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Abstract

It was shown by Chen and Yu that every 3-connected planar graph G contains a cycle of length at least
|G|l°g32, where |G| denotes the number of vertices of G. Thomas made a conjecture in a more general
setting: there exists a function B(¢) > 0 for t > 3, such that every 3-connected graph G with no K3 ;-minor,
t > 3, contains a cycle of length at least IGI1PO . we prove that this conjecture is true with B(z) = logg,+1 2.
We also show that every 2-connected graph with no K3 ;-minor, ¢ > 3, contains a cycle of length at least
Gl/r' L.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and notation

In 1931, Whitney [22] proved that every 4-connected planar triangulation contains a Hamilton
cycle. Tutte generalized this result to all 4-connected planar graphs [21], and Thomassen [20]
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strengthened this by showing that every 4-connected planar graph is in fact Hamilton con-
nected.

With an attempt to generalize Tutte’s theorem to other surfaces, Griinbaum [6] and Nash-
Williams [12] independently conjectured that every 4-connected toroidal graph contains a Hamil-
ton cycle. While this conjecture remains open, it has been shown that every 4-connected toroidal
graph contains a Hamilton path [19], and that 5-connected toroidal graphs are Hamiltonian [18].
Moreover, Thomas and Yu [17] proved that 4-connected projective-planar graphs are also Hamil-
tonian. Generalizing to other surfaces, Yu [23] managed to show that every “locally planar”
5-connected triangulation of a surface contains a Hamilton cycle.

Notice that the above results are all concerning graphs with fairly high connectivity. If we relax
the condition, then the situation changes dramatically: there are many 3-connected planar graphs
that contain no Hamilton cycles, as exemplified in [8]. On the other hand, all cubic, bipartite,
3-connected, planar graphs are conjectured to be Hamiltonian by Barnette (see [10]).

When a graph G contains no Hamilton cycle, one may ask how long a cycle it contains.
The length of a longest cycle in G, denoted by c(G), is called the circumference of G. A good
lower bound on ¢(G) has also been the subject of extensive research. While studying paths
in polytopes, Moon and Moser [11] implicitly conjectured that if G is a 3-connected planar
graph then ¢(G) > «|G|'°832, where o is a constant and |G| denotes the number of vertices
of G. (Griinbaum and Walther [7] made the same conjecture for the class of 3-connected cubic
planar graphs.) Jackson and Wormald [9] gave the first polynomial lower bound on c¢(G) for
3-connected planar graphs. This bound was improved by Gao and Yu [5] and further refined by
Chung [4]. In [3], Chen and Yu fully established the Moon—Moser conjecture and showed that
the same is true (within a constant factor) for 3-connected graphs embeddable in the torus or
the Klein bottle. Based on these results, Bohme, Mohar, and Thomassen [2] proved that if G is
a 3-connected graph of orientable genus g then ¢(G) > e(g)|G|1°g32, where €(g) is a constant
dependent on g. Furthermore, €(g) can be replaced by an absolute constant if G is also “locally
planar” [16].

It is well known that a planar graph contains no K3 3-minors. As a different generalization
of the Chen—Yu result [3] on planar graphs, one may ask whether there is a similar result for
3-connected graphs with no K3 ;-minors. It is worthwhile pointing out that graphs containing no
K3 ;-minors form an important class in the theory of graph minors. As discovered by Robertson
and Seymour [14], in order to embed a graph in a given surface one must exclude large K3 ;-
minors. In [13], Oporowski, Oxley, and Thomas showed that if G is a 3-connected graph with no
K3 ;-minor, then it contains a large wheel. Inspired by this, Thomas and Seymour [15] made the
following two conjectures.

Conjecture 1.1. (By Thomas) There exists a function B(t) > 0 for t > 3 such that, for any integer
t > 3 and any 3-connected graph G with no K3 ;-minor, ¢c(G) > |G|PD),

Conjecture 1.2. (By Seymour and Thomas) There exist a constant 8 > 0 and a function «(t) > 0
for t > 3 such that, for any integer t > 3 and any 3-connected graph G with no K3 ;-minor,
c(G) 2 a®I|GI’.

To prove the above conjectures, one reasonable approach is to find a structural description of
3-connected graphs with no K3 ;-minors. In this direction, Bohme, Maharry and Mohar [1] have
obtained structural information about 7-connected graphs that contain no K3 ;-minors. However,
a complete characterization of all 3-connected graphs seems to be very difficult to obtain. Alter-
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natively, one might try to show the existence of a function g(¢) > 0 such that any 3-connected
graph containing no K3 ;-minor is embeddable in a surface of genus g(¢), in order to apply
the result in [2]. Unfortunately this is not true, as there exist 3-connected graphs with no large
K3 ;-minors but with arbitrarily large genus. (For example, let C = vgv ... vk—1vg be a cycle of
length k. Let G be obtained from C be replacing each v; by a complete graph with three vertices
Xi1, Xi,2, and x; 3 such that x; ; and xg ,, are adjacentif and only if {=i — 1l or{ =i +1,
where the subscripts are taken modulo . It was verified [1] that G contains no K3 7-minor and
the orientable genus of G is at least k.) One might therefore hope for some collection of sim-
ple reductions on 3-connected graphs with no K3 ;-minors which can be used to produce graphs
embeddable in a surface of genus g(¢).

In this paper we approach the conjectures by direct construction of long cycles. Our main
result is the following, which establishes Conjecture 1.1. (We shall actually prove a slightly
stronger technical result, as stated in Section 2.)

Theorem 1.3. For any integer t > 3 and for any 3-connected graph G with no K3 ,-minor,
c(G) = |G|"D, where r(t) =logg,i+1 2.

From the graphs constructed by Moon and Moser [11] (also see [3]), we see that the exponent
B(t) cannot exceed log; 2. We feel that B(f) can be improved to log; 2. Yet, it is still unknown
what the best bound is and whether the method used in this paper can be further extended to
establish Conjecture 1.2.

The remainder of this paper is organized as follows. In Section 2, we state the main theorem,
introduce some terminology, and exhibit some useful properties of the function f(x) = x'°%2. In
Section 3, we study graphs with weighted edges, and establish a result about paths in weighted
graphs and a result about the circumference of 2-connected graphs with no K3 ;-minors. (We
shall use weighted graphs to store information when performing certain reduction operations in
the proof.) In Sections 4-6, we complete the proof of the technical result stated in Section 2.
There are three statements in the technical result: (a), (b), and (c). The proof of the technical
result is by induction on the number of vertices. The induction step for (a) is done in Section 4,
and the induction step for (b) is done in Section 5. The induction step for (c) is done in Section 6,
and the inductive proof will be completed in Section 6.

2. The technical theorem

The main goals of this section are to state a technical theorem which implies Theorem 1.3 and
to prove some properties of the function f(x) = x'°%2 which will be frequently used. First, we
introduce notation and terminology necessary for stating and proving our results.

We only consider simple graphs. We use A := B to rename B as A. For a graph G, V(G) and
E(G) denote the vertex set and edge set of G, respectively, and we let |G| := |V (G)|. For graphs
H and G, H C G means that H is a subgraph of G.

Let G be a graph and let U C V(G). Then G[U] denotes the subgraph of G induced by U.
The set U is said to be a connected set of G if G[U] is connected. Let G — U := G[V (G) — U],
and if U = {u} then let G —u := G — U. We say that U is a k-cut of a connected graph G if
G — U is not connected and |U| = k. If {u} is a 1-cut of G, then u is called a cutvertex of G.
Let Ng(U) :={x € V(G) — U: x is adjacent to some vertex in U}, and let Ng(u) := NG ({u}).
For convenience, let Ng(H) := Ng(V (H)) for any subgraph H of G. If there is no danger of
confusion, we will simply drop the subscript G.
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Let G be a graph. For two distinct vertices x, y of G, an x—y path in G is a path between
x and y in G. If P is a path, we use £(P) to denote the length of P, which is the number of
edges of P. For any distinct vertices x, y of a path P, we use P[x, y] to denote the subpath of
P between x and y (inclusive), and define P[x, y) := P[x, y] —y, P(x,y] := P[x, y] — x, and
P(x,y):= P[x,y] — {x, y}. An edge of G with ends u and v is often denoted by uv, or vu, or
{u,v}. Let S be a set of 2-element subsets of V(G). Then we use G + S to denote the graph
with vertex set V(G) and edge set E(G) U S. (Note that each edge of G is a 2-element subset
of V(G))If S = {{u;,v;}: i =1,...,k}, then we also write G + {u;v;: i =1, ..., k} instead of
G+ S.If S={{u,v}},then welet G +uv:=G + S.

A graph H is a minor of a graph G if there exist disjoint connected sets V; of G, indexed by
x € V(H), such that, for any distinct x, y € V(H), xy € E(H) if and only if G has an edge with
one end in V, and the other in Vy. These sets form a representation of H in G. If H is a minor
of G, then we say that G contains an H-minor. When there is no danger of confusion, we will
not make an effort to distinguish between the edges of H and the edges of G. That is, we may
view the edges of H as edges of G. Let G be a graph and let U be a connected subgraph of G;
then we use G/ U to denote the graph obtained from G by contracting U (and deleting resulting
multiple edges and loops).

The graph K3 ; is the complete bipartite graph with one part of size 3 and the other of size ¢.
Let G be a graph and {x, y, z} € V(G). We say that a K3 ;-minor H of G is rooted at {x, y, z}
if H has a representation in G such that x € Vi, y € V,, z € V3, where Vi, V», V3 are connected
sets of G representing vertices of H in the partition set of size three. We define 1 (G; x, y, z) to
be the largest integer ¢ such that H has a K3 ;-minor rooted at {x, y, z}.

We can now state the aforementioned technical theorem.

Theorem 2.1. Let t > 3 be an integer, let r(t) 1= logg,+1 2, and let G be a 3-connected graph
with no K3 ;-minor. Then the following statements hold:

(a) For any distinct vertices x, y, z of G such that xz,yz € E(G), G — z contains an x-y path
of length at least (th‘—M_l)’(’), where = u(G; x,y, z).
(b) Forany xy € E(G), G contains an x—y path of length at least |G|"®.
(c) For any two distinct edges xy, [ of G, G contains an x—y path through f which has length
[Glyr(2)
at least (*7)"" + 1.

Note that Theorem 1.3 is an immediate consequence of (b) of Theorem 2.1. In order to prove

Theorem 2.1, we need the following property of the function f (x) = x'°¢ 2.

Lemma 2.2. For any integer b > 4 and for any m > n > 0,

mlogb +n10gb > (m +(b—Dn )logb
Proof. By dividing both sides of the above inequality by m!°%?2, it suffices to show that, for
any s with0 < s < 1,

1 +S10gh ( + (b s )]Ogb

Let f(s) =1+s"%2 — (1 4+ (b — 1)s)°%2, Clearly, f(0) = f(1) = 0. Differentiating with
respect to s, we have

f/(s) =log,2- (S(logbZ)fl — (- 1)(1 +b— l)s)(logbZ)—l).
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A simple calculation shows that f’(s) = 0 has a unique solution. Therefore, since f(0) =
f(1) =0, either 0 is the absolute maximum of f(s) over [0, 1] or O is the absolute minimum
of f(s) over [0, 1]. That is, either f(s) > 0 for all s € [0, 1] or f(s) <O for all s € [0, 1]. Note
that 0 < % < 1 (since b > 4) and

()=( )~ (1)

3 (2b—1)log?2
2 2
3 (2b)10gb2
L2 _ ¥
2 2
— é o Zlogb 2.
2

Since b > 4, 2082 L Qlogs2 — /2 < 3/2. Thus, f(%) > 0 for b > 4. Therefore, we have
f(s)y>0foralls €[0,1]. O

Corollary 2.3. Let a > 1 and b > 4 be integers, and let m > 0 andn > 0. If m > % then

b—1 log;, 2
mlog,,Z +nlogb2 > (m + n) .
a

Proof. Since m > 7 > 0 and by Lemma 2.2, we have mos 2 4 (%)1"&2 >m+(b— l)g)logﬂ.
Since a > 1, m°82 4 plogs2 > jplogy2 (’C—:)logbz. So Corollary 2.3 holds. O

By repeatedly applying Corollary 2.3, we obtain the following:

Corollary 2.4. Suppose m,ny, ..., ng are positive numbers such that m > r;—’ forall 1 <i <k
Then, for any integer b > 4,

k

k b 1 log;, 2
1 2 -
mlogh2+§ :niOgb > <m+—§ :nl> .
a
i=1

i=1
3. Circumferences of 2-connected graphs

In this section, we prove a result about long paths in weighted graphs, which will be useful for
proving Theorem 2.1. We will also see that a similar argument can be used to prove an interesting
result about the circumference of a 2-connected graph with no K> ;-minor.

For convenience, we introduce the concept of bridge. Let G be a graph and H a subgraph of G.
An H-bridge of G is a subgraph of G which is induced by either (i) an edge in E(G) — E(H)
with both ends in V (H) or (ii) the edges in a component D of G — V(H) and edges of G from
D to H. The H-bridges satisfying (ii) are said to be non-trivial. If U C V(G), we may view U
as a subgraph of G with vertex set U and no edges. Hence, we will also speak of U-bridges or
bridges of G associated with U.

In the proof of Theorem 2.1, we need to replace certain bridges of a graph associated with
2-cuts by edges, and each such edge will be assigned a weight which records the number of
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vertices in the corresponding bridge. The following concepts will allow us to relate subgraphs in
the weighted graph to K3 ;-minors and rooted K3 ;-minors in the original graph.

Let G be agraphandlet S C E(G). An S-link of size m in G consists of two disjoint connected
subgraphs A, B of G and a subset S’ of S such that |S’| = m and each edge in S has one end
in V(A) and the other in V(B), and we denote it by (A, B; S’). If, in addition, x € V(A) and
yeV(B)orxeV(B)andye V(A), then (A, B; S') is said to be between x and y.

Again, let G be a graph and let S € E(G). Let P be apathin G. For any e € E(P), an (S; P)-
ladder with top e and m rungs is an S-link (A, B; S”) of size m such that e ¢ S’, one component
of P — e is contained in A, and the other component of P — e is contained in B. The edges in S’
are called the rungs of the ladder. We use «(P; e) to denote the maximum number ¢ such that G
has an (S; P)-ladder with top e and ¢ rungs.

Let R* denote the set of non-negative real numbers. For any function w: E(G) — R™ and
a subgraph H of G, we define w(H) := ZeeE(H) w(e). We can now state and prove the main
result of this section.

Theorem 3.1. Let t > 2 be an integer, G be 2-connected graph, w:E(G) — RT, S={e €
E(G): w(e) >0}, and x,y € V(G) be distinct. If G does not contain any S-link of size t between
x and y, then there is an x—y path P in G such that

> 1P () > w(G).

ecE(P)

Proof. Note that w(G) = w(S). We will apply induction on |G|+ |S|. If | S| = 0 then w(G) =0,
and hence, any x—y path P in G gives the desired path. If |S| = 1 then since G is 2-connected,
G has an x—y path P containing the edge in S, and clearly ZeeE(P) 1P (e) > w(G). So we
may assume |S| > 2.

Suppose |G| = 3. Then G is a triangle. Let P, Q denote the x—y paths in G, and assume
without loss of generality that w(P) > w(Q). Therefore, since t > 2, tw(P) 2> w(G). If S C
E(P),then )", pp) 1*P D w(e) > w(G). So assume that SN E(Q) 7 @. Then for any e € E(P),
a(P;e) > 1. Hence, Y, (p 1P (e) > tw(P) > w(G). Therefore, we may assume that
|G| > 4. We distinguish between two cases.

Case 1. {x, y}is a 2-cut of G or some edge in S is incident with both x and y.

In this case, there exist subgraphs G and G of G suchthat Gi1UG>» =G, V(G1)NV(Gy) =
{x, y}, and either |G| > 3 < |G| or, for some i € {1, 2}, G; is induced by an edge in S. (See
Fig. 1(a) for an illustration.) Without loss of generality, we may assume that w(G1) = w(G2).
Then, sincet > 2,1t - w(G1) 2 w(G).

First, let us assume that G is induced by an edge f € S. Then f is incident with both x
and y. Let P = G1. Since G is 2-connected and |S| > 2, there exists an edge g € S — {f} and
an x—y path R in G, containing g. Let A, B denote the components of R — f. Then (A, B; {g})
is an (S; P)-ladder with top f and one rung. Thus, a(P; f) > 1. So ZeGE(P) 2P0 () >
t-o(f)=t o(G1) 2 w(G).

Now assume that |G1| > 3.Let G* := G| +xy and let S* = SN E(G}). Define w*: E(G*) —
R™ as follows: for any e € E(G1), o*(e) = w(e); and if xy ¢ E(G) then w*(xy) = 0. Note that
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(a) (b)

Fig. 1. Two cases in the proof of Theorem 3.1.

G* is 2-connected and |G*| 4 |S*| < |G| + |S|. So by the induction hypothesis, there is an x—y
path P in G* such that

P00 > 076 = 0(5T) = w(G),
ecE(P)

where a*(P; e) denotes the greatest integer m such that G* has an (§*; P)-ladder with top e

and m rungs.
If SNE(Gy) =@, then w(G) =w(G) and a(P; e) = a*(P;e) for all e € E(P). Hence,

Z 19P3€) ) (¢) = Z ta*(P;e)w*(e)>w(Gl)=a)(G).

ecE(P) e€E(P)

So we may assume that S N E(G3) # §. Then, since G is 2-connected, G has an x—y path
R containing an edge f € S. For any (§*; P)-ladder (A, B; $*) in G* between x and y with
top e and m rungs, we can form an (S; P)-ladder with top e and m + 1 rungs by adding to A
the component of R — f containing x, adding to B the component of R — f containing y, and
adding f to S*. Hence, a(P;e) > a*(P;e) + 1 forall e € E(P). So

S P> Y PO o) > 1 (G > 0(G).
ecE(P) ecE(P)

Case 2. {x, y}is not a 2-cut of G, and no edge in S is incident with both x and y.

Then y is contained in a unique block of G — x, say Y. Let X be a (Y U {x})-bridge of G with
o (X) maximum, and let # be the unique vertex in V (X) N V(Y). (See Fig. 1(b).) Since we are
in Case 2, u # y. Because G has no S-link of size 7, there are at most t — 1 (Y U {x})-bridges of
G that contain edges in S. So tw(X) 2 w(G) —w(Y).Let Sy =SSN E(X) and Sy = SN E(Y).
Clearly |X| + |Sx| < |G| +|S| > |Y| + |Sy|. Define wy : E(X) — RT such that, for any e €
E(X), wx(e) = w(e), and define wy : E(X) — R* such that, for any e € E(Y), wy(e) = w(e).
So wx(X) = w(X) and wy (Y) = w(Y). In the next two paragraphs, we will find an x—u path P,
in X and a u—y path P, inY.

If | X| =2, then let P, := X, which is an x—u path. If |X| > 3, then by the induction hy-
pothesis, X has an x—u path Py such that ZeeE(Px) 19X (P& gy (€) > wyx (X) = w(X), where
ax (Py; e) is the greatest integer m such that X has an (Sx; Py)-ladder with top e and m rungs.

If |Y| =2, then let Py :=Y, which is a u—y path. If |Y| > 3, then by the induction hypothesis,
Y has a u—y path P, such that ZeeE(Pv) 1 (P9 g0 (e) > wy (Y) = w(Y), where ay (Py; e) is
the greatest integer m such that ¥ has an (Sy; Py)-ladder with top e and m rungs.
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Let P := P, U Py. Forany e € E(Py), a(P; e) > ay(Py; e), and so, ZeeE(Pv) 4P gy () >
Yecr 1 POy (e) > w(Y). If Sy U Sy = S then ’

Yo P > Y Py (e) > 0(X) = 0(G) — o (Y).
eeE(Py) ccE(R:)

If Sx U Sy # S then it is easy to see that ¢ (P; e) > ax(Py;e) + 1 forall e € E(Py), and so,
Y P> Y PO o) 2 10 (X) 2 0(6) — e ().

ecE(Py) ecE(Py)
Therefore,
Y FO0pe) > Y PiOuye)+ Y POy ()
ecE(P) ecE(Py) ecE(Py)
zw(G) —o)+o)
=w(G). O

In Theorem 3.1, if G does not contain any S-link of size ¢ between x and y, then «(P;e) <
t — 1 for all e € E(P). Hence, we have following corollary.

Corollary 3.2. Let G be a 2-connected graph, let w: E(G) — R, and let S = {e: w(e) > O}.
Let x, y € V(G) be distinct, and assume that G does not contain any S-link of size t between x
and y. Then there is an x—y path P in G such that

Y we) > 29

tl—l :
ecE(P)

Next we use an argument similar to the proof of Theorem 3.1 to derive a result on the circum-
ference of 2-connected graphs.

Proposition 3.3. Let t > 2 be an integer, and let G be a 2-connected graph with no K3 ;-minors.
Then, for any distinct vertices x, y of G, there is an x—y path in G of length at least |G|/t'~".
In particular, ¢(G) > |G|/t' 1.

Proof. We will prove the following stronger result from which Proposition 3.3 follows.

(x) Let G be a 2-connected graph containing no K ;-minors, let x,y € V(G) be distinct, and
let v := p(G; x,y) denote the largest integer m such that G has a Ky ,-minor rooted at
{x, y}. Then G contains an x—y path of length at least |G|/t".

Since t* > 2, (*) holds when |G| < 3. So assume that |G| > 4 and (x) holds for all graphs
with less than |G| vertices. We consider two cases (see Fig. 1 for an illustration).

Case 1. {x, y}isa2-cutof G.
In this case, there exist subgraphs G1, G, of G such that V(G1) NV (G2) = {x, y}, E(G1)N

E(G2) =0, and |G| = 3 < |G2|. Without loss of generality, we may assume that |G| > |G3|.
Since G contains no Kz -minor, ¢|G1| = |G|. Since G is 2-connected and G, — {x, y} # 0,
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|G1 + xy| < |G| and u(G;x,y) = u(Gy 4+ xy; x,y) + 1. Clearly, G| + xy contains no K> ;-
minors. Hence, by applying induction to G + xy, we conclude that G| + xy contains an x—y
path P of length at least ,ulg]!% > l|t(il|
apathin G.

> |G|/t"*. Note that we can always choose P to be

Case 2. {x, y}isnota2-cutof G.

Then y is contained in a unique block of G — x, say Y. Let X be a (Y U {x})-bridge of G
with | X| maximum, and let u be the unique vertex in V(X) N V(Y). Since we are in Case 2,
u #y. Since G contains no K ;-minor, there are at most + — 1 (¥ U {x})-bridges in G. So
t|X| 2 |G| — |Y]. Note that | X| < |G| > |Y|. Next, we find an x—u path P, in X and a u—y path
PyinY.

If | X| =2, then let P, := X. In this case, it follows from the choice of X that all (Y U {x})-
bridges of G are trivial. So £(P,) =1 and |G| = |Y|+ 1. Now assume that | X| > 3. Then X + xu
is a 2-connected graph containing no K» ;-minor. By applying induction to X + xu, we find an

x—u path Py in X + xu of length at least mgf% We can always choose Py to be a pathin G.

If |Y| =2, thenlet P, :=Y. In this case, £(P)) > % Now assume that |Y| > 3. By applying

LY > |Y|/t*. We can always

induction to Y, u, y, we find a u—y path P, of length at least e ETRD)

choose Py to be a pathin G.

Let P := P, U Py; then P is an x—y pathin G and £(P) = £(Py) + £(Py).

If | X| =2, then |Y| >3 and £(P) > 1+ |Y|/t"* > |G|/t". So assume that |X| > 3. Note
that w(X + xu; x,u) < u(G; x,y), and if G has at least two non-trivial (¥ U {x})-bridges then
w(X 4+ xu;x,u) + 1 < u(G;x,y). So £(Py) > [ Xxu] IGl_gLY‘_l). Therefore, £(P) >

thX+xusxu) =
—|Y|+1
GIZYHL 4y /e > |Gl/*. O

To prove Theorem 2.1, we also need to consider 2-connected graphs which are obtained from
3-connected graphs by contracting connected subgraphs.

Lemma 3.4. Let G be a 3-connected graph, let H be an induced subgraph of G such that
U :=G — V(H) is connected, and let H* := G/ U. Then

(1) H* is a minor of G, and
(2) if H is 2-connected then H* is 3-connected.

Proof. Since U is connected, H* is a minor of G. Now assume that H is 2-connected. Then
|H| > 3, and so, H* is 2-connected (since G is 3-connected). Suppose for a contradiction that
H* is not 3-connected. Let T be a 2-cut of H*, and let u denote the vertex of H* resulting from
the contraction of U. If u € T, then T — {u} is a 1-cut of H, contradicting the assumption that H
is 2-connected. Thus, u ¢ T. Hence H* — T has a component, say D, not containing «. Then D
is also a component of G — T, contradicting the assumption that G is 3-connected. O

4. Paths avoiding a vertex

Here we prove the following lemma which will serve as the induction step for proving (a) of
Theorem 2.1.
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Lemma 4.1. Suppose n > 5 and Theorem 2.1 holds for graphs with at most n — 1 vertices. Then
(a) of Theorem 2.1 holds for graphs with n vertices.

Proof. Lett > 3 be an integer, let G be a 3-connected graph with no K3 ;-minor, and let |G| = n.
Let {x,y,z} € V(G), and assume that {zx, zy} € E(G). For convenience, we let b := gritl
r:=log,2,and H :=G —z.

Claim 1. We may assume that H is not 3-connected.

Suppose H is 3-connected. Since |H| < n, Theorem 2.1 holds for H. In particular, (b) of
Theorem 2.1 holds for H. Therefore, H has an x—y path of length at least |H|" = (|G| — 1)" >
('GJ—JI)’ (because 1 > 1 and ¢ > 3). Hence (a) of Theorem 2.1 holds for G.

Claim 2. We may assume that {x, y} is not a 2-cut of H.

Suppose on the contrary that {x, y} is a 2-cut of H. Let Hy, Ha, ..., Hy be the non-trivial
{x, y}-bridges of H. Note that s > 2. (See Fig. 2.) Without loss of generality, we may assume that
|H{| > |H;| foralli =1,...,s.Since G is 3-connected, z has a neighbor in H; — {x, y} for each
1 <i <s. Since G has no K3 ;-minor, s <t — 1. By the choice of Hy, |Hi| > |H|/s > |H|/t.

First, let us assume that Hj is 2-connected. See Fig. 2(a). Since G is 3-connected, U :=
G — V(Hj) is connected. Let H := G/U and let u denote the vertex of Hl* resulting from the
contraction of U. Note that ux, uy € E(H 1*). Since H; is 2-connected, it follows from Lemma 3.4
that Hl* is 3-connected and contains no K3 ;-minor. Let 1 := /L(Hl*; x,y,u). Recall that u =
u(G; x,y,z). Since z has a neighbor in V(H;) — {x, y} foreach2 <i<s, u > u;1+(6—-1 2=
1+ 1. Since |H1* | < n, Theorem 2.1 holds for H 1* . In particular, (a) of Theorem 2.1 holds for
H{.So Hy = H{ — u contains an x—y path P such that

(|H1*|—1)r <|H1|)’ <|H|>’_<|G|—1>’
tPyz\——) 2\—) 2| ) = .
i i tH A

Hence (a) of Theorem 2.1 holds for G.

Hy

(a) (b)

Fig. 2. Two cases in the proof of Claim 2.
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Now assume that Hj is not 2-connected. Since H is 2-connected, the blocks of Hj can be
labeled as Fy, ..., F; and the cutvertices of H; can be labeled as xi, ..., x; such that (i) for
each0<i<k—1,V(F)NV(Fit1) ={xit1}, (i) forany 1 <i,j <k —1with |i — j| > 2,
V(F;) NV (Fj) =0, and (iii) xo :=x € V(Fp) — {x1} and xy11 :=y € V(F¢) — {xi}. Since G
is 3-connected, W; := G — V (F;) is connected for each 0 <i < k. Let Fl* =G/ W; and let w;
denote the vertex of Fi* resulting from the contraction of W;. Then w;x;, wixj+1 € E(Fl.*). Let
Wi = p(FF5 xi, xiq1, wi) if | Fi| > 3, and let w; = 1if [F;| =2. Then u > w; +(s — 1) > uy + 1.
If |F;| =2 then let P; := F;, and it is easy to see that £(P;) =1 > (ltﬁ"l.l)’ (because ¢ > 3 and
w; =1 in this case). If |F;| > 3, then it follows from Lemma 3.4 that F* is 3-connected and
has no K3 ;-minor. Since |Fl.*| < n, Theorem 2.1 holds for Fi*. In particular, (a) of Theorem 2.1
holds for F*. So F; = F;" — w; has an x;—x;4 path P; such that £(P;) > (W;#)’ = (ﬁ—’il)’.
Let P := U{F:() P;; then P is an x—y path in H. Since Zogigk(|Fi| —1)=|H;| — 1 and by the
convex property of x” with0 <r < 1,

k r k r r r r
| Fil |Fil |Hi| |H| G| -1
aP)ZZ(;Mi 22 Py > ﬂt—q P> t_l" = T .
i=0 i=0
So (a) of Theorem 2.1 holds for G. This completes the proof of Claim 2.

Let U := {{u1, v1}, ..., {ukr, vi}} denote a maximal collection of 2-cuts of H satisfying the
following three properties (see Fig. 3):

(C1) foreach 1 <i <k, {x, y}is contained in a {u;, v;}-bridge B; of H;

(C2) foreach 1 <i <k, for any 2-cut T of H with T # {u;, v;}, and for any T'-bridge B of H
containing {x, y}, B € B;; and

(C3) (H—=V(B)N(H—V(Bj)=0for1<i#j<k.

Let X := (', B) + {xy,ujvi: i =1,....k} and let G; := (G — (V(B;) — {ui, v;})) +
{zu;i, zvi, ujvi}.
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Claim 3.

(1) X is a minor of G;
(2) either X is a triangle or X is 3-connected; and
) foreach 1 <i <k, G; is a minor of G and G; is 3-connected.

We may view X as obtained from G by contracting connected subgraphs G; — {z, u;} to v;
and by contracting z to x (because xz, yz € E(G)). So X is a minor of G.

Clearly, X is 2-connected. If | X| = 3 then X is a triangle. Now assume | X| > 4. Suppose that
T is a 2-cut of X, and let By denote a non-trivial T-bridge of X not containing {x, y}. Then
T may be viewed as a 2-cut of H, and by (C2), {u;v;} € V(Br) foreach i =1,..., k. Hence,
U U {T} contradicts the maximality of U/.

Since H is 2-connected, H — (V(G;) — {u;, v;}) has disjoint paths P,, P, from {x, y} to
{ui,v;}, with u; € V(P,) and v; € V(P,). So H — (V(G;) — {u;, v;}) is the disjoint union of
connected graphs P}, P, such that P, € P, and P, C P,. Since H — (V(G;) — {u;, vi}) is
connected, there is an edge of G between PL: and Plj. Therefore, we may view G; as obtained
from G by contracting P, and P, to u; and v;, respectively. So G; is a minor of G. Clearly G; is
3-connected. This completes the proof of Claim 3.

Claim 4. We may assume that | X| < lzﬂ

Suppose | X| > ‘I;I—l By Claim 3, either X is a triangle or X is 3-connected. If X is a triangle,
then let Py be the x—y path in X of length 2. Then ¢(Px) =2 > 3" = |X|". Now assume that
X is 3-connected. By (1) of Claim 3, X is a minor of G. So X contains no K3 ;-minor. Since
|X| < n, Theorem 2.1 holds for X. In particular, (b) of Theorem 2.1 holds for X. Recall that
xy € E(X). Hence, X contains an x—y path Py such that £(Px) > | X|".

In any case, X contains an x—y path Px such that

L(Px) > X" > 1H] r> |H] r> GI-1Y
(X)/||/T /l‘_”' /T .

Clearly, Px can be extended to the desired x—y path P in H by replacing each edge u;v; in
E(Px) with a u;—v; path in G; — z of length at least 2. So we have Claim 4.

Next, we define w: E(X) — R™ as follows: w(e) =0ife € E(X) —{u;v;: i =1,...,k},and
wwiv;)=|Gi|=3fori=1,...,k.Let S:={u;vi:i=1,...,k} ={e € E(X): w(e) > 0}. Since
G contains no K3 ;-minor, X contains no S-link of size t between x and y. By Theorem 3.1, we
have the following.

Claim 5. X contains an x—y path Px such that
> 1t (e) > w(S) = [H| - |X|,
e€E(Px)

where o(Py; e) is the greatest integer m such that X has an (S; Px)-ladder with top e and m
rungs.

Let p; := u(Gy; u;, v;, z) foreach 1 <i < k. From an (S; Py)-ladder, if we replace each rung
u;v; by G;, we see that G has a K3 ,-minor rooted at {x, y, z}, where p = u; +a(Px; u;v;). So
we have:
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Claim6. 1 — 1 > u > u; +o(Pyx; u;jv;) foreach 1 <i <k.

By Claims 4 and 5, w(S) > 0. Hence E(Px) N S # (. Without loss of generality, we may

assume that ujv; € E(Px) and % > w(“ v’) for all u;v; € E(Pyx). We distinguish two cases.

Case 1. [X|> Y ,cr(py)quyu) 12 F¥ 0 (e).

By Claim 5, we have

1 a(Py-
- _ _ (Px;e)
w(uivy) = ta(Px:ulvl)(|H| | X| E 12X w(e))

e€E(Px)—{ujvr}
S 1
= pa(Pxiuivy)

: H = 21 by Claim 4
> oy \[HI = —— ] (by Claim 4).

(IH| —2|X]) (by Case 1)

Therefore, since a(Px; ujvy) <t — 1, we have

D) o@iv) > s HI = SR H.

By Claim 3, G is 3-connected and has no K3 ;-minor. Since |G| < n, Theorem 2.1 holds
for G1. In particular, (a) of Theorem 2.1 holds. Recall that {zu, zv1} € E(G1). Hence, G| — 2
contains a u1—v; path P; (other than u v so that Py C G) such that

@ Py > (G > (2.

By Claim 3, either X is a triangle or X is a 3-connected minor of G. If X is a triangle, then
ujvy # xy (since {x, y} is not a 2-cut of H), and so, X has an x—y path Qx of length 2 and
through ujv;. Because t > 3, £(Qx) =2>3"+1> (‘%)’ + 1. If X is a 3-connected minor
of G, then Theorem 2.1 holds for X. In particular, (c) of Theorem 2.1 holds for X. Recall that
{xy,ujv1} C E(X). Hence X has an x—y path Qx through uv; such that £(Qx) > (%)’ + 1.

In any case, X has an x—y path Qx through u vy such that

3) Qx> &y +1.

Let P:=(Qx —ujv;) U Py. Clearly, P is an x—y path in H.
If 20D < U then

£(P) = (P + (L(Qx) — 1)

r X r
> (W) + ('t—l|> (by (2) and (3))

X r
> ((b — I)M + lt—t|) <by Corollary 2.3 and since

tH1

3 ' X

113! 1 tt

w(uv X
(11)<u>
1 t!
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3¢ —2)IH|
ro(Pxiuivi) g ) (by (1))

( |H| )r .
(since t > 3)

tﬂt(PX UiV +H

IH |
(by Claim 6)

(1G] =1
= o .
Hence (a) of Theorem 2.1 holds for G.
So we may assume ‘”(;L'l”') > 'X‘ . Since we are in Case 1, r*Px:"1%e (ujvy) + |X| >
Y (pyp 1“9 w(e). By Claim 5o 19D 6 (uyvy) + | X| > |H| — | X|. Thus, we have
@) X = 3(|H| = 1P (ugvy)).

Then

€(P) = U(P) + (6(Qx) — 1)

o) (IX1Y
2(7ﬂ“ ) +<t—t) (by (2) and (3))
@(uv1) IXIVY (e @) _ 1X]
2( e +(b_1)<t_’)) since o t_ and by Corollary 2.3
w(uivy) b—1 Py r
2( i + 5 (|H|—t°‘( X,Mlvl)a)(ulvl))) (by(4))
w(uivy) 1 w(Pyior) r
2( i tll«1+0l(Px;u|v1)(|H|_t o la)(ulvl))
(by Claim 6 and b = 8¢'*1)
S H Y
7\ prta(Px;uivr)
H r
= (|t—ﬂ|) (by Claim 6)

Hence (a) of Theorem 2.1 holds for G.

Case 2. |X| < ZC’GE(PX)f{MIUl}ta(Px;e)w(e)'

For each 1 <i <k, |G;| < n. By Claim 3, G; is 3-connected and contains no K3 ;-minor. So
Theorem 2.1 holds for G;. In particular, (a) of Theorem 2.1 holds for G Recall that {zu;, zv;} C
E(G;). Hence G; — z contains a u;—v; path P; such that £(P;) > ( "* )Y > (“’(t“,jl.”"))’. Let

P:=(Px—-9SU (Uu,v,eE(PX) P;). Clearly, P is an x—y path in H and
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UPY= Y UP)

u;jv; €E(Px)

w(uivi)\"
> ()

u;jv; €E(Px)

o)\ oivi)\"
(%)« 2 (U5

uivi€E(Px)—{ujv}

w(uivr) owivi)\"
><T &= Z T)

uiv;€E(Px)—{ujv;}

WV

The final inequality above follows from the assumption that M > ")(“ Vi) for all u;v; €

E(Px) (see before Case 1) and by applying Corollary 2.4. By Clalm 6, t“'+°‘(PX uivi) L
Hence,

b—1 . g
((P) > (U)(MIUI) + — Z tol(Px,uiU,')w(uivi))

i
ujv;€E(Px)—{ujv}

.
wv) | <|X| + 3 z“<PX?"f”i>w(u,-v,-))) (by Case 2)

2t
uivi€E(Px)—{ujv}

2tm
w(ulvl) 1
tlL]-HX(Px:ulvl)

,
(|H| a(Px;ulvl)w(ulvl))) (by Claim 5)

> (%5
(w(ulvl)
> (5

,
(|H| _ tot(Px;Lllvl)w(ul Ul)))
bo1> 2t
since b — 7 puita(Px;ugvy)

B |H]| "

T\ gprta(Pyiugvy)
LIy by Claim 6
s (by Claim 6).

Hence (a) of Theorem 2.1 holds for G. O

WV

5. Paths in 3-connected graphs

We now prove the following result which will serve as the induction step for part (b) in the
proof of Theorem 2.1.

Lemma 5.1. Suppose n > 5 and Theorem 2.1 holds for graphs with at most n — 1 vertices. Then
(b) of Theorem 2.1 holds for graphs with n vertices.

Proof. Lett > 3 be an integer, let G be a 3-connected graph with no K3 ;-minor, and let |G| = n.
Let xy € E(G). For convenience, we let b := 8¢/*! and r := log, 2. It is easy to see that (b) of
Theorem 2.1 holds when n < 8#'F!. So we may assume thatn > 8¢'t! Therefore, W > 1.

To find the desired x—y path in (b) of Theorem 2.1, we start from x and “extend” our path to y.
At a certain point, the remaining graph is no longer 3-connected, and we are forced to choose one
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out of several parts of the graph. While our choice may be “good” at certain stage, it may become
undesirable at some later stage. In that case, we need to come back and modify our choice. This
is a very complicated process, and the following concept of “magic minor” will help us explain
things in a precise and concise way.

Let Hp be an induced subgraph of G and let xg, yo € V (Hp) be distinct such that Hy + x9yo
is 2-connected. We say that (Hy, xo, yo) is a magic minor of (G, x, y) if the following conditions
hold:

M1) G — (V(Hp) — {x0, yo}) contains vertex disjoint paths Xo, Yo from x, y to xq, yo, respec-
tively;

(M2) Up := G — V(Hp) is connected and Hj is 3-connected, where Hj := G /Uy if Hy is 2-
connected and H := (G/Up) + xoyo otherwise;

(M3) Uy is the disjoint union of Ag and £2¢ such that V (Xo) € Ag U {xo}, V(Yo) € 20 U {yo},
both G[Ap] and G[£2¢] are connected, and N (V (Hp) — yo) € Ap U {yo}; and

(M4) |Hp| > n/2 and, for any a > 57 witha > 1,

a” +€(Xo) + €(Yo) = (a +4(n — [Hol)) .

We say that (Hy, xo, o) is a minor of (G, x, y) if (M1)-(M3) hold.

Let M denote the set of all magic minors of (G, x, y). Then

(1) M # ¥ and we may choose (Hp, xo, yo) € M such that | Hy| is minimum.

Let Hyp := G — x, let yo := y, and let xo be a neighbor of x other than y. Then G —
(V(Hp) — {x0, yo}) consists of vertex disjoint paths Xy and Yy with V(Xo) = {x, xo} and
V(Yp) = {yo}. So (M1) holds. Clearly, Uy := G — V(Hp) consists of only one vertex (namely
x), and so, is connected. Since G is 3-connected, Hy is 2-connected. So HY := G/Uy =G
is 3-connected, and (M2) holds. Set Ag = {x} and £29 = @. It is easy to see that (M3) holds.
Obviously, |Hyo| =n — 1 > n/2. Also, for any a > % with a > 1, a" + £(Xp) + £(Yp) =
a +1=2@+D>b) > (a+4) by Lemma 2.2 (because a > 1 and b > 4). Since |Hyo| =n — 1,
(a+4(n —|Hp|))" = (a +4)". Hence (M4) also holds. Therefore (Hy, x¢, yo) € M, and so, we
have (1).

Next we recursively define minors of (G, x, y) starting from (Hy, xg, y9). Suppose we have
already defined a minor (H;, x;, y;) (for some i > 0) of (G, x, y, z). That is,

(m0) H; is an induced subgraph of G and H; + x;y; is 2-connected;

(ml) G — (V(H;) — {x;, yi}) contains vertex disjoint paths from x, y to x;, y;, respectively;

(m2) U; := G — V(H;) is connected and Hi* is 3-connected, where Hi* =G/ U; if H; is 2-
connected and H" := (G/U;) + x;y; otherwise;

(m3) U; is the disjoint union of A; and £2; such that both G[A;] and G[£2;] are connected, and
N(V(H;) —yi) € A; U{yi}; and

(m4) |H;|>n/2.

According to rules (R1)—(R3) below, we define the following: (H;+1, Xi+1, Yi+1)s Uit1, Ui+1,
%k

and H 5 (Fig1, %[5 i) Wit wigr, and F s (Higj, Xitts Yig1,j)s Uit j Wit j, and

Hl."iH,j; (Fiy1,j xlf+] , yi/+1,j); and A; 41 and £2;11. See Fig. 4 for an illustration.

(R1) Suppose {x;, y;} is a 2-cut of H;. See Fig. 4(a). Let B; denote an {x;, y;}-bridge of H; with
the maximum number of vertices, and let H; 1 := G[V(B;)]. Let Hi11 j, j=1,...,8i4+1,
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o I”i*“‘

=

7
N
) (¢) |Biz| < |Biyl

Fig. 4. The descriptions of (R1) and (R2).

denote the non-trivial {x;, y;}-bridges of H; different from B;. Let x;4+1 = x;, yi+1 = y;, and
Yitl,j=yifor 1 < j <siqy.Set Ajqy := A; U(V(H;) — V(Hiy1)) and §2;41 := §2;. In this
case, Fi11 and Fj 1 j = are not defined.

(R2) Suppose {x;, y;}is not a 2-cut of H;. See Figs. 4(b) and 4(c). Let B; denote the unique block
of H; — x; containing y;. Let B; x be a (B; U {x;})-bridge of H; with the maximum number
of vertices, and let z; € V(B;) N V(B x). Let B; y be a maximum {y;, z;}-bridge of B;. (Pos-
sibly By = B;.) If | Bi x| = | Bi,y|, then let Hi 1| := G[V (Bix)], Xi+1 :=x;, and yi11 :=z;;
let Hiy1,j, j =1,...,5i41, denote the non-trivial (B; U {x;})-bridges of H; different from
B x, let y;11,; denote the vertex in V(H; 1, ;) NV (B;); let Fi11 := G[V(B; )], x;+1 =2z,
and yl’+1 =y let Fiqqj, j =1,...,t+1, denote the non-trivial {y;, z;}-bridges of B; dif-
ferent from B; y, and let yl+1 =y;. Set Ajr1 :=A; U(V(H;) — (V(Hi+1) UV (Fi+1)))
and £2;41 := $2; U V(Fiy1) — {yi+1). See Fig. 4(b). If |B; x| < |B; yl|, then let H;;q :=
GIV(Bi )], xit1 :=2;, and y;j41 :=y;; let Hi41,;, j =1,...,511, denote the non-trivial
{zi, yi}-bridges of B; different from B; ,, and let y;y1 ; = y;; let Fipq := G[V(B; x)],

X i=xi, and y; =z let Fiyyj, j=1,...,tit1, denote the non-trivial (B; U {x;})-
bridges of H; different from B; ., and let y 1 - be the vertex in V(F;41,;) N V(B;). Set
Aip1:=A; UV (H;) — V(Hj41)) and £2;41 := .Q See Fig. 4(c).

(R3) Let Uit :=G — V(Hj11), let H*+1 := G/ Ui if Hj41 is 2-connected and let H* =
(G/Uj41) + xi+1Yi+1 otherwise, and let u;41 denote the vertex of H; * 1 resulting from the
contraction of U; 1. Let Ul+1 j =G —=V(Hij1,;), let H l+1 i _G/U,H jif Hiyq jis 2-

connected and let Hl*+] j= =(G/Uiy1,j) + xi+1Yi4+1,; otherwise, and let u; 11, ; denote the

vertex of H * o resultmg from the contraction of U,_H j- Let Wiy1:=G — V(Fit1), let

F*Jrl = G/W,H if Fjypis 2- connected and let F l+1 = (G/Wiy1) —i-)ClJrlyHrl otherwise,

and let w;4 denote the vertex of F’ 1 resulting from the contraction of W;.



18 G. Chen et al. / Journal of Combinatorial Theory, Series B eoe (e00e) s00—soe

Next we derive some useful properties (assuming the graphs involved are defined).
(2) Uis1, Uit1,j and W;oy are connected subgraphs of G, H;11 and Fiy; are induced
subgraphs of G, Hji1 + Xj41yi+1 is 2-connected, H ,, H* and F | are 3-connected

w1 Higy
minors of G, {uit1Xip1, uiv1yit1} © ECHZ ), {Vie1jXitt, yierjuivrj} € E(HY ), and

{wi+1xlf+1, wi+1ylf+1} C E(F}_,). Moreover, U; 41 is the disjoint union of A; 1 and £; 1, both
G[Ai+1] and G[£21] are connected, and N (V (Hi41) — yi41) € Ai1 U {yit1}.

Since G is 3-connected and U; is connected (see (m2)), it follows from (R1)-(R3) that U; 1,
Uiy1,j,and W; 4 are connected. Since H; is an induced subgraph of G (by (m0)), it follows from
(R1) and (R2) that H;4 and F;4; are induced subgraphs of G. Since H; + x;y; is 2-connected
(by (m0)) and |H;| > n/2 (by (m4)), we see that | H; 1| > 3 and H; 41 + X;j4+1Yi+1 s 2-connected.
If H; 1 is 2-connected then H;* is 3-connected by Lemma 3.4. If H;, is not 2-connected then,
since Hjt1 + Xi4+1Yi+1 is 2-connected, H | = (G/U;) + xi+1Yi+1 = (G + Xi+1Yi+1)/ U; is 3-
connected. Similarly, we can show that Fl*+1 @Gf Fi41 #9) and Hl.*Jr ,,j are 3-connected. The
properties enjoyed by A;4 and £2;4 follow instantly from (m3) and the construction of A;4
and £2;41. The rest of (2) follows from (R3).

From (R1) and (R2), we have (3) and (4) below.

(3) H; — (V(H;41) — {xi+1, yi+1}) contains vertex disjoint paths from x;41, yi+1 to x;, y;, re-
spectively, and H; — (V (H;11,j) — {Xi+1, yi+1,;}) contains vertex disjoint paths from x; 11, Yi41,;
to x;, y;, respectively. Also if Fjy is defined, then H; — (V (Fj41) — {x;H, ylfH }) contains vertex
disjoint paths from x/_ |, y/, | to x;, y;, respectively.

(4) H;y1 and Fjy intersect at z; € {x;41, Yir1}, |V(Hiy1, )NV (Fip)| <land V(Hi11 )N
V(Fitr1) S{xit1, Yit1, i} and Hipp —{xiq1, yiv1} and Higpj — {1, Yi+1,j} 7 =1, ..., sit1,
are disjoint.

By (m0), H; is an induced subgraph of G. Since G is 3-connected and has no K3 ;-minor,
Sit1 <t —2and t;1y <t — 2. Because |H;y1| > |Hjy1,jl for j=1,...,541 and |[Fi41] 2>
|Fiy1,j] for j =1,...,%41, it follows from (R1) and (R2) that

(5) (t = DIHiz1] + (t = D|Fip1] = |Hil.

Now suppose {(H;, x;, y;): i =0, ..., k} is a maximal sequence constructed recursively start-
ing from (Hp, x0, yo) by rules (R1) and (R2), subject to the following two conditions:

(S1) |Hk| > 7, and
(S2) foreach 1 <s <k,

s Si
ZZ|H,-,,-|<%(n—|Hx|).

i=1 j=1

By (R1)-(R3), we can construct from (Hg,xk, yx) the following: (Hii1, Xk+1, Vi+1)s
(Hit1,j> X1 Ye1,5) for j =1, ity (Fi1s Xy 15 ey 1> Ukrts Wiert, HE s FE s ks
Wi+1, Ag+1, and g4 1.

By (2) and (3) and since (Hy, xg, yo) is a minor of (G, x, y), (H;, x;, y;) is aminor of (G, x, y)
forall 1 <i <k+1.Also(2)—(5) hold fori =1,...,k.

Note that, for each 1 <s < k+ 1, the vertices of G outside Hy are either outside Hy, orin H; ;
forsome 1 <i<sand 1< j<s;,orin F; forsome 1 <i <s,orin F; ; for some 1 <i <s and
1 < j <t;. Also note that n — | H| is the number of vertices of G outside Ho, Y ;_, Zj.izl |H;,
is the number of vertices of G in H; j for 1 <i<sand 1< j <s;, (F — 1)ZI<I<S | F;| is at
least the number of vertices of G in F; or F; j for 1 <i <sand 1< j <¢,and n — |H;| is the
number of vertices of G outside H. Hence, we have
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(6) foreach 1 <s<k+1,

ZZ|H,,|+@—1)Z|F|+ (n — |Hol) > n — |Hy|.

i=1 j=1

Since |Hi41| < |Ho| and by (1), (Hkg+1, Xk+1, Yk+1) 18 not a magic minor of (G, x, y). By (2)
and (3), (Hk+1, Xk+1, Yk+1) is a minor of (G, x, y). Thus the maximality of k implies that either
(S1) or (S2) fails with respect to (Hy+1, Xk+1, Yk+1); that is,

(7) |Hics1| < n/2,0r [Hig1| > n/2 and 52 S H jl > S0 — [ Hicpa ).

Since |H,j‘+l| <n > |F*| for 1 <i <k+ 1, it follows from (2) that Theorem 2.1 holds for
H} | and F;. In particular, (a) of Theorem 2.1 holds for H}’ ; and F;*. Recall from (2) that
{1 XK1, U1 Y41} € E(HY ), and {wix], w;y} € E(F). Hence, since 1 >t — 1, we have
the following:

(8) Hyy1 = H,;“H — Uj4] contains an xXx41—yk+1 path Qx4 such that £(Qky1) =
and foreach 1 <i<k+1, F, = F — w; contains anx y path R; such that £(R;) > (‘ ).

Recall that | H; | > 5 for 1 <i < k. It follows from (5) (with i =k) and (S1) that

| [Hi+1] 1
9) |Hi+1| = 2(z 5 > 40 L and hence, zfj' > T 'l)zf—' > T l)z’ - for 1 <i <k, and

H, |Hi ;|
‘t,kj]‘ > 40_;')“,1 > 2(:—1)sz -for1<i<kand1<j<s;.
So by (5) (with i = k) and (S1), we have

10) Bl 4 a4 — 1) S | F| = L@ Hia ) + (= DI Fe ) > 21 Hel > 2.
Let Ok := Qk+1 U Ri41. Then, by (4) and (8), O is an xx—yx path in H; and

(|Hk+l | )r

€(Qk) = E(Qr+1) + £(Ry+1)
|1\, ([Fesl)
() (5) vy

H b—1 g
= (' 1| pra F ) (since |Hi+1] 2 | Fr+1] and by Lemma 2.2)

tt—l

> |Hk+1| " —1
= (because b — 1 > 4@t — D' ).

Similarly, let Qx—1 := Qk+1 U Rk4+1 U R = Qx U Rg. Then, by (4) and (8), Qk—1 is an xx_1—
vk—1 path in Hi_1. By the above inequality, we have

£(Qr—1) = £(Qk) + £(Ry)

H,
>(|tk+1|+4(l—l)|Fk+l|> (ltﬂ') (by (8))

| k+1| b—1 1Rl
> ( e + 4 — 1)| Fry1] + =D pray (by (9) and by Corollary 2.3)

|Hk+l| r
> ( o A0 = DI F | 40— 1)|Fk|)

(because b—1>28(— 1)2t171).
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Continuing in this fashion, let Q¢ := Q41 U (Uf;l R;). Then by (4) and (8), Qg is an xg—yo
path in Hy and

| k+1| — '
€(Qo) > +4e -1 |Fi|) -

i=1

Let P := XoU Qg U Yp. Recall X¢ and Yy from (M1). Then P is an x—y path in G, and

L(P) =4(Qo) + £(Xo) + £(Yo)
k1

> <|Hk+l| . 1)2 |F; |> +£(Xo) + £(Yp)

i=1

k+1 r

> (' t"“' 41— DY IF] +4(n - |H0|)> (by (M4) and (10)).
i=1

(11) We may assume that ZH] Z || Hijl > %(n — |Hyx1 ).

For, suppose Zk+1 Z | H; 1 < 2(n | Hg+11). Then by (7), |Hg+1| < n/2. By (6),

k+1 k+1 s

(t =1 IFi|+(n—|Hol) > n— |Hip1| = Y Y |Hijl > n_|Hk+1|)

i=1 i=1 j=1

Hence
k+1

°pP) = (' t"“' 41— DY R +4(n - |H0|)) > (2(n— | Hept 1)) 20"

i=1

So (b) of Theorem 2.1 holds for G. Hence, we have (11).

Statement (11) suggests that we route the desired path through H; ;, 1 <i <k+1and 1<
Jj <s;. Since |H* | < n and by (2), Theorem 2.1 holds for H* In partlcular (a) of Theorem 2.1
holds for H* Recall that {vijui j, yi.jxi} S E(H* ). Hence H —i,j has au; j—x; path Qi’j

of length at least ( )’ lH‘ ’l)’ (because >t —1).

Since G[A;]is connected V(P[x Xxi)) € A;,and N(V(H;) — y;) € A; U{y;}, we can extend
Q i in G[A; U {x;}] to obtain a path Q; ; in G such that (i) Q;, ; is an x; j—x; path in G for some
xi,j € V(P[x,x;)), (i) V(Q;, ;) N V(P) = {x; j, x;}, and (iii) subject to (i) and (ii), | P[x;, x; ;]|
is maximum. (Note that (ii) holds since V (P[y, y;)) C £2; and A; N £2; = #.) Then we have (12)
and (13) below.

(12) For any (i1, j1) # (2, j2), E(Plxi, xi;,j;1) N E(P[xiy, Xi,, j,]) = ¥ implies that

V(Qi j) NV(Qiy.j) © V(P|)1'1 ’

(13) £(Qij) = L(Qf ;) = (=)

Next, we show that some Q;,;’s can be used to construct our desired path. For convenience, we
define an auxiliary graph A with vertex set V(A) :={Q; j: 1 <i<k+1land1< j<s;} such
that Q;, ;, and Q,, j, are adjacent in A if and only if E(P[x;, xi;, j; ) N E(P[xiy, iy, j1) # .
By definition,

(14) A is an interval graph, and therefore is perfect.

Let 0 be the cardinality of a maximum clique of .A.

(15) We claim that 6 <t — 1.
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For, let C be a clique of A with V(C) ={Q;, j,, Cir.jrs - - -» iy, j, }- Without loss of generality,
we may assume that iy <ip <--- <i,. Then, x;, j € V(P[x,x;)) forall s =2, ...,t. Note that
(from (3)) all y; ;’s are contained in a connected subgraph ¥ of G — V(P[x, xx+1]) containing
P[yk+1,yo0l. Since x;, € V(P[x;,, xk+1]) for all 2 < s < ¢, we can produce a K3 ;-minor in G by
contracting Y, P[x, x;;), and P[x;,, x¢+1]. But this is a contradiction. So 6 <t — 1.

It follows from (14) and (15) that the chromatic number x (A) < 6 < — 1. Therefore, there
is an independent set Z of A such that

(16) Yg, ez |Hijl = 227 X X0 [Hi 1.

Hence by (1 1), we have

—|H,

(7) Xg, ez 1Hij1 > "5l

Since Z is an independent set in .A and by (12), two distinct members Q;, ;, and Q;, ;, of T
have one vertex in common if and only if either x;,, j, = x;, or x;, j, = x;;. So no three members
of Z share a common vertex of P. Thus, (UQ,»,,-EI Qi j) U P[x, xx+1] contains an x—x;41 path

Xk+1 which contains UQ,’_,‘EI Qi,j-Let Y1 = Plyk+1, yol U Yo.

Note that X4 and Yy, are vertex disjoint paths in G — (V (Hg+1) — {Xk+1, Yk+1}) from x, y
to Xk+1, Yk+1, respectively. So (M1) holds for (Hjy41, Xk+1, yk+1) By (2), Hi41 is an induced
subgraph of G, Uyy1 := G — V (Hg4+1) is connected, and H, +1 is a 3-connected minor of G.
So (M2) holds for (Hy+1, Xk+1, Yk+1)- Recall (2), U1 is the disjoint union of Ay and 241,
both G[Ak+1] and G[$£2+1] are connected, and N(V (Hi+1) — Yk+1) S Ak+1 U {Yk+1}. From
the construction of Agy1 and $2;41, it can be seen that V (Xj41) C Agyq U {xk“}, V(Yks1) C
2 +1 U {yr+1}. Hence (M3) also holds for (Hg41, Xk+1, Yk+1). For any a > we have a > 1
(since n >8¢!y and

2tt ’

a" +€(Xg+1) +£(Yi41)
>a"+ Y U0
Q,',J‘EI

>a + ) ('H’f|) (by (13))

;€T

> ( L bt (ZQ,.,,-ez lHuI))’
t tl‘*]
1 n 1 |Hi jl
because a > > - : and by Corollary 2.4
2= 1 t tf*l

> (a +8¢t -1 Z |H,-,j|) (because t >3 and b — 1 > 8(r — 1)t")
Q,‘,‘EI

(a—i—S%ilH,ﬂ) (by (16))

i=1 j=1

> (a+4(n—[Hel))" (by (1D)).

Since |Hy41| < |Hol, it follows from (1) that (Hg41, Xk+1, Yk+1) 1S not a magic minor of
(G, x,y). Hence (M4) does not hold for (Hy1, Xk+1, Yk+1)- Therefore,
(18) |H+1] < 3
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Let Q := Xjy1 U Qa1 U Yiyg. Recall that UQ[ e Xj11 and Xgyg is an x—x;y | path.
Then Q is an x—y path in G and '

Q) 2 £(Qi+1) + £(Xpy1)

H H; i|\"
>(|t,k_+11|) + 3 ('t,_’{|) (by (8) and (13))

Q,',_/' el

|Hk+1|Jr b—1 Z |H; ;]

.
1 20— 1) pra ) (by (9) and Corollary 2.4)

i.j €

| H11 o _
>< :1 +4@¢t—1) Z |H,~,j|> (since b — 1> 8(r — 1)%r' 1)

Qi,jEI
2(n —Hen1l)" (by A7)
n" (by (18)).
Therefore, (b) of Theorem 2.1 holds for G. O

6. Paths through a given edge

In this section, we first prove a result which serves as the induction step for part (c) in the
proof of Theorem 2.1. We then complete the proof of Theorem 2.1.

Lemma 6.1. Suppose n > 5 and (a) of Theorem 2.1 holds for graphs with at most n vertices.
Then (c) of Theorem 2.1 holds for graphs with n vertices.

Proof. Lets > 3 be an integer, let G be a 3-connected graph with no K3 ;-minor, and let |G| = n.
Let xy, f € E(G). For convenience, we let b := 8/t and r 1= log,, 2.

First, assume that f is incident with one of {x, y}. By symmetry, we may assume that f is
incident with y. Let y" denote the other end of f. Since f # xy, ¥’ # x. By applying Lemma 4.1
to G,x,y,y (as G, x, y, z, respectively), we see that (a) of Theorem 2.1 holds for G, x, y’, y.
That is, G — y contains an x—y’ path P’ such that £(P’) > > (G-l (lG| 1), We can extend

Iz
P’ to an x—y path P through f in G such that £(P) > (‘G| ! +1> (‘ )" + 1 (since t > 3).
Hence (c) of Theorem 2.1 holds for G.

Therefore, we may assume that f is incident with neither x nor y. Since G is 3-connected,
G contains an x—y path Q through f. Let O, and Q, be the components of Q — f containing
x and y, respectively.

Let X denote the minimal union of blocks of G — V(Qy) containing Q.. Then the blocks
of X can be labeled as X, X1,..., X, and the cutvertices of X can be labeled as x1,...,x,
such that

XD VXi) NV (Xit1) ={xh
X2) VIXp)NV(X;))=0if j >i+2;and
(X3) x0:=x € V(Xo) —{x1}, xp+1 € V(X)) — {xp}, and x4 is incident with f.
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Fig. 5. The blocks X, ..., Xp and Y, ..., Y,.

See Fig. 5. Since G is 3-connected, U; := G — V(X;) is connected for each 0 <i < p. By
Lemma 3.4, X} := G/U; is either a triangle or a 3-connected minor of G. Let u; denote the
vertex of X7 resulting from the contraction of U;. Since xy, f € E(G), u;x;,u;xi+1 € E(X}).
Since [Qy| =2, | X}| <n.

Since G is 3-connected, Y := G — V(X) has all its cutvertices contained in V(Qy). So the
blocks of Y can be labeled as Yy, Y1, ..., Y, and the cutvertices of Y can be labeled as y1, ..., y,
such that

YD V¥ NV ¥y =i}
(Y2) VX)) NV;)=0if j >i+2;and
(Y3) yo:=y € V(Xo) — {y1}, yg+1 € V(¥y) — {4}, and y,41 is incident with f.

See Fig. 5. Since xy € E(G), for each 0 <i < g, W; := G — V(Y;) is connected. By
Lemma 34, Y i* := G/ W; is either a triangle or a 3-connected minor of G. Let w; denote the
vertex of Y* resulting from the contraction of W;. Since xy, f € E(G), w;y;, w;yiy+1 € E(Y[).
Because |X| > 2, |V <n.

If |X;| =2 then let P; := X;, and so £(P;) = 1 > (Xi})" (since 7 > 3). If |X;| > 3 then,
since |X| < n, Theorem 2.1 holds for X7'. In particular, (a) of Theorem 2.1 holds for X. Thus
X; = X¥ — u; has an x;—x; 1 path P, such that £(P)) > > (X — (1l

If |Y;| =2 then let Q; := Y;, and so £(Q;) =1 > (t'Y')’ (since ¢ > 3). If |Y;| > 3 then,
since |Y*| < n, Theorem 2.1 holds for Y. In particular, (a) of Theorem 2.1 holds for ¥;*. Thus
Y := ¥} — w; has an yi—yi+1 path Q; such that £(Q;) > (LTl = (MLilyr,

Now let P := ((J/_,; P) U (U, i) + f. Then P is an x—y path in G through f and

P q
EP)=) L)+ Q) +1

i=1 i=1

>3 () ()
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(9

Thus (c) of Theorem 2.1 holds for G. O

Proof of Theorem 2.1. For convenience, we let b := 8¢/*! and r := log, 2. We apply induction
on n :=|G|. First assume that n = 4. Then G is isomorphic to the complete graph on 4 vertices.
It is easy to see that G — z contains an x—y path P such that £(P) =2. Since t > 3, {(P) =2 2>
(ﬂi_])’ = (ﬂ)’. So (a) holds. Clearly, G contains an x—y path Q such that £(Q) = 3. Hence

1—1
L0)=3 2[ 4" =n", and (b) holds. Finally, G contains an x—y path R through f such that
€(R)=3.Hence £(R) =3 > (%) + 1= (&) +1.
So we may assume that n > 5 and Theorem 2.1 holds for graphs with at most n — 1 vertices.
By Lemmas 4.1, 5.1 and 6.1, we see that Theorem 2.1 also holds for G. O
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