
QUOTIENTS BY REDUCTIVE GROUP, BOREL
SUBGROUP, UNIPOTENT GROUP AND MAXIMAL

TORUS

YI HU

ABSTRACT. Consider an algebraic action of a connected complex
reductive algebraic group on a complex polarized projective variety.
In this paper, we first introduce the nilpotent quotient, the quotient
of the polarized projective variety by a maximal unipotent subgroup.
Then, we introduce and investigate three induced actions: one by the
reductive group, one by a Borel subgroup, and one by a maximal
torus, respectively. Our main result is that there are natural corre-
spondences among quotients of these three actions. In the end, we
mention a possible application to the moduli spaces of parabolic bun-
dles over algebraic curves for further research.

— Dedicated to Robert MacPherson on the occasion of his 60th birthday

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let G × X → X be an algebraic action of a connected complex re-
ductive algebraic group G on an arbitrary complex projective variety
X . Let L be a very ample line bundle over X . We assume that L admits
a G-linearization1.

Under these assumptions, we will introduce three other actions and
study relations among their quotients.

To this end, we fix a Borel subgroup B of G, the unipotent radical U
of B, and a maximal torus H of G such that B = HU . We also fix a
compact form K of G such that T = K ∩ H is the compact torus of H .
Let t

∗ be the linear dual of t = Lie(T ) and t
∗
+ be the closed Weyl chamber

in t
∗ which is positive with respect to B.

1.1. Nilpotent quotient. Our first theorem is that there exists a canoni-
cally defined quotient by the unipotent group U .

Theorem 1.1.1. There is a uniquely defined Zariski open subset Xss
U (L)

of X , which solely depends on L but not on the linearization of L, such that
Xss
U (Ln) = Xss

U (L) for all n > 0 and the quotient Xss
U (L) → Xss

U (L)//U

1This is automatically satisfied if X is normal.
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exists. Furthermore, on the quotient variety Xss
U (L)//U the maximal torus H

naturally acts.

1.2. Three actions. The three actions that we mentioned earlier are:

(1) the induced torus action

H ×Xss
U (L)//U → Xss

U (L)//U ;

(2) the induced diagonal action

G× (X ×G/B) → (X ×G/B);

(3) and the induced Borel subgroup action

B ×X → X.

To explain the natural correspondences among quotients of these three
actions, we will start with a parameter space, a rational polytope ∆, for
these quotients.

1.3. A parameter space for quotients. Let Λ = Hom(T,U(1)) be the weight
lattice of T and Λ+ = Λ ∩ t

∗
+. (Here, as usual, we will identify Λ with a

subgroup of t
∗ by identifying the weight λwith the functional dλ/(2πi).)

Let (t∗+)reg be the set of regular points of t
∗
+, that is, the set of points out-

side the walls of Weyl chamber.

Choose a K-invariant Hermitian form on the space of global sections
of L and let Φ : X → k

∗ be the associated moment map2 where k
∗ is the

linear dual of k = Lie(K). Let ∆ = Φ(X) ∩ t
∗
+. This is a rational convex

polytope (see Mumford’s Appendix to [19]. See also [16] for the case of
symplectic manifolds). Set

∆reg = ∆ ∩ (t∗+)reg.

For any rational point χ
n

∈ ∆reg with χ ∈ Λ+ and n ∈ N, we will
associate a quotient for each of the above three actions as follows.

1.4. The first group action. For a sufficiently divisible positive integer
n, Ln descends to a very ample line bundle OXss

U
//U(n) over Xss

U //U on
whichH acts linearly. Let OXss

U
//U(n, χ) be the linearization on OXss

U
//U(n)

shifted by the character −χ (see §3.3 for the precise definition). We will
denote the corresponding locus ofH-semistable points by (Xss

U (L)//U)ssH (n, χ).
This leads to our first (GIT) quotient

(Xss
U (L)//U)ssH (n, χ) → (Xss

U (L)//U)ssH (n, χ)//H.

2Φ is the restriction of the corresponding moment map on the projective space
P(H0(X,L)∗). Hence it makes sense even if X is singular.
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1.5. The second group action. Let C−χ be the one-dimensionalB-module
with character −χ and Lχ = G×B C−χ be the corresponding linearized
ample line bundle over G/B. Then Ln⊗Lχ becomes a linearized ample
line bundle over X ×G/B. This gives rise to our second (GIT) quotient

(X ×G/B)ssG (Ln ⊗ Lχ) → (X ×G/B)ssG (Ln ⊗ Lχ)//G.

1.6. The third group action. Define a morphism

ιB : X → X ×G/B, ιB : x→ (x, [B]), ∀x ∈ X.

Set Xss
B (n, χ) = i−1

B (iB(X) ∩ (X ×G/B)ss(Ln ⊗ Lχ)) ⊂ X. Then, we will
show (Theorem 5.2.1) that Xss

B (n, χ) is B-invariant, Zariski open, and
admits a categorical quotient by the Borel subgroup B

Xss
B (n, χ) → Xss

B (n, χ)//B.

1.7. The correspondences. Here comes our second main theorem.

Theorem 1.7.1. For every rational point χ
n

in ∆reg
3, there exists a quotient

variety for each of the three actions listed as follows:

(Xss
U (L)//U)ssH (n, χ)//H,

(X ×G/B)ssG (Ln ⊗ Lχ)//G,

Xss
B (n, χ)//B.

Moreover, these quotients as projective varieties are all naturally isomorphic to
each other.

Here we mention that these correspondences hold over an arbitrary
ground field of characteristic zero. Working over the field of complex
numbers is only for the interpretation of the polytope ∆ in terms of
moment map. But the use of moment map, although convenient and
adding some symplectic flavors to the work, can be completely avoided.
For example, to avoid the use of moment map in this introduction, we
could have simply used the moment-map-free descriptions of the ratio-
nal points of ∆ as in Equation (1) of §3.2.

3Here we indicate that the rational points of ∆ that are not regular will have to
be treated separately as they are related to homogeneous spaces G/P where P is a
parabolic subgroup strictly containing B. See §7 for details.
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2. THE QUOTIENT OF X BY THE UNIPOTENT SUBGROUP U

2.1. U -invariants of the section algebra. Since the line bundle L is G-
linearized, we have that H0(X,L) is a G-module, so is its linear dual
V = H0(X,L)∗. Since L is very ample, a choice of a basis of H0(X,L)∗

will equivariantly embed X into the projective space P(V ).

Consider the N-graded section algebra

R =
⊕

d≥0

Rd =
⊕

d≥0

H0(X,Ld)

on which G, hence U , acts linearly. Let

RU =
⊕

d≥0

RU
d =

⊕

d≥0

H0(X,Ld)U

be the subalgebra of U -invariant sections with the induced grading by
N. Then, RU is finitely generated. To see this, let

S =
⊕

d≥0

Sd =
⊕

d≥0

H0(P(V ),OP(V )(d))

be the polynomial algebra. Let

π : S → R

be the restriction homomorphism. Then R is a finite S-module. Hence
R is finitely generated. Then by [10], RU is finitely generated as well. (I
thank Michel Brion for pointing out the reference [10].)

2.2. The unipotent quotient. Here comes our main definition.

Definition 2.2.1. The quotient of X by the unipotent group U with
respect to the linearization L is defined to be Proj(RU).

2.3. Proof of Theorem 1.1.1. Set

Xss
U (L) = {x ∈ X|∃ d > 0, s ∈ RU

d , s(x) 6= 0}.

Then there is a quotient map

Xss
U (L) → Proj(RU),

locally induced from the inclusions RU ⊂ R over affine patches s(x) 6=
0. Hence we will also denote Proj(RU) by Xss

U (L)//U .

The equality Xss
U (Ln) = Xss

U (L) for all n > 0 follows immediately
from the definition.

To show that Xss
U (L) is independent of the linearization of L, note

that if we change the linearization of L, then the correspondingG-linear
actions on the section algebra R only differ by shifting a character of G.
Since the character is trivial when restricted to U , the action of U on R
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remains unchanged. Therefore RU , hence also Xss
U (L), only depends on

the underlying line bundle L but not the linearization.

The maximal torus H obviously acts linearly on RU . Hence it acts on
the quotient Proj(RU) = Xss

U (L)//U .

This complete the proof of Theorem 1.1.1.

Remark 2.3.1. The unipotent quotient Xss
U (L)//U in general does de-

pend on the choice of the underlying line bundle L. We will justify this
assertion in §8.2.

Remark 2.3.2. It would be nice if Xss
U (L) → Proj(RU) is a categorical

quotient (see Theorem 0.5 of [18] for the definition of categorical quo-
tient). We are not able to prove this although we believe this is true. It is
worth mentioning that the rest of the quotients considered in this paper
are all categorical. We also expect that the unipotent quotient Proj(RU)
should admit other interpretations and bear interesting applications.

2.4. A theorem of Guillemin and Sjamaar. By Guillemin and Sjamaar
([11]), the unipotently semistable locus Xss

U (L) admits the following de-
scription:

Theorem 2.4.1. (Theorem 4.2, [11])

Xss
U (L) = {x ∈ X|Φ(B · x) ∩ t

∗
+ 6= ∅}.

We will not use this result, except in Example 2.5 below.

2.5. An example. Consider the diagonal action of G = SL(2,C) on
(P1)n. Let B be the subgroup of upper triangular matrixes and U be
the unipotent radical.

We represent a point of P
1 by

[
a

b

]
. Then U fixes the point

[
1

0

]
and

P
1 \

[
1

0

]

is a single U -orbit on which U acts freely.

We will identify the linear dual of the Lie algebra of SU(2) = SO(3)
with R

3. Using a coadjoint orbit, we will realize P
1 as the unit sphere S2

in R
3. Under this identification, the moment map is simply the inclu-

sion: S2 ⊂ R
3. Let p = S2 ∩ t

∗
+. Then S2 is the coajoint orbit through −p.

Under the identification G/B = K/T = S2 (cf. the paragraph around
Equation (1) of [11]), we have [B] = [T ] = −p. Hence −p is fixed by the

action of B. It follows that −p is
[

1

0

]
. Then p, as the only other fixed

point of the maximal torus, must be
[

0

1

]
.
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Let di (1 ≤ i ≤ n) be some positive integers and let L be the ample line
bundle ⊗iO(di) over (P1)n. Then the induced moment map Φ is simply∑

i diΦi where Φi is the following composition map: the projection of
(P1)n to the ith factor followed by the inclusion S2 ⊂ R

3.

Assume that dn is sufficiently large relative to other di (1 ≤ i ≤ n− 1).
Then by applying Guillemin-Sjamaar’s Theorem (Theorem 2.4.1), it is
straightforward to check that

[
a1 · · · an−1 an

b1 · · · bn−1 bn

]
∈ Xss

U (L) ⇐⇒ bn 6= 0.

We will represent an arbitrary point of Xss
U (L) by

[
· · · ai1 · · · air

· · · an

· · · 1 · · · 1 · · · 1

]

where the dotted columns are all
[

1

0

]
. Such a representation is obvi-

ously unique. Now define a morphism

φ : Xss
U (L) → (P1)n−1

by
[

· · · ai1 · · · air
· · · an

· · · 1 · · · 1 · · · 1

]
→

[
· · · ai1 − ai2 · · · air

− an · · ·

· · · 1 · · · 1 · · ·

]
,

where the dotted columns stay the same, that is, are all
[

1

0

]
. (The col-

umn
[

an

1

]
is deleted by the map φ.) Then one checks easily that φ is

surjective andU -equivariant whereU acts on the image (P1)n−1 trivially.

To see that φ sends distinct orbits to distinct points, suppose that we
have

φ(
[

· · · ai1 · · · air
· · · an

· · · 1 · · · 1 · · · 1

]
) = φ(

[
· · · bi1 · · · bi

r
′

· · · bn

· · · 1 · · · 1 · · · 1

]
).

Then we must have r = r′ and

aij − aij+1
= bij − bij+1

, 1 ≤ j ≤ r

where we set air+1
= an and bir+1

= bn. This implies that

bij − aij = bij+1
− aij+1

, 1 ≤ j ≤ r.

Set x = bij − aij for any 1 ≤ j ≤ r, and let

u =
(

1 x

0 1

)
.

Then [
· · · bi1 · · · bir

· · · bn

· · · 1 · · · 1 · · · 1

]
= u ·

[
· · · ai1 · · · air

· · · an

· · · 1 · · · 1 · · · 1

]
.

That is, φ : (P1)n \
[

1 · · · 1

0 · · · 0

]
→ (P1)n−1 is a quotient map and (P1)n−1

parameterizes the U -orbits on Xss
U (L).
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Similarly, for every 1 ≤ i ≤ n, by assuming that di is sufficiently large
relative to the rest, we will get

[
a1 · · · an−1 an

b1 · · · bn−1 bn

]
∈ Xss

U (L) ⇐⇒ bi 6= 0

and its quotient by U can also be identified with (P1)n−1.

3. QUOTIENTS OF Xss
U (L)//U BY H

The maximal torus H acts on Xss
U (L)//U = Proj(RU) via the induced

linear action on RU . We now study the H-quotients on Xss
U (L)//U .

3.1. RU as H-modules. The algebra R is also (N × Λ+)-graded:

R =
⊕

d,τ

Rd,τ

where Rd,τ is the isotypical G-submodule of Rd of highest weight τ .

The algebra of U -invariant, RU , inherits an N × Λ+-grading

RU =
⊕

d∈N,τ∈Λ+

RU
d,τ .

The maximal torus H acts on RU , having RU
d,τ as the weightspace with

weight τ .

3.2. The parameter space ∆, revisited. The rational points of the poly-
tope ∆ can be determined purely algebraically as follows (see Mum-
ford’s appendix to [19] and Brion’s paper [4]): For any τ ∈ Λ+, d ∈ N,

τ

d
∈ ∆ ⇐⇒ Rd,τ 6= 0

Alternatively, let ∆Q denote the set of rational points in ∆, then we have

(1) ∆Q = {
τ

d
| Rd,τ 6= 0 }.

3.3. Shifting the linearization. For any χ
n
∈ ∆reg, we can shift the H-

action on Ln by the character −χ. In terms of the action on the section
algebra of Ln, the new linear action ofH is defined as follows: H acts on
the weighspace Rnd,τ with weight τ − dχ for all d and τ . We will denote
the new H-linearized line bundle by Ln[χ]4. It is worth mentioning that
the shifting does not affect the U -action on the section algebra of Ln

because any character is trivial when restricted to U . But it obviously
does affect the H-action on the section algebra of Ln and hence also the
B-action on the section algebra of Ln.

4A remark on notations: the character between the brackets, e.g., Ln[χ], always
indicates a shifting of a linear action. However, Lχ is the line bundle over the flag
variety G/B and has nothing to do with shifting of linearization.
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For Ln with n sufficiently divisible, it descends to a very ample line
bundle OXss

U
//U(n) over Xss

U //U with an induced linear action by the
maximal torus H . Likewise, the linearized line bundle Ln[χ] also de-
scends to aH-linearized line bundle overXss

U //U , which we will denote
by OXss

U
//U(n, χ). In terms of linear actions on the section algebra,H acts

on RU
dn,τ with weight τ − dχ.

Denote the section algebra of Ln by

R(n) =
⊕

d≥0

Rnd =
⊕

d≥0

H0(X,Lnd).

Then we will use R
H[χ]
(n) and R

B[χ]
(n) to denote the H and B-invariants of

R(n) under the (−χ)-shifting, respectively.

3.4. H-Quotients of Xss
U //U .

Theorem 3.4.1. With respect to the linearized ample line bundle OXss
U
//U(n, χ),

the GIT quotients (Xss
U (L)//U)ssH (n, χ)//H is

Proj((RU
(n))

H[χ]) = Proj(
⊕

d

RU
nd,dχ).

Proof. By the (original) inducedH-action on OXss
U
//U(n) , we have that

RU
(n) decomposes into a direct sum of H-submodules

RU
(n) =

⊕

d,τ

RU
nd,τ .

Under the (−χ)-shifted linear action, H acts on the weighspace RU
nd,τ

with weight τ − dχ, hence we obtain

(RU
(n))

H[χ] =
⊕

d

RU
nd,dχ.

The statement of the theorem then follows readily. �

Remark 3.4.2. For sufficiently divisible n, nΦ(X) ∩ t
∗
+ is an integral

polytope. Hence by Atiyah’s version of the Atiyah-Guillemin-Sternberg
convexity theorem ([2]), we expect that under a suitable H-equivariant
projective embedding of Xss

U //U , the image of the induced H-moment
map on Xss

U //U should precisely be nΦ(X) ∩ t
∗
+.

4. QUOTIENTS OF X ×G/B BY G

In this section, we will basically recollect some known results that
will be useful for our purposes.
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4.1. Moment maps on G/B and coadjoint orbits. Recall (see, e.g., [11])
that for any χ ∈ Λ ∩ (t∗+)reg, let C−χ be the one-dimensional B-module
with character −χ, thenLχ = G×BC−χ is aG-linearized ample line bun-
dle over G/B. The curvature from ωχ (with respect to the G-invariant
Hermitian metric on Lχ defined by the usual norm on C) is Kähler.

For χ
n
∈ ∆reg, we will consider the Kähler manifold

(G/B, ωχ

n
)

where ωχ

n
= 1

n
ωχ. The induced moment map is found by composing the

maps

G/B → K/T → t
∗

where the first map is the inverse of the diffeomorphism K/T → G/B
induced by the inclusion and the second map is defined by

[kT ] → k · (−
χ

n
).

In fact, this gives rise to a symplectomorphism from (G/B, ωχ

n
) to the

coadjoint orbit through −χ
n

, O−
χ

n
.

4.2. The shifting trick and GIT quotients. Let Ō−
χ

n
denote the symplec-

tic manifold obtained from the symplectic manifold O−
χ

n
by replacing

its symplectic form ωχ

n
by −ωχ

n
. Then the product symplectic manifold

X × Ō−
χ

n
admits a moment map

Φ̃ : X × Ō−
χ

n
→ k

∗

defined by the formula

Φ̃(x, q) = Φ(x) − q.

Now the set Φ̃−1(0) becomes identified with the set Φ−1(O−
χ

n
) and we

obtain the following identifications

Φ̃−1(0)/K = Φ−1(O−
χ

n
)/K = Φ−1(−

χ

n
)/K−

χ

n

where K−
χ

n
is the isotropy subgroup of K at −χ

n
. The above is the

so-called shifting trick (between the symplectic reduction at a general
coadjoint orbit O−

χ

n
and the symplectic reduction at the origin).

The following theorem was formulated in Theorem 2.2.4 of [6]. It
basically follows from Mumford’s Appendix to [19] and Theorem 8.3 of
[18].

Theorem 4.2.1. Let (X × G/B)ssG (Ln ⊗ Lχ) be the semistable locus in
X ×G/B with respect to the G-linearized line bundle Ln⊗Lχ. Then we have
a natural homeomorphism from Φ−1(O−

χ

n
)/K to (X ×G/B)ss(L(χ

n
))//G.

9



Remark 4.2.2. It follows from Theorem 8.3 of [18] that when χ
n
∈ ∆reg

is a regular value of the moment map Φ, (X ×G/B)ssG (Ln⊗Lχ) consists
of only stable points, hence the quotient (X × G/B)ss(L(χ

n
))//G has at

worst finite quotient singularities in this case.

5. QUOTIENTS OF X BY B

5.1. The Zariski open subset Xss
B (n, χ). Recall from §1.6 that we have

the morphism

ιB : X → X ×G/B, ιB : x→ (x, [B]), ∀x ∈ X.

This embedsX intoX×G/B as the fiber over the base point [B] ∈ G/B.
(It is easy to see the morphism ιB induces a bijection between the set of
B-orbits on X and the set of G-orbits on X × G/B. Hence it is simply
natural to expect B-quotients on X should correspond to G-quotients
on X ×G/B.)

As before, we have χ
n
∈ ∆reg with χ ∈ Λ+ and n ∈ N. Set

Xss
B (n, χ) = {x ∈ X|(x, [B]) ∈ (X ×G/B)ssG (Ln ⊗ Lχ)}.

That is,

Xss
B (n, χ) = i−1

B (iB(X) ∩ (X ×G/B)ssG (Ln ⊗ Lχ)).

Clearly, Xss
B (n, χ) is B-invariant and Zariski open in X .

5.2. The quotient Xss
B (n, χ)//B. Denote the GIT quotient

(X ×G/B)ssG (Ln ⊗ Lχ)//G

by Qn,χ and let

φ : (X ×G/B)ssG (Ln ⊗ Lχ) → Qn,χ

be the quotient map. We then have the composition map

φ ◦ ιB : Xss
B (n, χ) → (X ×G/B)ssG (Ln ⊗ Lχ) → Qn,χ.

Theorem 5.2.1. The morphism φ ◦ ιB : Xss
B (n, χ) → Qn,χ is a categorical

quotient5 for the B-action.

Proof. Let ψ : Xss
B (n, χ) → Z be any B-morphism where B acts triv-

ially on Z. Then, one checks that the map

ψ′ : (X ×G/B)ssG (Ln ⊗ Lχ) → Z

(x, g[B]) → ψ(g−1 · x)

is a G-morphism with respect to the trivial G-action on Z. Clearly,

ψ = ψ′ ◦ iB.

5For the definition of a categorical quotient, see Definition 0.5 of [18].
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But

(X ×G/B)ssG (Ln ⊗ Lχ) → Qn,χ

is categorical, hence we have a commutative diagram

(X ×G/B)ssG (Ln ⊗ Lχ)
ψ′

−−−→ Z

φ

y id

y

Qn,χ
χ

−−−→ Z.

This diagram extends to

Xss
B (n, χ)

iB−−−→ (X ×G/B)ssG (Ln ⊗ Lχ)
ψ′

−−−→ Z

φ

y id

y

Qn,χ
χ

−−−→ Z

which gives rise to the desired diagram

Xss
B (n, χ)

ψ
−−−→ Z

φ◦ιB

y id

y

Qn,χ
χ

−−−→ Z.

�

Because of this theorem, we may also denote Qn,χ by Xss
B (n, χ)//B.

Lemma 5.2.2. (Guillemin-Sjamaar, [11]) There is an isomorphism of vector
spaces

ρ : H0(X ×G/B,Ld ⊗ Ldχ)
G → H0(X,Ld)Udχ.

Proof.

ρ : H0(X ×G/B,Ld ⊗ Ldχ)
G → H0(X,Ld)Udχ

is defined as follows. For any s̃ ∈ H0(X × G/B,Ld ⊗ Ldχ)
G, then s =

ρ(s̃) ∈ H0(X,Ld)U is defined by

s(x) ⊗ 1 = s̃(x, [B]),∀x ∈ X.

One checks that so-defined s is U -invariant and transforms according
to dχ under the action of the maximal torus H . Conversely, a section
s ∈ H0(X,Ld)U can be extended in a unique way to a section in H0(X ×
G/B,Ld ⊗ Ldχ)

G by the formula

s̃(x, g[B]) = g(s(g−1x) ⊗ 1),∀x ∈ X, g ∈ G.

�
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Theorem 5.2.3. We have

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X,Lnd)B[χ], s(x) 6= 0}.

In particular, the B-quotient Xss
B (n, χ)//B is isomorphic to Proj(R

B[χ]
(n) ).

Proof. By Lemma 5.2.2 (replace the line bundle L by Ln in the lemma),
we obtain an isomorphism

ρ : H0(X ×G/B,Lnd ⊗ Ldχ)
G → H0(X,Lnd)Udχ.

Since (X ×G/B)ssG (Ln ⊗ Lχ) equals to

{(x, g[B])|∃d > 0, s̃ ∈ H0(X ×G/B,Lnd ⊗ Ldχ)
G, s̃(x, g[B]) 6= 0},

one checks from the definition of Xss
B (n, χ) that

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X,Lnd)Udχ, s(x) 6= 0}.

Now observe that H0(X,Lnd)Udχ = RU
nd,dχ is precisely the subset of B-

invariants of Rnd under the (−χ)-shifting, that is,

(2) RU
nd,dχ = (RU

nd)
H[χ] = R

B[χ]
nd = H0(X,Lnd)B[χ].

This shows that

Xss
B (n, χ) = {x ∈ X|∃d > 0, s ∈ H0(X,Lnd)B[χ], s(x) 6= 0}.

To show the last statement, note that the B-quotient Xss
B (n, χ) → Qn,χ

is identified with the G-quotient

(X ×G/B)ssG (Ln ⊗ Lχ)//G.

From the above, we have that
⊕

d

H0(X ×G/B,Lnd ⊗ Ldχ)
G =

⊕

d

R
B[χ]
nd = R

B[χ]
(n) .

Because (X ×G/B)ssG (Ln ⊗ Lχ)//G is isomorphic to

Proj(
⊕

d

H0(X ×G/B,Lnd ⊗ Ldχ)
G),

we obtain that the B-quotient Qn,χ is isomorphic to Proj(R
B[χ]
(n) ). �

We isolate the following identity from Equation (2) in the proof of the
above theorem.

Corollary 5.2.4. R
B[χ]
(n) = (RU

(n))
H[χ].
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6. PROOF OF THEOREM 1.7.1

For χ
n
∈ ∆reg, the existences of the three quotients

(Xss
U (L)//U)ssH (n, χ)//H,

(X ×G/B)ssG (Ln ⊗ Lχ)//G,

Xss
B (n, χ)//B,

are proved in §§3, 4, 5, respectively.

That Xss
B (n, χ)//B is isomorphic to (X × G/B)ssG (Ln ⊗ Lχ)//G is con-

tained in Theorem 5.2.1.

To show that Xss
B (n, χ)//B is isomorphic to (Xss

U (L)//U)ssH (n, χ)//H,

note that by Theorem 5.2.3, Xss
B (n, χ)//B is isomorphic to Proj(R

B[χ]
(n) ).

By Corollary 5.2.4, it is isomorphic to Proj((RU
(n))

H[χ]). Now it follows

from Theorem 3.4.1 that it is isomorphic to (Xss
U (L)//U)ssH (n, χ)//H.

7. SINGULAR RATIONAL POINTS OF ∆ AND G/P .

7.1. The action G × (X × G/P ) → (X × G/P ). For a rational point
χ
n
∈ ∆ that lies on a wall of the Weyl chamber, the character χ ∈ Λ+

determines a parabolic subgroup P strictly containing B:

P = {g ∈ G| lim
t→0

χ(t)gχ(t)−1 exists}.

Let C−χ be the one-dimensional P -module with the character −χ. Then
L′
χ = G×P C−χ is a G-linearized ample line bundle over G/P .

To extend the correspondences of Theorem 1.7.1 to this case, we can
simply replace the second action by the diagonal action

G× (X ×G/P ) → (X ×G/P ).

7.2. Extensions of some results of §5. Lemma 5.2.2, with basically the
same proof ([11]), now reads: we have an isomorphism of vector spaces

(3) H0(X ×G/P,Ld ⊗ L′
dχ)

G → H0(X,Ld)Udχ

where L′
dχ = (L′

χ)
d.

Equation (2) in the proof of Theorem 5.2.3 remains true without any
change.

Since the G-quotient (X ×G/P )ssG (Ln ⊗ L′
χ)//G is isomorphic to

Proj(
⊕

d

H0(X ×G/P,Lnd ⊗ L′
dχ)

G),

by Equation (3) of this section and Equation (2) in the proof of Theorem
5.2.3, we will obtain the following.
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7.3. The correspondences.

Theorem 7.3.1. TheG-quotient (X×G/P )ssG (Ln⊗L′
χ)//G, theB-quotient

Proj(R
B[χ]
(n) ), and theH-quotient Proj((RU

(n))
H[χ]) are isomorphic to each other.

Remark 7.3.2. The case when χ = 0 is worth mentioning. In this
case, the parabolic subgroup is G so that G/P is a point, hence (X ×
G/P )ssG (Ln ⊗ L′

χ)//G is just the G-quotient Xss
G (L)//G. The fact that the

G-quotient Xss
G (L)//G, the B-quotient Proj(R

B[0]
(n) ) and the H-quotient

Proj((RU
(n))

H[0]) are all isomorphic can also be seen by observing that

RG
(n) = R

B[0]
(n) = (RU

(n))
H[0].

Replacing B by P in §5.1, we will obtain a P -invariant Zariski open
subset Xss

P (n, χ) of X . Then a proof almost exactly the same as that of
Theorem 5.2.1 will yield the following (details are left to the reader).

Theorem 7.3.3. The morphism

Xss
P (n, χ) → (X ×G/P )ssG (Ln ⊗ L′

χ) → (X ×G/P )ssG (Ln ⊗ L′
χ)//G

is a categorical quotient for the P -action on X .

8. Concluding remarks

8.1. Singularities of the unipotent quotient. We know little about the
singularities of the unipotent quotient Xss

U (L)//U . However, the cor-
respondences of Theorem 1.7.1 shed some lights on it.

When χ
n
∈ ∆reg is a regular value of the moment map Φ, by Remark

4.2.2, the G-quotient

(X ×G/B)ssG (Ln ⊗ Lχ)//G

is an orbifold, that is, it has at worst finite quotient singularities. By
Theorem 1.7.1, the same hold for the corresponding H-quotient

(Xss
U (L)//U)ssH (n, χ)//H.

This indicates that the Zariski open subset (Xss
U (L)//U)ss(n, χ) of the

unipotent quotient Xss
U (L)//U has at worst finite quotient singularities,

and this holds for all almost all rational points χ
n

∈ ∆. The variety
Xss
U (L)//U and its applications call for further investigation.

8.2. More on Example 2.5. For the line bundle L = ⊗iO(di) over (P1)n

with dn sufficiently large relative to other di (1 ≤ i ≤ n − 1), we have
that the unipotent quotient is isomorphic to (P1)n−1. Note that in this
case the homogeneous space G/B is isomorphic to P

1. One checks that
the three actions in this case are the following diagonal actions

H × (P1)n−1 → (P1)n−1,
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G× (P1)n+1 → (P1)n+1,

B × (P1)n → (P1)n.

For any χ
m

∈ ∆reg, the corresponding quotient of the first action is a

toric variety6, hence so is the corresponding quotient of the second ac-
tion by Theorem 1.7.1. This implies that the G-linearized line bundle
Lm ⊗ Lχ over (P1)n+1, with dn sufficiently large relative to the rest, is a
very special one, because for a general ample G-linearized line bundle
over (P1)n+1 (n ≥ 4), we know that the corresponding GIT quotient is
not toric. For example, when n = 4, with respect to the G-linearized
line bundle ⊗5

i=1O(1), the GIT quotient of (P1)4+1 is isomorphic to the
blowup of P

2 along 4 general points which is not toric. By our main
correspondences, this implies that for the line bundle ⊗n

i=1O(di) with
general positive integers di (1 ≤ i ≤ n), the corresponding unipotent
quotient of (P1)n can not be toric variety. In particular, it is not isomor-
phic to the unipotent quotient (P1)n−1. This justifies the assertion of Re-
mark 2.3.1 that the unipotent quotient Xss

U (L)//U , in general, depends
on the choice of the underlying line bundle L.

It is an interesting problem to (explicitly) determineXss
U (L) andXss

U (L)//U
for general choices of di(1 ≤ i ≤ n).

Finally, we mention that the GIT quotients of the second action here
can be interpreted as moduli spaces of spacial polygons ([13]). We do
not know whether the other two admit natural geometric explanations.

8.3. Related and further works. There are a number of papers (e.g., [7],
[8], [9], [21]) that study quotients of unipotent group actions or quo-
tients of general algebraic group actions to which this paper is related.

There are some moduli spaces that may be constructed as quotients
of Borel subgroups. For example, the moduli spaces of vector bundles
over smooth algebraic curves with complete parabolic structures are nat-
urally quotients by Borel subgroups (see page 545 of [3]. For partial par-
abolic structures, one should use parabolic subgroups instead). Via a
shifting trick similar to that of §4.2, these moduli spaces are constructed
as quotients by reductive groups by Mehta and Sashadri in [17]. Our
work here indicates that they may also be constructed as quotients by
torus actions. This would use certain unipotent quotients. Thus it would
be an interesting problem to see what these unipotent quotients are and
whether they admit interesting moduli interpretations.

When Xss
G (L) = Xs

G(L) (cf. Remark 7.3.2), Brion proposed the follow-
ing: through (orbifold) fiber bundle and toric flips, we may relate the
quotientXss

G (L)//G by the reductive groupG to a quotient ofXss
U (L)//U

6GIT quotients of a projective toric variety by a subtorus are again projective toric
varieties ([14]).
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by the maximal torus H . This would give an alternative way to study
the topology of a general GIT quotient (cf. [15]). Some related works
around this area may be found in [1] and [5].

After receiving the preliminary version of this paper, Brion mentioned
to me that he was also convinced that the results here hold. Part of his
idea appeared in L. Pillons’ thesis [20].
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