k = 2, then we also require that ps,p1,pa
be the vertices q1,g2,qs3, respectively, chosen in Subcase 3.2 of Algorithm
Numbering f.

Set Ty «— T + {Uj, ’Ujpl}7T3 — T3+ {’Uj,’l}jpg,}, and Ty <« Ty + {Uj, ’Ujp4}.

e If v; has a neighbor in V(G;), then let z € Ng(vj) N V(G;) with f(z) mini-
mum.

— If f(z) > f(u;), then let p1, ps be neighbors of v; in B; such that the
paths ng_l[vj,l,pl] and ng[uj,pg] are disjoint (they exist by Lemma
3.6).

Set T «— T1+{1)j7 ’Ujpl}, T3 — T3+{1}j, Ujpg}, and Ty +— T4+{1)j7 x, ’UjI}.
— If f(z) < f(u;), then let p1, ps be neighbors of v; in B; such that the
paths T} [vj—1,p1] and T, [w;, pa] are disjoint (they exist by Lemma
3.6).
Set Ty «— Th1+{v;,vjp1}, T — T3+{v;,z,vjz}, and Ty «— Ty+{v;,v;pa}.
Subcase 2.3. By is trivial and Bj4, is 2-connected.

e If v; has no neighbor in V(G;), then let p2,ps, ps be neighbors of v; in B4
(they exist since G is 4-connected), and assume that ps, p2, pa is (T 5}, T )-
ordered (this is possible by Lemma 3.4). By Lemma 3.7, Tgatll [wj+1,p3)
ng;ll [vj+1,p2], and Tg,;ll [wjt1,p4] are disjoint. If k = 2, then we also require
that ps, p2, ps be the vertices g1, g2, g3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering f.

Set Ty « Ty + {Uj, U{jpg},Tg — T3+ {’Uj,’Ujp?,}, and Ty «— Ty + {Uj, Ujp4}.

e If v; has a neighbor in V(G;), then let z € Ng(v;) N V(G;) with f(z) mini-

mum.
— If f(z) > f(u;11), then let pa, p3 be neighbors of v; in Bj 1 such that
the paths T7% [vj41,p2] and TJF! [u;41,ps] are disjoint (they exist by
Lemma 3.6).
Set Ty «— To+{v;,v;p2}, Tz — T3+{v;,v;ps3}, and Ty «— Ty+{v;,z, vz}
— If f(z) < f(u;+1), then let pa, ps be neighbors of v; in Bjy1 such that
the paths ngjl [vj+1,p2] and ngjl [wj41,p4] are disjoint (they exist by
Lemma 3.6).
Set Ty «+— T2+{Uj7 ’Ujpg}, T3 «— Tg—l—{vj, x, ’ij}, and Ty «— T4+{Uj, Ujp4}.
Subcase 2.4. B; and B;y; are 2-connected.
Note that f(u;) < f(wjt1) or f(uj41) < f(w;).

o If f(u;) < f(wjs1), then let p1, ps be neighbors of v; in B; such that the
paths ng_l [vj—1,p1] and Tgi [uj,p3] are disjoint (they exist by Lemma 3.6),
and let po, ps be neighbors of v; in Bjyq such that the paths Tg]tll [Vj11, P2
and Tg,ﬁl [wj41,p4] are disjoint (they exist by Lemma 3.6).

Set Ty «— T1 + {vj,vjpl},Tg — Ty + {Uj,’l)jpz},Tg — T3 + {’Uj,’l)jp?,}, and
T, T, + {Uj, Ujp4}.

o If f(u;) > f(wjy1), then f(ujy1) < f(w;). Let p1,ps be neighbors of v; in
B such that the paths ng_l [vj—1,p1] and qu)j [wj, pa] are disjoint (they exist
by Lemma 3.6), and let pa, p3 be neighbors of v; in Bj41 such that the paths
T4 [vj1,p2) and T [ujiq, ps] are disjoint (they exist by Lemma 3.6).
Set Ty «— T1 + {vj,vjpl},Tg — Th + {Uj,l}jpg},Tg, — T3 + {’Uj,’l)jp?,}, and
T, T, + {’Uj7 ’Ujp4}.

Case 3. i =t, or H; is a down GG;_1-chain in G.
Let H; := voBivy ... vp—1Bgvg, with vg = v, = r when ¢ = ¢, and f(vo) < f(vk)
when i # ¢.
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For each 2-connected block Bj, let u;,w; denote the terminals of BJr other than
vj_1,v;, with g(u;) < g(w;), and let TJ I,Tg ,Tg , T, denote the trees rooted,
respectively, at v;_1,v;,u;, w; in the 1ndependent spanning {v;_1,vj, uj, w;}-system
of Bj computed in Assumption 4.5.

Let J:={j:1<j <k,B;jis 2-connected}, and let J := {1,...,k} — J.

First, set

1ol lJT ],
JjeJ

T,—T,u|JT |,

jed
Ty — T3 U U B lullUT, ], an
jeJ—{k} jeJ

n—nul|l |J B|lulUT

jeJ—{1} jeJ

Now for each j = 1,...,k — 1 add v; and edges incident to v; to 11,75,13,Ty
according to the following cases (at this stage vg, vy ¢ V(T1 U T3).
Subcase 3.1. B; and B;; are trivial blocks.
Let p1,p2 be neighbors of v; in V(G;_1) with ¢g(p:1) minimum (hence g(p1) <
9(p2))-
Set Ty — Ty + {v;,v;p1} and T «— T5 + {vj, vjpa}.
Subcase 3.2. Bj is 2-connected and Bj4, is trivial.
e If v; has no neighbor in V(G;_1), then let p1, ps, p3 be neighbors of v; in B;
(they exist since G is 4-connected), and assume that pi, p3, pa is (Tg ,Tg)] )—

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T} [uj,pl]
TJ  [vj_1,p3], and T&i[wj,pg] are disjoint. If & = 2, then we also require

V51
that p1, ps, p2 be the vertices g1, g2, g3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering g.
Set Ty < Ty + {vj,vjp1}, To « To + {vj,vjp2}, and Tz « T3 4 {v;,v;p3}.
e If v; has a neighbor in V(G;_1), then let © € Ng(v;) N V(G;—1) with g(z)
minimum.
— If g(x) > g(u;), then let p1, ps be neighbors of v; in B; such that the
paths T ,luj,p1] and TUJ [vj_1,ps] are disjoint (they exist by Lemma
3.6).
Set Ty — Th +{vj,vjp1}, To «— To +{v;, vz}, and Ty — T3+ {v;,v;ps}.
— If g(x) < g(u;), then let po, ps be neighbors of v; in B; such that the
paths TJ  [wj, p2] and ng_l [vj_1,p3] are disjoint (they exist by Lemma
3.6).
Set T; «— 171 + {’Uj, ’Ujl‘}, Ty — 15+ {Uj, Ujpg}, and T3 «— T35+ {Uj, Ujpg}.
Subcase 3.3. Bj is trivial and B4, is 2-connected.
e If v; has no neighbor in V(G,_1), then let pi,ps,ps be neighbors of v;
in Bj11 (they exist since G is 4-connected), and assume that pi,ps,ps is
(T3+1 T+l )-ordered (this is possible by Lemma 3.4). By Lemma 3.7,

Uj+17 T Wi41

T,{J‘:l [wjt1,D1), ng‘:ll [vj41,pa], and Tfuj‘+1 [wj11,po] are disjoint. If k = 2, then
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we also require that pq, ps, p2 be the vertices g1, g2, g3, respectively, chosen in
Subcase 3.2 of Algorithm Numbering g.
Set T1 — T1 + {'Uj, 'Ujpl},TQ — T2 + {'l)j,’l]jpg}, and T4 — T4 + {'Uj, 'Ujp4}.

e If v; has a neighbor in V(G;_1), then let € Ng(v;) N V(G;-1) with g(x)
minimum.

— If g(z) > g(uj41), then let p1,ps be neighbors of v; in Bj4q such that
the paths T3 [uj1, p1] and T4 [vj41,p4] are disjoint (they exist by
Lemma 3.6).

Set T1 «— Ty + {’Uj, ’Ujpl}, T «— To+ {’Uj, ’Uj{E}, and Ty «— Ty + {Uj, Ujp4}.

— If g(x) < g(uj41), then let py, ps be neighbors of v; in Bj;1 such that
the paths T) ! [wj1,p2] and T4 041, pa] are disjoint (they exist by
Lemma 3.6).

Set T1 — Tl + {’Uj, ’Ujl'}, Tg — T2 + {’Uj, ’Ujpg}, and T4 — T4 + {’Uj, ’Ujp4}.

Subcase 3.4. B; and B;; are 2-connected.

Note that g(u;) < g(wj41) or g(uj41) < g(w;).

o If g(u;) < g(wjy1), then let pi,ps be neighbors of v; in B; such that the
paths ng [uj,p1] and ngfl [vj_1,p3] are disjoint (they exist by Lemma 3.6),
and let p2, ps be neighbors of v; in Bj44 such that the paths Tg)j'jl [wjt1, p2]
and T/ [vj11,pa] are disjoint (they exist by Lemma 3.6).

Set Th «— Th + {vj,v;p1}, To «— To + {vj,v;p2}, T3 «— T35 + {v;,v;ps}, and
Ty — Ty + {vj,vjp4}.

o If g(u;) > g(wj41), then g(u;y1) < g(w;). Let po,ps be neighbors of v; in
B, such that the paths Tij [wj, p2] and T. gH [vj_1,ps3] are disjoint (they exist
by Lemma 3.6), and let p1, ps be neighbors of v; in B4 such that the paths
T3+, [ujen, p1] and T4 [v41, pa] are disjoint (they exist by Lemma 3.6).
Set T1 — T1 + {’Uj,’l)jpl},Tg — T2 + {'Uj,’l)jp2}7T3 — T3 + {Ujﬂ)j]?g}, and
Ty — Ty + {’()j7’()jp4}.

Case 4. H; is a triangle G;_1-chain in G.

Let I(H;) := {v1,v2,v3}, let viz; (j = 1,2,3) be the legs of H;, and let y1, y2,y3 €
V(G;) such that yiv1, Y202, y3v3 € E(G). Assume that v1,vs, v3 are labeled so that
9(x1) < g(x2) < g(w3).

Update T1,T5,T5,T, according to the following four possibilities.

o If f(y1) < f(y2) and f(y1) < f(ys) then set
Ty« Ty +{v1,v2,v3, 8101, X202, V203 }, Ty « To+{v1, v2, v3, 2303, V301, U3V },
T3 « T3+ {v1,v2,v3, Y101, V102, 0103}, Ty « Ty +{v1,v2, V3, Y202, V2v1, Y303}

o If f(y2) < f(y1) and f(y2) < f(ys) then set
Ty« Th+{v1,v2,v3, 2101, T2V2, V103 }, To = To4-{v1, Vo, V3, 23V3, V301, V3V2 },
Ty« T3+ {v1,v2,v3, y2v2, V201, 0203}, Ty — Ty +{v1,v2, 03, Y101, V102, Y303}

o If f(ys) < f(y1) < f(y2) then set
Ty « Ty +{v1,v2,v3, 2101, 2202, V103 }, Ty « To+{v1, v2, v3, 2303, V3V1, V32 },
T3 « T3+ {v1,v2,v3, y1v1, V102, Y303}, Ty — Ty + {v1,v2,v3, Y202, V201, V203 }.

o If f(ys) < f(y2) < f(y1) then set
Ty < T1 +{v1,v2,v3, 2101, X202, V203 }, Ty« To+{v1, v2, v3, X303, V3V1, U3V },
Ty« T3+ {v1,v2,v3, y2v2, V201, Y303}, Ty < Ty +{v1,v2,v3, Y101, V102, V13 }.

6. Correctness of Algorithm Trees. In this section we will prove Theo-
rem 1.1. More precisely, we will show that the subgraphs 17,715, T5,T4 returned by
Algorithm Trees are independent spanning trees of G rooted at r, and they can be
computed in O(|V(G)[?) time.
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Notation 6.1. Let G be a 4-connected graph, let r» € V(G), and let C =
(Hy,...,H;) be anonseparating chain decomposition of G rooted at r. Let Gy = Gy =

({r},0), and for 1 <4 <t —1,let G; := G[U;-, I(H;)] and Gi=G—(V(Gy) - {r}).
Let Ty, T, T3, T4 denote the subgraphs returned by Algorithm Trees. Let D, D’ denote
the sets of vertices returned by Algorithm Numbering g and Algorithm Numbering
f, respectively.

We start with a series of seven simple lemmas which follow from the cases of Algo-
rithm Trees. The first lemma follows immediately by inspecting Case 1 of Algorithm

Trees.
LEMMA 6.2. Let H; := vgByv1Bave be an elementary G;_1-chain in G, with

g(vo) < g(ve). Then vy has neighbors vh, v in V(G;), with f(v)) < f(vh), such that

(1) E(Ty N H;) =A{vov1} and E(To N H;) = {viv2}, and

(2) E(Ts N H)) = {vjv1} and E(Ty N H)) = {v1vh}, where H] = v BjviB4v} is
an elementary G;-chain in G.

The next lemma follows by inspecting Case 2 (for ¢ = 1) of Algorithm Trees.

LEMMA 6.3. Let Hy := vgB1vy ... vx_1Bgvg, with vg = v, = 7, and for each 2-
connected Bj, let uj,w; denote the terminals of B;' other than v;_1,v;, with f(u;) <
f(w;). Let H{" be the graph obtained from Hy by adding Ng(Hy — 1) — {r} and the
edges of G from V(Hy) to No(Hy —r) — {r}. Then

(1) Ty N Hy is a spanning tree of Hy rooted at v and contains no edge from r to
N, (r),

(2) Ty N Hy is a spanning tree of Hy rooted at v and contains no edge from r to
NB1 (7’),

(3) T3N(H; —7) is a spanning forest of H;” —r, and each component of TsN(H," —
) either is a tree in B;'—wj rooted at u; for some j € {1,...,k} oris induced
by a single edge with one end in V(G1) and the other in {vi,...,vx_1}, and

(4) TuN(H" —7) is a spanning forest of H;" —r, and each component of TyN(H; —
) either is a tree in B;—uj rooted at w; for some j € {1,...,k} oris induced
by a single edge with one end in V(G1) and the other in {vi,...,vp_1}.

By inspecting Case 2 (for i # 1) of Algorithms Trees, we have the following
lemma.

LEMMA 6.4. Let H; = woByvy...vx_1Brvg be an up G;_1-chain in
G(2<i<t—1), with glvo) < g(vk), and for each 2-connected block B;, let u;, w;
denote the terminals of B} other than v;_1,v;, with f(u;) < f(w;). Let H;" be the
graph obtained from H; by adding Ng(H; — {vo,vk}) — {vo,vr} and the edges of G
from V(H;) to No(H; — {vo,vi}) — {vo,vr}. Then

(1) Ty N (H; —vg) is a spanning tree of H; — vy Tooted at vg, and Ty contains no
edge from vy to Np, (vi),

(2) ToN(H; —vo) is a spanning tree of H; — vy rooted at vy, and Ty contains no
edge from vy to Np, (vo),

(3) T3N(H; —{vo,vi}) is a spanning forest of H;" —{vo, vy}, and each component
of Ts N (H;" — {vo,vr}) either is a tree in B;' — wj rooted at u; for some
j€{1,...,k} oris induced by a single edge with one end in V(G;) and the
other in {vy,...,v5_1}, and

(4) TuN(H;" —{vo, vi}) is a spanning forest of H;" —{vo, vy}, and each component
of Ty 0 (H;" — {vo,vr}) either is a tree in B;' — u; rooted at w; for some
j€{1,...,k} oris induced by a single edge with one end in V(G;) and the
other in {vy,...,v5_1}.
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By a simple inspection of Case 3 (for ¢ = t) of Algorithm Trees, we have the
following lemma.

LEMMA 6.5. Let Hy := vgByvy ... vp_1Byvg, with vg = v = 1, and for each 2-
connected Bj, let uj,w; denote the terminals of B;T other than v;_1,v;, with g(u;) <
g(w;). Let H;" be the graph obtained from H, by adding Ng(H; — ) — {r} and the
edges of G from V(Hy) to Ng(Hy —r) — {r}. Then

(1) Ty 0 (H; — ) is a spanning forest of H;" —r, and each component of Ty N
(H;" —r) either is a tree in B;-' — w; rooted at u; for some j € {1,... k}
or is induced by a single edge with one end in V(Gi—1) and the other in
{Ul, ce ,kal},

(2) To N (H —r) is a spanning forest of H;” —r, and each component of T N
(H,” — 1) either is a tree in B;' —u; rooted at w; for some j € {1,... k}
or is induced by a single edge with one end in V(Gi—1) and the other in
{vla v 7vk71};

(3) T3 N Hy is a spanning tree of Hy rooted at r and contains no edge from r to
N, (r), and

(4) Ty N Hy is a spanning tree of Hy rooted at r and contains no edge from r to
]\/vB1 (7‘)

The next lemma follows from a simple inspection of Case 3 (for i # t) of Algorithm
Trees.

LEMMA 6.6. Let H; := wv9gBjvi...vs_1Bgvr be a down G;_1-chain in
G(2<i<t—1), with f(vo) < f(vg), and for each 2-connected block Bj, let u;, w;
denote the terminals of B;' other than vj_1,vj, with g(u;) < g(w;). Let H; be the
graph obtained from H; by adding Ng(H; — {vo,vr}) — {vo,vx} and the edges of G
from V(H;) to Ng(H; — {vo,v}) — {vo,vi}. Then

(1) TiN(H; —{vo,vi}) is a spanning forest of H;t —{vo, vy}, and each component
of Ty N (H;" — {vo,vr}) either is a tree in Bj — wj rooted at u; for some

Jje{l,...,k} orisinduced by a single edge with one end in V(G;_1) and the
other in {vy,...,vk_1},

(2) ToN(H;t —{vo,vi}) is a spanning forest of H;t —{vo, vy}, and each component
of To N (H;" — {vo,vx}) either is a tree in Bj+ — u; rooted at w; for some
j€{1,...,k} orisinduced by a single edge with one end in V(G;_1) and the
other in {vy,...,vk_1},

(3) T5 N (H; —vg) is a spanning tree of H; — vy, rooted at vy, and T contains no
edge from vy to Np, (vi), and

(4) Ty N (H; —vo) is a spanning tree of H; — v rooted at vk, and Ty contains no
edge from vy to Np, (vo).

Finally, by a simple inspection of Case 4 of Algorithm Trees, we have the following

lemma.

LEMMA 6.7. Let H; be a triangle G;—1-chain in G (2 < i < t—1). Let
I(H;) = {v1,v9,v3}, let y1,y2,y3 € V(G;) such that yiv1,y2v2, y3v3 € E(G), and
let vjz; (j = 1,2,3) be the legs of H;, with g(z1) < g(z2) < g(x3). Let H :=
H;i +{y1, Y2, Y3, Y11, Y2v2, Y303 } -

o If f(y1) < f(y2) and f(y1) < f(y3), then
E(Tl N H:_) = {1‘11}1,1‘21}2,1)2’03}, E(TQ N H:_) = {1‘31)3,1}3’01,1}3’02},
E(T3 N H:_) = {ylvl,vlvg,vlvg}, and E(T4 n Hj_) = {yQUQ,U2U1,y3U3}.
o If f(y2) < f(y1) and f(y2) < f(y3), then
E(Tl N H;L) = {1'1’121,5621)2,’011)3}, E(T2 n Hj) = {1’3’()3,’031}1,’1}31}2},
E(T3 N H;") = {yav2, vav1, 903}, and E(Ty N H;") = {y1v1, 0109, Y303}
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o If fys) < f(y1) < f(y2), then
E(Tl N Hj) = {Q'Jl’l)l,(EQ’UQ,Ul"Ug}, E(T2 n Hj_) = {1’31)3,’1)3?)1,’037)2},
E(TsN H:r) = {y1v1, v102, y3vs3}, and E(Ty N Hj) = {yav2, V201, VoV3 }.
o If f(ys) < f(y2) < f(v1), then
E(Tl N H:_) = {l‘lvl,l‘gvg,vg’l}g}, E(TQ N H:_) = {l‘3U3,U3’U1,03’02},
E(T3 N H:_) = {yQ’UQ,’UQ’Ul,yg’Ug}, and E(T4 n Hj_) = {ylvl,vl’l}g,?}11}3}.

We can now show that T3,7T5,7T3, and T are spanning trees of G.

LEMMA 6.8. For everyi=1,...,t, T1NG; and ToNG; are spanning trees of G;.

Proof. Note that every v € V(G) — {r} is an internal vertex of some chain H; in
C. The result follows by induction on ¢ with the help of (1) of Lemma 6.2, (1) and
(2) of Lemma 6.3, (1) and (2) of Lemma 6.4, (1) and (2) of Lemma 6.5, (1) and (2)
of Lemma 6.6, and Lemma 6.7. O

LEMMA 6.9. For everyi=t,...,1, T5N G; and TyNG; are spanning trees of G;.

Proof. The result follows by induction on ¢ — ¢ with the help of (2) of Lemma 6.2,
(3) and (4) of Lemma 6.3, (3) and (4) of Lemma 6.4, (3) and (4) of Lemma 6.5, (3)
and (4) of Lemma 6.6, and Lemma 6.7. O

Lemmas 6.8 and 6.9 imply the following.

COROLLARY 6.10. T1,T5,T5,T, are spanning trees of G.

Now we proceed to show that T1,7T5,7T5,T, are independent spanning trees of G
rooted at r. The proof consists of several lemmas.

LEMMA 6.11. For any 1 <14 <t and for any v € I(H;) — {r}, there exist vertices
21, 29, 23, 24 such that

(1) 21,29 € V(Gi-1), and either z1 = z9 = 7 or g(z1) < g(z2) (and g(z1) <

9(v) < g(z2) if ve D),

(2) 23,24 € V(G;), and either zz = z4 =1 or f(z3) < f(z4) (and f(z3) < f(v) <

f(z4) ifve D), and

(3) Tilzi,v], i = 1,2,3,4, are internally disjoint paths in G, and V (T;[z;,v])—z; C

I(H;).

Proof. Let 1 <i <tandwv € I(H;)—{r}. We consider the four cases of Algorithm
Trees.

Case 1. H; is an elementary G;_1-chain in G.

In this case, 2 < i < t—1. Let H; := voByv1 Bava, with g(vg) < g(v2). This is the
same as in Case 1 of Algorithm Trees. Then vy, vs € V(Gi—1), v = vy, and by Case 1
of Algorithm Numbering g, we have g(vg) < g(v1) < ¢g(v2). By Lemma 6.2, there exist
v, vy € V(G;), with f(v)) < f(v}), such that vov € E(Ty),vov € E(Ty),vjv € E(T3),
and vhv € E(Ty). By Case 1 of Algorithm Numbering f, f(v) < f(v1) < f(vh).
Thus, the result follows by taking z; := v, 29 := va, 23 := v(), and z4 := v).

Case 2. i =1, or H; is an up G;_1-chain in G but not an elementary G;_1-chain.

Let H; := vgByv1 ... vg_1Bvk, with vg = v, = r when 7 = 1, and g(vg) < g(vk)
when ¢ # 1. For each 2-connected Bj, let uj,w; denote the terminals of Bj+ other
than vj_1,vj, with f(u;) < f(w;), and let T, ,T7 T} , T} denote the trees rooted,
respectively, at v;_1,v;, u;,w; in the independent spanning {v;_1, v;, u;, w; }-system
of B;' computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.

Let j € {1,...,k —1}. If ¢ = 1, then by (1) and (2) of Lemma 6.3, T [r,v;] C
Ule B; and Th[r,v;] C Uf=j+1 B;. If i # 1, then v; is a cut vertex of H;, and hence,

by (1) and (2) of Lemma 6.4, T} [vg, v;] C U{:I B; and Th[vk, v,] C Uf:jJrl B;.
First, let us consider the case when v # v; for j = 1,...,k — 1. Thus, there
exists some j, 1 < j < k, such that B; is 2-connected and v € V(B;) — {v;j—1,v;}.

By Case 2 of Algorithm Numbering g, we know that g(vo) < g(vj—1) < g(v;) <
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g(vg), and if v € D, then g(vo) < g(vj—1) < g(v) < g(v;) < g(vg). Further-
more, ng_l[vj_l,v],Tg:j [vj,v],ng [uj,v], and T ,lwj, v] are internally disjoint, be-
cause {ng_l,ng,ng,TZ)j} is an independent spanmng {vj—1,v;,uj,w; }-system of
B;T. By the construction in Case 2 of Algorithm Trees, Ti[vj_1,v] = ng vz,
Tylvj,v] = TJ v 0], Tslug, 0] = T Jlug, 0], and Tylwj,v] = T ,lwj,v]. By Case
3 of Algorlthm Numbering f, if v = D', then f(u;) < f(v) < f(w]) Moreover,
Tl[l}o,vj_ﬂ g Ul:l Bl and TQ[Uk,U]] Q Ul=j+1 Bl. Let 21 = Vo, 22 ‘= Uk, 23 1= Uy,
and z4 := w;. Clearly, (1)—(3) hold.

So assume that v = v; for some j, 1 < j < k—1. Let 2; := vy and 23 := v;. Then
by Case 2 of Algorithm Numbering g, g(z1) < g(v) < g(z2). We will define z3 and z4
and prove that (1)—(3) hold. We do this by analyzing how Algorithm Trees chooses
the neighbors ps,p4 of v; in the trees T3, Ty, respectively.

Subcase 2.1. Bj and Bj are trivial (Subcase 2.1 in Algorithm Trees).

Then Algorithm Trees chooses neighbors ps, ps of v; in V(G;) with f(p3) minimum
(and hence f(p3) < f(pa)). If v; € D', then by Case 3 of Algorithm Numbering f, we
have f(ps) < f(vj) < f(pa). Let z3 := ps and z4 := ps. Clearly, (1)—(3) hold.

Subcase 2.2. Bj is 2-connected and Bjyq is trivial (Subcase 2.2 in Algorithm
Trees).

e If v; has no neighbor in V(G;), then Algorithm Trees chooses three neighbors
P1,P3,pa of v; in Bj; such that ngfl[vj,l,pl] Ti Jlujips], and T, [wj, pa]

are disjoint. By construction, Ti[v;_1,v;] = TUJ Jvimn, o] + {UJ,Ujpl},

Tsuj, v5] = T [uj, pa] + {vj, vips}, and Tulw;, vj] = T, [wj, pa] + {vj, vipa}-

Moreover, Ti[vg,v;—1] € Ufz_ll B; and Thlvg,v;] C Uf:j-s—l B;. Therefore,

T [vo, v5], Tolvk, v5], Taluj,v;], and Tylw;, v;] are internally disjoint. If v; €

D’, then by Case 3 of Algorithm Numbering f, we have j = k — 1 and
fluj) < f(v) < f(w;). Let z3 :=u; and z4 := w;. Clearly, (1)—(3) hold.

e If v; has a neighbor in V(G;), then Algorithm Trees chooses a vertex z €

Ng(v;) N V(G;) with f(z) minimum.
—If f(x) > f(u;), then the algorithm chooses neighbors pi,ps of v; in
B, such that ngfl[vj,hpl] and T3 [uj, ps] are disjoint. By construc-

tion, Ti[vj—1,v;] = TJ _ [vj— 1,p1]+{vj7vjp1} Ts[u;,v;] = TuJ[UJaPS}“‘

Vj—1
{v], U]pg} and Ty [z, v;] is induced by the edge zv,;. Moreover, T1[vg, vj_1]
c U, ' B, and Tolvk, v;] C Ul _;+1 Bi. Therefore, Ti[vo, v;], To[vk, vj],
Tsuy, vj] and Ty[x, v;] are internally disjoint. If v; € D’, then by Case 3
of Algorithm Numbering f, we have f(u;) < f(v) < f(z) Let 23 := u;
and z4 := z. Clearly, (1)—(3) hold.
—If f(z) < f(uj),'then Algorithm Trees chooses neighbors p1, ps of v; in
Bj such that T}, [vj_1,p1] and T ,lwj, pa] are disjoint. By construc-
tion, T[vj—1,v,] = ng [vj— 1,p1]—|—{vj,vjp1} Tiwj, v;] = T7, (Wi, pal+
{vj, vjp4} and T3[z, v,] is induced by the edge zv,;. Moreover, T [vo, vj—1]
C UlZ! B and Ts[vg,vj] C Ul_JJrl 1. Therefore, T1[vo, vj], To[vk, v,
Tz, v]] and Ty[wj, v;] are internally disjoint. If v; € D', then by Case
3 of Algorithm Numbering f, we have f(z) < f(v) < f(w;). Let z3 :=
and z4 := w;. Clearly, (1)—(3) hold.
Subcase 2.3. Bj is trivial and B,y is 2-connected (Subcase 2.3 in Algorithm
Trees).
In this case, if v; € D’, then j = 1 by Case 3 of Algorithm Numbering f. The
arguments for the proof are similar to Subcase 2.2, and we indicate only the choice of
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z3 and z4. In each case below, one can show that (1)—(3) hold for the corresponding
choice of z3, z4.
e If v; has no neighbor in V(G;), then let 23 := Ujy1 and 24 = Wjq1.
e If v; has a neighbor in V(G;), then Algorithm Trees chooses a vertex x €
Ng(vj) NV(G;) with f(z) minimum.
— If f(x) > f(uj+1), then let z5 := u;41 and z4 1= x.
— If f(z) < f(uj+1), then let 25 := z and 24 1= w;y1.
Subcase 2.4. Both B; and B, are 2-connected (Subcase 2.4 in Algorithm Trees).
Since G is 4-connected and (Bf7vj,1,uj,vj,wj) and (B]H,v],ujﬂ,vjﬂ,wjﬂ)
are both planar, v; ¢ Np, (v;_1)UNB,_, (vj+1). Hence, v; ¢ D" by Case 3 of Algorithm
Numbering f. Note that f(u;) < f(wjt1) or f(ujt1) < f(w;).
o If f(u;) < f(wjt1), then Algorithm Trees chooses neighbors p1, ps of v; in B;
such that ngfl [vi—1,p1], ng [u;, ps] are disjoint and neighbors ps, ps of v; in

Bjy1 such that T [vj1,p2], T),  [wj41,p4] ave disjoint. By construction,

Ti[vj—1,v] =T) _ [vj—1. pa]+{vj, v5p1 }, Talug, v5] = T3 [uy, ps] +{vj, vjps},
Dolvjs1,v5) = T [0j41, po)+H{vs, vjp2}, and Tulwr, vj] = T [wyer, pal+
{vj,vjps}. Moreover, T} [vg,vj_1] C UZ:_11 B, and Thlvg, vj41] C Uf:jﬁ By.
Thus, T4 [ve, v,], Ta[vk, v4], Tsluj, v;], and Ty[w;41,v;] are internally disjoint.
Let z3 := u; and z4 := wj;y1. Clearly, (1)—(3) hold.

o If f(uj) > f(wjt1), then f(ujy1) < f(w;), and Algorithm Trees chooses
neighbors pi,ps of v; in B; such that ng_l[vj,l,pl] and TJ ,lwj, pa] are
disjoint and neighbors po,p3 of v; in Bjy1 such that Tgtll [le,pg] and
Td:rl[Uj+17p3] are disjoint. Let z3 := uj;1 and z4 := w;. One can show as
in the above paragraph that T1[vo, v;], Ta[vk, v;], T3[uj4+1,v;], and Ty[w;, v;]
are internally disjoint and (1)—(3) hold.

Case 3. i = t, or H; is a down GG;_1-chain in G but not an elementary G;_1-chain.
Let H; := voBivy ... vp_1Bgvg, with vg = vy, = r when ¢ = ¢, and f(vo) < f(vk)
when ¢ # t. For each 2-connected Bj, let u;, w; denote the terminals of B;r other

than vj_1,v;, with g(u;) < g(wj) and let TJ o Tg ,ng,Tg)j denote the trees rooted,
respectively, at v;_1,v;,u;, w; in the mdependent bpanning {vj_1,v;,u;, w;}-system
of B; + computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.

Let jed{l,...,k—1}. If i =t, then by (3) and (4) of Lemma 6.5, Ts[vg,v;] C
Ul 1 By and T4[vk,v]] C Ul_JJrl B;. If i # t, then v, is a cut vertex of H;, and hence,

by (3) and (4) of Lemma 6.6, T5[vg, v;] C U 1 By and T4[vk,v]] - Ul_jJrl -

First, let us consider the case when v ;é v; for j = 1,...,k — 1. Thus, there
exists some j, 1 < j < k, such that B; is 2-connected and v € V(B;) — {vj_l,vj}.
By Case 2 of Algorithm Numbering f, we know that f(vy) < f(vj_1) < f(v;) <
f(vk), and if v; € D', then f(vo) < f(vj—1) < f(v) < f(vj) < f(vk). Further-

more, T [v7 1, ],TJJ [U],v],TJ [uj,v], and T7, ,lwj, v] are internally disjoint because
{T? 70T TJ TQ{,J_} is an independent spanning {v;_1,v;, u;, w; }-system of B;.L. By
the constructlon in Case 3 of Algorithm Trees, T[u;,v] = T7 g, o], Talwy,v] =
T&j[wj, v], T5[vj—1, ]:ng Jvi—1,v ] andT4[vj,v]:Tyj[vj, v]. Moreover, T3[vo, vj—1]

- U Bl and T4[Uk,1}]] - Ul
Clearly, (1)—(3) hold.

So assume that v = v; for some j, 1 < j <k —1. Let 23 := vg and z4 := v;. By
Case 2 of Algorithm Numbering f, we have f(z2) < f(v) < f(z4). We will define z;
and z9 and prove that (1)—(3) hold. We do this by analyzing how Algorithm Trees
chooses the neighbors p1,ps of v; in the trees 17, T3, respectively.

_J+1 . Let 21 1= Uj, 22 1= Wy, 23 1= Vo, and Z4 1= Vg.
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Subcase 3.1. B; and Bjyq are trivial (Subcase 3.1 in Algorithm Trees).

Then Algorithm Trees chooses neighbors py,ps of vj in V(G;_1) with g(p;) min-
imum (and so g(p1) < g(p2)). By Subcase 3.3 of Algorithm Numbering g, we have
g(p1) < g(v) < g(p2). Let z1 :=p; and 23 := py. Clearly, (1)—(3) hold.

Subcase 3.2. Bj is 2-connected and Bjy is trivial (Subcase 3.2 in Algorithm
Trees).

e If v; has no neighbor in V(G;_1), then Algorithm Trees chooses three neigh-
bOI‘S P1,P2,P3 Of Uj n Bj SuCh that Ti] [Uj,pl], 7172)] [U}j,pg], and ﬂ{j_l [Uj_l,pg]
are disjoint. By construction, T} [uj,v;] = ng [uj, p1]+{vj,vip1}, Tolw;, v,] =
TZ)], [wj, p2] +{vj,vjp2}, and T3[vj_1,v,] = ijj_l [vj_1,p3] +{v;,v;p3}. More-
over, Ts[vg, vj_1] C U{;ll By and Ty [y, v;] C Uf:jﬂ By. Therefore, T} [u;, v,
Tolwj, vs], Tsvo,v;], and Tylvg,v;] are internally disjoint. In this case, if
v; € D, then by Case 3 of Algorithm Numbering g, we have j = k — 1 and
g(u;) < g(v) < g(w;). Let 21 := u; and 29 := w;. Clearly, (1)—(3) hold.

e If v; has a neighbor in V(G;_1), then Algorithm Trees chooses a vertex z €
N¢(vj) NV (Gi—1) with g(x) minimum.

— If g(x) > g(u;), then the algorithm chooses neighbors p;,ps of v; in

Bj such that ng [uj,p1] and Tg'jfl[vj_l,pg] are disjoint. By construc-

tion, T1[uj, vj] = T3 [uj, pr] +{v;, vjp1}, Talvj—1,v5] = TY,_ [vj-1,ps] +
{vj,v;ps}, and To[z, v;] is induced by the edge zv;. Moreover, T5[vg, vj_1]
- Ug;ll By and Tylvg, v;] C Uf:j-l,-l B;. Therefore, Th[uj,v;], Talz, v;],
T3[vo,v;], and Ty[vg,v;] are internally disjoint. If v; € D, then by Case
3 of Algorithm Numbering g, we have j = k—1 and g(u;) < g(v) < g(z).
Let z1 := u; and z4 := 2. Clearly, (1)—(3) hold.

— If g(z) < g(u; ), then Algorithm Trees chooses neighbors pa,ps of v; in
Bj such that T}, [wj,ps] and T [vj—1,ps] are disjoint. By construc-

tion, To[wy, v;] = T7, [wy, pa]+{vj, vjp2}, Tslvj—1,v;] = T3, [vj—1,ps]+
{vj,vjps}, and Ti [z, v,] is induced by the edge zv;. Moreover, T3[vg, vj_1]
C UZ} By and Tylvg, v;] C Uf:ﬂ_l By. Therefore, Ti[z,v;], To[wj,v;],
T3[vo,v;], and Ty[vg, v;], are internally disjoint. If v; € D, then by Case
3 of Algorithm Numbering ¢, we have j = k—1 and g(z) < g(v) < g(w;).
Let z1 := z and 2z := w;. Clearly, (1)—(3) hold.

Subcase 3.3. Bj is trivial and B,y is 2-connected (Subcase 3.3 in Algorithm
Trees).

In this case, if v; € D, then j = 1 by Case 3 of Algorithm Numbering g. The
arguments for this case are similar to Subcase 3.2, and we indicate only the choice of
z1 and zg. In each case below, one can show that (1)—(3) hold for the corresponding
choice of z1, zs.

e If v; has no neighbor in V(G;_1), then let z; := ;41 and 29 = wjy1.
e If v; has a neighbor in V(G;_1), then Algorithm Trees chooses a vertex z €
Ng(v;) NV (G;-1) with g(z) minimum.
— If g(z) > g(uj+1), then let z; ;= wu;j;1 and 2z := x.
— If g(x) < g(uj+1), then let z; := z and 23 := w;41.

Subcase 3.4. B; and Bjy1 are 2-connected (Subcase 3.4 in Algorithm Trees).

Since G is 4-connected and (B;',vj_l,uj,vj,wj) and (B;r+1,Uj,u_j_lrl,v]‘_i'_],wj_l,_l)
are both planar, v; ¢ Np,(vj_1) UNp, ,(vj41). So by Case 3 of Algorithm Number-
ing g, v; ¢ D. Note that g(u;) < g(wj41) or g(u;41) < g(w;).

o If g(u;) < g(wji1), then Algorithm Trees chooses neighbors pi,ps of v;
in B; such that TJ [u;,p;] and ng [vj_1,p3] are disjoint and neighbors

J -1
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p2,pa of vj in Bjiq such that T+ [wjy1,po] and T7F [vji1,pa] are dis-

joint. By construction, Ti[u;,v;] = ng [uj,p1] + {vj,vip1}, Talvj_1,v;] =
T3, [vj—1,ps] + {0, vjps}, Talwjga,v5] = T [wjg, po] + {vj, v5p2}, and
Tylvjr,v5] = T [vi1, pal + {vj,v5pa}. Moreover, Ty[vg,vj-1] C UZ! B
and T4 [’Uk, ’Uj+1] - Uf:j+2 B[. Thus, T1 [Uj, Uj], TQ [wj+1, ’Uj], T3 [’Uo, Uj}, and
Tylvg,v;] are internally disjoint. Let z; := u; and 2z := wj;q. Clearly,
(1)—(3) hold.

If g(u;) > g(wjy1), then g(uj1) < g(w;), and Algorithm Trees chooses neigh-
bors po,p3 of v; in B; such that Tg,j [wj, pa] 'and ngfl[vj,l,pg]'are disjoint
and neighbors p1, ps of v; in Bjiq such that T34 [ujy1, p1] and TJ! [vj11, pa
are disjoint. Let z; := uj41 and 23 := w;. One can show as in the above
paragraph that T4 [uj41,v;], Ta[w;, v;], T3[vo, v;], and Ty[vk, v;] are internally
disjoint and (1)—(3) hold.

Case 4. H; is a triangle G;_1-chain in G.

Let

I(H;) := {v1,va,v3}, let y1,y2,y3 € V(G;) such that yyv1, yav2, y3vs € E(G),

and let vjz; (j =1,2,3) be the legs of H;. Assume that vq, va,vs are labeled so that
g(@1) < g(x2) < g(x3).

The proof can be done by inspecting a small number of cases (Case 4 in Algorithm
Trees) and using Lemma 6.7 and Case 4 of Algorithm Numbering g and Algorithm
Numbering f. For the sake of completeness, we list for each case the choice for
21, 22, 23, and z4. The verification that they satisfy (1)—(3) is straightforward, and we

omit it.
[ )

If f(y1) < f(y2) and f(y1) < f(ys), then let zo := x3 and z3 := y;.
If v = vy, then let z; := 21 and z4 := ys.

If v = vg, then let z; := x5 and z4 := yo.

If v = w3, then let z; := x5 and z4 := y3.

If f(y2) < f(y1) and f(y2) < f(ys), then let z5 := x3 and z5 := yo.
If v = vy, then let z; := x; and 24 := y;.

If v = vy, then let z1 := x5 and z4 := 1.

If v = w3, then let z; := z1 and z4 := y3.

If f(ys) < f(y1) < f(y2), then let zo := a3 and z4 := yo.

If v = vy, then let z; := x; and 23 := y;.

If v = vo, then let z; := x5 and 23 := y;.

If v = v3, then let z; := x1 and 23 := y3.

If f(ys) < f(y2) < f(y1), then let 25 := x5 and z4 := y;.

If v = vy, then let z; := z1 and 23 := y».

If v = vo, then let z; := x5 and 23 := ys.

If v = v3, then let z; := x5 and 23 := y3.

This completes the proof of Lemma 6.11. ]

LEMMA 6.12. Leti € {1,...,t —1}. Then for any u,v € D;, with g(u) < g(v),
Ty[r,u] and Ta[r,v] are internally disjoint paths in G;.

Proof. We will prove the lemma by induction on i. The basis of induction is 7 = 0
with Dy := {r} and Gy := ({r},0). So assume that ¢ > 0 and the lemma holds for
i — 1. We consider the four cases of Algorithm Numbering g.

Case 1. H; is an elementary G;_1-chain in G.

Let

H; := vgByv1 Bava, with g(vg) < g(v2). By (1) of Lemma 6.2, E(Ty N H;) =

{’Uo?]l} and E(T2 n Hi) = {1}1112}. Recall that Di = Di—l U {’Ul}.
If u,v € D;—1 and g(u) < g(v), then by the induction hypothesis, T7[r,u] and
Ts[r,v] are internally disjoint paths in G;_;. Thus, it suffices to prove the following:
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for any u,v € D;, with g(u) < g(v) and v1 € {u,v}, Ty[r,u] and Ta[r,v] are internally
disjoint paths in G;.

Assume first that v = v;. Then v = v € D;_;. Since g(vy) < g(v1) < g(v), it
follows from the induction hypothesis that T} [r, vo] and T[r,v] are internally disjoint
paths in G;_1. Therefore, T1[r,v1] = T1[r,vo] + {v1,v1v0} and Ta[r,v] are internally
disjoint paths in G;.

Now suppose v = v1. Then u € D;_3. Since g(u) < g(v1) < g(ve), it follows
from the induction hypothesis that Ti[r,u] and T[r, vs] are internally disjoint paths
in G;_1. Therefore, T1[r, u] and Ta[r, v1] = Ta[r, va] + {v1,v1v2} are internally disjoint
paths in G;.

Case 2. i =1, or H; is an up G;_1-chain in G but not an elementary G;_;-chain
in G.

Let H; := vgByv1 ... vg_1Bvk, with vg = vy, = r when 7 = 1, and g(vg) < g(vk)
when ¢ # 1. For each 2-connected Bj, let uj,w; denote the terminals of Bj+ other
than vj_1,vj, with f(u;) < f(w;), and let T, T7 ,T] , T} denote the trees rooted,
respectively, at v;_1,v;, u;,w; in the independent spanning {v;_1, v;, u;, w; }-system
of B;T computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.
Let u,v € D; with g(u) < g(v).

If u,v € D;_1, then by the induction hypothesis, T} [r, u] and T»[r, v] are internally
disjoint paths in G;_1.

Ifue D;— D;_1 and v € D;_1, then by the construction in Case 2 of Algorithm
Numbering g, g(vo) < g(u) < g(v). By the induction hypothesis, T1[r, vo] and Ta[r, v]
are internally disjoint paths in G;_;. Since T}[vg, u] is a path in H; — vy by (1) of
Lemma 6.3 when ¢ = 1, or by (1) of Lemma 6.4 when ¢ # 1, Ty[r,v] and Ts[r,v] are
internally disjoint paths in G;.

Ifue D;_y and v € D; — D;_1, then by the construction in Case 2 of Algorithm
Numbering g, g(u) < g(v) < g(v). By the induction hypothesis, T3 [r, u] and Ta[r, vy]
are internally disjoint paths in G;_1. Since Th[vg,v] is a path in H; — vy by (2) of
Lemma 6.3 when ¢ = 1, or by (2) of Lemma 6.4 when ¢ # 1, Ty[r,v] and Ts[r,v] are
internally disjoint paths in Gj;.

So we may assume that u,v € D; — D;_;. Let g denote the function g at the
start of iteration ¢ of Algorithm Numbering g (when it examines H; in Case 2). Recall
that for each j = 1,...,k the algorithm computes a sequence o; as follows. If B; is
2 connected, then oy is a (T3, T} )-ordering of NB;({uj,wj}) —{vj_1,v;}. If B,
is trivial, then o; is the empty sequence. Moreover, the algorithm extends g° to
0 = 01,V1,092,...,Vk—-1,0% from vy and set D; := D;_; U{o}. Thus, u,v € {o}.
Note that since g(u) < g(v), u precedes v in the sequence o.

First, suppose that there exists no j € {1,...,k—1} such that u,v € {o;}. Hence,
there is some j € {1,...,k — 1} such that either

e u appears in the sequence o1,v1,...,0;4,v; and v appears in the sequence
Oj+1,Vj+15-+-,Vk—1,0k OF

e u appears in the sequence 01,V1,---,0; and v appears in the sequence
V5,041, Vj+15- -5 Vk—1,Ok-

By (1) and (2) of Lemma 6.3 when ¢ = 1 or by (1) and (2) of Lemma 6.4 when
i # 1, Ty[vg,u] and Ty [vg,v] are internally disjoint paths in H;, and by the induction
hypothesis, T1[r,vg] and T[r,vg] are internally disjoint paths in G;_;. Therefore,
T, [r,u] and T3[r,v] are internally disjoint paths in G;.

So, we may assume that there exists some j € {1,...,k — 1} such that u,v are
in the sequence o;. Since the sequence o; is (ngf I,ng )-ordered and u precedes v in
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0j, T),_,[vj-1,u] and T} [vj,v] are disjoint. By the construction in Algorithm Trees,

v
Ti[vj—1,u] = T) _ [vj—1,u] and Tr[vj,v] = Tg] [vj,v]. By (1) and (2) of Lemma 6.3

when ¢ =1, or 1i)y (1) and (2) of Lemma 6.4 when i # 1, T1[vg,v;j—1] and Th[vg, v;]
are internally disjoint paths in H;. Moreover, by the induction hypothesis, T} [r, vo)
and Th[r, vg] are internally disjoint paths in G;_;. Therefore, T1[r, u] and Th[r,v] are
internally disjoint paths in Gj;.

Case 3. i =t, or H; is a down G;_1-chain in G but not an elementary G;_;-chain
in G.

Let H; := voBivy ... vp_1Bgvg, with vg = vy, = r when ¢ = ¢, and f(vo) < f(vk)
when ¢ # t. For each 2-connected Bj, let u;, w; denote the terminals of B;r other

than vj_1,v;, with g(u;) < g(w;), and let ng,l , ng , ng,Tg)j denote the trees rooted,
respectively, at v;_1,v;, 4, w; in the independent spanning {v;_1, v;, u;, w; }-system
of B;' computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.
Let u,v € D; with g(u) < g(v). Recall that D; = D;_1 U Np, (vo) U Np, (vi).

If u,v € D;_1, then by the induction hypothesis, T} [r, u] and T»[r, v] are internally
disjoint paths in G;_1 C G;.

Ifue D; —D;_1 and v € D;_1, then u € N, (v9) U Np, (vg). By (1) and (3) of
Lemma 6.11, there exists z; € V(G;_1) such that g(z1) < g(u) and V(T3 [z1,u]—21) C
I(H;). Since z1,v € D;—1 and g(z1) < g(u) < g(v), it follows from the induction
hypothesis that T1[r, z1] and T3 [r,v] are internally disjoint paths in G;_;. Therefore,
Ty [r,u] and T»[r,v] are internally disjoint paths in G;.

Ifue D,y and v € D; — D;_1, then v € Np, (v9) UNp, (vg). By (1) and (3) of
Lemma 6.11, there exists zo € V(G;—1) such that g(v) < g(z2) and V (Tz[z2,v] —22) C
I(H;). Since z,u € D;—1 and g(u) < g(v) < g(z2), it follows from the induction
hypothesis that Ty [r, u] and Ts[r, z2] are internally disjoint paths in G;_;. Therefore,
T [r,u] and Ty[r,v] are internally disjoint paths in G;.

So, we need only to prove the case when u,v € D; — D;_;. Let g denote the
function g at the start of iteration 7 of Algorithm Numbering g (when it examines H;
in Case 3). Now we consider the three subcases of Case 3 of Algorithm Numbering g.

Subcase 3.1. k =1 (thus, By is 2-connected).

Since (B, vg,u1,v1,w;) is planar and G is 4-connected, vg,v; ¢ Np,(vg) U
JVB1 (’Ul). Hence, in this case, Dz’ — D,'_l = NBfr({U()?’Ul}) — {ul,wl} = ]\/vB1 (Uo) U
N, (v1). Moreover, Algorithm Numbering g produces a (T} , T, )-ordering o of
NBT({UO’ v1}) — {u1, w1} and extends g* to o from u;.

Let u,v € D; — D;_1, with g(u) < g(v). Then both u and v are in the sequence
o, and u precedes v in o. Since o is (T}, Ty, )-ordered, T,f [u1,u] and T, [wy,v] are
disjoint. By the construction in Case 3 of Algorithm Trees, Ti[uy,u] = Ty [ug,u]
and Th[wy,v] = Ty [wy,v]. By the induction hypothesis, Ti[r, u1] and Th[r,w;] are
internally disjoint paths in G;_;. Therefore, T} [r, u] and Ts[r, v] are internally disjoint
paths in G;.

Subcase 3.2. k = 2, and By or By is trivial.

By symmetry we assume that Bs is trivial (the arguments are analogous if By is
trivial). Note that Bj is 2-connected because H; is not an elementary G;_i-chain in
G. Thus, D; — D,_; = Np, (Uo) @] {’Ul}.

e If v; has no neighbor in V(G;_1), then Algorithm Numbering g chooses neigh-
bors g1, g2, g3 of v1 in By such that le [u1, ¢1], Tvl0 [vo, g2], and Tj}l [wy, q3] are
disjoint and then computes a (T, + {vi,v1q1}, Ty, + {v1,v1¢3})-ordering o
of N, (vo) U{v1} in Bf U By (recall that (B; U Ba, vy, u1, v, wy) is planar).
Then Algorithm Numbering ¢ extends ¢* to o from u;.
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Let w,v € D; — D;_1, with g(u) < g(v). Then both u and v are in the
sequence o, and u precedes v in o.

Let us consider first the case when u # v; and v # vy. Thus, u,v €
N, (vg). Since o is (T, +{v1,v1q1 }, Ty, +{v1,v1g3})-ordered and u precedes
v in o, Ty [ug,u] and Ty, [wy,v] are disjoint. By construction (Case 3 of
Algorithm Trees), T1[uy,u] = T} [u1,u] and Th[wy,v] = T, [wi,v]. By the
induction hypothesis, T [r,u1] and To[r,w;]| are internally disjoint paths in
G;_1. Therefore, T1[r,u] and Ts[r,v] are internally disjoint paths in G;.

Now suppose that u = vy. Since o is (T, + {v1,v1q1}, Ty, + {v1,v103})-
ordered and u precedes v in o, T&l [ur, 1] + {v1,v1q1} and Tllu1 [wy,v] are dis-
joint. By construction (Case 3 of Algorithm Trees), T1[u1,v1] = le [ur, 1] +
{v1,v1q1} and To[wy,v] = Ty, [wi,v]. By the induction hypothesis, T4 [r, us]
and Ty[r,w] are internally disjoint paths in G;—;. Therefore, T1[r,u] and
T[r,v] are internally disjoint paths in G;.

So assume v = vy. Since o is (T}, + {v1,viq1}, Ty, + {v1,v1q3})-ordered
and u precedes v in o, T [u1,u] and T}, [wy,qs] + {v1,v1¢3} are disjoint.

By construction (Case 3 of Algorithm Trees), Ti[ui,u] = T [u1,u] and
Tolwy,v1] = Tﬂlj1 [wi, g3] + {v1,v193}. By the induction hypothesis, T;[r, u]

and Th[r,w;] are internally disjoint paths in G;_y. Therefore, T}[r, u] and
T[r,v] are internally disjoint paths in G;.
e If vy has a neighbor in V(G;_1), then Algorithm Numbering g chooses a vertex
z € (Ng(v1) N V(Gi—1)) with ¢*(z) minimum and computes a (T , Ty, )-
ordering o of NBT (vo) — {u1, w1}
Let u,v € D; — D;_1, with g(u) < g(v).
Let us consider first the case when u # v, and v # v1. Then both v and v
are in o, and u precedes v in 0. Since o is (T}, T}, )-ordered and u precedes
v in o, Ty [u1,u] and T, [wy,v] are disjoint. By construction (Case 3 of
Algorithm Trees), Ty [uy,u] = T} [u1,u] and Thlwy,v] = T} [wy,v]. By the
induction hypothesis, T [r,u;] and Ta[r,w;] are internally disjoint paths in
G;—1. Therefore, T1[r,u] and T[r,v] are internally disjoint paths in G;.
Now suppose that u = vy. Thus, v is in the sequence o. Recall how
Algorithm Numbering g extends ¢’ in Subcase 3.2 of Algorithm Numbering g.
If g(x) > g(u1), then g*(z) > g*(u1), and Algorithm Numbering g ex-
tends g* to o,v; from u;. But then g(v) < g(v1) = g(u), contradicting the
assumption that g(u) < g(v).
If g(z) < g(uy), then g*(z) < g%(uy), and Algorithm Numbering g extends
g’ to v1,0 from 2. By construction (Subcase 3.2 of Algorithm Trees with
j = 1), zvy € E(T1) and Talwy,v] = T} [wi,v]. Since g(z) < g(w), by
the induction hypothesis, Ti[r, 2] and Ts[r,w;] are internally disjoint paths
in G;_1. Therefore, T1[r,v1] and Ts[r,v] are internally disjoint paths in G;.
The case v = v; can be treated analogously (g(x) < g(u1) cannot occur).
Subcase 3.3. k> 3, or k =2 and both By, By are 2-connected.
In this case, D; — D;_1 = Np, (vo) U Np, (vg). Let u,v € D; — D;_; with g(u) <
9(v).
Let us consider first the case when u,v € N, (vo). Thus, B; is 2-connected, and
Algorithm Numbering g (Subcase 3.3) computes a (T} , Ty )-ordering o of Np+ (vg) —

uy?
{u1,w1} = Np,(vo) and extends g* to o from u;. Thus, g(u1) < g(u) < g(v).
Since o is (Tt , T, )-ordered and u precedes v in o, Ty [ui,u] and T [wy,v] are
disjoint. By construction (Case 3 of Algorithm trees), Ti[uy,u] = T} [u1,u] and
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To[wy,v] = Ty, [wy,v]. Since g(u1) < g(wy) and by the induction hypothesis, T [r, u1]
and Th[r,w;] are internally disjoint paths in G;_;. Therefore, Ti[r,u] and Ts[r, v] are
internally disjoint paths in G;.

Suppose, now, that u,v € Np, (vg). Then By is 2-connected, and Algorithm
Numbering g (Subcase 3.3) computes a (T , T* )-ordering of NB,j (vg) — {uk, wi} =

uR? T wg

Np, (vr) and extends ¢' to o from wug. Thus, g(ur) < g(u) < g(v). Since o is
(T* Tk )-ordered and u precedes v in o, T [uy,u] and T% [wy,v] are disjoint. By
construction (Case 3 of Algorithm Trees), Ti[ug,u] = TF [ug,u] and Talwy,v] =
Tk [we,v]. Since g(ur) < g(wy) and by the induction hypothesis, Ti[r, ui] and
Ta[r,wg] are internally disjoint paths in G;_;. Therefore, Ti[r,u] and Th[r,v] are
internally disjoint paths in G;.

So we may assume that v € Np,(vg) and v € Np, (vg), or u € Np, (vr) and
v € Np, (vg). By symmetry, assume that u € Np, (vg) and v € Np, (v;). We will prove
that there exist vertices 21, z2 € V(G;—1), with g(z1) < g(22), such that T}[z, u] and
Ty [z2,v] are internally disjoint paths in G, V(11 [z1,u] —21) C I(H;), and V (Ts[z2,v] —

Consider the following cases for u and Bj.

e B; is 2-connected. Then, by construction in Algorithm Trees, Ti[u1,u] =
T, [uy,u], and let 21 := uy.

e By istrivial. Thus, u = vy. If By is trivial, then by construction in Subcase 3.1
of Algorithm Trees (with j = 1), there exists a neighbor p; of vy in V(G;_1)
such that g(p1) is minimum and pyv; € E(T1). In this case, let z; := py.

So assume that By is 2-connected.

— If v; has no neighbor in V(G;_1), then by construction in Subcase 3.3
(with j = 1) of Algorithm Trees, there exists a neighbor p; of v1 in By
such that Tj[ug,v1] = sz [u2,p1] + {v1,v1p1}. In this case, let z1 := us.

— If v; has a neighbor in V(G;_1), then Algorithm Trees in Subcase 3.3
(with j = 1) chooses © € Ng(v1) N V(Gi—1) with g(x) minimum. If
g(z) > g(uz), then by construction there exists a neighbor p; of v; in By
such that T7[us, v1] = ng [ug, p1] + {v1,v1p1}. In this case, let z1 1= us.
If g(z) < g(ua), then zv; € E(Ty). In this case, let z; := .

Consider the analogous cases for v and By.

e By is 2-connected. Then by construction in Algorithm Trees, To|wg,v] =
Tfjk [wg, v], and let zo := wy.

e By is trivial. Thus, v = vi_1. If Bg_1 is trivial, then by construction in
Subcase 3.1 of Algorithm Trees (with j = k — 1), there exists a neighbor py
of vi_1 in V(G;—1) such that g(p3) is not minimum and povk—1 € E(Ts). In
this case, let z9 := po.

So assume that Bj_; is 2-connected.

— If vg—1 has no neighbor in V(G;_1), then by construction in Subcase 3.2
(with j = k — 1) of Algorithm Trees, there exists a neighbor ps of vi_1
in Bg_1 such that Thlwg_1,v5-1] = Tff,k__ll [wg—1,p2] + {Vk—1,Vk—1P2}
In this case, let z5 := wi_1.

— If vi—1 has a neighbor in V(G;_1), then Algorithm Trees in Subcase 3.2
chooses ¢ € Ng(vg—1)NV(G;—1) with g(z) minimum. If g(z) > g(uk—1),
then zvg_1 € E(T3). In this case, let 2z := z. If g(z) < g(ug—1),
then by construction there exists a neighbor ps of vi_1 in Bi_; such
that To[wg—1,vk—1] = Tﬁk_}l [wi—1,p2] + {Vk—1,Vk—1p2}. In this case, let
29 := wg—1 (this is the same as in the previous paragraph).
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So Ti[z1,u] either is contained in Bj, or is contained in By, or is induced by a
single edge. Hence, g(z1) < g(u). Similarly, T5[z2,v] either is contained in B;‘, or is
contained in B}, or is induced by a single edge. So g(v) < g(22). Since g(u) < g(v),
9(21) < g(22).

Note that if & = 3, By is 2-connected, and both paths Ti[z1,u] and T[22, v] are
contained in By, then u = vy, v = vy = vj_1, Ti[ug,u] = TfQ[uz,pl] + {v1,v1p1}
for some neighbor p; of v1 in Bg, and Th|ws,v] = Tiz [wa, p2] + {va, vapa} for some
neighbor ps of vy in Bs. In this case, since u,v are (sz,Tf,z)-ordered, T, [ug,u] and
Ts[ws, v] are disjoint.

Therefore, since k > 3, it is not hard to see that T1[z1, u] and Ts[22, v] are disjoint
paths in G, V(T1[z1,u] — z1) C I(H;), and V(Tz[z2,v] — z2) C I(H;).

Since g(z1) < g(z2), by the induction hypothesis, Ti[r, z1] and Th[r, z2] are in-
ternally disjoint paths in G;_1. Therefore, Ti[r, u] and Ty[r,v] are internally disjoint
paths in G;.

Case 4. H; is a triangle G;_1-chain in G.

By Algorithm Numbering g, D; — D;_1 = {v1,v2,v3} and g(v1) < g(ve) < g(vs3).
Thus, it suffices to show that the following pairs are internally disjoint: Ti[r, v1]
and Ty[r,vs], Th[r,v2] and Ty[r,vs], and Ti[r,v1] and Ts[r,vs]. This can be done by
inspecting Case 4 of Algorithm Trees. 0

Recall that Algorithm Numbering f with input C := (Hy,..., H;) computes a
numbering f and sets D;_ ,, D;, D;_1,...,Dj. The next lemma can be proved, anal-
ogously to Lemma 6.12. We give only some detail for Case 4, as f and g are not
symmetric in that case.

LEMMA 6.13. Leti € {1,...,t}. Then for any u,v € D} with f(u) < f(v),
Ts[r,u] and Ty[r,v] are internally disjoint paths in Gj.

Proof. We use the notation in the proof of Lemma 6.12 and assume H; is a triangle
G;_1-chain in G. By inspecting Case 4 of Algorithm Numbering f and Algorithm
Trees, we have the following.

o If f(y1) < f(y2) and f(y1) < f(ys), then f(v1) < f(v2) < f(v3). So we can
show that T3[r,v1] and Ty[r,ve] are internally disjoint, T5[r, v1] and Ty[r, vs]
are internally disjoint, and T3[r,ve] and Ty[r,vs] are internally disjoint.

o If f(y2) < f(y1) and f(y2) < f(ys), then f(vz) < f(v1) < f(v3). So we can
show that T3[r,vs] and Ty[r,v1] are internally disjoint, T5[r, vo] and Ty[r, vs)
are internally disjoint, and T5[r,v1| and Ty[r, vs] are internally disjoint.

o If fys) < f(n) < Fun), then f(vs) < f(v1) < f(va). So we can show
that T3[r,vs] and Ty[r,v1] are internally disjoint, T3[r,vs] and Ty[r,vs] are
internally disjoint, and T5[r, v1] and T4[r,ve] are internally disjoint.

o If f(ys) < f1o) < fsn), then f(vs) < f(va) < f(v1). So we can show
that Ts[r,vs] and Ty[r,vs] are internally disjoint, T5[r,vs] and Ty[r,v1] are
internally disjoint, and Ts[r, v3] and Ty[r,v;] are internally disjoint. O

THEOREM 6.14. Given a 4-connected graph G, r € V(G), and a nonseparating
chain decomposition C := (Hy,...,H;) of G rooted at r, Algorithm Trees computes
four independent spanning trees rooted at r.

Proof. By Corollary 6.10, T1,75,T3,T, are spanning trees of G. Let us prove
that they are independent with r as root. Let v € V(G) — {r}. Suppose that v is
an internal vertex of a good chain H; in the decomposition C. By Lemma 6.11 there
exist 21, 22, 23, 24 € V(G) such that

(i) 21,22 € V(Gi—1), and either g(z1) < g(z2) or 21 = 2z =1,

(i) 23,24 € V(G;), and either f(z3) < f(z4) or 23 = 24 = r, and
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(iii) Ti[z:,v], @ = 1,2,3,4, are internally disjoint paths and V(T;[z;,v] — 2;) C
I1(H;).

By Lemma 6.12, if g(z1) < g(z2), then Ti[r, z1] and Th[r, 23] are internally disjoint
paths in G;_;. Obviously, the same holds if z; = zo = r. Similarly, by Lemma 6.13,
if f(23) < f(z4), then T3[r, z3] and Ty[r, z4] are internally disjoint paths in G;, and
the same holds if z3 = z4 = r. Therefore, Ti[r,v], To[r,v], T5[r,v], and Ty[r,v] are
internally disjoint. Hence, T7,75,T5, and T4 are independent spanning trees of G
rooted at r. ]

LEMMA 6.15. Algorithm Trees runs in O(|V (G)|?) time.

Proof. By Lemmas 4.6 and 4.7, given C we can compute numberings g and f in
O(JV(G)|?) time. By Theorem 3.2 we can compute independent spanning systems for
all planar sections in C in O(|V(G)| + |E(G)]|) time.

We will show that at each iteration the time spent by Algorithm Trees is O(|V (G)|?)
time. Since the number of iterations is at most |V (G)|, this implies the result.

Suppose we are at iteration i of Algorithm Trees.

One can see easily that if Case 1 or Case 4 occurs, then Algorithm Trees uses
constant time. Thus, we may assume that Case 2 or Case 3 occurs.

Suppose that Case 2 occurs. The initial updating of T1, Ts, T5, Ty (before Subcases
2.1-2.4 are dealt with) can be done in O(|V(G)|) time. Then for each j € {1,...,k}
the algorithm inserts v; into the subgraphs 741,75, 73,7, according to Subcases 2.1—
2.4. One can see that Subcase 2.1 can be executed in O(1) time. In the other cases,
the algorithm has to solve one of the following problems (at most twice).

(1) Given a planar graph (B, v’, u, v, w) and an independent spanning {v’, u, v, w}-

system {Ty, Ty, Ty, Ty} of B (with T/, Ty, T,, T, rooted, respectively, at
v',u, v, w), find three neighbors py, pa, ps of v in B such that T/ [v/, p1], Ty [u, p2],
and T, [w, ps] are disjoint.

(2) Given a planar graph (B, v’, u, v, w) and an independent spanning {v’, u, v, w}-

system {T,, Ty, Ty, Ty} of B (with T,.,T,,T,, T, rooted, respectively, at
v’ u, v, w), find two neighbors py, ps of v in B such that T,/ [v', p1] and T, [u, pa]
are disjoint.
By Lemmas 3.6 and 3.7, both problems can be solved in O(|V(B)]) time. Thus, it is
not hard so see that the time spent by Algorithm Trees in Case 2 is O(|V(G)[?).

Case 3 is analogous to Case 2, and by an argument similar to the last paragraph,
one can show that Algorithm Trees uses O(|V(G)|?) time in this case as well. |

Now we are almost ready to prove Theorem 1.1, except that if we apply Theo-
rem 2.8 directly to a 4-connected graph G to find a nonseparating chain decomposition
of G, we spend O(|V(G)|?|E(G)|) time. We can obtain an O(|V(G)|?) algorithm by
using the following result of Ibaraki and Nagamochi [10].

THEOREM 6.16. Let G be a k-connected graph for some integer k > 1. Then
one can find in O(|V(G)| + |E(G)|) time a spanning k-connected subgraph of G with
O(|V(G)|) edges.

Proof of Theorem 1.1. Let G be a 4-connected graph, and let » € V(G). Apply
Theorem 6.16 to G, and let G’ be the resulting spanning 4-connected subgraph of G.

Applying Theorem 2.8 to G’, we can find a nonseparating chain decomposition C
of G' in O(|V(G")]?) time (and hence in O(|V(G)[?) time).

Finally, apply Theorem 6.14 to GG,C and find four independent spanning trees
T1, T, T3, Ty of G’ rooted at r. By Lemma 6.15, this is done in O(|]V(G’)|?) time, and
hence in O(|V(G)|?) time. Clearly, T}, Ty, T3, Ty are independent spanning trees of G
rooted at r. ]
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