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Abstract

Nash-Williams conjectured that a 4-connected infinite planar graph contains a
spanning 2-way infinite path if, and only if, the deletion of any finite set of vertices
results in at most two infinite components. In this paper, we prove the Nash-Williams
conjecture for graphs with no dividing cycles and for graphs with infinitely many
vertex disjoint dividing cycles. A cycle in an infinite plane graph is called dividing if
both regions of the plane bounded by this cycle contain infinitely many vertices of
the graph.

∗Partially supported by NSF grant DMS-0245530, NSA grant MDA-904-03-1-0052, and RGC grant
HKU7056/04P

1



1 Introduction

We use the terminology in [8], [9], and [10]. For convenience we repeat some
here. Let H be a (finite or infinite) subgraph of a (finite or infinite) graph G,
let v1, . . . , vk ∈ V (G), and {ui, wi} ⊆ V (H) ∪ {v1, . . . , vk}, i = 1, . . . ,m. Then
H + {v1, . . . , vk, u1w1, . . . , umwm} denotes the graph with vertex set V (H)∪{v1, . . . , vk}
and edge set E(H) ∪ {u1w1, . . . , ukwk}. For any x ∈ V (H) ∪ E(H), we write H + x
instead of H + {x}.

Let C be a cycle in a plane graph G and let x, y ∈ V (C). When x 6= y then xCy
denotes the subpath of C from x to y in clockwise order, and when x = y then xCy
denotes the trivial path consisting of x = y only. For a (finite or infinite) path P and
x, y ∈ V (P ), we use xPy to denote the unique finite path in P between x and y.

By the Jordan curve theorem, each cycle C in a (finite or infinite) plane graph G
divides the plane into two closed regions whose intersection is C. If G is infinite and
exactly one of these two closed regions, say D, contains a finite subgraph of G, then we
use IG(C) to denote the subgraph of G contained in D. If there is no danger of confusion,
we use I(C) instead of IG(C). Note that C ⊆ I(C), and if I(C) = C then C is a facial
cycle.

A graph G is k-indivisible, where k is a positive integer, if, for every finite X ⊆ V (G),
G−X has at most k−1 infinite components. Nash-Williams ([2], [3], and [7]) conjectured
that a 4-connected infinite planar graph contains a spanning 2-way infinite path if, and
only if, G is 3-indivisible.

In [8] and [9], the Nash-Williams conjecture is established for 2-indivisible graphs. To
deal with those graphs which are 3-indivisible but not 2-indivisible, we define dividing

cycles in an infinite plane graph G as those cycles C for which IG(C) is not defined.
A non-dividing cycle in G is then a cycle which is not dividing. Let γ(G) denote the
maximum number of vertex disjoint dividing cycles in an infinite plane graph G. With
this notation, we may divide 3-indivisible infinite plane graphs G into three classes: those
with γ(G) = 0 (including all 2-indivisible graphs), those with γ(G) = ∞, and those for
which γ(G) is a positive integer. (Note that, when γ(G) = 0, the drawing of G may be
modified to give a VAP-free drawing of G; see [5] and [1].) The objective of this paper
is to give a proof of the following result, which establishes the Nash-Williams conjecture
for two of these three classes.

(1.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume
that γ(G) = 0 or γ(G) = ∞. Then G contains a spanning 2-way infinite path.

Throughout the rest of the paper, graphs will be finite unless it is clear from the
context or otherwise mentioned. In Section 2 we summarize those concepts and results
from [8], [9] and [10] which will be used in this paper. We prove in Section 3 three lemmas
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concerning 2-way infinite Tutte paths in two special classes of graphs. These lemmas will
serve as bases for inductive arguments. Section 4 includes results which show that certain
finite sequences of non-dividing cycles guarantee the existence of a 2-way infinite Tutte
path. Theorem (1.1) will be proved in Section 5 for graphs with γ(G) = 0. The proof of
Theorem (1.1) will then be completed in Section 6.

2 Nets and Tutte paths

A net in an infinite plane graph G is a sequence N := (C1, C2, . . .) of cycles in G such
that I(Ci) is defined for all i ≥ 1, and the following properties are satisfied:

(1) I(Ci) ⊆ I(Ci+1) for all i ≥ 1,

(2)
⋃∞

i=1
I(Ci) = G, and

(3) either Ci ∩ Cj = ∅ for all i 6= j, or for i ≥ 1, Ci ∩ Ci+1 is a non-trivial path,
Ci ∩ Ci+1 ⊆ Ci+1 ∩ Ci+2, and neither endvertex of Ci ∩ Ci+1 is an endvertex of
Ci+1 ∩ Ci+2.

If Ci ∩ Cj = ∅ for all i 6= j, then N is called a radial net; otherwise, N is a ladder net.
Let ∂N = ∅ if N is a radial net; otherwise, let ∂N =

⋃∞
i=1

(Ci ∩ Ci+1).
Let G be a (finite or infinite) graph and H be a (finite or infinite) subgraph of G.

An H-bridge of G is a (finite or infinite) subgraph of G which is induced by either (1)
an edge of E(G)−E(H) whose incident vertices are in V (H) or (2) the edges contained
in a component of G − V (H) and the edges from that component to H. Also, we say
that G is (4,H)-connected if, for any T ⊆ V (G) with |T | ≤ 3, every component of G−T
contains a vertex of H. The following result is Theorem (2.1) in [10] (its 4-connected
version is shown in [9]), which gives a structural description of graphs with nets.

(2.1) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph with a facial
cycle C such that G is (4, C)-connected, and let S denote the set of vertices of G of
infinite degree. Then |S| ≤ 2, and there is a set F of edges of G such that

(1) for any f ∈ F , f is incident with a vertex in S,

(2) G − F has a net N = (C1, C2, . . .), C ⊆ I(C1), S ⊆ ∂N , and for any f ∈ F both
incident vertices of f are contained in a common infinite S-bridge of ∂N ,

(3) if |S| = 1, then either one S-bridge of ∂N contains all vertices incident with edges
in F or each S-bridge of ∂N contains infinitely many vertices incident with edges
in F , and
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(4) if |S| = 2, then for any T ⊆ V (G)−S with |T | ≤ 3, S is contained in a component
of (G − F ) − T .

For an infinite plane graph G, let ∂G denote the subgraph of G such that for each
x ∈ V (G) ∪ E(G), x ∈ ∂G if and only if x /∈ (E(I(D)) − E(D)) ∪ (V (I(D)) − V (D)) for
every cycle D in G. Clearly, ∂G = ∅ when G admits a radial net. From Theorem (2.1),
we can show that when G does not admit a radial net then ∂G is a path, or a 1-way
infinite path, or a 2-way infinite path. The following observation will be useful.

(2.2) Lemma. Let G be a 2-connected infinite plane graph and C be a facial cycle of
G such that G is (4, C)-connected. If G is 2-indivisible, then all but one face of G are
bounded by cycles, and ∂G is precisely the subgraph of G lies on the boundary of the
exceptional face of G.

Proof. Suppose G is 2-indivisible and let R be a face of G. Suppose R is incident with a
vertex or edge which is not in ∂G. Then there exists some cycle D in G such that R is
incident with some element of (E(I(D)) −E(D)) ∪ (V (I(D)) − V (D)). This shows that
R is a face of I(D). Since I(D) is a 2-connected plane graph, R is bounded by a cycle.
Now assume that all vertices or edges of G incident with R are in ∂G. Then since G is
2-indivisible, it follows from Theorem (2.1) that ∂G is precisely the subgraph of G that
lies on the boundary of R. 2

The next result is a generalization of Lemma (2.3) in [9].

(2.3) Lemma. Let G be a 2-connected infinite plane graph and let C be a facial cycle
of G such that G is (4, C)-connected and γ(G) = 0. Then there is an infinite sequence
(D1,D2, . . .) of cycles in G such that C ⊆ I(D1) and the following properties hold:

(1) for each i ≥ 1, I(Di) ⊆ I(Di+1), and Di ∩ Di+1 is minimal among all subgraphs
Di ∩ D∗ arising from cycles D∗ in G such that I(Di) ⊆ I(D∗),

(2) for each i ≥ 1, G has no finite I(Di)-bridge,

(3) for each i ≥ 1, Di ∩ Di+1 ⊆ Di+1 ∩ Di+2, and

(4)
⋃

i≥1
I(Di) = G.

The proof of Lemma (2.3) in [9] uses two properties: (a) for any finite X ⊆ V (G),
G − X has only finitely many components, and (b) every cycle in G is non-dividing
(implied by cohesiveness). In the above lemma, (a) is guaranteed by the assumption
that G is planar and (4, C)-connected, and (b) is guaranteed by the assumption that
γ(G) = 0.
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In the remainder of this section, we state several results concerning Tutte paths in
finite or infinite plane graphs. Let G be a (finite or infinite) graph and H be a (finite
or infinite) subgraph of G. If B is an H-bridge of G, then the vertices in V (H ∩ B)
are called attachments of B (on H). The subgraph H is a Tutte subgraph of G if every
H-bridge of G is finite and has at most three attachments. For a (finite or infinite)
subgraph C of G, we say that H is a C-Tutte subgraph of G if H is a Tutte subgraph
of G and every H-bridge of G containing an edge of C has at most two attachments. A
(finite or infinite) Tutte path is a (finite or infinite) path which is a Tutte subgraph.

The following result is the main theorem in [7].

(2.4) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Assume that
x ∈ V (C), e ∈ E(C), and y ∈ V (G − x). Then G contains a C-Tutte path P from x to
y such that e ∈ E(P ).

The next result is (2.6) from [4].

(2.5) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Let u, v ∈
V (C) be distinct, let e, f ∈ E(C), and assume that u, v, e, f occur on C in clockwise
order. Then G contains a vCu-Tutte path P from u to v such that {e, f} ⊆ E(P ).

We remark here that both Lemma (2.4) and Lemma (2.5) may be applied when e
or f or both are vertices. We need Lemma (3.3) from [10], which will be convenient for
extending Tutte paths.

(2.6) Lemma. Let K be a connected (finite or infinite) plane graph, C be a facial walk
of K, Q be a path between p and q on C, u ∈ V (C)−V (Q), L be a subgraph of K−V (Q),
and Q′ be a cycle in L or a path in L or a 2-way infinite path in L. Suppose the following
three conditions are satisfied:

(1) for any (L ∪ Q)-bridge B of K, |V (B ∩ L)| ≤ 1 and V (B ∩ L) ⊆ V (Q′),

(2) K − V (L) is finite and all vertices of K − V (L) have finite degree in K, and

(3) L contains a Q′-Tutte subgraph T with u ∈ V (T ) and |V (Q′) ∩ V (T )| ≥ 2.

Then K−V (T ) contains a path S between p and q such that S∪T is a Q-Tutte subgraph
of K, and every T -bridge of L containing no edge of Q′ is also an (S ∪ T )-bridge of K.

The following result is Corollary (3.7) in [9].

(2.7) Lemma. Let G be a 2-connected infinite plane graph with a ladder net N , and
let x ∈ V (∂N) and uv ∈ E(∂N) such that u ∈ V (x∂Nv). Then G contains a 1-way
infinite ∂N -Tutte path P from x such that uv ∈ E(P ) and u ∈ V (xPv).
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We also need Theorem (1.2) from [10].

(2.8) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph, let C be a
facial cycle of G, let x ∈ V (C) and uv ∈ E(C) with x 6= v, and let Q denote the subpath
of C − v between u and x. Assume that G is (4, C)-connected and v is contained in the
infinite component of G−V (Q). Then G contains a 1-way infinite C-Tutte path P from
x such that uv ∈ E(P ) and u ∈ V (xPv).

3 Two-way infinite Tutte paths

The goal of this section is to prove three results on 2-way infinite Tutte paths. These
results will be used as bases for inductive arguments.

(3.1) Lemma. Let G be a 2-connected 3-indivisible infinite plane graph, let C be a
facial cycle of G, and let u, v ∈ V (C) be distinct such that G is (4, C)-connected and
G − {u, v} has two infinite components. Then for any e ∈ E(C), G contains a 2-way
infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that the face of G bounded by C
is an open disc. Since G is (4, C)-connected, G has at most three {u, v}-bridges: G1

containing vCu, G2 containing uCv, and possibly a third {u, v}-bridge induced by uv
(when uv ∈ E(G)). Since G−{u, v} has two infinite components, G1 and G2 are infinite.
For each i ∈ {1, 2}, let Bi be the infinite block of Gi. Since G is 2-connected, B1 ∩ vCu
and B2 ∩ uCv are nontrivial paths. Let u′ ∈ V (B2 ∩ uCv) with uCu′ minimal, and let
v′ ∈ V (B1 ∩ vCu) with vCv′ minimal. See Figure 1, where the possible edge uv is not
drawn. Let G′ := G if uv /∈ E(G); otherwise, let G′ := G− uv. Then G′ has exactly two
infinite {u′, v′}-bridges, one containing B1 and the other containing B2.

uu

vv

u′u′u′

v′v′v′

G′

ee C

L R

CRCL

Figure 1: G, L and R

Since G is (4, C)-connected, neither u′Cv nor v′Cu is an edge; for otherwise, G −
{u′, v} or G−{u, v′} has a component containing no vertex of C, a contradiction. Let L
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be obtained from G′ by replacing the {u′, v′}-bridge of G′ containing B2 with the edge
u′v′, and let R be obtained from G′ by replacing the {u′, v′}-bridge of G′ containing B1

with the edge v′u′. Let CL := v′Cu′ + u′v′ and CR := u′Cv′ + v′u′. We may assume that
the edges are added so that the faces of L and R bounded by CL and CR, respectively, are
open discs. See Figure 1. Because G is 3-indivisible, both L and R are 2-indivisible. Since
G is (4, C)-connected and since V (CL) ∪ V (CR) = V (C), L must be (4, CL)-connected
and R must be (4, CR)-connected.

By symmetry, we may assume that e ∈ E(v′Cu′), and let e = ab so that v′, b, a, u′

occur on CL in clockwise order. Since v′ ∈ B1, we see that b is in the infinite component
of L − V (aCLu′). Hence, by Theorem (2.8), there is a 1-way infinite CL-Tutte path
PL from u′ in L such that e ∈ E(PL) and a ∈ V (u′PLb). By planarity, u′v′ /∈ E(PL)
and, therefore, u ∈ V (PL). We claim that v′ ∈ V (PL). For otherwise v′ is contained
in a PL-bridge B of L. Clearly, u′ ∈ V (B ∩ PL). Since PL is a CL-Tutte path of L,
|V (B ∩ PL)| = 2 and B is finite. Let v′′ ∈ V (B ∩ PL) − {u′}. Then v′′ lies on C and
v′Cv′′ − v′′ 6⊆ B1, contradicting the choice of v′.

If v = v′ or uv /∈ E(G) then we use Theorem (2.8) to find a 1-way infinite CR-Tutte
path PR in R from v′ and through v′u′. It is easy to see that P := PL ∪ (PR − v′) is a
2-way infinite C-Tutte path in G such that e ∈ E(P ).

Now assume v 6= v′ and uv ∈ E(G). Suppose u = u′. In R we use Theorem (2.8) to
find a 1-way infinite CR-Tutte path PR from u′ and through u′v′. Then v ∈ V (PR). Let
Pu denote the infinite u-bridge of PL and Pv denote the infinite v-bridge of PR. Clearly
e ∈ E(Pu). It is easy to verify that P := (Pu ∪ Pv) + uv gives the desired 2-way infinite
C-Tutte path in G.

Hence we may assume u 6= u′. Suppose e ∈ E(vCu). In R, we use Theorem (2.8) to
find a 1-way infinite CR-Tutte path PR from v′ and through the edge of u′Cv′ incident
with v′. Then v′u′ /∈ E(PR) and v ∈ V (PR). By a similar argument as above for showing
v′ ∈ V (PL), we can show that u′ ∈ V (PR). Let Pu denote the infinite u-bridge of PL and
Pv denote the infinite v-bridge of PR. Since e ∈ E(vCu), e ∈ E(Pu). It is easy to verify
that P := (Pu ∪ Pv) + uv gives the desired 2-way infinite C-Tutte path in G.

To deal with the remaining case when e ∈ E(uCu′), we view Gi + uv (for each 1 ≤
i ≤ 2) as a plane graph with a facial cycle Ci, where C1 = vCu+uv and C2 = uCv +uv.
In G1 + uv we apply Theorem (2.8) to find a 1-way infinite C1-Tutte path P1 from u
through uv. In G2 + uv we apply Theorem (2.8) to find a 1-way infinite C2-Tutte path
P2 from v through e. Because {v, u′} is a 2-cut in G2, we see that vu ∈ E(P2). Hence,
P := P1 ∪ P2 gives the desired 2-way infinite C-Tutte path in G. 2

For the next two lemmas, we need additional notation. Let G be a 2-connected
3-indivisible infinite plane graph, and let C be a facial cycle of G such that G is (4, C)-
connected. Let H be an infinite block of G − V (C) and let D be the cycle of H which
bounds the face of H containing C. See Figure 2. Let w1, . . . , wb denote the attachments
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D

wj

pj

qj

C

H Jj

Lj

wj+1

pj+1

Figure 2: Illustration for Lemma (3.2)

on H of (H ∪ C)-bridges of G which occur on D in clockwise order. Let pj, qj ∈ V (C)
with pjCqj maximal such that {pj, wj} is contained in an (H ∪C)-bridge of G, {qj , wj}
is contained in an (H ∪ C)-bridge of G, and any (H ∪ C)-bridge of G containing some
wl 6= wj contains no vertex of V (pjCqj) − {pj , qj}. Note that pj and qj are well defined
because G is (4, C)-connected. Let Jj denote the union of pjCqj and those (H ∪ C)-
bridges of G whose attachments are all contained in V (pjCqj) ∪ {wj}. (Note that if
pj = qj then Jj is induced by a single edge.) Let Lj denote the union of qjCpj+1 and
those (H ∪ C)-bridges of G whose attachments are all contained in V (qjCpj+1), where
pb+1 = p1.

(3.2) Lemma. Let G,C,H,D and wj , Jj , Lj (1 ≤ j ≤ b) be defined as above. Let
e ∈ E(C). Suppose there is some 1 ≤ j ≤ b such that Lj is infinite and e /∈ E(Lj). Then
G contains a 2-way infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that j = 1. Since e ∈ E(p2Cq1),
e ∈ E(prCpr+1) for some wr 6= w1 or e ∈ E(qr−1Cqr) for some wr 6= w2. Note the
symmetry between clockwise and counter clockwise orientations of C, and also note the
symmetry between w1 and w2. We may therefore assume that e ∈ E(prCpr+1) for some
wr 6= w1.

Since G is 3-indivisible and L1 is infinite, H is 2-indivisible. Since G is (4, C)-
connected and by planarity, H is (4,D)-connected. Hence by Theorem (2.8), H contains
a 1-way infinite D-Tutte path P from w1 and through wr.

Since G is 2-connected and L1 is infinite, L1 − q1 contains a 1-way infinite path
from p2. Let L′

1 := L1 + q1p2 such that C ′
1 := q1Cp2 + q1p2 is a facial cycle of L′

1. By
Theorem (2.8), L′

1 has a 1-way infinite C ′
1-Tutte path Q1 from q1 such that q1p2 ∈ E(Q1).

In J1 + p1w1, we apply Lemma (2.4) to find a p1Cq1-Tutte path P1 from w1 to p1

and through q1.
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We apply Lemma (2.6) to K := G − V ((J1 ∪ L1) − {p1, p2, w1}),
H, p2Cp1,D, P, p2, p1, w1 (as K,L,Q,Q′, T, p, q, u, respectively). Note that the conditions
of Lemma (2.6) are satisfied. In particular, w1, wr ∈ V (P ) implies that |V (P ∩ D)| ≥ 2.
Hence, by Lemma (2.6), there is a path S in K − V (P ) between p2 and p1 such that
S ∪P is a p2Cp1-Tutte subgraph in K and every P -bridge of H containing no edge of D
is also an (S ∪ P )-bridge of K.

We may assume that e ∈ E(S). This may be seen as follows. By planarity and
because wr ∈ V (P ), pr and pr+1 are cut vertices of K − V (P ). Hence, pr, pr+1 ∈ V (S),
(Jr ∪ Lr) − wr is a {pr, pr+1}-bridge of K − V (P ), and prSpr+1 ⊆ (Jr ∪ Lr) − wr. In
(Jr ∪ Lr) + pr+1wr, we apply Lemma (2.5) to find a prCpr+1-Tutte path Sr from pr to
wr such that pr+1wr, e ∈ E(Sr). By replacing the subpath prSpr+1 of S with Sr − wr,
we obtain the desired path S through e.

Now P ∗ := P ∪P1 ∪S ∪ (Q1 − q1) is a 2-way infinite path through e. Note that every
P ∗-bridge of G is one of the following: an (S ∪ P )-bridge of H, or a P1-bridge of J1, or
a Q1-bridge of L′

1. Hence, P ∗ is a 2-way infinite C-Tutte path in G through e. 2

(3.3) Lemma. Let G,C,H,D and wj , Jj , Lj (1 ≤ j ≤ b) be defined as above. Let
e ∈ E(C). Suppose there is some 1 ≤ j ≤ b such that Jj is infinite and e is not contained
in the unique infinite block of Jj − wj . Then G contains a 2-way infinite C-Tutte path
through e.

Proof. Without loss of generality, we may assume that j = 1. If e ∈ E(J1), we choose
an arbitrary wr 6= w1. Since e is not contained in the infinite block of Jj −wj, there is a
vertex v ∈ V (p1Cq1−{p1, q1}) such that the infinite {w1, v}-bridge of J1 does not contain
e1. In this case, let J∗

1 denote the infinite {w1, v}-bridge of J1. Now assume e /∈ E(J1).
Then e ∈ E(q1Cp1), and hence e ∈ E(prCpr+1) for some wr 6= w1 or e ∈ E(qr−1Cqr) for
some wr 6= w1. Let J∗

1 = J1 and v := p1.
Note the symmetry between clockwise and counter clockwise orientations of C. We

may therefore assume that when e /∈ E(J1) we have e ∈ E(prCpr+1) for some wr 6= w1,
and when e ∈ E(J1) then q1 ∈ V (J∗

1 ).
Since G is 3-indivisible and J1 is infinite, H is 2-indivisible. Since G is (4, C)-

connected and by planarity, H is (4,D)-connected. Hence by Theorem (2.8), H contains
a 1-way infinite D-Tutte path P from w1 and through wr.

Since G is 3-indivisible and H is infinite, J∗
1 must be 2-indivisible. Let X be a path

in J1 from w1 to V (vCq1 −{v, q1}) such that X ∩C consists of a single vertex x. Let Jv
1

and Jq
1

denote the subgraphs of J∗
1 such that v ∈ V (Jv

1 ), q1 ∈ V (Jq
1
), Jv

1 ∩ Jq
1

= X, and
Jv

1 ∪ Jq
1

= J∗
1 . Then either Jv

1 or Jq
1

is finite.
Suppose Jq

1
is finite. Then Jq

1
contains a path Q from w1 to q1 such that Q is

contained in the facial cycle of G which contains {w1, w2, q1, p2}. Let J ′ := J∗
1 + vw1
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be the plane graph in which C ′ := (Q ∪ vCq1) + vw1 is a facial cycle. Since G is 3-
indivisible and H is infinite, J ′ − V (Q) has a unique infinite component, denoted J ′′.
Then v ∈ V (J ′′); for otherwise, by planarity, the neighbors of J ′′, which are furtherest
apart on Q, form a 2-cut S in G such that the component of G − S containing J ′′ has
no vertex of C, contradicting (4, C)-connectivity of G. By Theorem (2.8), J ′ contains
a 1-way infinite C ′-Tutte path Y from q1 such that vw1 ∈ E(Y ) and w1 ∈ V (q1Y v).
Hence, Y − vw1 consists of a path P ′ from w1 to q1 and a 1-way infinite path P ′′ from v
such that P ′ ∩ P ′′ = ∅ and P ′ ∪ P ′′ is a vCq1-Tutte subgraph of J∗

1 .
When Jv

1 is finite, we may apply the same argument to J∗
1 + q1w1 as in the preceding

paragraph to show that J∗
1 contains a path P ′ from w1 to v and a 1-way infinite path

P ′′ from q1 such that P ′ ∩ P ′′ = ∅ and P ′ ∪ P ′′ is a vCq1-Tutte subgraph of J∗
1 .

Next we apply Lemma (2.6) to K := G− V (J∗
1 − {v, q1, w1}),H, q1Cv,D,P, v, q1, w1

(as K,L,Q,Q′, T, p, q, u, respectively). Note that the conditions of Lemma (2.6) are
satisfied. In particular, w1, wr ∈ V (P ) implies that |V (P ) ∩ V (D)| ≥ 2. Hence, by
Lemma (2.6), there is a path S in K − V (P ) between q1 and v such that S ∪ P is a
q1Cv-Tutte subgraph in K and every P -bridge of H containing no edge of D is also an
(S ∪ P )-bridge of K.

Because w1, wr ∈ V (P ) and by the same argument as in previous lemma, we may
assume that e ∈ E(S). Let P ∗ := P ∪ S ∪ P ′ ∪ P ′′. Then every P ∗-bridge of G is either
an (S ∪P )-bridge of H or a (P ′ ∪P ′′)-bridge of J1. Hence P ∗ is a 2-way infinite C-Tutte
path in G through e. 2

4 Tight partial nets

Let G be a 2-connected infinite plane graph. A tight partial net in G is a sequence
(F1, . . . , Fn) of vertex disjoint non-dividing cycles in G, where n is a positive integer, such
that I(F1) = F1 and for each 1 ≤ i ≤ n − 1, I(Fi) ⊆ I(Fi+1) and every (I(Fi) ∪ Fi+1)-
bridge of I(Fi+1) has at most one attachment on Fi+1.

A separation of a graph G is an ordered pair (G1, G2) of subgraphs of G such that
E(Gi) 6= E(G) for i ∈ {1, 2}, E(G1 ∩ G2) = ∅, and G1 ∪ G2 = G. The following
observation will be convenient.

(4.1) Lemma. Let G be a 2-connected infinite plane graph and let (F1, . . . , Fn) be a
tight partial net in G. Then

(1) there is a plane embedding of G such that I(Fn) is contained in the closed disc in
the plane bounded by Fn, and

(2) for any distinct x, y ∈ V (Fn), there is a separation (M1,M2) of I(Fn) such that
|V (M1 ∩ M2)| ≤ 2n, yFnx ⊆ M1 and xFny ⊆ M2.
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Proof. Note that Fn is a facial cycle of G−V (I(Fn)−V (Fn)). Therefore, G−V (I(Fn)−
V (Fn)) has a plane embedding in which the open disc bounded by Fn is a face. Since
I(Fn) is a finite plane graph, it has a plane embedding such that Fn bounds its infinite
face. Hence, by combining the new embedding of G − V (I(Fn) − V (Fn)) and the new
embedding of I(Fn), we see that G has a plane embedding in which I(Fn) is contained
in the closed disc in the plane bounded by Fn. Thus we have (1).

To prove (2), we apply induction on n. Clearly, (2) holds when n = 1. So assume
n ≥ 2. For convenience and by (1), let us assume without loss of generality that I(Fn) is
contained in the closed disc bounded by Fn. Because (F1, . . . , Fn) is a tight partial net,
every (I(Fn−1) ∪ Fn)-bridge of I(Fn) has at most one attachment on Fn. Thus, there
exist vertices x′, y′ ∈ V (Fn−1) such that x and x′ are incident with a common face of G
and y and y′ are incident with a common face of G. If x′ = y′ then by planarity of I(Fn)
we see that I(Fn) has a separation (M1,M2) such that V (M1 ∩ M2) = {x, x′ = y′, y},
yFnx ⊆ M1, and xFny ⊆ M2. So we may assume that x′ 6= y′. Then by induction,
I(Fn−1) has a separation (M ′

1,M
′
2) such that |V (M ′

1 ∩ M ′
2)| ≤ 2(n − 1), y′Fn−1x

′ ⊆ M ′
1,

and x′Fn−1y
′ ⊆ M ′

2. Now by planarity of I(Fn), we see that I(Fn) has a separation
(M1,M2) such that V (M1 ∩M2) = V (M ′

1 ∩M ′
2)∪{x, y}, yFnx ⊆ M1, and xFny ⊆ M2.2

The next result is a reduction lemma which shows that, when there is a certain tight
partial net with two non-dividing cycles, an infinite graph can be reduced in a certain
way so that the existence of a 2-way infinite Tutte paths is preserved. See Figure 3 for an
illustration of the situation described in the lemma and its proof. For a subgraph H of a
graph G, we use NG(H), or simply N(H), to denote the set of vertices in V (G) − V (H)
each of which is adjacent to some vertex of H.

G G′

p = pk

p = pky = wk y = wk

x = wl x = wl

pl

u1

v1

u2 u2

F1F2 F2

Jk

Jl

v2 v2

Figure 3: Illustration for Lemma (4.2)

(4.2) Lemma. Let G be a 2-connected infinite plane graph and (F1, F2) be a tight
partial net in G such that G is (4, F1)-connected. Suppose I(F2) is contained in the
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closed disc bounded by F2, vi and ui are distinct vertices on Fi for 1 ≤ i ≤ 2, and uv ∈
E(v1F1u1) with v1, v, u, u1 on v1F1u1 in order. Assume there exist two vertex disjoint
paths in I(F2) from v1F1v to v2F2u2 or from uF1u1 to v2F2u2, which are also internally
disjoint from F1 ∪ F2. Then there exist p ∈ V (v1F1u1 − {u1, v1}), x, y ∈ V (v2F2u2),
and f ∈ {px, py} such that v2, x, y, u2 occur on v2F2u2 in order and N(xF2y − {x, y}) ∩
V (I(F2)) ⊆ {x, y, p} and such that if (G − V (I(F2) − (V (F2) ∪ {p})) + {px, py} has a
2-way infinite (yF2x+{p, px, py})-Tutte path through f then G contains a 2-way infinite
F1-Tutte path through uv.

Proof. Let G1 be the infinite block of G− V (F1), and let w1, . . . , wb be the attachments
on G1 of (G1 ∪ F1)-bridges of G. Because (F1, F2) is a tight partial net, F2 ⊆ G1. By
planarity, wi ∈ V (F2). Without loss of generality, we may assume that w1, . . . , wb occur
on F2 in clockwise order. For each wt, 1 ≤ t ≤ b, let pt, qt ∈ V (F1) with ptF1qt maximal
such that {pt, wt} is contained in a (G1 ∪ F1)-bridge of G, {qt, wt} is contained in a
(G1 ∪ F1)-bridge of G, and any (G1 ∪ F1)-bridge of G containing some wl 6= wt contains
no vertex from V (ptF1qt) − {pt, qt}. See Figure 3. Note that pt and qt are well defined
because G is (4, F1)-connected.

We may assume that there are vertex disjoint paths in I(F2) from v1F1v to v2F2u2

and internally disjoint from F1 ∪ F2; the other case can be taken care of in the same
way. Then uv ∈ E(pkF1pk+1) for some wk ∈ V (v2F2u2 − v2). We choose such wk that
wkF2u2 is minimal. Let Jk denote the union of pkF1pk+1 and those (G1 ∪ F1)-bridges
of G whose attachments are all contained in V (pkF1pk+1) ∪ {wk}. Then there is some
wr ∈ V (v2F2wk) such that Jk − pr contains a path from wk to pk+1 and through uv.
Select wr so that wrF2wk is minimal. Let wl = wr if wr 6= wk; otherwise, let wl = wk−1.
Let Jl denote the union of plF1pk and those (G1 ∪ F1)-bridges of G whose attachments
are all contained in V (plF1pk) ∪ {wl}.

Let G′ := G1 + {pk, pkwj : wj ∈ V (wlF2wk)}. Since G is (4, F1)-connected, we see
that all (G1 ∪F1)-bridges of G containing some wj ∈ V (wlF2wk −{wl, wk}) are induced
by the edge pkwj . Hence G′ = (G − V (I(F2) − (V (F2) ∪ {pk})) + {pkwl, pkwk}. Let
F ′

2 := wkF2wl + {pk, pkwl, pkwk}. See Figure 3.
Let f := pkwl and assume that G′ contains a 2-way infinite F ′

2-Tutte path P ′ through
f . Note that P ′ − pk is an F2-Tutte subgraph of G1 and P ′ − pk consists of two disjoint
1-way infinite paths. We shall show that the assertion of the lemma holds for p := pk,
x := wl and y := wk.

First, we find a path S from pk+1 to pl by applying Lemma (2.6) to K :=
G − V ((Jk ∪ Jl) − {pl, pk+1, wl, wk}) (with K,G1, pk+1F1pl, F2, P

′ − pk, pk+1, pl, wl as
K,L,Q,Q′, T, p, q, u, respectively). Clearly, the conditions of Lemma (2.6) hold. In par-
ticular, we note that |V (P ′− pk)∩V (F2)| ≥ 2. Hence by Lemma (2.6), there is a path S
from pk+1 to pl in K−V (P ′−pk) such that (P ′−pk)∪S is a pk+1F1pl-Tutte subgraph of
K, and every (P ′−pk)-bridge of G1 not containing an edge of F2 is a ((P ′−pk)∪S)-bridge
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of K.
Let wj denote the endvertex of P ′−pk other than wl. Since P ′ is a 2-way infinite F ′

2-
Tutte path in G′, we see that wk ∈ V (P ′) (for otherwise, the P ′-bridge of G′ containing
wk would have three attachments, namely, p = pk and two on F2). We shall complete
the desired path in G by finding a path from wj to pk+1 and a path from wl to pl. We
distinguish two cases.

Case 1. pk 6= pl.
In Jl + wlpk we apply Lemma (2.4) to find a plF1pk-Tutte path P ′

l from pl to pk such
that wlpk ∈ E(P ′

l ), and let Pl := P ′
l − pk. If wk = wj , then in Jk + wkpk+1 we apply

Lemma (2.5) to find a pkF1pk+1-Tutte path Pk from wk to pk+1 such that pk ∈ V (Pk)
and uv ∈ E(Pk). If wk 6= wj, then in Jk + {wkpk, wkpk+1} we apply Lemma (2.5)
to find a pkF1pk+1-Tutte path P ′

k from wk to pk+1 such that wkpk, uv ∈ E(P ′
k); let

Pk := (P ′
k − wk) + {wj , pkwj}.

Let P := (P ′ − pk)∪S ∪Pk ∪Pl. Then every P -bridge of G is one of the following: a
((P ′− pk)∪S)-bridge of K, or a Pk-bridge of Jk +wkpk+1 when wk = wj , or a P ′

k-bridge
of Jk + {wkpk, wkpk+1} when wk 6= wj, or a P ′

l -bridge of Jl + wlpk, or a P ′-bridge of G′

containing some wi ∈ V (wlF2wj − {wl, wj}) (which has three attachments: pk, and two
on wlF2wj). It is easy to see that P gives the desired 2-way infinite F1-Tutte path in G
through uv.

Case 2. pk = pl.
Then wl = wk−1, wj = wk, Jl is induced by the edge wlpl, and Jk − pk = Jk − pl.

Since Jk − pl has a path R from wk to pk+1 and through uv, we let J ′
k denote the union

of blocks of Jk − pk each of which contains an edge of R. Let R′ denote the path from
wk to pk+1 containing uv such that R′ is on the boundary of the face of G − pk which
is not a face of G. Let p′ ∈ V (F1 ∩ J ′

k) with pkF1p
′ minimal. By applying Lemma (2.5)

we find a R′-Tutte path Pk in J ′
k from wk to pk+1 such that p′ ∈ V (Pk) and uv ∈ E(Pk).

Let P := ((P ′ − pk) ∪ S ∪ Pk) + wlpl. Then every P -bridge of G is one of the following:
a ((P ′ − pk) ∪ S)-bridge of K, or a Pk-bridge of J ′

k, or a (J ′
k ∪ {pk})-bridge of Jk with

attachments pk and p′, or a subgraph of Jk obtained from a Pk-bridge B of J ′
k with two

attachments by adding pk and all edges from pk to B−V (Pk). Thus, P gives the desired
2-way infinite F1-Tutte path in G through uv. 2

The next lemma shows that certain tight partial nets can force the existence of a
2-way infinite Tutte path. Let G be a 2-connected infinite plane graph which is 3-
indivisible but not 2-indivisible, let (F1, . . . , Fn) be a tight partial net in G such that G
is (4, F1)-connected, and assume that I(Fn) is drawn in the closed disc bounded by Fn.
For 1 ≤ i ≤ n, let ui, vi be distinct vertices of Fi such that any two consecutive vertices
from un, . . . , u1, v1, . . . , vn are contained in a facial cycle of G, and assume that there is
no separation (H1,H2) of I(Fn) such that |V (H1 ∩ H2)| < 2n, {un, vn} ⊆ V (H1 ∩ H2),
vnFnun ⊆ H1, and unFnvn ⊆ H2.
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(4.3) Lemma. Let G, (F1, . . . , Fn), and ui, vi, 1 ≤ i ≤ n, be defined as above. Suppose
either (1) (G − V (I(Fn) − V (Fn))) − {un, vn} has two infinite components or (2) G −
V (I(Fn)) has two infinite blocks, say H and H ′, such that the face of H containing
I(Fn) contains H ′ and is bounded by a cycle, and such that no path in G from H ′ to
vnFnun − {vn, un} is internally disjoint from I(Fn) ∪ H. Let uv ∈ E(v1F1u1) such that
v1, v, u, u1 occur on v1F1u1 in order, and assume when n ≥ 2 there exist two vertex
disjoint paths in I(F2) from v1F1v to v2F2u2 or from u1F1u to v2F2u2, which are also
internally disjoint from F1∪F2. Then there is a 2-way infinite F1-Tutte path in G through
uv.

Proof. We apply induction on n. Suppose n = 1. If G − {u1, v1} has two infinite
components, then by Lemma (3.1) there is a 2-way infinite F1-Tutte path in G through
uv. So assume that G−V (I(F1)) has two infinite blocks H and H ′ such that the face of
H containing I(F1) contains H ′ and is bounded by a cycle D, and such that no path in G
from H ′ to v1F1u1−{v1, u1} is internally disjoint from H∪I(F1). Then we see that every
(H ∪F1)-bridge of G has at most one attachment on H (which must be on D), and H ′ is
contained in an infinite (H ∪F1)-bridge of G. Let w1, . . . , wb denote the attachments on
H of (H∪F1)-bridges of G and let them occur on D in clockwise order. Let pj, qj ∈ V (F1)
with pjF1qj maximal such that {pj , wj} is contained in an (H ∪F1)-bridge of G, {qj , wj}
is contained in an (H ∪ F1)-bridge of G, and any (H ∪ F1)-bridge of G containing some
wl 6= wj contains no vertex from V (pjF1qj) − {pj, qj}. Because G is (4, F1)-connected,
pj and qj are well defined. Let Jj denote the union of pjF1qj and those (H ∪F1)-bridges
of G whose attachments are all contained in V (pjF1qj)∪ {wj}. Let Lj denote the union
of qjF1pj+1 and those (H ∪ F1)-bridges of G whose attachments are all contained in
V (qjF1pj+1), where pb+1 = p1. Then there is some 1 ≤ j ≤ b such that H ′ ⊆ Jj or
H ′ ⊆ Lj. Recall the assumption that no path in G from H ′ to v1F1u1 − {v1, u1} is
internally disjoint from H ∪ I(F1). Thus, if H ′ ⊆ Lj then Lj ∩ F1 ⊆ u1F1v1, whence
uv /∈ E(Lj); if H ′ ⊆ Jj then uv is not in the unique infinite block of Jj − wj. Hence by
Lemma (3.2) and Lemma (3.3), G contains a 2-way infinite F1-Tutte path P through uv.

So assume n ≥ 2. Note that the conditions of Lemma (4.2) are satisfied. By
Lemma (4.2), there exist p ∈ V (v1F1u1 − {u1, v1}), x, y ∈ V (v2F2u2), and an edge
f ∈ {px, py} such that if G′ := (G − V (I(F2) − (V (F2) ∪ {p})) + {px, py} has a 2-way
infinite (yF2x + {p, px, py})-Tutte path through f then G has a 2-way infinite F1-Tutte
path through uv.

Therefore it suffices to show that G′ has a 2-way infinite (yF2x + {p, px, py})-Tutte
path through f . For convenience, let F ′

2 := yF2x+{p, px, py} and assume f = px. There
is a tight partial net (F ′

2, . . . , F
′
n) in G′ such that uiF

′
ivi = uiFivi and IG′(F ′

i )−{px, py} ⊆
IG(Fi), for all 2 ≤ i ≤ n. (This can be shown by applying induction on i, by noting
that any two consecutive vertices from un, . . . , u2, v2, . . . , vn are contained in a facial
cycle of G′ and that {ui, vi} ⊆ V (IG′(F ′

i )), and by taking IG′(F ′
i ) minimal subject to the
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condition F ′
i ∩F ′

i−1 = ∅.) Note that there is no separation (M1,M2) of IG′(F ′
n) such that

|V (M1 ∩M2)| < 2(n− 1), {un, vn} ⊆ V (M1 ∩M2), vnF ′
nun ⊆ M1, and unF ′

nvn ⊆ M2; for
otherwise by planarity IG(Fn) has a separation (H1,H2) such that |V (H1 ∩ H2)| < 2n,
{un, vn} ⊆ V (H1 ∩ H2), vnFnun ⊆ H1, and unF ′

nvn ⊆ H2, a contradiction. We claim
that when n ≥ 3 there must be two disjoint paths in IG′(F ′

3) from v2F
′
2x to v3F

′
3u3

or from pF ′
2u2 to v3F

′
3u3, which are internally disjoint from F ′

2 ∪ F ′
3. For otherwise,

there exist vertices u′
2, v

′
2 such that all paths in IG′(F ′

3) from v2F
′
2u2 to v3F

′
3u3 internally

disjoint from F ′
2 ∪ F ′

3 intersect {u′
2, v

′
2}. Then IG(Fn) has a separation (H1,H2) such

that H1 ∩ H2 = {un, . . . , u3, u
′
2, v

′
2, v3, . . . , vn}, vnFnun ⊆ H1, and unF ′

nvn ⊆ H2, a
contradiction. Therefore, by induction, G′ has a 2-way infinite F ′

2-Tutte path through f .
2

5 Graphs with γ(G) = 0

In this section we prove Theorem (1.1) for graphs with no dividing cycles.

(5.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph and assume
γ(G) = 0. Then G contains a spanning 2-way infinite path.

Proof. We may assume that G is not 2-indivisible, for otherwise the assertion of this
theorem follows from [8] and [9]. Since G is 4-connected and planar and because γ(G) = 0,
it follows from Lemma (2.3) that there is a sequence (D1,D2, . . .) of non-dividing cycles
in G such that
(1) for each i ≥ 1, I(Di) ⊆ I(Di+1),
(2) for each i ≥ 1, G has no finite I(Di)-bridge,
(3) for each i ≥ 1, Di ∩ Di+1 ⊆ Di+1 ∩ Di+2, and
(4)

⋃
i≥1

I(Di) = G.
If Di ∩ Di+1 = ∅ for all i ≥ 1, then by (4), (D1,D2, . . .) is a radial net in G, and

hence, G is 2-indivisible, a contradiction. So Dk ∩ Dk+1 6= ∅ for some positive integer k.
By (3), Di ∩ Di+1 6= ∅ for all i ≥ k.

Suppose Di ∩ Di+1 consists of a single path for all i ≥ k. Then by planarity and
because G is 4-connected, for any positive integer l, Di − V (Dl), i ≥ l + 1, are all
nonempty and contained in a single component of G − V (I(Dl)). By (4), for any finite
X ⊆ V (G), X ⊆ V (I(Dl)) for some positive integer l. Therefore, G − X has only one
infinite component. This shows that G is 2-indivisible, again, a contradiction.

Thus, for some integer t ≥ k, Dt ∩Dt+1 consists of at least two vertex disjoint paths,
and hence, G has at least two I(Dt)-bridges. Because of (2) and since G is 3-indivisible,
G has exactly two I(Dt)-bridges, both infinite. So Dt ∩ Dt+1 consists of exactly two
vertex disjoint paths. Therefore, by (2) and (3), we have
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(5) for each i ≥ t, Di ∩ Di+1 consists of exactly two vertex disjoint paths and G has
exactly two I(Di)-bridges (both infinite).

By (5) and by (3), we see that
(6) ∂G =

⋃
i≥1

(Di ∩ Di+1) and has exactly two components, each of which is a path, or
a 1-way infinite path, or a 2-way infinite path.

Let N1 and N2 denote the two components of ∂G. See Figure 4. Note that IG(Dt)∩
Ni 6= ∅ for i = 1, 2. So there is a separation (G1, G2) of G such that |V (G1 ∩ G2)| is
finite, exactly one vertex of G1 ∩ G2 is on Ni for each 1 ≤ i ≤ 2, and both G1 and G2

are infinite. Among all such separations (G1, G2) of G, there is one such that
(7) |V (G1 ∩ G2)| is minimum.

Let u be the unique vertex of G1∩G2∩N1, and v be the unique vertex of G1∩G2∩N2.

N1N1

N2 N2

F1
F1G2G2

G1G1

w2

u1u1

v1v1

u = unu = un

v = vnv = vn

w1

w

|V (G1 ∩ G2)| is odd|V (G1 ∩ G2)| is even

Figure 4: Structure of G

When |V (G1∩G2)| is even, let un, . . . , u1, v1, . . . , vn be the vertices in V (G1∩G2) such
that un = u and vn = v, and any two consecutive vertices from the sequence are contained
in a facial cycle of G. In this case, let F1 denote the facial cycle of G containing u1 and v1

such that v1F1u1 ⊆ G1 and u1F1v1 ⊆ G2. Since n ≥ 2 (because G is 4-connected), u1 and
v1 each have finite degree and the faces of G incident with u1 or v1 are bounded by cycles.
Hence we may further choose (G1, G2), subject to {un, . . . , u1, v1, . . . , vn} ⊆ V (G1 ∩G2),
so that v1F1u1 has at least two edges. (Otherwise, we could simply choose F1 to be the
other facial cycle of G containing u1v1.) Let H := G. See the left part of Figure 4.

When |V (G1∩G2)| is odd, we let un, . . . , u1, w, v1, . . . , vn be the vertices in V (G1∩G2)
such that un = u and vn = v, and any two consecutive vertices from the sequence are
contained in a facial cycle of G. In this case, let D denote the cycle in G such that
I(D) − V (D) = {w}. Because G is 4-connected, D is well defined and u1, v1 ∈ V (D).
Without loss of generality, we may assume that v1Du1 ⊆ G1 and u1Dv1 ⊆ G2. Notice
n ≥ 2 because G is 4-connected. Hence, u1, v1 ∈ I(Di) − V (Di) for all sufficiently large
i. This implies that u1 and v1 are of finite degree in G and the faces of G incident with
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u1 or v1 are bounded by cycles. Hence, we may further choose (G1, G2) so that, subject
to {un, . . . , u1, v1, . . . , vn} ⊆ V (G1 ∩ G2), w has at least two neighbors in v1Du1 −
{u1, v1}. (Otherwise, in V (G1 ∩ G2) we may replace w with its unique neighbor in
v1Du1−{v1, u1}, and continue if necessary. This process must stop because of the above
finiteness conditions on u1 and v1.) Therefore, let w1, w2 ∈ V (v1Du1) − {v1, u1} be
distinct neighbors of w such that v1, w1, w2, u1 occur on v1Du1 in order and w has no
neighbor in V (w1Dw2)−{w1, w2}. Let H := (G−w)+ w1w2. Let F1 = w2Dw1 + w1w2,
and assume that w1w2 is added such that F1 is a facial cycle of H. See the right part of
Figure 4.

Let (F1, . . . , Fm) be a tight partial net in H such that m is maximum. Note that
m ≤ n. By (1) of Lemma (4.1), we may assume that IH(Fm) is contained in the closed
disc bounded by Fm, as illustrated in Figure 4.

Suppose m < n. If Fm ∩ (N1 ∪ N2) 6= ∅, then assume by symmetry that x ∈ V (Fm ∩
N1). Then V (Fm∩N2) = ∅; for otherwise, let y ∈ V (Fm∩N2), then by (2) of Lemma (4.1),
G has a separation (H1,H2) with {x, y} ⊆ V (H1 ∩H2) and |V (H1 ∩H2)| = 2m, exactly
one vertex of H1∩H2 is on Ni for i = 1, 2, and both H1 and H2 are infinite, contradicting
(7). Hence vn /∈ V (I(Fm)). Since v1 ∈ V (I(Fm)) and every pair of consecutive vertices
from v1, . . . , vn are contained in a facial cycle of G, we must have vm ∈ V (I(Fm)). Thus
there exists some m ≤ j ≤ n such that vj ∈ V (I(Fm)) and vj+1 /∈ V (I(Fm)). This
shows that vj ∈ V (Fm) (since vj and vj+1 is contained in a facial cycle of G). By
(2) of Lemma (4.1), IH(Fm) has a separation (L1, L2) such that |V (L1 ∩ L2)| ≤ 2m,
{x, vj} ⊆ V (L1 ∩ L2), vjFmx ⊆ L1, and xFmvj ⊆ L2. Now it is easy to see that G has
a separation (G1, G2) such that V (G1 ∩ G2) = V (L1 ∩ L2) ∪ {vj+1, . . . , vn}, exactly one
vertex of L1 ∩ L2 is on Ni for i = 1, 2, and both G1 and G2 are infinite, contradicting
(7). So Fm ∩ (N1 ∪ N2) = ∅. Therefore H − V (IH(Fm)) has a unique infinite block B
which contains Di for all sufficiently large i. Let Fm+1 denote the cycle bounding the
face of B containing IH(Fm). Then we see that (F1, . . . , Fm+1) is a tight partial net in
H, which contradicts the choice of (F1, . . . , Fm).

Hence, m = n ≥ 2. We may assume that the notation is chosen so that for 1 ≤ i ≤ n,
{ui, vi} ⊆ V (Fi), viFiui ⊆ G1, and uiFivi ⊆ G2. Clearly, there is a separation (H1,H2) of
IH(Fn) such that V (H1 ∩ H2) = {u1, . . . , un, v1, . . . , vn}, and for 1 ≤ i ≤ n, viFiui ⊆ H1

and uiFivi ⊆ H2. Then by (7) and by planarity, there is no separation (H1,H2) of IH(Fn)
such that |V (H1 ∩H2)| < 2n, {un, vn} ⊆ V (H1 ∩ H2), vnFnun ⊆ H1, and unFnvn ⊆ H2.

When |V (G1∩G2)| is even, v1F1u1 has at least two edges. This, together with (7) and
4-connectivity of G, implies that there exist two disjoint paths in IH(F2) from v1F1u1−u1

or from v1F1u1 − v1 to v2F2u2 and internally disjoint from F1 ∪ F2. Hence there is an
edge w1w2 of v1F1u1 such that v1, w1, w2, u1 occur on v1F1u1 in order and there exist
two disjoint paths in IH(F2) from v1F1w1 or from w2F1u1 to v2F2u2 internally disjoint
from F1 ∪ F2. When |V (G1 ∩ G2)| is odd, then by (7), there exist two disjoint paths in
IH(F2) from v1F1w1 or from w2F1u1 to v2F2u2 internally disjoint from F1 ∪ F2.
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Hence by Lemma (4.3), H has a 2-way infinite F1-Tutte path P through w1w2. Note
that G is 4-connected. Therefore, if |V (G1 ∩ G2)| is even then P is a spanning 2-way
infinite path in G, and if |V (G1 ∩ G2)| is odd then (P − w1w2) + {w,ww1, ww2} is a
spanning 2-way infinite path in G. 2

6 Graphs with γ(G) = ∞

Let G be a 4-connected 3-indivisible infinite plane graph, and assume γ(G) = ∞. Let
C be a dividing cycle in G, let G′ be the subgraph of G contained in the closed disc of
the plane bounded by C, and let G′′ = G − (V (G′) − V (C)). Then G′ ∩ G′′ = C, both
G′ and G′′ are 2-indivisible, and both G′ and G′′ are (4, C)-connected.

Let S′ denote the set of vertices of G′ of infinite degree. By Theorem (2.1), there
is a set F ′ ⊆ E(G′) incident with vertices in S′ such that G′ − F ′ has a net N ′ =
(C ′

1, C
′
2, . . .) satisfying the conclusions of Theorem (2.1) (with G′, S′, F ′, N ′ as G,S, F,N ,

respectively). Similarly, let S′′ denote the set of vertices of G′′ of infinite degree. Then
by Theorem (2.1), there is a set F ′′ ⊆ E(G′′) incident with vertices in S′′ such that
G′′ − F ′′ has a net N ′′ = (C ′′

1 , C ′′
2 , . . .) satisfying the conclusions of Theorem (2.1) (with

G′′, S′′, F ′′, N ′′ as G,S, F,N , respectively).
Since γ(G) = ∞, N ′ or N ′′ must be a radial net. If both N ′ and N ′′ are radial nets,

then we say that G admits a 2-way radial net. If exactly one of N ′ and N ′′ is a radial
net, then we slightly abuse notation and say that G admits a mixed net. We deal with
these two types of graphs separately.

(6.1) Theorem. Suppose that G is a 4-connected 3-indivisible infinite plane graph, and
assume that G admits a 2-way radial net. Then G contains a spanning 2-way infinite
path.

Proof. Because G has a 2-way radial net, it follows from Lemma (2.2) that
(1) G is locally finite and every face of G is bounded by a cycle.

Let (K ′,K ′′) be a separation of G such that V (K ′ ∩ K ′′) is finite, and both K ′ and
K ′′ are infinite. There exists such a separation (K ′,K ′′) of G that
(2) |V (K ′ ∩ K ′′)| is minimum.

When |V (K ′ ∩ K ′′)| is even (respectively, odd), then let un, . . . , u1, v1, . . . , vn (re-
spectively, un, . . . , u1, w, v1, . . . , vn) be the vertices in V (K ′ ∩ K ′′) such that any two
consecutive vertices (in cyclic order) from the sequence are contained in a facial cycle of
G.

If |V (K ′ ∩K ′′)| is even, then let H := G and let F1 be a facial cycle of H containing
{u1, v1} such that v1F1u1 ⊆ K ′′ and u1F1v1 ⊆ K ′. Note that n ≥ 2 (since G is 4-
connected). Hence, u1 and v1 have finite degrees in G and faces of G incident with u1
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or v1 are bounded by cycles. Hence, we may choose (K ′,K ′′) and F1 so that v1F1u1 has
at least two edges.

When |V (K ′ ∩ K ′′)| is odd, let D be the facial cycle of G − w containing {u1, v1}
such that v1Du1 ⊆ K ′′ and u1Dv1 ⊆ K ′. Note that D is uniquely defined because
G is 4-connected and every face of G is bounded by a cycle (by (1)). Hence we may
further select (K ′,K ′′) so that, subject to {u1, . . . , un, v1, . . . , vn} ⊆ V (K ′ ∩ K ′′), w has
at least two neighbors in v1Du1 − {u1, v1}. Let w1, w2 be distinct neighbors of w in
v1Du1−{u1, v1} such that v1, w1, w2, u1 occur on v1Du1 in order, and w has no neighbor
in w1Dw2 − {w1, w2}. Let H := (G − w) + w1w2 and let F1 := w2Dw1 + w1w2. We
may assume that if w1w2 /∈ E(D) then it is represented by a simple arc in the open disc
bounded by D.

We wish to apply Lemma (4.3); therefore we need to show that
(3) there is a tight partial net (F1, . . . , Fn) in H.
To prove (3), assume that we have a maximum tight partial net (F1, . . . , Fk) in H. For
convenience, we may assume that IH(Fk) is contained in the closed disc bounded by Fk

(see (1) of Lemma (4.1)). Suppose k < n.
We claim that H − V (IH(Fk)) has a unique infinite block. Otherwise, since H is

3-indivisible (because G is), H −V (IH(Fk)) has a separation (H ′,H ′′) such that |V (H ′∩
H ′′)| ≤ 1 and both H ′ and H ′′ are infinite. Since G is 3-indivisible, H ′ and H ′′ each have
exactly one infinite component. Let L′ denote the infinite component of H ′ and L′′ the
infinite component of H ′′. Since G is 4-connected and |V (H ′ ∩ H ′′)| ≤ 1, L′ has at least
three neighbors on Fk. Hence by planarity, there are {x, y} ⊆ V (Fk) such that x, y are
neighbors of L′−V (H ′∩H ′′), all neighbors of L′−V (H ′∩H ′′) in Fk are contained in xFky,
and all neighbors of L′′−V (H ′∩H ′′) in Fk are contained in yFkx. By (2) of Lemma (4.1),
IH(Fk) has a separation (M ′,M ′′) such that |V (M ′ ∩M ′′)| ≤ 2k, {x, y} ⊆ V (M ′ ∩M ′′),
xFky ⊆ M ′, and yFkx ⊆ M ′′. Hence, H − (V (M ′ ∩ M ′′) ∪ V (H ′ ∩ H ′′)) has two infinite
components. Therefore, if |V (K ′ ∩ K ′′)| is even, then G − (V (M ′ ∩ M ′′) ∪ V (H ′ ∩ H ′′))
has two infinite components, and if |V (K ′∩K ′′)| is odd then G− (V (M ′∩M ′′)∪V (H ′∩
H ′′)∪{w}) has two infinite components. Since k < n and |V (H ′ ∩H ′′)| ≤ 1, we see that
|V (M ′∩M ′′)∪V (H ′ ∩H ′′)| ≤ 2n− 1. Thus |V (M ′ ∩M ′′)∪V (H ′ ∩H ′′)| < |V (K ′∩K ′′)|
when |V (K ′ ∩K ′′)| is even, and |V (M ′∩M ′′)∪V (H ′ ∩H ′′)∪{w}| < |V (K ′ ∩K ′′)| when
|V (K ′ ∩ K ′′)| is odd. This contradicts the minimality of |V (K ′ ∩ K ′′)| in (2).

Now let B be the unique infinite block of H − V (IH(Fk)). Because of (1), H is
locally finite and every face of H is bounded by a cycle, and only finitely many vertices
and edges of B are incident with faces of H which are also incident with vertices of Fk.
Therefore, since B is 2-connected and locally finite, the face of B containing IH(Fk) is
bounded by a cycle, say Fk+1. Because B is the unique infinite block of H −V (IH(Fk)),
Fk+1 is non-dividing, IH(Fk) ⊆ IH(Fk+1), and every (IH(Fk)∪Fk+1)-bridge of IH(Fk+1)
has at most one attachment on Fk+1. However, this shows that (F1, . . . , Fk+1) is a tight
partial net in H, contradicting the choice of (F1, . . . , Fk). Thus, we have (3).
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By (1) of Lemma (4.1), we may assume IH(Fn) is contained in the closed disc
bounded by Fn. Because {u1, v1} ⊆ V (F1) and any two consecutive vertices from
the sequence un, . . . , u1, v1, . . . , vn are contained in a facial cycle of H, we see that
{ui, . . . , u1, v1, . . . , vi} ⊆ V (IH(Fi)) for all 1 ≤ i ≤ n. Moreover, {un, vn} ⊆ V (Fn),
as otherwise, Fn − {un, vn} is a path or cycle and G − V (K ′ ∩ K ′′) would have only
one infinite component (containing Fn − {un, vn}), a contradiction. Therefore, because
{u1, v1} ⊆ V (F1), v1F1u1 ⊆ K ′′ (or v1F1u1 ⊆ K ′′ + w1w2) and u1F1v1 ⊆ K ′, and any
two consecutive vertices from un, . . . , u1, v1, . . . , vn are contained in a facial cycle of H,
it follows from planarity that
(4) for 2 ≤ i ≤ n, {ui, vi} ⊆ V (Fi), viFiui ⊆ K ′′, and uiFivi ⊆ K ′.

By (2) and (4), IH(Fn) has no separation (H1,H2) such that |V (H1 ∩ H2)| < 2n,
{un, vn} ⊆ V (H1 ∩ H2), vnFnun ⊆ H1, and unFnvn ⊆ H2.

When |V (K ′ ∩ K ′′)| is even, v1F1u1 has at least two edges. This, together with
(2) and 4-connectivity of G, implies that there exist two disjoint paths in IH(F2) from
v1F1u1 − v1 or from v1F1u1 −u1 to v2F2u2 internally disjoint from F1 ∪F2. Hence, there
is an edge w1w2 of v1F1u1 such that v1, w1, w2, u1 occur on v1F1u1 in order and there
are two disjoint paths in IH(F2) from v1F1w1 or from w2F1u1 to v2F2u2 and internally
disjoint from F1 ∪ F2. When |V (K ′ ∩ K ′′)| is odd, then by (2), there are disjoint paths
from v1F2w1 or from w2F1u1 to v2F2u2 and internally disjoint from F1 ∪ F2. Thus by
Lemma (4.3),
(5) there is a 2-way infinite F1-Tutte path P through w1w2 in H.

Now it is easy to see that if |V (K ′ ∩K ′′)| is even then P is a spanning 2-way infinite
path in G, and if |V (K ′ ∩ K ′′)| is odd then (P − w1w2) + {w,ww1, ww2} is a spanning
2-way infinite path in G. 2

Finally, we deal with graphs which admit mixed nets.

(6.2) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume
that G admits a mixed net. Then G contains a spanning 2-way infinite path.

Proof. Let C be a dividing cycle in G, let G′ denote the subgraph of G contained in the
closed disc bounded by C, and let G′′ := G−(V (G′)−V (C)). Because G admits a mixed
net, we may assume that G′ has a radial net N ′ := (C ′

1, C
′
2, . . .) with C ⊆ IG′(C ′

i), and
for some (possibly empty) set F ′′ of edges of G′′ incident with vertices of infinite degree
in G′′, G′′ − F ′′ has a ladder net N ′′ := (C ′′

1 , C ′′
2 , . . .) with C ⊆ IG′′(C ′′

1 ). Note that ∂G′′

is a path, or a 1-way infinite path, or a 2-way infinite path. Also note that each face of
G is either a face of G′ or a face of G′′. Thus, in view of Lemma (2.2),
(1) all but one face of G are bounded by cycles, and ∂G′′ is precisely the subgraph of G
that lies on the boundary of the exceptional face of G.

Because the cycles C ′′
i are dividing cycles in G and C ′′

i ∩ ∂G′′ 6= ∅ for large i, there
is a separation (K ′,K ′′) of G such that C ′

j ⊆ K ′ and C ′′
j ⊆ K ′′ for sufficiently large j,
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V (G1 ∩G2) = V (C ′′
i ) if |V (C ′′

i ∩ ∂G′′| ≤ 2, and V (G1 ∩ G2) is the vertex set of the path
in C ′′

i between two vertices of ∂G′′ and internally disjoint from ∂G′′. Hence,
(2) there exists a separation (K ′,K ′′) of G such that V (K ′∩K ′′) is finite, C ′

i ⊆ K ′ for all
large i, C ′′

i −V (∂G′′) ⊆ K ′′ for all large i, and 1 ≤ |V (K ′∩K ′′)∩V (∂G′′)| ≤ 2. Moreover,
the vertices in V (K ′∩K ′′) can be ordered as x1, x2, . . . , xk with x1, xk ∈ V (∂G′′), xi 6= xj

except possibly x1 = xk, and for each 1 ≤ i ≤ k − 1, {xi, xi+1} is contained in a facial
cycle of G.

Note that we include the possibility 1 = |V (K ′ ∩ K ′′) ∩ V (∂G′′)|, because ∂G′′ may
be a trivial path. We choose (K ′,K ′′) such that, subject to conditions in (2),
(3) |V (K ′ ∩ K ′′)| is minimum.

When |V (K ′∩K ′′)∩V (∂G′′)| = 2, let V (K ′∩K ′′)∩V (∂G′′) = {x, y}, and otherwise,
let x = y be the only vertex in V (K ′ ∩ K ′′) ∩ V (∂G′′). Note that when x = y, G −
(V (K ′ ∩ K ′′) − {x = y}) has two infinite blocks.

If |V (K ′∩K ′′)−{x, y}| is even (respectively, odd), then let x = um, um−1, . . ., u1, v1,
. . . vm−1, vm = y (respectively, x = um, um−1, . . . , u1, w, v1, . . . vm−1, vm = y) be the
vertices in V (K ′∩K ′′), such that any two consecutive vertices from um, . . . , u1, v1, . . . vm

(respectively, um, . . . , u1, w, v1, . . . vm) are contained in a facial cycle of G, and umC ′′
j vm ⊆

C ′′
j ∩ C ′′

j+1
for all large j. See Figure 5.

K ′′K ′′ K ′K ′

u1
u1

F1F1

v1v1

x = umx = um

y = vmy = vm

w

|V (K ′ ∩ K ′′) − {x, y}| is odd|V (K ′ ∩ K ′′) − {x, y}| is even

Figure 5: Structure of G

When |V (K ′ ∩ K ′′) − {x, y}| is even, let H := G and let F1 be the facial cycle of G
containing u1 and v1 such that v1F1u1 ⊆ K ′′ and u1F1v1 ⊆ K ′. Note that n ≥ 2, and so,
u1, v1 /∈ ∂G′′. By (1), u1 and v1 are of finite degree in G and all faces of G incident with
u1 or v1 are bounded by cycles. Hence we may choose (G1, G2) and F1 so that v1F1u1

has at least two edges.
When |V (K ′ ∩ K ′′) − {x, y}| is odd, we have m ≥ 2 (because G is 4-connected).

Let D be the facial cycle of G − w containing u1 and v1 such that v1Du1 ⊆ K ′′ and
u1Dv1 ⊆ K ′. Because G is 4-connected and w /∈ ∂G′′, D is well defined and u1, v1 /∈
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V (∂G′′). Hence by (1), u1 and v1 are of finite degree in G and all faces of G incident
with u1 or v1 are bounded by cycles. Therefore, we may further choose (K ′,K ′′) so
that, subject to {u1, . . . , um, v1, . . . , vm} ⊆ V (K ′ ∩ K ′′), w has two neighbors w1 and
w2 in v1Du1 − {u1, v1} such that v1, w1, w2, u1 occur on v1Du1 in order, and w has no
neighbor in w1Dw2 − {w1, w2}. Let F1 := w2Dw1 + w1w2 and H := (G − w) + w1w2.
We may assume that if w1w2 /∈ E(D) then it is represented by a simple arc in the open
disc bounded by D. Clearly H is (4, F1)-connected. Note that v1F1u1 ⊆ K ′′ + w1w2 and
u1F1v1 ⊆ K ′.

We wish to apply Lemma (4.3). Let (F1, . . . , Fn) denote a tight partial net in H such
that n is maximum. Then n ≤ m. By (1) of Lemma (4.1), we may assume that IH(Fn)
is contained in the closed disc bounded by Fn.

Since u1, v1 ∈ V (F1) and because any two consecutive vertices from
um, . . . , u1, v1, . . . , vm or from um, . . . , u1, w, v1, . . . , vm are contained in a facial cycle
of G, we see that for each 1 ≤ i ≤ n, {ui, . . . , u1, v1, . . . , vi} ⊆ V (IH(Fi)). Therefore,
{un, vn} ⊆ V (Fn), for otherwise, Fn − {un, vn} is a path or a cycle and H − V (I(Fn))
would have just one infinite component (containing Fn−{un, vn}). Hence, again because
any two consecutive vertices of um, . . . , u1, v1, . . . , vm are contained in a facial cycle of
H, we see that ui, vi ∈ V (Fi) for all 1 ≤ i ≤ n. By planarity and because v1F1u1 ⊆ K ′′

(or v1F1u1 ⊆ K ′′ + w1w2) and u1F1v1 ⊆ K ′, we have viFiui ⊆ K ′′ and uiFivi ⊆ K ′ for
2 ≤ i ≤ n.

We consider two cases.
Case 1. n = m.
Then H − V (IH(Fm)) has two infinite blocks (which is used when applying

Lemma (4.3)). Note that um 6= vm, since H − V (IH(Fm−1)) has a unique infinite block
containing Fm.

Because of the separation (K ′,K ′′), (H − V (IH(Fm) − V (Fm))) − {um, vm} has two
infinite components. Hence by planarity and by (3), there is no separation (H ′,H ′′) of
IH(Fm) such that |V (H ′ ∩ H ′′)| < 2m, {um, vm} ⊆ V (H ′ ∩ H ′′), vmFmum ⊆ H ′′, and
umFmvm ⊆ H ′.

When |V (K ′ ∩ K ′′)| is even, then m ≥ 2. Since v1F1u1 has at least two edges and
by (3) and 4-connectivity of G, IH(F2) has two disjoint paths from v1F1u1 − v1 or from
v1F1u1 − u1 to v2F2u2 internally disjoint from F1 ∪ F2. Hence there is an edge w1w2

of v1F1u1 such that v1, w1, w2, u1 occur on v1F1u1 in order and there are two disjoint
paths in IH(F2) from v1F1w1 to v2F2u2 or from w2F1u1 to v2F2u2, which are internally
disjoint from F1 ∪ F2. When |V (K ′ ∩ K ′′)| is odd, then by (3), there are two disjoint
paths in IH(F2) from v1F1w1 or from w2F1u1 to v2F2u2, which are internally disjoint
from F1 ∪ F2. Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), there is a 2-way infinite F1-Tutte path P in H through w1w2.
When |V (K ′ ∩K ′′)| is even, we see that P is a spanning 2-way infinite path in G. When
|V (K ′ ∩K ′′)| is odd, then (P −w1w2)+ {w,ww1, ww2} is a spanning 2-way infinite path
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in G.
Case 2. n < m.
First, we show that IH(Fn) ∩ ∂G′′ = ∅. For otherwise, Fn ∩ ∂G′′ 6= ∅. Let z be

a vertex contained in Fn ∩ ∂G′′. Then since (F1, . . . , Fn) is a tight partial net in H,
there are vertices zi ∈ V (Fi), 1 ≤ i ≤ n such that zn = z and any two consecutive
vertices from zn, . . . , z1 are contained in a facial cycle of H. Thus, by planarity, either
G − {v1, . . . , vm, z1, . . . , zn} or G − {u1, . . . , um, z1, . . . , zn} has two infinite components.
This contradicts (3) because n < m.

Next we show that H − V (IH(Fn)) has two infinite blocks. For otherwise, assume
that H −V (IH(Fn)) has just one infinite block, say B. Because Fn ∩ ∂G′′ = ∅, it follows
from (1) that all vertices of Fn have finite degree in H and each face of H incident with
a vertex of Fn is bounded by a cycle. Hence the face of B containing IH(Fn) is incident
with only finitely many vertices and edges of H. Since B is 2-connected, the face of B
containing IH(Fn) is bounded by a non-dividing cycle in H, denoted Fn+1. Now it is
easy to see that (F1, . . . , Fn, Fn+1) is a tight partial net in H, contradicting the choice
of (F1, . . . , Fn).

Let B′, B′′ denote the infinite blocks of H − V (IH(Fn)) such that C ′′
j ⊆ B′′ and

C ′
j ⊆ B′ for all sufficiently large j. By planarity, we see that the neighbors of B′ on Fn

are all contained in unFnvn.
When |V (K ′ ∩ K ′′)| is even, then m ≥ 2. Since v1F1u1 has at least two edges and

by (3) and 4-connectivity of G, IH(F2) has two disjoint paths from v1F1u1 − v1 or from
v1F1u1 − u1 to v2F2u2 internally disjoint from F1 ∪ F2. Hence there is an edge w1w2 of
v1F1u1 such that v1, w1, w2, u1 occur on v1F1u1 in order and there are two disjoint paths
in IH(F2) from v1F1w1 to v2F2u2 or from w2F1u1 to v2F2u2 which are internally disjoint
from F1 ∪ F2. When |V (K ′ ∩ K ′′)| is odd, then by (3), there exist two disjoint paths in
IH(F2) from v1F1w1 or from w2F1u1 to v2F2u2 which are internally disjoint from F1∪F2.
Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), we see that H contains a 2-way infinite F1-Tutte path P through
w1w2. If |V (K ′ ∩ K ′′) − {x, y}| is even, then P is a spanning 2-way infinite path in G.
If |V (K ′ ∩ K ′′) − {x, y}| is odd, then (P − w1w2) + {w,ww1, ww2} is a spanning 2-way
infinite path in G. 2

It is easy to see that Theorem (1.1) follows from Theorems (5.1), (6.1), and (6.2).

Acknowledgment. The author thanks two referees for their helpful comments. In
particular, the author would like to thank the referee who pointed out a missing case in
the original proof of Lemma (3.1), brought up references [1] and [5], and helped clarify
several ambiguous places.

23



References
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