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Abstract We answer a question of Muir, relating it to different determinantal
expressions for the products

∏
i<j(y−xixj) and

∏
i≤j(y−xixj), and for the products

of these functions by an arbitrary Schur function.
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1 Introduction

Muir [6] writes determinantal expressions for
∏

1≤i<j≤3(y − xixj) and for∏
1≤i≤j≤3(y − xixj) but makes the comment that the method followed is not con-

sistent. 1

In this paper, we give determinantal expressions for the products
∏

i<j(y−xixj)
(Theorem 2.5) and

∏
i≤j(y−xixj) (Theorem 2.6), and give another type of determi-

nants for the the product of these functions by any Schur function (Theorem 2.7).
The first determinants are related to the expression of a Schur function in terms
of hook Schur functions, the last ones are related to the symplectic or orthogonal
characters.

For example, for n = 3, we write

−
∏

1≤i<j≤3

(y − xixj) =
∣∣∣∣
s11 − y s21

s111 s211 + y2

∣∣∣∣ ,

∏

1≤i≤j≤3

(y − xixj) =

∣∣∣∣∣∣

s2 − y s3 s4

s21 s31 + y2 s41

s211 s311 s411 − y3

∣∣∣∣∣∣
1 [6]: Still more curious is the fact that a similar quest, – the search for the equation whose

roots are the binary products without repetition, namely,

x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3

– has actually been successful. Unfortunately the method followed – a quasi-dialytic – is not logically
consistent ...
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and

s221

∏

1≤i≤j≤3

(y − xixj) =

∣∣∣∣∣∣

h6 − yh4 h7 − y2h3 h8 − y3h2

h5 − yh3 h6 − y2h2 h7 − y3h1

h3 − yh1 h4 − y2 h5

∣∣∣∣∣∣
.

We first recall some basic definitions about symmetric functions, following the
conventions of Macdonald [4].

Let X = {x1, x2, . . . , xn} be a set of n indeterminates. The complete symmetric
functions hk and the elementary symmetric functions ek are defined by the gener-
ating functions:

∞∑

k=0

hkt
k =

n∏

i=1

(1− xit)−1,

∞∑

k=0

ekt
k =

n∏

i=1

(1 + xit).

It follows that
n∑

i=0

(−1)ieihn−i = 0.

Given a partition λ = (λ1, λ2, . . . , λn) and its conjugate λ′, the Schur function
sλ has the following two expressions:

sλ = det
(
hλi−i+j

)
1≤i,j≤n

= det
(
eλ′i−i+j

)
1≤i,j≤n

.

Hook Schur functions sj,1i can also be written as

sj,1i =
j∑

k=1

(−1)k+1ei+khj−k. (1)

Another notation, due to Frobenius, can be used for a partition λ. If r be the
biggest number such that λi ≥ i then

F (λ) = (α1, . . . , αr|β1, . . . , βr),

where αi = λi − i and βi = λ′i − i, 1 ≤ i ≤ r.

This notation is associated to still another determinantal expression of a Schur
function, as a determinant of hook Schur functions ( [4, Ex.9 p.47]):

sλ = det
(
sαi|βj

)
1≤i,j≤r

. (2)

In this paper, we use the following two generalizations of the Vandermonde
determinant:

M(X, y) =

∣∣∣∣∣∣∣∣

xn−1
1 xn

1 + xn−2
1 y . . . x2n−2

1 + yn−1

xn−1
2 xn

2 + xn−2
2 y . . . x2n−2

2 + yn−1

. . . . . . . . . . . .
xn−1

n xn
n + xn−2

n y . . . x2n−2
n + yn−1

∣∣∣∣∣∣∣∣
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and

N(X, y) =

∣∣∣∣∣∣∣∣

xn+1
1 − xn−1

1 y xn+2
1 − xn−2

1 y2 . . . x2n
1 − yn

xn+1
2 − xn−1

2 y xn+2
2 − xn−2

2 y2 . . . x2n
2 − yn

. . . . . . . . . . . .
xn+1

n − xn−1
n y xn+2

n − xn−2
n y2 . . . x2n

n − yn

∣∣∣∣∣∣∣∣
.

One can factor out from these two determinants the Vandermonde ∆(X) =∏
i<j(xj − xi), obtaining two symmetric functions:

SY(n−1)n = M(X, y)∆(X)−1 , OY(n+1)n = N(X, y)∆(X)−1,

where, more generally, for any partition λ = (λ1, λ2, . . . , λn), the determinants
SY(n−1)n+λ and OY(n+1)n+λ are the following expressions:

∣∣∣∣∣∣∣∣

hn−1+λ1 hn+λ1 + yhn−2+λ1 . . . h2n−2+λ1 + yn−1hλ1

hn−2+λ2 hn−1+λ2 + yhn−3+λ2 . . . h2n−3+λ2 + yn−1hλ2−1

. . . . . . . . . . . .
hλn h1+λn + yhλn−1 . . . hn−1+λn + yn−1hλn+1−n

∣∣∣∣∣∣∣∣
(3)

and
∣∣∣∣∣∣∣∣

hn+1+λ1 − yhn−1+λ1 hn+2+λ1 − y2hn−2+λ1 . . . h2n+λ1 − ynhλ1

hn+λ2 − yhn−2+λ2 hn+1+λ2 − y2hn−3+λ2 . . . h2n−1+λ2 − ynhλ2−1

. . . . . . . . . . . .
h2+λn − yhλn h3+λn − y2hλn−1 . . . hn+1+λn − ynhλn+1−n

∣∣∣∣∣∣∣∣
. (4)

These last two functions are homogeneous versions of Weyl’s determinants for
the symplectic and orthogonal characters of respective index (n − 1)n + λ and
(n + 1)n + λ ( [8, p.219, p.228], [1]).

In fact, as the referee points out, the Vandermonde in the variables xi + y/xi,
i = 1 . . . n, which is equal to

∏

i<j

(xj − xi + y/xj − y/xi) =
∏

i<j

(xj − xi)(1− y/xixj)

is represented by the determinant det
(
(xi + yx−1

i )j−1
)
1≤i,j≤n

. By linear combina-
tion of columns, one transforms it into the determinant

∣∣∣∣∣∣∣∣

1 x1 + yx−1
1 x2

1 + y2x−2
1 . . . xn−1

1 + yn−1x1−n
1

1 x2 + yx−1
2 x2

2 + y2x−2
2 . . . xn−1

2 + yn−1x1−n
2

. . . . . . . . . . . .
1 xn + yx−1

n x2
n + y2x−2

n . . . xn−1
n + yn−1x1−n

n

∣∣∣∣∣∣∣∣
.

This new determinant is proportional to M(X, y), and therefore M(X, y) can
already be considered as an answer to the question of Muir, except for the para-
sitic factor (−1)(

n
2)∆(X). A similar manipulation shows that N(X, y) is equal to

(−1)(
n+1

2 )∆(X)
∏

i≤j(y − xixj).
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2 Littlewood’s Products

Littlewood has given the expansion, in terms of Schur functions, of the two products∏
1≤i<j≤n(1 − xixj) and

∏
1≤i≤j≤n(1 − xixj), which appear in the Weyl character

formula for the types B and C.

Littlewood’s formulas [4, Ex. 9 p.78] read as follows:
∏

1≤i<j≤n

(1− xixj) =
∑

λ

(−1)|λ|/2sλ(X), (5)

summed over all partitions λ : F (λ) = {α1 − 1, . . . , αr − 1|α1, . . . , αr} with α1 ≤
n− 1; ∏

1≤i≤j≤n

(1− xixj) =
∑

λ

(−1)|λ|/2sλ(X), (6)

summed over all partitions λ : F (λ) = {α1 + 1, . . . , αr + 1|α1, . . . , αr} with α1 ≤
n− 1.

In this section, we obtain new determinantal expressions for these two products,
and show that they imply Littlewood’s sums. For considerations about generaliza-
tions of Littlewood’s formulas, see [2].

Let δi,j denote the usual Kronecker delta function (= 1 if i = j and 0 otherwise).

The following easy lemma is a key ingredient.

Lemma 2.1 We have

SY(n−1)n = det
(
sj,1i + (−y)iδi,j

)
1≤i,j≤n−1

, (7)

OY(n+1)n = det
(
sj+1,1i−1 + (−y)iδi,j

)
1≤i,j≤n

. (8)

Proof. Multiplying to the left of the matrix corresponding to the determinant
SY(n−1)n by the triangular matrix

[
(−1)j−iej−i

]
1≤i,j≤n

with determinant 1, we get
a matrix with first column [0, . . . , 0, 1], the cofactor of its non-zero entry being the
determinant

det

(
j−1∑

k=1

(−1)n−i+k+1en−i+khj−1−k + yj−1δi,n−j+1

)

1≤i,j−1≤n−1

.

Reordering rows and columns, using (1), we obtain (7).

Similarly, the determinant OY(n+1)n equals

det

(
j∑

k=0

(−1)kei+khj−k + (−y)iδi,j

)

1≤i,j≤n

= det
(
sj+1,1i−1 + (−y)iδi,j

)
1≤i,j≤n

.
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Lemma 2.2 We have

SY(n−1)n =
∑

µ

(−y)(n
2−n−|µ|)/2 sµ, (9)

sum over all µ such that F (µ) = {α1 − 1, . . . , αr − 1|α1, . . . , αr} with α1 ≤ n− 1;

OY(n+1)n =
∑

µ

(−y)(n
2+n−|µ|)/2 sµ, (10)

sum over all µ such that F (µ) = {α1 + 1, . . . , αr + 1|α1, . . . , αr}, where α1 ≤ n− 1.

Proof. Expanding the determinants (7) and (8) according to all possible choices of
the occurrences of powers of y, we get, as cofactors, determinants of hook Schur
functions, in which we recognize, thanks to formula (2), the two expressions in the
lemma.

By multilinearity of the determinants (3) and (4), we obtain the following sums
of 2n−1 (resp. 2n) Schur functions (notice that the indexing of a Schur function can
be any integral vector, and not only a partition).

Lemma 2.3 We have

SY(n−1)n =
∑

ε

yk(ε) s0,2ε2,...,(2n−2)εn
, (11)

OY(n+1)n =
∑

ε

(−y)k(ε) s2ε1,...,2nεn (12)

sum over all εi in {0, 1}, the power k(ε) being such that the total degree be n(n− 1)
in the first formula, n(n + 1) in the second, y being of degree 2.

The following lemma will allow us to extract the factor
∏

i<j(y − xixj) or∏
i≤j(y − xixj) from the determinants that we are considering.

Lemma 2.4 Let f , g be functions of one variable. We have

det
(
f(xi)n−jg(xi)j−1

)
1≤i,j≤n

=
n∏

i=1

f(xi)n−1 ∆
(

g(x1)
f(x1)

, . . . ,
g(xn)
f(xn)

)
. (13)

Proof. This is the Vandermonde determinant in the variables g(xi)/f(xi), 1 ≤ i ≤ n.

Combining Lemmas 2.1, 2.2, 2.4, we obtain the following two theorems.

Theorem 2.5 We have
∏

1≤i<j≤n

(y − xixj) = (−1)(
n
2) det

(
sj,1i + (−y)iδi,j

)
1≤i,j≤n−1

= y(n
2)

∑

λ

(−y)−|λ|/2sλ (14)

summed over all partitions F (λ) = {α1− 1, . . . , αr − 1|α1, . . . , αr} with α1 ≤ n− 1.
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Theorem 2.6 We have

∏

1≤i≤j≤n

(y − xixj) = (−1)(
n+1

2 ) det
(
sj+1,1i−1 + (−y)iδi,j

)
1≤i,j≤n

= y(n+1
2 ) ∑

λ

(−y)−|λ|/2sλ (15)

summed over all partitions F (λ) = {α1 + 1, . . . , αr + 1|α1, . . . , αr} with α1 ≤ n− 1.

Proof. As already used at the end of the introduction, take f(x) = x, g(x) = y +x2

in (13). We have

g(xj)/f(xj)− g(xi)/f(xi) =
xi − xj

xixj
(y − xixj).

Lemma 2.4 specializes into

det
(
xn−j

i (y + x2
i )

j−1
)

1≤i,j≤n
= (−1)(

n
2)∆(X)

∏

i<j

(y − xixj) .

This leads to the following identity:

∆(X)SY(n−1)n = M(X, y) = (−1)(
n
2)∆(X)

∏

i<j

(y − xixj).

Multiplying both sides of above equation by
∏

i(y − x2
i ), one gets

(−1)n∆(X)OY(n+1)n = (−1)nN(X, y) = (−1)(
n
2)∆(X)

∏

i≤j

(y − xixj).

By Lemma 2.1 and Lemma 2.2, we complete the proof.

Setting y = 1 in (14) and (15), we get Littlewood’s formulas (5) and (6).

Let us now show that, having recourse to (3) and (4), we can obtain a deter-
minantal expression for the product of the functions in the preceding two theorems
by an arbitrary Schur function.

Theorem 2.7 Let n be an integer, λ be a partition of length ≤ n. Then

SY(n−1)n+λ = (−1)(
n
2) sλ

∏

1≤i<j≤n

(y − xixj)

and
OY(n+1)n+λ = (−1)(

n+1
2 ) sλ

∏

1≤i≤j≤n

(y − xixj)

6



Proof. The function SY(n−1)n+λ is a weighted sum of skew Schur functions s♣/µ

with ♣ = (n− 1)n + λ and F (µ) = (α1 − 1, . . . , αr − 1|α1, . . . , αr) with α1 ≤ n− 1.
Interpreting a Schur function in terms of Young tableaux, we remark that the
tableaux of shape ♣/µ in n letters are the concatenation of an arbitrary skew
tableau of shape (n − 1)n/µ and an arbitrary tableau of shape λ. Hence we have
the factor sλ.

For example, for n = 4, and a tableau of shape ([3, 3, 3, 3] + [2, 2, 1, 1])/[2, 1, 1],
one has the decomposition

a b c α

d e β

f g γ δ

h ε ι

⇔




a b c

d e

f g

h

&

α

β

γ δ

ε ι




.

The remaining factor corresponds to the case λ = 0 which has been described
in Theorem 2.5. This proves the first assertion of the theorem. The second part
can be proved in the same manner with a summation over partitions contained in
(n + 1)n.

For example, for n = 3, we have

SY332 =

∣∣∣∣∣∣

h3 h4 + yh2 h5 + y2h1

h2 h3 + yh1 h4 + y2

1 h1 h2

∣∣∣∣∣∣
= s11 SY222

= −(x3x1 + x3x2 + x2x1)(y − x2x1)(y − x3x1)(y − x3x2).

Notice that the theorem implies, for y = 1, a factorization property of symplectic
and orthogonal Schur functions in n variables, indexed by partitions with parts
≥ n − 1 or ≥ n + 1 respectively. For more informations about symplectic and
orthogonal characters, we refer to [1], and for relevant tableau considerations, to [7].

3 Remarks

Given a polynomial of degree 3, with roots x1, x2, x3, the polynomial (y − x2
1)(y −

x2
2)(y−x2

3) can be interpreted as the resultant of (x2−y) and (x−x1)(x−x2)(x−x3).
Using the determinantal expression of the resultant ascribed to Sylvester, one can
therefore write

−(y − x2
1)(y − x2

2)(y − x2
3) =

∣∣∣∣∣∣∣∣∣∣

1 0 −y 0 0
0 1 0 −y 0
0 0 1 0 −y
1 −e1 e2 −e3 0
0 1 −e1 e2 −e3

∣∣∣∣∣∣∣∣∣∣

.

Farkas (1881) [5, p. 335] found that one could derive similar determinants for
expressing the polynomial whose roots are xixj : 1 ≤ i < j ≤ 3, or xixj : 1 ≤

7



i ≤ j ≤ 3. Returning to this problem in 1927, Muir [6] was still puzzled by these
determinants, finding no other proof than direct verification for degree 3. Farkas
determinants are

−(y − x1x2)(y − x1x3)(y − x2x3) =

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 y2

0 1 0 y 0
0 0 1 0 0
1 e1 e2 e3 0
0 1 e1 e2 e3

∣∣∣∣∣∣∣∣∣∣

and

∏

1≤i≤j≤3

(y − xixj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 −y3

0 1 0 0 0 −y2 0
0 0 1 0 −y 0 0
1 e1 e2 e3 0 0 0
0 1 e1 e2 e3 0 0
0 0 1 e1 e2 e3 0
0 0 0 1 e1 e2 e3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

However, if we expand the following determinant of order 2n− 1 along the first
n rows, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 0 · · · 0 yn−1

...
. . .

...
...

... . . . 0

0 1 0 y 0
...

0 0 1 0 0 0
1 · · · en−2 en−1 en · · · 0 0

0 · · · en−3 en−2 en−1
. . . 0 0

...
. . .

...
0 · · · 1 e1 e2 · · · en−1 en

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

the cofactors are Schur functions, up to sign.

More precisely, we have 2n−1 choices of non vanishing n× n minors in the first
n rows, which are equal to some power of y, up to sign. Writing the bottom part

∣∣∣∣∣∣∣

e0 e1 e2 · · · e2n−4 e2n−3 e2n−2

0 e0 e1 · · · e2n−5 e2n−4 e2n−3
...

. . . . . . . . .

∣∣∣∣∣∣∣
,

one recognizes that the cofactors are Schur functions (expressed in the ei) of indices
[2ε1, 4ε2, . . . , (2n − 2)εn−1], with εi ∈ {0, 1}. These are the indices occurring in
Lemma 2.3, taking into account that the involution exchanging elementary and
symmetric functions conjugate partitions.

Therefore, the above determinant equals (−1)(
n
2)

∏
1≤i<j≤n(y − xixj).
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Similarly, we obtain

(−1)(
n+1

2 ) ∏

1≤i≤j≤n

(y − xixj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 0 · · · 0 −yn−1

...
. . .

...
...

... . . . 0

0 1 0 −y 0
...

1 · · · en−1 en 0 · · · 0 0

0 · · · en−2 en−1 en
. . . 0 0

...
. . .

...
0 · · · 0 1 e1 · · · en−1 en

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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