
On the k-path cover problem for cacti ∗

Zemin Jin and Xueliang Li

Center for Combinatorics and LPMC

Nankai University

Tianjin 300071, P.R. China

zeminjin@eyou.com, x.li@eyou.com

Abstract

In this paper we investigate the k-path cover problem for graphs,
which is to find the minimum number of vertex disjoint k-paths that
cover all the vertices of a graph. The k-path cover problem for general
graphs is NP -complete. Though notable applications of this problem
to database design, network, VLSI design, ring protocols, and code
optimization, efficient algorithms are known for only few special classes
of graphs. In order to solve this problem for cacti, i.e., graphs where
no edge lies on more than one cycle, we introduce the so-called Steiner
version of the k-path cover problem, and develop an efficient algorithm
for the Steiner k-path cover problem for cacti, which finds an optimal
k-path cover for a given cactus in polynomial time.

Keywords: k-path cover; Steiner cover; efficient algorithm.

AMS subject classification (2000): 68R10, 05C70, 05C85, 90C27,
68Q17, 94C15.

1 Introduction

Let G = (V,E) be an undirected simple graph. A path cover of G is a set
of vertex disjoint paths which together cover all the vertices of G. The path
cover problem is to determine a path cover of G that uses the minimum
number of paths, denoted by π(G). Naturally, π(G) = 1 if and only if G
contains a Hamiltonian path, and so the path cover problem is NP -complete
in general, and even for planar graphs, bipartite graphs, chordal graphs, and
cubic graphs [6, 7]. On the other hand, there are many known special classes
of graphs for which the path cover problem can be solved in polynomial
time [1, 2, 5, 8, 9, 10, 12, 16]. The path cover problem finds applications to
database design, network, VLSI design, ring protocols, code optimization,
and mapping parallel programs to parallel architectures [3, 11, 15], etc.

For a given positive integer k, a path cover is called a k-path cover if each
path in the path cover contains at most k vertices. The k-path cover problem

∗Research supported by NSFC.

1

is to determine a k-path cover of a graph G that uses the minimum number
of paths, denoted by πk(G). The k-path cover problem has applications
in broadcasting, computer and communications networks [17], and vehicle
routing problems [14]. It is easy to see that the 2-path cover problem is
equivalent to the problem of finding a maximum matching of G, which can
be solved in polynomial time. However, the problem is NP -complete in
general for k = 3. As usually done for such problems, researchers focus on
the problem on special classes of graphs for which the problem can be solved
in polynomial time. However, there are only a few such classes of graphs
known. Yan et al [17] gave a linear time algorithm for trees. Steiner [13]
showed that the k-path cover problem is NP -complete for cographs if k is a
part of the input, but it can be solved in polynomial time if k is fixed. Steiner
[14] showed the NP -completeness of the problem for comparability graphs,
and presented a polynomial algorithm for bipartite permutation graphs.

A graph is called a cactus if no edge lies on more than one cycle. Note
that the class of cacti properly contains the class of trees. In this paper
we focus on the k-path cover problem for cacti. Moran [10] developed an
efficient algorithm for the optimal path cover of cacti. Though there is a
linear time algorithm of Yan et al [17], it only outputs the value of πk(T) for
a tree T . According to the algorithm, we give some edge deletion rules that
result in an optimal k-path cover for a tree T in polynomial time, which is
in fact equivalent to the results of Yan et al [17], and the detailed proof is
omitted.

However, in order to find an optimal k-path cover for a cactus, we in-
troduce the so-called Steiner version of the problem, i.e., the Steiner k-path
cover problem, defined as follows: Let D and S be two subsets of V (G)
such that D ∪ S = V (G) and D ∩ S = ∅. The problem is to find the min-
imum number of vertex disjoint k-paths which cover all the vertices of D.
This concept is somehow motivated by the concept of Steiner trees. Clearly,
the Steiner k-path cover problem is exactly the k-path cover problem when
D = V (G). The set S is called the Steiner vertex set. It is easy to see that
an optimal Steiner k-path cover may contain vertices of S other than those
to be covered. Denote by πk(G,D) the minimum number of vertex disjoint
k-paths which cover all the vertices of D, and simply call it the covering
number.

Like the algorithm in [10], the algorithm for the Steiner k-path cover
problem basically operates by applying two types of rules, namely, the edge
deletion rules and the cycle opening rules. The cycle opening rules find the
edges on cycles that can be deleted from a given cactus without affecting its
covering number. The edge deletion rules given in Section 2 construct an op-
timal k-path cover for a given cactus by decomposing it into two components
and covering each component separately.

The rest of the paper is organized as follows. In Section 2, we present
the edge deletion rules for the optimal Steiner k-path cover for trees. The
cycle opening rules are presented in Section 3. The algorithm for the Steiner
k-path cover problem for cacti is developed in Section 4. The last section
presents the concluding remarks.

2

2 The edge deletion rules

In this section we focus on the edge deletion rules. Note that the rules
in this section are equivalent to the recursive formulas and the algorithm
of Yan et al [17], and so we do not give their detailed proofs. Unlike the
algorithm of Yan et al [17], these rules output an optimal Steiner k-path
cover for a rooted tree in polynomial time, not only the minimum number.
Our algorithm for the Steiner k-path cover problem for trees is based on
these edge deletion rules. These rules are repeatedly applied to a forest F ,
which is initially the tree T . When each component of F is a k-path, the
algorithm stops and the union of the components of the current F consists
of an optimal Steiner k-path cover of T . The covering number is preserved
when edges are deleted according to the rules. It is worth noting that the
edge deletion rules in [2, 10] are not applicable here. At first, we give some
definitions and notations.

Definition 2.1 Let SG be a Steiner k-path cover of a graph G, we say that
SG employs an edge e ∈ E(G) if some path of SG contains e. A path
v1v2 · · · vm is called a pendant path starting at v1, where m ≥ 2, d(vi) = 2,
1 < i < m, and d(vm) = 1. Let T be a rooted tree. A vertex with at least
two sons in T is called a fork if each of its descendants is of degree at most
2. Clearly, each fork (6= root) in T is of degree at least 3.

We have the following results.

Lemma 2.1 Let T be a rooted tree. If there is a vertex x of degree 1 such
that x ∈ S, then πk(T,D) = πk(T − x,D).

Proof. Let ST be an optimal Steiner k-path cover of the tree T . If the vertex
x is not covered by ST , then we are done. If x is covered by ST , denote by
p the path in ST which covers the vertex x. It is easy to see that x is an
end vertex of the path p. Let p∗ = p − x. Then ST − p + p∗ is an optimal
Steiner k-path cover of both T and T − x, in which x is not covered. This
completes the proof.

Lemma 2.2 Let v1 be a fork in the rooted tree T , where each leaf is a vertex
of D. If there is a pendant path v1v2 · · · vm starting at v1 such that m > k,
then πk(T,D) = πk(T − vm−kvm−k+1, D).

Proof. Let ST be an optimal Steiner k-path cover of T . Suppose that ST em-
ploys the edge vm−kvm−k+1. Let p = p1vm−kvm−k+1p2 be the k-path in ST

that employs the edge vm−kvm−k+1. Then the path p3 = vj+1vj+2 · · · vm in
the remaining part must be a k-path in ST . It is easy to see that vm−k+1p2p3

is a k-path in T . Then ST = ST − p − p3 + p1vm−k + vm−k+1p2p3 is a de-
sired optimal Steiner k-path cover of both T and T − vm−kvm−k+1. This
completes the proof.

So, in the following we can assume that each leaf is a vertex of D and
each pendant path contains at most k vertices in T . We have the following
results.

3

Lemma 2.3 Let v1 be a fork in the rooted tree T , where each leaf is a
vertex of D. Suppose that each pendant path starting at v1 contains at most
k vertices in T . If there are two pendant paths, v1v2 · · · vm and v1v

∗

2 · · · v
∗

n,
whose union contains at most k vertices, then πk(T,D) = πk(T −{v1x ∈ T :
x 6= v2, x 6= v∗2}, D).

Proof. Let ST be an optimal Steiner k-path cover of T . Suppose that ST

employs at most one of the edges v1v2 and v1v
∗

2 . Let p = p1v1p2 be the
k-path in ST containing v1, where pi, i = 1, 2, may contain no vertices.

Case 1. Without loss of generality, we assume that only v1v2 is employed
by ST , or say that v2 is contained in p1. Then p3 = v∗2 · · · v

∗

n is a k-path in
ST and p1 = vm · · · v2. Then ST = ST − p − p3 + p2 + p1v1p3 is a desired
optimal Steiner k-path cover of both T and T − {vx ∈ T : x 6= v2, x 6= v∗2}.

Case 2. Suppose that none of the edges v1v2 and v1v
∗

2 is employed by
ST . Then both p1 = v2 · · · vm and p2 = v∗n · · · v

∗

2 are k-paths in ST . Let
p = p3v1p4 be the k-path in ST containing v1, where pi, i = 3, 4, contains at
least one vertex. Then ST = ST − p− p1− p2 + p3 + p4 + p2v1p1 is a desired
optimal k-path cover of both T and T − {vx ∈ T : x 6= v2, x 6= v∗2}. This
completes the proof.

Lemma 2.4 Let v1 be a fork in the rooted tree T , where each leaf is a
vertex of D. Suppose that there are several pendant paths starting at v1,
each of which contains at most k vertices. Let u1, u2, · · · , um be all the
sons of v1 in T and let v1u1 · · · x be a pendant path with the minimum
number of vertices among all pendant paths starting at v1. If the union of
any two pendant paths starting at v1 contains more than k vertices, then
πk(T,D) = πk(T − {v1ui : i = 2, 3, · · · ,m}, D).

Proof. Let ST be an optimal Steiner k-path cover of T . Clearly, any single
k-path of ST cannot cover two pendant paths starting at v1 completely.
Suppose that ST employs the edge v1ui for some i ≥ 2. Let p = p1v1uip2

be a k-path in ST , which employs the edge v1ui. Without loss of generality,
we can assume that v1uip2 is one of the pendant paths starting at v1. We
distinguish the following two cases.

Case 1. If p1 contains no descendants of v1. Then p3 = u1 · · · x must be
a k-path in ST . It is easy to see that SG = SG − p − p3 + p1v1p3 + uip2

is the desired optimal Steiner k-path cover of both T and T − {v1ui : i =
2, 3, · · · ,m}.

Case 2. Otherwise, we can assume that p1 = y
′

· · · uj. Let v1uj · · · y
′

y′′ · · · y
be a pendant path starting at v1. Then p4 = y · · · y′′ is a k-path in ST .

Subcase 2.1. If j 6= 1, then p3 = u1 · · · x is a k-path in ST . It is easy to
see that SG = SG − p− p3 − p4 + p4p1 + v1p3 + uip2 is the desired optimal
Steiner k-path cover of both T and T − {v1ui : i = 2, 3, · · · ,m}.

Subcase 2.2. If j = 1, then x = y and p4 = x · · · y′′. Then SG =
SG − p − p4 + p4p1v1 + uip2 is the desired optimal Steiner k-path cover of
both T and T − {v1ui : i = 2, 3, · · · ,m}.

Based on the previous lemmas, we can easily develop an efficient algo-
rithm for the Steiner k-path cover problem of trees. Note that our goal is

4

to find an optimal Steiner k-path cover for cacti, and a cactus is a tree if
it contains no cycles. For technical reasons, we need some more definitions
and notations.

Definition 2.2 Let G be a cactus and v be a vertex in a cycle of G. Let Gi,
i ∈ I, be the components of G−v such that G[V (Gi)∪v] contains no cycles.
The tree Tv =

⋃

i∈I G[V (Gi) ∪ v], rooted at v, is called the tree suspended
at v. Note that, if the index set I is empty, Tv consists of only the single
vertex v.

Before opening the cycles of the cactus G, we need to trim the suspended
tree Tv for each vertex v in a cycle of G. Similarly to trees, we have the
following results.

Lemma 2.5 Let G be a cactus. If there is a vertex x of degree one such
that x ∈ S, then πk(G,D) = πk(G− x,D).

Proof. The proof is analogous to that of Lemma 2.1, and the details are
omitted.

Lemma 2.6 Let G be a cactus such that each vertex of degree 1 belongs
to the set D. Let v1 be a fork in the suspended tree Tv in G. If there
is a pendant path v1v2 · · · vm starting at v1 such that m > k in G, then
πk(G,D) = πk(G− vm−kvm−k+1, D).

Proof. The proof is analogous to that of Lemma 2.2, and the details are
omitted.

HHH
s

��� s s s

v1 vm−k vm−k+1 vm

HHH
s

��� s s s

v1 vm−k vm−k+1 vm

Before edge deletion After edge deletion

Figure 1

The edge deletion rule of Lemma 2.6 is illustrated in Figure 1. It is easy
to see that, based on Lemma 2.6, we can separate k-paths from G, such that
each pendant path starting at the fork v1 in the current cactus has at most
k vertices. Furthermore, we have the following result.

Lemma 2.7 Let G be a cactus such that each vertex of degree 1 belongs to
the set D. Let v1 be a fork in the suspended tree Tv in G. Suppose that
each pendant path starting at v contains at most k vertices. If there are two
pendant paths, v1v2 · · · vm and v1v

∗

2 · · · v
∗

n, whose union contains at most k
vertices, then πk(G,D) = πk(G− {v1x ∈ G : x 6= v2, x 6= v∗2}, D).

5

Proof. The proof is analogous to that of Lemma 2.3, and the details are
omitted.

The edge deletion rule of Lemma 2.7 is illustrated in Figure 2. Note that,
even when v1 lies in some cycles in G, the edge deletion rule of Lemma 2.6 is
still applicable. Then the edge deletion rule of Lemma 2.7 may also be used
to open cycles in G. According to Lemmas 2.6 and 2.7, we can separate
k-paths from the cactus G. And, when no such pendant paths as those in
Lemmas 2.6 and 2.7 exist for the fork v1 in the current cactus, each of the
pendant paths starting at v1 contains at most k vertices, and the union of
any two of them contains more than k vertices. For this case, we have the
following result.

s�
�
��

B
B
BB

�
�
��

���
HHH

s s

s s

v1

v2 v∗2

vm v∗n

s

���
HHH

s

s

s

s s

v1

v2 v∗2

vm v∗n
Before edge deletion After edge deletion

Figure 2

Lemma 2.8 Let G be a cactus such that each vertex of degree 1 belongs to
the set D. Let v1 be a fork in the suspended tree Tv in G, starting at which
there are several pendant paths each of which contains at most k vertices.
Let u1, u2, · · · , um be all the sons of v1 in Tv and v1u1 · · · x be a pendant path
with the minimum number of vertices among all pendant paths starting at
v1 in Tv. If the union of any two pendant paths starting at v1 contains more
than k vertices, then πk(G,D) = πk(G− {v1ui : i = 2, 3, · · · ,m}.D).

Proof. The proof is analogous to that of Lemma 2.4, and the details are
omitted.

The edge deletion rule of Lemma 2.8 is illustrated in Figure 3. Lemma
2.8 implies that we can delete all the edges v1ui, i ≥ 2, while preserving
the covering number of the cactus. According to the previous lemmas, each
suspended tree in the current cactus consists of either a single vertex or
a single pendant path with at most k vertices in the current cactus. We
present a simple outline of these rules as follows.

6

s�
�
��

B
B
BB

�
�
��

���
HHH

��s s s

s s s

v1

u1 u2 um

x

s�
�
��

B
B
BB

�
�
��

���
s s s

s s s

v1

u1 u2 um

x

Before edge deletion After edge deletion

Figure 3

Procedure: Trim G.

Step 1. If there is a vertex x of degree 1 in G such that x ∈ S, then delete the
vertex x.

Step 2. Let u be a fork in some suspended tree in the current cactus.

2.1. If there is a pendant path starting at u which contains more than
k vertices, then trim it by the edge deletion rule of Lemma 2.6.

2.2. If there are two pendant paths starting at u whose union contains
at most k vertices, then trim it by the edge deletion rule of Lemma
2.7.

2.3. If there are at least two pendant paths starting at u, among which
the union of any two pendant paths contains more than k vertices,
then trim it by the edge deletion rule of Lemma 2.8.

3 The cycle opening rules

3.1 The end cycles

In Section 2, Lemma 2.7 gives a rule to open cycles in cacti. But, it is not
enough for us. In this section we consider cacti to which none of the previous
rules is applicable. Then each suspended tree in the cactus consists of either
a single vertex or a single pendant path with at most k vertices. We focus
our discussion on these cacti and give rules to open the cycles of them. It is
worth noting that we only choose some particular cycles to open. First we
introduce some more necessary definitions and notations.

Definition 3.1 A cactus is called a trimmed cactus if each suspended tree
of it consists of either a single vertex or a single pendant path with at most k
vertices. Let G be a cactus and C be a cycle of G. Denote by CG the union
of the cycle C and all the trees suspended at vertices on C. Obviously, CG

is an induced subgraph of G and contains a unique cycle. A cycle C of G
is called an end cycle if G = CG, or there is a unique vertex v on C which
is adjacent to a vertex in V (G) \ V (CG). If G = CG, any vertex v on C is

7

called an anchor of C; otherwise, the unique vertex v on C which is adjacent
to a vertex in V (G) \ V (CG) is called the anchor of C.

Note that, though we adopt the same terms as those in [10], it is not the
same thing in essence. The concept of end cycles plays a key role in this
paper. If G is unicyclic, then the unique cycle is an end cycle in G. Suppose
that G is a cactus containing at least two cycles, then the existence of end
cycles can be proved by constructing a rooted tree T , whose vertex set is
the set of cycles in G, as follows. Let C0 be a cycle in G, which is regarded
as the root of T . Then C is one of the sons of C0 in T if and only if there
is a path P from C0 to C such that V (P)− V (C)∪ V (C0) does not contain
any vertex in other cycles in G. Label the cycle C where C ∈ NT [C0]. Let
Ci be labelled, then an unlabelled vertex Cj is one of the sons of Ci in T if
and only if there is a path P from Ci to Cj such that V (P)−V (Ci)∪V (Cj)
does not contain any vertex in other cycles in G. Label the cycle C where
C ∈ NT [Ci]. The other cycles of G can be labelled similarly. It is easy to
see that C 6= C0 is an end cycle in G if and only if C is a leaf in T .

Next we show how the end cycles in the trimmed cactus can be opened
while the covering number of the cactus is preserved. The basic motivation
is that, for any cactus containing cycles, any optimal Steiner k-path cover
does not employ at least one edge on each cycle. It is easy to see that,
if the given cactus contains a unique cycle, it is not difficult to find an
optimal Steiner k-path cover of it. A simple and efficient method is to find
an optimal Steiner k-path cover of the tree obtained from deleting an edge
of the cycle. After doing this for each edge of the cycle, the cover with the
minimum number of paths is an optimal Steiner k-path cover of the given
cactus. Unfortunately this simple method does not run efficiently when the
given cactus contains several cycles.

From now on we focus on the trimmed cacti with several cycles. Let G be
a such cactus and C be an end cycle in G, whose anchor is the vertex v. Let
e be an edge on C. Then the cactus G−e may be not trimmed, and the only
possibility is that the suspended tree Tv of it needs to be trimmed. But the
covering number of G may not be preserved, i.e., πk(G,D) 6= πk(G − e,D)
for some e ∈ C. For example, let G be the union of a cycle and a path with
a unique common vertex v, D = V (G) and k = |V (G)|, then πk(G,D) 6=
πk(G − e,D) for any edge e ∈ C − v. Note that the root v has at most
three sons in the suspended tree Tv in G− e. As illustrated in the following
procedure, we trim the suspended tree Tv in the cactus G − e by the rules
of Lemmas 2.5 through 2.8 under some additional restrictions.
Procedure(C,e).

Step 1. If there is a vertex x of degree 1 in G such that x ∈ S, then delete the
vertex x.

Step 2. Let u be a fork in the suspended tree Tv in the current cactus.

2.1. If there is a pendant path starting at u which contains more than
k vertices, then trim it by the edge deletion rule of Lemma 2.6.

8

2.2. If u 6= v and there are two pendant paths starting at u whose
union contains at most k vertices, then trim it by the edge dele-
tion rule of Lemma 2.7.

2.3. If there are at least two pendant paths starting at u, among which
the union of any two pendant paths contains more than k vertices,
then trim it by the edge deletion rule of Lemma 2.8.

2.4. If there are exactly three pendant paths starting at v in the cur-
rent cactus, the union of some two of which contains at most k
vertices, then let vx · · · y be the largest pendant path among the
three, and delete the edge vx.

It is easy to see that in each step we have already separated some k-
paths from the current cactus. Denote by Se(C) the set of all the k-paths
separated in Procedure(C,e). Finally, we obtain a new cactus, denoted by
Ge, in which the suspended tree Tv consists of either a single vertex, or a
pendant path with at most k vertices, or two pendant paths whose union
contains at most k vertices. Since CG − e is a tree rooted at the vertex v,
according to the rules in Section 2, it is easy to see that

πk(CG − e,D ∩ V (CG)) =



















|Se(C)|, if v ∈ S and the suspended
tree Tv in Ge consists of only
the vertex v;

|Se(C)|+ 1, otherwise.

Based on the three possible cases of the suspended tree Tv in the cactus Ge

for each e, we partition the edges of C into three different classes as follows:

C1 = {e ∈ C: the suspended tree Tv in Ge consists of only the vertex v},

C2 = {e ∈ C: the suspended tree Tv in Ge consists of only a pendant path
with at most k vertices},

C3 = {e ∈ C: the suspended tree Tv in Ge consists of only two pendant
paths whose union contains at most k vertices}.

Then, C1 ∪C2 ∪ C3 = E(C) and Ci ∩ Cj = ∅, i 6= j. For i = 1, 2, 3, let

si =

{

mine∈Ci
{|Se(C)|}, if Ci 6= ∅;

∞, if Ci = ∅.

An obvious consequence is that

πk(CG, D ∩ V (CG)) =

{

min{s1 + 1, s2 + 1, s3 + 1}, if v ∈ D;
min{s1, s2 + 1, s3 + 1}, if v ∈ S.

And, by simple arguments we have

πk(CG − v,D ∩ V (CG − v)) = min{s1, s2 + 1, s3 + 2}.

Without loss of generality, we assume that |Sei
(C)| = si, ei ∈ Ci if si 6=∞,

and the single pendant path starting at v in Ge2
contains as few vertices as

possible if s2 6=∞.

9

3.2 Opening end cycles

In this subsection we present a rule to choose an edge among the edges ei

of an end cycle C in order to open the cycle, while the covering number is
preserved. Before presenting the cycle opening rules, we need some prepa-
rations. Consider the subgraph CG rooted at v. A v-rooted Steiner k-path
cover of CG is a Steiner k-path cover in which v is an end vertex of a path.
The v-rooted Steiner k-path cover number, denoted by πk(CG|v,D∩V (CG)),
is the number of paths in a v-rooted Steiner k-path cover of CG with
minimum cardinality. Denote by lk(CG, v) the minimum number of ver-
tices in a path containing v in a v-rooted Steiner k-path cover of size
πk(CG|v,D ∩ V (CG)). Note that the root vertex v is covered in any op-
timal v-rooted Steiner k-path cover of CG whether v ∈ D or v ∈ S.

According to the edge deletion rules in Section 2, and the algorithm and
recursive formulas of Yan et al [17], we have the following result, and the
detailed proof is omitted.

Lemma 3.1 If min{s1−1, s3} ≥ s2, then Se2
(C)+q is an optimal Steiner k-

path cover of CG such that |V (q)| = lk(CG, v), where q is the unique pendant
path starting at v in Ge2

. And, we have

πk(CG|v,D ∩ V (CG)) =











s3 + 2, if min{s1 − 1, s2} > s3,
s2 + 1, if min{s1 − 1, s3} ≥ s2,
s1 + 1, otherwise.

Then we have the following results.

Lemma 3.2 If min{s1 − 1, s2} > s3, then πk(G,D) = πk(G− e3, D).

Proof. Let SG be an optimal Steiner k-path cover of G and Sc ⊆ SG be the
set of the k-paths covering the vertices of D ∩ V (CG). If Sc ⊆ CG, then
Sc is an optimal Steiner k-path cover of CG, and the result holds obviously
since we can replace Sc by another optimal Steiner k-path cover of CG, i.e.,
Se3

(C) plus the union of the two pendant paths starting at v in Ge3
. If there

is a unique k-path p = p1yvp2 ∈ Sc such that p1y ∈ G \ CG, we distinguish
the following two cases.

Case 1. vp2 ⊆ CG.
Then Sc−p+vp2 is a v-rooted Steiner k-path cover of CG. Since min{s1−

1, s2} > s3, and Sc must cover all the vertices of D ∩ V (CG), we have
|Sc| ≥ s3 + 2. Then SG−Sc + p1y + Se3

(C) + q is an optimal Steiner k-path
cover of both G and G− e3, where q is the union of the two pendant paths
starting at v in the cactus Ge3

.
Case 2. p2 ⊆ G \ CG.
Then Sc−p covers all the vertices of D∩V (CG−v), and so we have that

|Sc − p| ≥ πk(CG − v,D ∩ V (CG − v)) ≥ s3 + 2.

Then, SG − Sc + Se3
(C) + p1 + p2 + q is an optimal Steiner k-path cover of

both G and G− e3, where q is the union of the two pendant paths starting
at v in the cactus Ge3

. This completes the proof.

10

Lemma 3.3 If min{s2, s3} > s1 − 1, then πk(G,D) = πk(G− e1, D).

Proof. Let SG be an optimal Steiner k-path cover of G and let Sc ⊆ SG be
the set of the k-paths covering the vertices of D ∩ V (CG). If Sc ⊆ CG, then
Sc is an optimal Steiner k-path cover of CG, and the result holds obviously
since we can replace Sc by another optimal Steiner k-path cover of CG, i.e.,
Se1

(C), plus the path v if v ∈ D. If there is a unique k-path p = p1vp2 ∈ Sc

such that p1 ∈ G \ CG. We distinguish the following two cases:
Case 1. vp2 ⊆ CG.
Then Sc−p+vp2 is a v-rooted Steiner k-path cover of CG, which implies

that |Sc| ≥ s1 +1. Then SG−Sc +p1v+Se1
(C) is an optimal Steiner k-path

cover of both G and G− e1.
Case 2. p2 ⊆ G \ CG.
Then Sc − p is an optimal Steiner k-path cover of CG − v, which implies

that |Sc − p| = |Se1
(C)|. Then SG − Sc + p + Se1

(C) is an optimal Steiner
k-path cover of both G and G− e1. This completes the proof.

Lemma 3.4 If min{s1 − 1, s3} ≥ s2, then πk(G,D) = πk(G− e2, D).

Proof. Let SG be an optimal Steiner k-path cover of G and let Sc ⊆ SG

be the set of the k-paths covering the vertices of CG. If Sc ⊆ CG, then
Sc is an optimal Steiner k-path cover of CG, and the result holds obviously
since we can replace Sc by another optimal Steiner k-path cover of CG, i.e.,
Se2

(C) plus the pendant path starting at v in Ge2
. If there is a unique

k-path p = p1vp2 ∈ Sc such that p1 ∈ G \ CG, then it is easy to see that
|Sc| ≥ s2 + 1. Let vp3 be the unique pendant path starting at v in Ge2

. We
distinguish two cases:

Case 1. vp2 ⊆ CG.
Then Sc−p+vp2 is a v-rooted Steiner k-path cover of CG. From Lemma

3.2 we have that |V (vp3)| ≤ |V (vp2)|. This implies that SG−Sc +Se2
(C)+

p1vp3 is an optimal Steiner k-path cover of both G and G− e2.
Case 2. p2 ⊆ G \ CG.
Then Sc − p is an optimal Steiner k-path cover of CG − v, which implies

that |Sc− p| = s2 +1. Then SG−Sc + p+Se2
(C)+ p3 is an optimal Steiner

k-path cover of both G and G− e2. This completes the proof.
The only case left is that s1−1 = s3 < s2. Though we can not determine

exactly which of the ei’s should be deleted, we have the following result.

Lemma 3.5 If s1 − 1 = s3 < s2, then πk(G,D) = πk(G − e1, D) or
πk(G,D) = πk(G− e3, D).

Proof. Let SG be an optimal Steiner k-path cover of G and let Sc ⊆ SG be
the set of the k-paths covering the vertices of CG. If Sc ⊆ CG, then Sc is an
optimal Steiner k-path cover of CG, and the result holds obviously since we
can replace Sc by another optimal Steiner k-path cover of CG, i.e., Se3

(C)
plus the union of the two pendant paths starting at v in Ge3

. If there is a
unique k-path p = p1vp2 ∈ Sc such that p1 ∈ G \ CG. We distinguish two
cases:

11

Case 1. p2 ⊆ G \ CG.
Then Sc − p is an optimal Steiner k-path cover of CG − v, which implies

that |Sc − p| = s1. Then SG − Sc + p + Se1
(C) is an optimal Steiner k-path

cover of both G and G− e1.
Case 2. p2 ⊆ CG.
Then Sc−p+vp2 is a v-rooted Steiner k-path cover of CG, which implies

that |Sc| ≥ s1 +1. Then SG−Sc +p1v+Se1
(C) is an optimal Steiner k-path

cover of both G and G− e1. This completes the proof.
From the previous lemmas, we can open the end cycle C by comparing

the values of s1 − 1, s2 and s3, except for the case s1 − 1 = s3 < s2.
According to Lemma 3.6, we can delete either e1 or e3 to open the cycle C
if s1− 1 = s3 < s2, but to determine exactly which one to be deleted is still
a problem. For convenience, we label the anchor v of the end cycle C by
l(C) if s1 − 1 = s3 < s2. Let G

′

= Ge1
and D

′

= (D− v) ∩ V (G
′

). We have
the following result.

Lemma 3.6 πk(G,D) = πk(G
′

, D
′

) + s1.

Proof. Let SG
′ be an optimal Steiner k-path cover of G

′

, where V (G
′

) \D
′

is the Steiner vertex set. It is easy to see that the k-path cover SG
′ ∪Se1

(C)
(or, SG

′ ∪Se3
(C)) is an optimal Steiner k-path cover of G if v is covered (or,

not covered) in SG
′ .

Then, recursively, we can find an optimal Steiner k-path cover of the
cactus G easily.

4 Algorithm

Based on our rules, we are ready now to present an efficient algorithm for
finding an optimal Steiner k-path cover of a given cactus G. It is easy to
see that it can find an optimal k-path cover for the given cactus G if the
Steiner vertex set S = ∅.

Algorithm: Find an optimal Steiner k-path cover of a cactus.

Input: A cactus G with the Steiner vertex set S, and a positive integer
k > 0.

Output: An optimal Steiner k-path cover of G.

Step 1. Initial state: SG = ∅, L = ∅ and Se(C) = ∅ for each edge e on each
cycle C.

Step 2. Do Procedure: Trim G to trim G, and

L← L∪{x : x is labelled and deleted in Step 1 of Procedure: Trim G}.

Step 3. If every component of G is a k-path, go to Step 6.

Step 4. Let C be an end cycle in G, whose anchor is the vertex v.

12

4.1. For each edge e ∈ C, do Procedure(C,e) and update the set
Se(C) for each edge e ∈ C.

4.2. Determine the value of si and the corresponding edges ei, i =
1, 2, 3, on C.

Step 5. If min{s1 − 1, s2} > s3, do G← G− e3, then go to Step 2.

Step 6. If min{s2, s3} > s1 − 1, do G← G− e1, then go to Step 2.

Step 7. If min{s1 − 1, s3} ≥ s2, do G← G− e2, then go to Step 2.

Step 8. If s1 − 1 = s3 < s2, do
label the vertex v by l(C), G ← Ge1

, D ← (D − v) ∩ V (Ge1
), and

S ← (V (Ge1
) ∩ S) ∪ {v}, then go to Step 2.

Step 9. For each vertex x ∈ L, which is labelled by l(C), do
G← G ∪ Se3

(C).
For each vertex y /∈ L, which is labelled by l(C), do
G← G ∪ Se1

(C).

Stop!

Theorem 4.1 Given a cactus G, our Algorithm produces an optimal Steiner
k-path cover of G in polynomial time, and the complexity is upper bounded
by O(|V (G)|2).

Proof. The correctness of the theorem is obvious from the previous results.
By results in [17], both Procedure: Trim G and Procedure(C,e) run in
linear time. Then for each end cycle C, Step 4 can be executed in |V (C)| •
O(|V (CG)|) time. For each end cycle C, Step 2 can be executed in O(|V (G)|)
time, and Steps 5 through 9 can be executed in a constant time. Since there
are at most O(|V (G)|) cycles in G, it is easy to see that our Algorithm can
be executed in O(|V (G)|2) time. This completes the proof.

5 Conclusions

In this paper we introduce the so-called Steiner version of the k-path cover
problem for graphs. The problem is NP -complete since it is a generalization
of the k-path cover problem. Motivated by the intractability and notable
applications of the k-path cover problem, the k-path cover problem has been
well studied. But there are only few results restricted on special classes of
graphs. In this paper we presented a polynomial time algorithm for the
Steiner version of the k-path cover problem for cacti, which not only finds
the minimum number but also gives an optimal k-path cover.

Acknowledgement. The authors are very grateful to the referees for
helpful suggestions and comments.

13

References

[1] S.R. Arikati and C.P. Rangan, Linear algorithm for optimal path cover
problem on interval graphs, Inform. Process. Lett. 35(1990), 149-153.

[2] F.T. Boesch, S. Chen and J.A.M. McHugh, On covering the points of
a graph with point disjoint paths, Proc. 1973 Capital Conf. on Graph
Theory and Combinatorics (1974), 201-212.

[3] F.T. Boesch and J.F. Gimpel, Covering the points of a digraph with
point disjoint paths and its application to code optimaization, J. ACM
24(1977), 192-198.

[4] M.A. Bonuccelli and D.P. Bovet, Minimum node disjoint path covering
for circular-arc graphs, Inform. Process. Lett. 8(1979), 159-161.

[5] G.J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM
J. Discrete Math. 9(1996), 309-316.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability, W.H.
Freeman, San Francisco, 1979.

[7] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, New York, 1980.

[8] R. Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for
cographs, Comput. Math. Appl. 30(1995), 75-83.

[9] J. Misra and R.E. Tarjan, Optimal chain partitions of trees, Inform.
Proces. Lett. 4(1975), 24-26.

[10] S. Moran and Y. Wolfstahl, Optimal covering of cacti by vertex-disjoint
paths, Theoret. Comput. Sci. 84(1991), 179-197.

[11] S. Pinter and Y. Wolfstahl, On mapping processes to processors, Inter-
nat. J. Parallel Programming 16(1987), 11-16.

[12] R. Srikant, R. Sundaram, K.S. Singh and C.P. Rangan, Optimal path
cover problem on block graphs and bipartite permutation graphs, The-
oret. Comput. Sci. 115(1993), 351-357.

[13] G. Steiner, On the k-path partition problem in cographs, Cong. Numer.
147(2000), 89-96.

[14] G. Steiner, On the k-path partition of graphs, Theoret. Comput. Sci.
290(2003), 2147-2155.

[15] A.S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs,
1981.

[16] J.H. Yan and G.J. Chang, The path partition problem, Inform. Process.
Lett. 52(1994), 317-322.

14

[17] J.H. Yan, G.J. Chang, S.M. Hedetniemi and S.T. Hedetniemi, k-path
partitions in trees, Discrete Appl. Math. 78(1997), 227-233.

15

