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Abstract

Nash-Williams conjectured that a 4-connected infinite planar graph contains a
spanning 2-way infinite path if, and only if, the deletion of any finite set of vertices
results in at most two infinite components. In this paper, we prove the Nash-Williams
conjecture for graphs with no dividing cycles and for graphs with infinitely many
vertex disjoint dividing cycles. A cycle in an infinite plane graph is called dividing if
both regions of the plane bounded by this cycle contain infinitely many vertices of
the graph.
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1 Introduction

We use the terminology in [8], [9], and [10]. For convenience we repeat some
here. Let H be a (finite or infinite) subgraph of a (finite or infinite) graph G,
let vq,...,v, € V(G), and {u;,w;} € V(H) U {v1,...,vx}, ¢ = 1,...,m. Then
H+{vy,..., 05, ugws, ..., unwy} denotes the graph with vertex set V(H)U {vy,..., v}
and edge set E(H) U {ujwy,...,upwg}. For any z € V(H) U E(H), we write H + z
instead of H + {z}.

Let C be a cycle in a plane graph G and let z,y € V(C). When z # y then zCy
denotes the subpath of C from z to y in clockwise order, and when x = y then xCy
denotes the trivial path consisting of x = y only. For a (finite or infinite) path P and
x,y € V(P), we use xPy to denote the unique finite path in P between z and y.

By the Jordan curve theorem, each cycle C' in a (finite or infinite) plane graph G
divides the plane into two closed regions whose intersection is C. If G is infinite and
exactly one of these two closed regions, say D, contains a finite subgraph of GG, then we
use I(C) to denote the subgraph of G contained in D. If there is no danger of confusion,
we use I(C) instead of I¢(C'). Note that C C I(C), and if I(C) = C then C is a facial
cycle.

A graph G is k-indivisible, where k is a positive integer, if, for every finite X C V(G),
G— X has at most k—1 infinite components. Nash-Williams ([2], [3], and [7]) conjectured
that a 4-connected infinite planar graph contains a spanning 2-way infinite path if, and
only if, G is 3-indivisible.

In [8] and [9], the Nash-Williams conjecture is established for 2-indivisible graphs. To
deal with those graphs which are 3-indivisible but not 2-indivisible, we define dividing
cycles in an infinite plane graph G as those cycles C' for which I5(C) is not defined.
A non-dividing cycle in G is then a cycle which is not dividing. Let v(G) denote the
maximum number of vertex disjoint dividing cycles in an infinite plane graph G. With
this notation, we may divide 3-indivisible infinite plane graphs G into three classes: those
with 7(G) = 0 (including all 2-indivisible graphs), those with v(G) = oo, and those for
which v(G) is a positive integer. (Note that, when v(G) = 0, the drawing of G may be
modified to give a VAP-free drawing of G; see [5] and [1].) The objective of this paper
is to give a proof of the following result, which establishes the Nash-Williams conjecture
for two of these three classes.

(1.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume
that v(G) = 0 or v(G) = co. Then G contains a spanning 2-way infinite path.

Throughout the rest of the paper, graphs will be finite unless it is clear from the
context or otherwise mentioned. In Section 2 we summarize those concepts and results
from [8], [9] and [10] which will be used in this paper. We prove in Section 3 three lemmas



concerning 2-way infinite Tutte paths in two special classes of graphs. These lemmas will
serve as bases for inductive arguments. Section 4 includes results which show that certain
finite sequences of non-dividing cycles guarantee the existence of a 2-way infinite Tutte
path. Theorem (1.1) will be proved in Section 5 for graphs with v(G) = 0. The proof of
Theorem (1.1) will then be completed in Section 6.

2 Nets and Tutte paths

A net in an infinite plane graph G is a sequence N := (C1,Cy,...) of cycles in G such
that I(C;) is defined for all ¢ > 1, and the following properties are satisfied:

(1) I(Cz‘) - I(Ci—i-l) for all 4 > 1,
(2) Uz, I(C;) =G, and

(3) either C; N C; = O for all @ # j, or for i > 1, C; N Cyiyq is a non-trivial path,
C; N Ciy1 C Ci4q1 N Ciya, and neither endvertex of C; N Cj41 is an endvertex of
Cit1 N Ciyo.

If C;NCj =10 for all i # j, then N is called a radial net; otherwise, N is a ladder net.
Let ON = 0 if N is a radial net; otherwise, let ON = [J:2,(C; N Cit1).

Let G be a (finite or infinite) graph and H be a (finite or infinite) subgraph of G.
An H-bridge of G is a (finite or infinite) subgraph of G which is induced by either (1)
an edge of E(G) — E(H) whose incident vertices are in V(H) or (2) the edges contained
in a component of G — V(H) and the edges from that component to H. Also, we say
that G is (4, H)-connected if, for any T' C V(G) with |T'| < 3, every component of G — T
contains a vertex of H. The following result is Theorem (2.1) in [10] (its 4-connected
version is shown in [9]), which gives a structural description of graphs with nets.

(2.1) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph with a facial
cycle C such that G is (4,C)-connected, and let S denote the set of vertices of G of
infinite degree. Then |S| < 2, and there is a set F' of edges of G such that

(1) for any f € F, f is incident with a vertex in S,

(2) G — F has a net N = (C1,Cs,...), C CI(Cy), S C IN, and for any f € F both
incident vertices of f are contained in a common infinite S-bridge of ON,

(3) if |S| = 1, then either one S-bridge of ON contains all vertices incident with edges
in F' or each S-bridge of ON contains infinitely many vertices incident with edges
in F, and



(4) if |S| =2, then for any T C V(G) — S with |T'| < 3, S is contained in a component
of( G-F)-T.

For an infinite plane graph G, let G denote the subgraph of G such that for each
x € V(G)UE(G), z € 0G if and only if x ¢ (E(I(D)) — E(D)) U (V(I(D)) — V(D)) for
every cycle D in G. Clearly, 0G = () when G admits a radial net. From Theorem (2.1),
we can show that when G does not admit a radial net then G is a path, or a 1-way
infinite path, or a 2-way infinite path. The following observation will be useful.

(2.2) Lemma. Let G be a 2-connected infinite plane graph and C be a facial cycle of
G such that G is (4,C)-connected. If G is 2-indivisible, then all but one face of G are
bounded by cycles, and 0G is precisely the subgraph of G lies on the boundary of the
exceptional face of G.

Proof. Suppose G is 2-indivisible and let R be a face of G. Suppose R is incident with a
vertex or edge which is not in dG. Then there exists some cycle D in G such that R is
incident with some element of (E(I(D)) — E(D)) U (V(I(D)) — V(D)). This shows that
R is a face of I(D). Since I(D) is a 2-connected plane graph, R is bounded by a cycle.
Now assume that all vertices or edges of G incident with R are in G. Then since G is
2-indivisible, it follows from Theorem (2.1) that OG is precisely the subgraph of G that
lies on the boundary of R. g

The next result is a generalization of Lemma (2.3) in [9].
(2.3) Lemma. Let G be a 2-connected infinite plane graph and let C' be a facial cycle

of G such that G is (4,C)-connected and v(G) = 0. Then there is an infinite sequence
(D1, D, . ..) of cycles in G such that C C I(D;) and the following properties hold:

(1) for each i > 1, I(D;) C I(D;4+1), and D; N D;4q is minimal among all subgraphs
D, N D* arising from cycles D* in G such that I(D;) C I(D¥),

(2) for each i > 1, G has no finite I(D;)-bridge,
(3) for each i > 1, D; N\ D11 C D1 N Djto, and
(4) UiZl [(Di) =G.

The proof of Lemma (2.3) in [9] uses two properties: (a) for any finite X C V(G),
G — X has only finitely many components, and (b) every cycle in G is non-dividing
(implied by cohesiveness). In the above lemma, (a) is guaranteed by the assumption
that G is planar and (4, C)-connected, and (b) is guaranteed by the assumption that
v(G) = 0.



In the remainder of this section, we state several results concerning Tutte paths in
finite or infinite plane graphs. Let G be a (finite or infinite) graph and H be a (finite
or infinite) subgraph of G. If B is an H-bridge of G, then the vertices in V(H N B)
are called attachments of B (on H). The subgraph H is a Tutte subgraph of G if every
H-bridge of G is finite and has at most three attachments. For a (finite or infinite)
subgraph C of G, we say that H is a C-Tutte subgraph of G if H is a Tutte subgraph
of G and every H-bridge of G containing an edge of C has at most two attachments. A
(finite or infinite) Tutte path is a (finite or infinite) path which is a Tutte subgraph.

The following result is the main theorem in [7].

(2.4) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Assume that
xeV(C),ee E(C), andy € V(G — x). Then G contains a C-Tutte path P from x to
y such that e € E(P).

The next result is (2.6) from [4].

(2.5) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Let u,v €
V(C) be distinct, let e, f € E(C), and assume that u,v,e, f occur on C in clockwise
order. Then G contains a vCu-Tutte path P from u to v such that {e, f} C E(P).

We remark here that both Lemma (2.4) and Lemma (2.5) may be applied when e
or f or both are vertices. We need Lemma (3.3) from [10], which will be convenient for
extending Tutte paths.

(2.6) Lemma. Let K be a connected (finite or infinite) plane graph, C' be a facial walk
of K, Q be a path between p and q on C, uw € V(C)—V(Q), L be a subgraph of K —V(Q),
and Q' be a cycle in L or a path in L or a 2-way infinite path in L. Suppose the following
three conditions are satisfied:

(1) for any (LU Q)-bridge B of K, [V(BNL)|<1and V(BNL)CV(Q),

(2) K — V(L) is finite and all vertices of K — V(L) have finite degree in K, and

(3) L contains a Q'-Tutte subgraph T with uw € V(T) and |V(Q") NV (T)| > 2.
Then K —V(T') contains a path S between p and q such that SUT is a Q-Tutte subgraph
of K, and every T-bridge of L containing no edge of Q' is also an (S UT)-bridge of K.

The following result is Corollary (3.7) in [9].

(2.7) Lemma. Let G be a 2-connected infinite plane graph with a ladder net N, and
let © € V(ON) and uwv € E(ON) such that uw € V(xONv). Then G contains a 1-way
infinite ON-Tutte path P from x such that uv € E(P) and u € V(zPv).



We also need Theorem (1.2) from [10].

(2.8) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph, let C' be a
facial cycle of G, let x € V(C') and uwv € E(C') with x # v, and let () denote the subpath
of C'— v between u and z. Assume that G is (4, C')-connected and v is contained in the
infinite component of G —V(Q). Then G contains a 1-way infinite C-Tutte path P from
x such that wv € E(P) and u € V(zPv).

3 Two-way infinite Tutte paths

The goal of this section is to prove three results on 2-way infinite Tutte paths. These
results will be used as bases for inductive arguments.

(3.1) Lemma. Let G be a 2-connected 3-indivisible infinite plane graph, let C' be a
facial cycle of G, and let u,v € V(C) be distinct such that G is (4,C)-connected and
G — {u,v} has two infinite components. Then for any e € E(C), G contains a 2-way
infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that the face of G bounded by C
is an open disc. Since G is (4,C)-connected, G has at most three {u,v}-bridges: G;
containing vC'u, Gy containing uCv, and possibly a third {u,v}-bridge induced by uv
(when uv € E(G)). Since G — {u,v} has two infinite components, G; and G9 are infinite.
For each i € {1,2}, let B; be the infinite block of G;. Since G is 2-connected, B; N vCu
and By N uCv are nontrivial paths. Let v’ € V(B NuCv) with uCvu' minimal, and let
v € V(B; NvCu) with vCv" minimal. See Figure 1, where the possible edge uv is not
drawn. Let G’ := G if uv ¢ E(G); otherwise, let G’ := G —uv. Then G’ has exactly two
infinite {u’, v'}-bridges, one containing B; and the other containing Bs.

Figure 1: G, L and R

Since G is (4,C)-connected, neither «'Cv nor v'Cu is an edge; for otherwise, G —
{v/,v} or G —{u,v'} has a component containing no vertex of C, a contradiction. Let L



be obtained from G’ by replacing the {u’,v'}-bridge of G’ containing By with the edge
u'v’, and let R be obtained from G’ by replacing the {u’,v’}-bridge of G’ containing By
with the edge v'v/. Let Cp := v'Cu’ +u/v" and Cg := «'Cv' +v'v’. We may assume that
the edges are added so that the faces of L and R bounded by Cf, and Cg, respectively, are
open discs. See Figure 1. Because G is 3-indivisible, both L and R are 2-indivisible. Since
G is (4,C)-connected and since V(Cp) UV (Cgr) = V(C), L must be (4,Cr)-connected
and R must be (4, Cr)-connected.

By symmetry, we may assume that e € E(v'Cu’), and let e = ab so that v',b,a,u
occur on O, in clockwise order. Since v € By, we see that b is in the infinite component
of L — V(aCpru'). Hence, by Theorem (2.8), there is a l-way infinite C7-Tutte path
Pp, from ' in L such that e € E(Pp) and a € V(u'Prb). By planarity, v'v' ¢ E(Pp)
and, therefore, u € V(Pr). We claim that v' € V(P). For otherwise v’ is contained
in a Pp-bridge B of L. Clearly, v’ € V(B N P). Since Pp is a Cp-Tutte path of L,
V(BN Pr)| =2 and B is finite. Let v € V(BN Py) — {u'}. Then v” lies on C and
v'Cv" —v" € By, contradicting the choice of v'.

If v =" or uv ¢ E(G) then we use Theorem (2.8) to find a 1-way infinite Cr-Tutte
path Pg in R from v’ and through v'«/. It is easy to see that P := P, U (Pr — ') is a
2-way infinite C-Tutte path in G such that e € E(P).

Now assume v # v’ and uv € E(G). Suppose u = u’. In R we use Theorem (2.8) to
find a 1-way infinite Cr-Tutte path Pg from ' and through v/v’. Then v € V(Pg). Let
P, denote the infinite u-bridge of P, and P, denote the infinite v-bridge of Pr. Clearly
e € E(P,). It is easy to verify that P := (P, U P,) 4+ uv gives the desired 2-way infinite
C-Tutte path in G.

Hence we may assume u # u'. Suppose e € E(vCu). In R, we use Theorem (2.8) to
find a 1-way infinite Cg-Tutte path Pgr from v’ and through the edge of «'Cv’ incident
with v'. Then v'v/ ¢ E(Pg) and v € V(Pg). By a similar argument as above for showing
v' € V(Pr), we can show that v’ € V(Pgr). Let P, denote the infinite u-bridge of Py, and
P, denote the infinite v-bridge of Pg. Since e € E(vCu), e € E(P,). It is easy to verify
that P := (P, U P,) + uv gives the desired 2-way infinite C-Tutte path in G.

To deal with the remaining case when e € E(uCv’), we view G; + uv (for each 1 <
i < 2) as a plane graph with a facial cycle C;, where C1 = vCu+ uv and Cy = uCv + uv.
In G; + uv we apply Theorem (2.8) to find a 1-way infinite Cj-Tutte path P; from wu
through wv. In G + uv we apply Theorem (2.8) to find a 1-way infinite Cy-Tutte path
P, from v through e. Because {v,u'} is a 2-cut in Gg, we see that vu € E(P,). Hence,
P := P, U P, gives the desired 2-way infinite C-Tutte path in G. a

For the next two lemmas, we need additional notation. Let G be a 2-connected
3-indivisible infinite plane graph, and let C be a facial cycle of G such that G is (4, C)-
connected. Let H be an infinite block of G — V(C) and let D be the cycle of H which
bounds the face of H containing C. See Figure 2. Let wq, ..., w, denote the attachments
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Figure 2: Tllustration for Lemma (3.2)

on H of (H U C)-bridges of G which occur on D in clockwise order. Let pj;,q; € V(C)
with p;Cq; maximal such that {p;, w;} is contained in an (H U C)-bridge of G, {q;, w;}
is contained in an (H U C)-bridge of G, and any (H U C)-bridge of G' containing some
wy # wj contains no vertex of V(p;Cq;) — {pj,q;}. Note that p; and ¢; are well defined
because G is (4,C)-connected. Let J; denote the union of p;Cq; and those (H U C)-
bridges of G whose attachments are all contained in V(p;Cq;) U {w;}. (Note that if
pj = ¢; then J; is induced by a single edge.) Let L; denote the union of ¢;Cp;i1 and
those (H U C)-bridges of G whose attachments are all contained in V(q;Cp;t1), where
Pb+1 = P1-

(3.2) Lemma. Let G,C,H,D and wj,J;,L; (1 < j < b) be defined as above. Let
e € E(C). Suppose there is some 1 < j < b such that L; is infinite and e ¢ E(L;). Then
G contains a 2-way infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that j = 1. Since e € E(p2Cq1),
e € E(p,Cpy41) for some w, # wy or e € FE(q,—1Cq,) for some w, # wy. Note the
symmetry between clockwise and counter clockwise orientations of C, and also note the
symmetry between w; and wy. We may therefore assume that e € E(p,Cp,41) for some
Wy # wy.

Since G is 3-indivisible and L; is infinite, H is 2-indivisible. Since G is (4,C)-
connected and by planarity, H is (4, D)-connected. Hence by Theorem (2.8), H contains
a 1-way infinite D-Tutte path P from w; and through w,.

Since G is 2-connected and Ly is infinite, | — ¢; contains a 1-way infinite path
from po. Let L} := L1 + ¢1pa such that Cf := ¢1Cpa + qip2 is a facial cycle of L]. By
Theorem (2.8), L has a 1-way infinite C{-Tutte path @ from ¢; such that ¢1ps € E(Q1).

In J; + pyw;, we apply Lemma (2.4) to find a p;Cq;-Tutte path P; from w; to p;
and through q;.



We apply Lemma (2.6) to K = G — V((J1 U L) — {p1,p2,w1}),
H,p2Cp1, D, P,pa,p1,w1 (as K, L,Q,Q’', T, p, q, u, respectively). Note that the conditions
of Lemma (2.6) are satisfied. In particular, wy,w, € V(P) implies that |V(P N D)| > 2.
Hence, by Lemma (2.6), there is a path S in K — V(P) between ps and p; such that
S'UP is a poCp;-Tutte subgraph in K and every P-bridge of H containing no edge of D
is also an (S U P)-bridge of K.

We may assume that e € E(S). This may be seen as follows. By planarity and
because w, € V(P), p, and p,4+1 are cut vertices of K — V(P). Hence, p,,p,+1 € V(95),
(Jr UL,) —w, is a {py, pry1}-bridge of K — V(P), and p,.Sp,4+1 C (J, U L) — w,. In
(J» UL,) + pry1wy, we apply Lemma (2.5) to find a p,Cp,41-Tutte path S, from p, to
w, such that p,1jw,,e € E(S,). By replacing the subpath p,Sp,11 of S with S, — w,,
we obtain the desired path S through e.

Now P*:= PUP;USU(Q1—q1) is a 2-way infinite path through e. Note that every
P*-bridge of G is one of the following: an (S U P)-bridge of H, or a P;-bridge of Jp, or
a @1-bridge of L. Hence, P* is a 2-way infinite C-Tutte path in G through e. a

(3.3) Lemma. Let G,C,H,D and wj,J;,L; (1 < j < b) be defined as above. Let
e € E(C). Suppose there is some 1 < j < b such that J; is infinite and e is not contained
in the unique infinite block of J; —w;. Then G contains a 2-way infinite C'-Tutte path
through e.

Proof. Without loss of generality, we may assume that j = 1. If e € E(J;), we choose
an arbitrary w, # wi. Since e is not contained in the infinite block of J; — wj, there is a
vertex v € V(p1Cq1 —{p1, 1 }) such that the infinite {w;, v}-bridge of J; does not contain
e1. In this case, let J; denote the infinite {w;,v}-bridge of J;. Now assume e ¢ E(J).
Then e € E(q1Cp1), and hence e € E(p,Cp,+1) for some w, # w; or e € E(q,—1Cq,) for
some w, # w;. Let J{ = J; and v := p;.

Note the symmetry between clockwise and counter clockwise orientations of C. We
may therefore assume that when e ¢ E(J;) we have e € E(p,Cp,41) for some w, # wi,
and when e € E(J;) then q; € V(J5).

Since G is 3-indivisible and Jj is infinite, H is 2-indivisible. Since G is (4,C)-
connected and by planarity, H is (4, D)-connected. Hence by Theorem (2.8), H contains
a l-way infinite D-Tutte path P from w; and through w,.

Since G is 3-indivisible and H is infinite, J; must be 2-indivisible. Let X be a path
in Jy from w; to V(vCq1 — {v, 1 }) such that X NC consists of a single vertex x. Let J}
and J{ denote the subgraphs of Jj such that v € V(J}), ¢1 € V(J}), JP N J{ = X, and
JY U Ji = Jf. Then either J{ or J{ is finite.

Suppose J{ is finite. Then J{ contains a path @ from w; to g; such that Q is
contained in the facial cycle of G which contains {w1, w2, q1,p2}. Let J' := Jf + vwy



be the plane graph in which ¢’ := (Q U vCq;) + vwy is a facial cycle. Since G is 3-
indivisible and H is infinite, J' — V(Q) has a unique infinite component, denoted J”.
Then v € V(J"); for otherwise, by planarity, the neighbors of J”, which are furtherest
apart on (), form a 2-cut S in G such that the component of G — S containing J” has
no vertex of C, contradicting (4, C)-connectivity of G. By Theorem (2.8), J’ contains
a l-way infinite C’-Tutte path Y from ¢; such that vw; € E(Y) and w; € V(1Y ).
Hence, Y — vw; consists of a path P’ from w; to ¢; and a 1-way infinite path P” from v
such that PN P” = () and P’ U P” is a vCq;-Tutte subgraph of J;.

When J7 is finite, we may apply the same argument to J; + g;w; as in the preceding
paragraph to show that J; contains a path P’ from w; to v and a l-way infinite path
P” from ¢y such that P' N P" = and P'U P" is a vCq-Tutte subgraph of J;.

Next we apply Lemma (2.6) to K := G — V(Jf —{v,q1,u1}), H,q1Cv, D, P,v,q1,w;
(as K,L,Q,Q",T,p,q,u, respectively). Note that the conditions of Lemma (2.6) are
satisfied. In particular, wy,w, € V(P) implies that |[V(P) N V(D)| > 2. Hence, by
Lemma (2.6), there is a path S in K — V(P) between ¢; and v such that SU P is a
q1Cv-Tutte subgraph in K and every P-bridge of H containing no edge of D is also an
(S U P)-bridge of K.

Because wq,w, € V(P) and by the same argument as in previous lemma, we may
assume that e € E(S). Let P* := PUSU P UP". Then every P*-bridge of G is either
an (S U P)-bridge of H or a (P'U P")-bridge of J;. Hence P* is a 2-way infinite C-Tutte
path in G through e. a

4 Tight partial nets

Let GG be a 2-connected infinite plane graph. A tight partial net in G is a sequence
(F1,...,F,) of vertex disjoint non-dividing cycles in G, where n is a positive integer, such
that I(F1) = Fy and for each 1 < i <n —1, I(F;) C I(Fj;+1) and every (I(F;) U Fiy1)-
bridge of I(F;4+1) has at most one attachment on Fj;;.

A separation of a graph G is an ordered pair (G1,G3) of subgraphs of G such that
E(G;) # E(G) for i € {1,2}, E(G1 N Gs) = 0, and G; UGy = G. The following

observation will be convenient.

(4.1) Lemma. Let G be a 2-connected infinite plane graph and let (Fi,...,F,) be a
tight partial net in G. Then

(1) there is a plane embedding of G such that I(F},) is contained in the closed disc in
the plane bounded by F,,, and

(2) for any distinct x,y € V(F,), there is a separation (M, Ma) of I(F,) such that
|V(My N M,)| < 2n, yFox C My and zF,y C M.
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Proof. Note that F), is a facial cycle of G-V (I(F,,) -V (F,)). Therefore, G-V (I(F,)—
V(F,)) has a plane embedding in which the open disc bounded by F,, is a face. Since
I(F,) is a finite plane graph, it has a plane embedding such that F,, bounds its infinite
face. Hence, by combining the new embedding of G — V(I(F,,) — V(F,,)) and the new
embedding of I(F},), we see that G has a plane embedding in which I(F,) is contained
in the closed disc in the plane bounded by F),. Thus we have (1).

To prove (2), we apply induction on n. Clearly, (2) holds when n = 1. So assume
n > 2. For convenience and by (1), let us assume without loss of generality that I(F},) is
contained in the closed disc bounded by F),. Because (Fi,..., F),) is a tight partial net,
every (I(F,—1) U F,)-bridge of I(F,) has at most one attachment on F),. Thus, there
exist vertices z’,y’ € V(F,—_1) such that z and 2 are incident with a common face of G
and y and y’ are incident with a common face of G. If 2’ = ' then by planarity of I(F},)
we see that I(F},) has a separation (My, Ms) such that V(M N M) = {x,2' = v/, y},
yF,x C My, and zF,y C M. So we may assume that 2’ # y’. Then by induction,
I(F,—1) has a separation (M, M}) such that |V (M] N M})| <2(n—1), yF,_12’ C M,
and z'F,,_1y’ C MJj. Now by planarity of I(F),), we see that I(F,) has a separation
(M, Ms) such that V(M; N My) = V(M{N M) U{z,y}, yF,z C My, and 2F,y C M.O

The next result is a reduction lemma which shows that, when there is a certain tight
partial net with two non-dividing cycles, an infinite graph can be reduced in a certain
way so that the existence of a 2-way infinite Tutte paths is preserved. See Figure 3 for an
illustration of the situation described in the lemma and its proof. For a subgraph H of a
graph G, we use Ng(H), or simply N(H), to denote the set of vertices in V(G) — V(H)
each of which is adjacent to some vertex of H.

V9 V2
x:wl T = wj
&~ =
Z/:wk Y = Wk
2 2
G G’

Figure 3: Illustration for Lemma (4.2)

(4.2) Lemma. Let G be a 2-connected infinite plane graph and (Fy,Fy) be a tight
partial net in G such that G is (4, Fy)-connected. Suppose I(F3) is contained in the
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closed disc bounded by F3, v; and u; are distinct vertices on F; for 1 < i < 2, and uv €
E(vi Fiuy) with vy,v,u,u; on viFiuy in order. Assume there exist two vertex disjoint
paths in I(F) from v F1v to vaFoug or from uFyuy to veFyug, which are also internally
disjoint from Fy U Fy. Then there exist p € V(viFiuy — {uy,v1}), z,y € V(vaFous),
and f € {px,py} such that ve,x,y,us occur on voFouy in order and N (xFoy — {z,y}) N
V(I(Fy)) C {z,y,p} and such that if (G — V(I(Fz) — (V(Fy) U {p})) + {pz,py} has a
2-way infinite (yFaox + {p, px, py})-Tutte path through f then G contains a 2-way infinite
Fy-Tutte path through uv.

Proof. Let G be the infinite block of G — V(F}), and let wy, ..., w, be the attachments
on G of (G1 U Fy)-bridges of G. Because (F}, Fy) is a tight partial net, F» C G;. By
planarity, w; € V(F3). Without loss of generality, we may assume that ws, ..., w, occur
on Fj in clockwise order. For each wy, 1 <t < b, let p;,q; € V(Fy) with p.F}q; maximal
such that {p;,w} is contained in a (G1 U Fi)-bridge of G, {q:,w;} is contained in a
(G U Fy)-bridge of G, and any (G U F})-bridge of G containing some w; # w; contains
no vertex from V(p Fiq:) — {pt,q:}. See Figure 3. Note that p; and ¢; are well defined
because G is (4, F1)-connected.

We may assume that there are vertex disjoint paths in I(F») from vy Fiv to vaFaus
and internally disjoint from Fj U Fb; the other case can be taken care of in the same
way. Then uv € E(pgFipgs1) for some wy € V(vaFous — vy). We choose such wy, that
wg Foug is minimal. Let Ji denote the union of pxFipry1 and those (G U Fy)-bridges
of G whose attachments are all contained in V (pgFipk+1) U {wg}. Then there is some
wy, € V(vgFywy) such that Ji — p, contains a path from wy to pry; and through ww.
Select w; so that w, Fowy, is minimal. Let w; = w, if w, # wy; otherwise, let w; = wy_1.
Let J; denote the union of p;Fipy and those (G; U Fy)-bridges of G whose attachments
are all contained in V (p;Fipg) U {w;}.

Let G' := Gi + {pk, prw; : wj € V(wFowg)}. Since G is (4, F;)-connected, we see
that all (G U F1)-bridges of G containing some w; € V(wiFowy, — {wy, wy}) are induced
by the edge prw;. Hence G' = (G — V(I(F2) — (V(F2) U {pk})) + {prwi, prwr}. Let
F} := wiFyw; + {pg, prwy, prwy }. See Figure 3.

Let f := prw; and assume that G’ contains a 2-way infinite Fi-Tutte path P’ through
f. Note that P’ — p;, is an F»-Tutte subgraph of G; and P’ — p, consists of two disjoint
1-way infinite paths. We shall show that the assertion of the lemma holds for p := py,
r = w; and y := wg.

First, we find a path S from pgy; to p; by applying Lemma (2.6) to K :=
G — V((Jp U Jy) — {pi: kg1, wi, wi}) (with K, Gy, pur1Fipr, Fo, P — i, D1, pi,wp as
K,L,Q,Q,T,p,q,u, respectively). Clearly, the conditions of Lemma (2.6) hold. In par-
ticular, we note that |V (P' —pg) NV (F3)| > 2. Hence by Lemma (2.6), there is a path S
from py11 to p;in K —V (P' —py) such that (P’ —pg)US is a pg1 F1p-Tutte subgraph of
K, and every (P’ —py)-bridge of G not containing an edge of F; is a ((P'—py)US)-bridge
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of K.

Let w; denote the endvertex of P’ —pj, other than w;. Since P’ is a 2-way infinite Fj-
Tutte path in G’, we see that wy € V(P’) (for otherwise, the P’-bridge of G’ containing
wy, would have three attachments, namely, p = p; and two on Fh). We shall complete
the desired path in G by finding a path from w; to py4+1 and a path from w; to p;. We
distinguish two cases.

Case 1. py # py.

In J; + wpy, we apply Lemma (2.4) to find a p;Fypi-Tutte path P/ from p; to py such
that wipy € E(P)), and let P, := P/ — pi. If w, = wj, then in Ji, + wgpry1 we apply
Lemma (2.5) to find a pyFipky1-Tutte path Py from wy to pri1 such that pp € V(Fy)
and wv € E(FP). If wy # wj, then in Jy + {wipk, wkpr+1} we apply Lemma (2.5)
to find a ppFipgyi1-Tutte path P/ from wy to pry1 such that wgpy,uwv € E(P}); let
Py := (P}, — wg) + {wj, prw; }.

Let P := (P’ —pi)USU P, U P,. Then every P-bridge of G is one of the following: a
((P"—pr)US)-bridge of K, or a Py-bridge of Jj, + wipy+1 when wy, = wj, or a P;-bridge
of Ji, + {wkpk, wgpk+1} when wy # wj, or a P/-bridge of J; + wypy, or a P'-bridge of G’
containing some w; € V(w;Fhw; — {w;, w;}) (which has three attachments: py, and two
on wiFrwj). It is easy to see that P gives the desired 2-way infinite F3-Tutte path in G
through uv.

Case 2. pp, = py.

Then w; = wi—1, w; = wy, J; is induced by the edge w;p;, and Ji, — pp, = Jp — p1.
Since Ji — p; has a path R from wy, to py41 and through uwv, we let J; denote the union
of blocks of J, — pi each of which contains an edge of R. Let R’ denote the path from
wy t0 pra1 containing uv such that R’ is on the boundary of the face of G — p; which
is not a face of G. Let p’ € V(Fy N J}) with p,F1p’ minimal. By applying Lemma (2.5)
we find a R’-Tutte path Py in Jj, from wy, to py1 such that p’ € V(FPy) and uv € E(Py).
Let P := ((P' — pr) US U Py) + wyp;. Then every P-bridge of G is one of the following:
a ((P' — pg) U S)-bridge of K, or a Py-bridge of J;, or a (J;, U {p})-bridge of J;, with
attachments py and p/, or a subgraph of Jj, obtained from a Pj-bridge B of J; with two
attachments by adding py and all edges from py to B—V(Py). Thus, P gives the desired
2-way infinite Fj-Tutte path in G through uv. a

The next lemma shows that certain tight partial nets can force the existence of a
2-way infinite Tutte path. Let G be a 2-connected infinite plane graph which is 3-
indivisible but not 2-indivisible, let (F1,..., F},) be a tight partial net in G such that G
is (4, F1)-connected, and assume that I(F},) is drawn in the closed disc bounded by F,.
For 1 <4 < mn, let u;,v; be distinct vertices of F; such that any two consecutive vertices
from uy,...,u1,v1,...,0, are contained in a facial cycle of G, and assume that there is
no separation (Hi, Hy) of I(F),) such that |V (H; N Ha)| < 2n, {up,v,} C V(H1 N Ha),
vnFnu, C Hy, and u, Frv, C Hs.
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(4.3) Lemma. Let G, (F,...,F,), and u;,v;, 1 <1i <mn, be defined as above. Suppose
either (1) (G — V(I(F,) — V(F,))) — {un,v,} has two infinite components or (2) G —
V(I(Fy,)) has two infinite blocks, say H and H', such that the face of H containing
I(F,) contains H' and is bounded by a cycle, and such that no path in G from H' to
UpFpuy — {vp, uyp} is internally disjoint from I(F,) U H. Let uwv € E(vy Fyuy) such that
v1,v,u,u; occur on viFiuy in order, and assume when n > 2 there exist two vertex
disjoint paths in I(Fy) from vy Fiv to voFous or from uj Fyu to veFyug, which are also
internally disjoint from F1UF,. Then there is a 2-way infinite F}-Tutte path in G through
uv.

Proof. We apply induction on n. Suppose n = 1. If G — {uj,v1} has two infinite
components, then by Lemma (3.1) there is a 2-way infinite F;-Tutte path in G through
uwv. So assume that G — V(I(F})) has two infinite blocks H and H' such that the face of
H containing I(F}) contains H' and is bounded by a cycle D, and such that no path in G
from H' to vy Fluy —{v1,u1} is internally disjoint from HUI(F}). Then we see that every
(H U Fy)-bridge of G has at most one attachment on H (which must be on D), and H' is
contained in an infinite (H U F})-bridge of G. Let wy, ..., w, denote the attachments on
H of (HUF7)-bridges of G and let them occur on D in clockwise order. Let p;,q; € V(F})
with p;Fi¢; maximal such that {p;, w;} is contained in an (H U Fy)-bridge of G, {q;, w;}
is contained in an (H U F})-bridge of G, and any (H U F})-bridge of G containing some
wy; # w; contains no vertex from V(p;Fiq;) — {pj,q;}. Because G is (4, F;)-connected,
p;j and ¢; are well defined. Let J; denote the union of p;Fig; and those (H U F)-bridges
of G whose attachments are all contained in V(pjFiq;) U {w;}. Let L; denote the union
of ¢jFipj+1 and those (H U Fy)-bridges of G whose attachments are all contained in
V(g Fipj+1), where ppr1 = p1. Then there is some 1 < j < b such that H' C J; or
H C L;. Recall the assumption that no path in G from H' to viFiu; — {vi,u1} is
internally disjoint from H U I(Fy). Thus, if H' C L; then L; N F; C uiFyvg, whence
wv ¢ E(Lj); if H' C J; then uov is not in the unique infinite block of J; — w;. Hence by
Lemma (3.2) and Lemma (3.3), G contains a 2-way infinite F}-Tutte path P through uv.

So assume n > 2. Note that the conditions of Lemma (4.2) are satisfied. By
Lemma (4.2), there exist p € V(v Fiu; — {ui,n}), =,y € V(vaFauz), and an edge
f € {pz,py} such that if G’ := (G — V(I (Fy) — (V(F») U{p})) + {pz,py} has a 2-way
infinite (yFox + {p, px, py})-Tutte path through f then G has a 2-way infinite F}-Tutte
path through wwv.

Therefore it suffices to show that G’ has a 2-way infinite (yFox + {p, pz, py})-Tutte
path through f. For convenience, let F} := yFox+{p, px, py} and assume f = pz. There
is a tight partial net (Fy, ..., F)) in G’ such that u; F}v; = u; Fyv; and I/ (F])—{pz,py} C
Ig(F;), for all 2 < ¢ < n. (This can be shown by applying induction on i, by noting
that any two consecutive vertices from u,,...,us,vs,...,v, are contained in a facial
cycle of G' and that {u;,v;} C V(Ie(F!)), and by taking I (F!) minimal subject to the
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condition F/NF!_; = (.) Note that there is no separation (M, Ms) of I¢/(F),) such that
|[V(MyNM)| < 2(n—1), {up,v,} C V(M NMy), v, Flu, € My, and u, F} v, C My; for
otherwise by planarity I (F,,) has a separation (Hj, Hs) such that |V (H; N Ha)| < 2n,
{tun,v} € V(Hy N Hsy), v,Fou, C Hy, and u,F,v, C Hs, a contradiction. We claim
that when n > 3 there must be two disjoint paths in Ig/(F3) from veFjx to vzFjus
or from pFjuy to v3F§U3, which are internally disjoint from Fj U Fj. For otherwise,
there exist vertices u), v such that all paths in I (F3) from veFus to vsFius internally
disjoint from Fj U Fj intersect {u2,v2} Then I(F),) has a separation (Hp, Hz) such
that Hy N Ho = {up, ..., ug,uh,vh,vs,..., 00}, voFpu, C Hy, and u,Flv, C Hs, a
contradiction. Therefore, by induction, G’ has a 2-way infinite Fj-Tutte path through f.

O

5 Graphs with 7(G) =0
In this section we prove Theorem (1.1) for graphs with no dividing cycles.

(5.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph and assume
v(G) = 0. Then G contains a spanning 2-way infinite path.

Proof. We may assume that G is not 2-indivisible, for otherwise the assertion of this
theorem follows from [8] and [9]. Since G is 4-connected and planar and because v(G) = 0,
it follows from Lemma (2.3) that there is a sequence (Dy, Dy, ...) of non-dividing cycles
in G such that

(1) for each i > 1, I(D;) C I(Dj+1),

(2) for each 7 > 1, G has no finite I(D;)-bridge,

(3) for each @ > 1, D; N D;y1 € Dj11 N D49, and

(4) Uz>l I(D;) = G.

If D;ND;y; = 0 for all ¢ > 1, then by (4), (D1, Ds,...) is a radial net in G, and
hence, G is 2-indivisible, a contradiction. So Dy N D11 # () for some positive integer k.
By (3), D; N D;y1 # 0 for all i > k.

Suppose D; N D; 41 consists of a single path for all 4 > k. Then by planarity and
because G is 4-connected, for any positive integer I, D; — V(Dy), ¢ > | + 1, are all
nonempty and contained in a single component of G — V(I(D;)). By (4), for any finite
X CV(GQ), X CV(I(D;)) for some positive integer I. Therefore, G — X has only one
infinite component. This shows that G is 2-indivisible, again, a contradiction.

Thus, for some integer ¢ > k, D; N Dy consists of at least two vertex disjoint paths,
and hence, G has at least two I(D;)-bridges. Because of (2) and since G is 3-indivisible,
G has exactly two I(Dy)-bridges, both infinite. So D; N Dyy1 consists of exactly two
vertex disjoint paths. Therefore, by (2) and (3), we have
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(5) for each i > t, D; N D;;1 consists of exactly two vertex disjoint paths and G has
exactly two I(D;)-bridges (both infinite).

By (5) and by (3), we see that
(6) O0G = U;>1(D; N D;4+1) and has exactly two components, each of which is a path, or
a l-way infinite path, or a 2-way infinite path.

Let Ny and N, denote the two components of dG. See Figure 4. Note that Ig(D;) N
N; # 0 for i = 1,2. So there is a separation (G7,G2) of G such that |[V(G1 N Ga)| is
finite, exactly one vertex of G; N Gy is on N; for each 1 < i < 2, and both G; and Go
are infinite. Among all such separations (G1,G2) of G, there is one such that
(7) [V(G1 N Gg)| is minimum.

Let u be the unique vertex of G1NG2N Ny, and v be the unique vertex of G; NGaNNo.

V= Uy V= Uy
N .
VY E M4
v v
Gy G Gy w1 Gi
w2
U1 U1
_ ]\Vrl _ ]\Vrl
U = Up U = Un
|[V(G1 N Gy)| is even [V (G1 N Gy)| is odd

Figure 4: Structure of G

When |V (G1NG2)| is even, let uy,, ..., u1,v1,...,v, be the vertices in V(G1NG3) such
that u,, = v and v, = v, and any two consecutive vertices from the sequence are contained
in a facial cycle of G. In this case, let [} denote the facial cycle of G containing uq and v;
such that v1 Fiu; € G and uy Fiv; C Gy. Since n > 2 (because G is 4-connected), u; and
v1 each have finite degree and the faces of G incident with uq or v1 are bounded by cycles.
Hence we may further choose (G1, G2), subject to {uy,...,u,v1,...,0,} C V(G1NGs),
so that v1 Fju; has at least two edges. (Otherwise, we could simply choose Fj to be the
other facial cycle of G containing ujv;.) Let H := G. See the left part of Figure 4.

When |V (G1NG29)| is odd, we let uy, ..., u1,w,v1,...,v, be the vertices in V(G1NG2)
such that u, = v and v, = v, and any two consecutive vertices from the sequence are
contained in a facial cycle of G. In this case, let D denote the cycle in G such that
I(D) — V(D) = {w}. Because G is 4-connected, D is well defined and uy,v; € V(D).
Without loss of generality, we may assume that v1Du; C Gy and u;Dvy € G5. Notice
n > 2 because G is 4-connected. Hence, uy,v; € I(D;) — V(D;) for all sufficiently large
1. This implies that u; and v; are of finite degree in G and the faces of GG incident with
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uy or vy are bounded by cycles. Hence, we may further choose (G1,G2) so that, subject
to {up,...,u1,v1,...,0,} C V(Gy N Gy), w has at least two neighbors in v1Duy —
{ui,v1}. (Otherwise, in V(G N G2) we may replace w with its unique neighbor in
vy Duy —{v1,u1}, and continue if necessary. This process must stop because of the above
finiteness conditions on uy and vy.) Therefore, let wy,we € V(vyDuy) — {vy,u1} be
distinct neighbors of w such that vy, w1, ws, u; occur on v1Duy in order and w has no
neighbor in V(wy Dwsy) — {w1,ws}. Let H := (G —w) + wiws. Let F} = woDwy + wiwe,
and assume that wiws is added such that F} is a facial cycle of H. See the right part of
Figure 4.

Let (Fy,...,F,) be a tight partial net in H such that m is maximum. Note that
m < n. By (1) of Lemma (4.1), we may assume that Iy (F),) is contained in the closed
disc bounded by F},, as illustrated in Figure 4.

Suppose m < n. If F,, N (N7 U N3) # (), then assume by symmetry that z € V(F,,, N
N1). Then V(F,,NN3) = 0; for otherwise, let y € V (F,;,NN2), then by (2) of Lemma (4.1),
G has a separation (Hp, Hp) with {z,y} C V(H; N Hy) and |V (H; N Ha)| = 2m, exactly
one vertex of H;NHs ison N; for ¢ = 1,2, and both Hy and H» are infinite, contradicting
(7). Hence vy, ¢ V(I(Fy,)). Since v € V(I(F,,)) and every pair of consecutive vertices
from vy,...,v, are contained in a facial cycle of G, we must have v, € V(I(F};,)). Thus
there exists some m < j < n such that v; € V(I(F),)) and vj11 ¢ V(I(Fy)). This
shows that v; € V(F,) (since v; and v;4; is contained in a facial cycle of G). By
(2) of Lemma (4.1), Ig(F,,) has a separation (Lj, Ly) such that |V (L; N La)| < 2m,
{z,v;} C V(L1 N Ly), vjFpx C Ly, and xF,,v; C Lyo. Now it is easy to see that G has
a separation (G1,G2) such that V(G NGa) = V(L1 N L2) U{vjt1,...,v,}, exactly one
vertex of L1 N Ly is on N; for ¢ = 1,2, and both G; and G2 are infinite, contradicting
(7). So F,, N (N1 UN3y) = 0. Therefore H — V(Ig(F,,)) has a unique infinite block B
which contains D; for all sufficiently large ¢. Let F,+1 denote the cycle bounding the
face of B containing Iy (F,,). Then we see that (F,..., Fy,41) is a tight partial net in
H, which contradicts the choice of (Fy,..., Fy,).

Hence, m = n > 2. We may assume that the notation is chosen so that for 1 < i <n,
{uj,v;} CV(F;), viFu; € Gq, and u; Fu; C Gy. Clearly, there is a separation (Hy, Hs) of
Iy (F,) such that V(Hy N Hy) = {uy,...,up,v1,...,0,}, and for 1 < i < n, v;Fyu; C Hy
and u; Fyu; € Hy. Then by (7) and by planarity, there is no separation (Hy, Hy) of I (Fy,)
such that |V (Hy N H)| < 2n, {un,v,} € V(H1 N Hs), v, Fpu, € Hy, and u, Fyv, C Ho.

When |V (G1NG2)| is even, v; Fiu; has at least two edges. This, together with (7) and
4-connectivity of G, implies that there exist two disjoint paths in Iz (F5) from vq Fiug —uyq
or from viFiuy; — vy to voFyus and internally disjoint from Fy U F,. Hence there is an
edge wywsy of v Fluq such that vy, wq,we,uq occur on v1Fiuq in order and there exist
two disjoint paths in Iy (F3) from v Flw; or from woFjuy to vaFous internally disjoint
from F} U Fy. When |V(G1 N Ge)| is odd, then by (7), there exist two disjoint paths in
Iy (Fy) from vy Flw; or from waFiuy to vaFoug internally disjoint from Fy U Fb.
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Hence by Lemma (4.3), H has a 2-way infinite F}-Tutte path P through w;w,. Note
that G is 4-connected. Therefore, if |V(G1 N G9)| is even then P is a spanning 2-way
infinite path in G, and if |V(G; N Ga)| is odd then (P — wijwsy) + {w, ww;, wwsy} is a
spanning 2-way infinite path in G. a

6 Graphs with 7(G) =

Let G be a 4-connected 3-indivisible infinite plane graph, and assume v(G) = co. Let
C be a dividing cycle in G, let G’ be the subgraph of G contained in the closed disc of
the plane bounded by C, and let G” = G — (V(G') — V(C)). Then G' N G” = C, both
G’ and G” are 2-indivisible, and both G’ and G” are (4, C)-connected.

Let S’ denote the set of vertices of G’ of infinite degree. By Theorem (2.1), there
is a set F' C E(G’) incident with vertices in S” such that G’ — F’ has a net N' =
(C1,C5, . ..) satistying the conclusions of Theorem (2.1) (with G, S", F/, N" as G, S, F, N,
respectively). Similarly, let S” denote the set of vertices of G” of infinite degree. Then
by Theorem (2.1), there is a set F” C E(G") incident with vertices in S” such that
G" — F" has anet N = (CY,CY,...) satisfying the conclusions of Theorem (2.1) (with
G",S" F" N" as G, S, F, N, respectively).

Since 7(G) = oo, N" or N” must be a radial net. If both N’ and N” are radial nets,
then we say that G admits a 2-way radial net. If exactly one of N’ and N” is a radial
net, then we slightly abuse notation and say that G admits a mized net. We deal with
these two types of graphs separately.

(6.1) Theorem. Suppose that G is a 4-connected 3-indivisible infinite plane graph, and
assume that G admits a 2-way radial net. Then G contains a spanning 2-way infinite
path.

Proof. Because G has a 2-way radial net, it follows from Lemma (2.2) that
(1) G is locally finite and every face of G is bounded by a cycle.

Let (K', K") be a separation of G such that V(K’ N K") is finite, and both K’ and
K" are infinite. There exists such a separation (K’, K”') of G that
(2) [V(K'n K")| is minimum.

When |[V(K' N K")| is even (respectively, odd), then let wy,...,u1,v1,...,0, (re-
spectively, wy,...,u1,w,v1,...,v,) be the vertices in V(K' N K”) such that any two
consecutive vertices (in cyclic order) from the sequence are contained in a facial cycle of
G.

If [V(K'N K")| is even, then let H := G and let F} be a facial cycle of H containing
{uy,v1} such that vy Fluy € K” and uyjFiv; € K'. Note that n > 2 (since G is 4-
connected). Hence, u; and v; have finite degrees in G and faces of G incident with u;
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or v; are bounded by cycles. Hence, we may choose (K', K”) and F so that vi Fju; has
at least two edges.

When |[V(K' N K"”)| is odd, let D be the facial cycle of G — w containing {u,v;}
such that v1Du; € K” and w1 Dv; € K’. Note that D is uniquely defined because
G is 4-connected and every face of G is bounded by a cycle (by (1)). Hence we may
further select (K’, K”') so that, subject to {uy,...,un,v1,...,v,} € V(K'NK"), w has
at least two neighbors in v;Duj — {uy,v1}. Let wi,wy be distinct neighbors of w in
vy Duy —{uy,v1} such that vy, wy, we, w1 occur on vy Du;y in order, and w has no neighbor
in wyDwy — {w1,we}. Let H := (G — w) + wiwe and let F; := woDwy + wiwy. We
may assume that if wyjwy ¢ E(D) then it is represented by a simple arc in the open disc
bounded by D.

We wish to apply Lemma (4.3); therefore we need to show that
(3) there is a tight partial net (Fy,...,F,) in H.

To prove (3), assume that we have a maximum tight partial net (Fi,..., Fy) in H. For
convenience, we may assume that Iz (F}) is contained in the closed disc bounded by F},
(see (1) of Lemma (4.1)). Suppose k < n.

We claim that H — V(I (Fy)) has a unique infinite block. Otherwise, since H is
3-indivisible (because G is), H — V (I (F})) has a separation (H', H") such that |V (H'N
H")| <1 and both H" and H” are infinite. Since G is 3-indivisible, H' and H” each have
exactly one infinite component. Let L’ denote the infinite component of H' and L” the
infinite component of H”. Since G is 4-connected and |V(H' N H”)| <1, L' has at least
three neighbors on Fj. Hence by planarity, there are {z,y} C V(F}) such that =,y are
neighbors of L' =V (H'NH"), all neighbors of L'—V(H'NH") in F}, are contained in = Fy,
and all neighbors of L” —V(H'NH") in F}, are contained in yFjx. By (2) of Lemma (4.1),
Iy (F}) has a separation (M', M") such that |V (M' N M")| < 2k, {z,y} CV(M' N M"),
xFry C M', and yFrx C M”. Hence, H — (V(M'NM")UV(H' N H")) has two infinite
components. Therefore, if |[V(K' N K")| is even, then G — (V(M' N M")UV(H' N H"))
has two infinite components, and if |V (K'NK")| is odd then G — (V(M'NnM")UV (H'N
H")U{w}) has two infinite components. Since k < n and |V (H' N H")| < 1, we see that
[V(M'N"M"YUV(H' NH")| <2n—1. Thus [V(M'N"M"YUV(H'NH")| < |[V(K'NK")|
when |[V(K'NK")| is even, and |[V(M'nM")UV(H' nH")U{w}| < |[V(K'NK")| when
|[V(K'N K")| is odd. This contradicts the minimality of |V (K’ N K")| in (2).

Now let B be the unique infinite block of H — V(Ig(F})). Because of (1), H is
locally finite and every face of H is bounded by a cycle, and only finitely many vertices
and edges of B are incident with faces of H which are also incident with vertices of Fj,.
Therefore, since B is 2-connected and locally finite, the face of B containing I (Fy) is
bounded by a cycle, say Fj11. Because B is the unique infinite block of H — V(I (F})),
Fyy1 is non-dividing, Iy (Fy) C Ig(F11), and every (Ig(Fy)U F11)-bridge of Iy (Fyi1)
has at most one attachment on Fj. 1. However, this shows that (Fy,..., Fxy1) is a tight
partial net in H, contradicting the choice of (Fi, ..., Fj). Thus, we have (3).
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By (1) of Lemma (4.1), we may assume Iy (F,) is contained in the closed disc
bounded by F,. Because {uj,v1} C V(F}) and any two consecutive vertices from
the sequence uy,...,u1,v1,...,0, are contained in a facial cycle of H, we see that
{uiy...,ur,v1,...,v,} € V(Ig(F;)) for all 1 < i < n. Moreover, {un,v,} C V(F,),
as otherwise, F,, — {uy,v,} is a path or cycle and G — V(K’' N K”) would have only
one infinite component (containing F,, — {u,,v,}), a contradiction. Therefore, because
{ur,v1} C V(F), vnFiuy € K" (or v1Fiu; € K" + wyjws) and wy Fiv; C K/, and any
two consecutive vertices from u,,...,uy,v1,..., v, are contained in a facial cycle of H,
it follows from planarity that
(4) for 2 <i < n, {u;,v;} CV(F), viFu; € K", and u; Fjv; C K'.

By (2) and (4), Ig(F),) has no separation (Hi, Hs) such that |V(H; N Ha)| < 2n,
{un,v,} CV(Hy N Hy), v, Fpu, € Hy, and u, F,v, C Hs.

When |V(K' N K")| is even, v1Fjuj has at least two edges. This, together with
(2) and 4-connectivity of G, implies that there exist two disjoint paths in Iz (F») from
v1Fiug — vy or from vy Fiug — up to vo Fousg internally disjoint from F} U Fy. Hence, there
is an edge wiws of v1Fiu; such that vy, wy, ws,u; occur on vy Fiuy in order and there
are two disjoint paths in Iy (F3) from vy Fiw; or from weFyu; to vaFhug and internally
disjoint from Fy U Fy. When |V (K’ N K”)| is odd, then by (2), there are disjoint paths
from vy Fhwy or from wofiuy to voFhus and internally disjoint from £y U F5. Thus by
Lemma (4.3),

(5) there is a 2-way infinite Fj-Tutte path P through wiwy in H.

Now it is easy to see that if |V (K’ N K")| is even then P is a spanning 2-way infinite
path in G, and if |V(K' N K")| is odd then (P — wjwsy) + {w, wwi, wwy} is a spanning
2-way infinite path in G. a

Finally, we deal with graphs which admit mixed nets.

(6.2) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume
that G admits a mixed net. Then G contains a spanning 2-way infinite path.

Proof. Let C be a dividing cycle in G, let G’ denote the subgraph of G contained in the
closed disc bounded by C, and let G” := G—(V(G') =V (C)). Because G admits a mixed
net, we may assume that G’ has a radial net N’ := (C{,C%,...) with C' C I/(C!), and
for some (possibly empty) set F” of edges of G” incident with vertices of infinite degree
in G”, G” — F” has a ladder net N” := (C{,CY,...) with C C I#(CY). Note that 0G"”
is a path, or a 1-way infinite path, or a 2-way infinite path. Also note that each face of
G is either a face of G’ or a face of G”. Thus, in view of Lemma (2.2),
(1) all but one face of G are bounded by cycles, and OG” is precisely the subgraph of G
that lies on the boundary of the exceptional face of G.

Because the cycles C/" are dividing cycles in G and C! N dG” # () for large i, there
is a separation (K', K") of G such that C; C K’ and C] C K" for sufficiently large j,
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V(G1NGy) =V (C!) if |[V(CI'NdG"| < 2, and V(G N Ge) is the vertex set of the path
in C/ between two vertices of 9G” and internally disjoint from 0G”. Hence,

(2) there exists a separation (K', K”) of G such that V(K'NK") is finite, C] C K’ for all
large i, C' =V (0G") C K" for all large i, and 1 < |[V(K'NK")NV(0G")| < 2. Moreover,
the vertices in V(K'NK") can be ordered as 1, o, ...,z with z1, z, € V(0G"), z; # x;
except possibly z1 = xy, and for each 1 < i < k — 1, {2y, z;+1} is contained in a facial
cycle of G.

Note that we include the possibility 1 = |[V(K' N K”) NV (9G")|, because G” may
be a trivial path. We choose (K’, K”) such that, subject to conditions in (2),

(3) [V(K'n K")| is minimum.

When |[V(K'NnK")NV(0G")| =2, let V(K'NK")NV(0G") = {x,y}, and otherwise,
let £ = y be the only vertex in V(K' N K") NV (0G"). Note that when z = y, G —
(V(K'N K") — {z = y}) has two infinite blocks.

If V(K'NK")—{x,y}| is even (respectively, odd), then let © = up, Um—1, - . ., u1,v1,

e Um—1, Uy = y (respectively, & = Um, Um—1,...,U1, W, V1,...Vn_1, Uy = Yy) be the
vertices in V(K’N K"), such that any two consecutive vertices from ty,, ..., uy, v1,... Uy
(respectively, Uy, ..., u, w,v1,... vy, ) are contained in a facial cycle of G, and umCJ’-’ Um C
C7NCY,, for all large j. See Figure 5.

[V(K'NnK") — {x,y}| is even V(K'NK") — {x,y}| is odd

Figure 5: Structure of G

When |[V(K'N K") — {z,y}| is even, let H := G and let F} be the facial cycle of G
containing w1 and vq such that v1 Fiu; € K” and u; Fiv; € K'. Note that n > 2, and so,
uy,v1 € 0G”. By (1), u; and vy are of finite degree in G and all faces of G incident with
uy or vy are bounded by cycles. Hence we may choose (G1,G2) and Fy so that vy Fiuy
has at least two edges.

When |V(K' N K") — {z,y}| is odd, we have m > 2 (because G is 4-connected).
Let D be the facial cycle of G — w containing u; and vy such that v1Du; € K” and
uiDvy € K'. Because G is 4-connected and w ¢ 0G”, D is well defined and uy, v, €
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V(0G"). Hence by (1), u; and vy are of finite degree in G and all faces of G incident
with uy or v; are bounded by cycles. Therefore, we may further choose (K’, K") so
that, subject to {u1,...,Um,v1,...,vm}t C V(K' N K"”), w has two neighbors w; and
wg in vy Duy — {u1,v1} such that vy, wy, wa,u; occur on v1Duy in order, and w has no
neighbor in w; Dwe — {wy,ws}. Let Fy := wyDw; + wiwe and H := (G — w) + wiws.
We may assume that if wjws ¢ E(D) then it is represented by a simple arc in the open
disc bounded by D. Clearly H is (4, F})-connected. Note that v1Fiu; C K" 4+ wjws and
ulFlvl - K/.

We wish to apply Lemma (4.3). Let (Fy, ..., F,) denote a tight partial net in H such
that n is maximum. Then n < m. By (1) of Lemma (4.1), we may assume that Iy (F},)
is contained in the closed disc bounded by F,.

Since wuj,v; € V(F;) and because any two consecutive vertices from
Uy« e+ s UL, V1, e e, Uy OF from wy,,...,u1,w,v1,...,0y, are contained in a facial cycle
of G, we see that for each 1 < i < n, {uj,...,us,v1,...,v;} € V({Ig(F;)). Therefore,
{tn,vn} C V(F,), for otherwise, F,, — {un,v,} is a path or a cycle and H — V(I(F,))
would have just one infinite component (containing F, — {u,, v, }). Hence, again because
any two consecutive vertices of up,,...,u1,v1,...,0, are contained in a facial cycle of
H, we see that u;,v; € V(F;) for all 1 < i < n. By planarity and because v1 Fiu; C K"
(or v1 Flu; € K" + wywsy) and uy Fiv; € K’, we have v; Fyu; € K" and u; Fyv; C K’ for
2<1<n.

We consider two cases.

Case 1. n=m.

Then H — V(Ig(F,,)) has two infinite blocks (which is used when applying
Lemma (4.3)). Note that u,, # vm,, since H — V(I (F,,—1)) has a unique infinite block
containing Fj,.

Because of the separation (K', K"), (H —V(Ig(Fy) — V(Fn))) — {tm, vm} has two
infinite components. Hence by planarity and by (3), there is no separation (H', H") of
Iy (F,,) such that |[V(H' N H")| < 2m, {um,vm} € V(H' N H"), vy Fpu, € H', and
U Fop o, € H'.

When |V(K' N K")| is even, then m > 2. Since v; Fiu; has at least two edges and
by (3) and 4-connectivity of G, Iy (F5) has two disjoint paths from vy Fju; — v1 or from
v1Fluy — ug to vaFhuo internally disjoint from Fy U F5. Hence there is an edge wyws
of v1Fiuy such that vq,wi,ws,u; occur on v1Fiuy in order and there are two disjoint
paths in I (Fy) from vy Flw; to veFhus or from woFiuy to vy Fhus, which are internally
disjoint from Fy U Fy. When |[V(K’' N K”)| is odd, then by (3), there are two disjoint
paths in Iy (Fy) from vy Flw; or from weFiuy to vaFaug, which are internally disjoint
from Fy U Fy. Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), there is a 2-way infinite Fj-Tutte path P in H through wjws.
When |[V(K'NK")| is even, we see that P is a spanning 2-way infinite path in G. When
[V(K'NnK")| is odd, then (P —wjws) 4+ {w,ww;, wws} is a spanning 2-way infinite path
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in G.

Case 2. n < m.

First, we show that Iy (F,) N OG" = 0. For otherwise, F,, N 0G" # (. Let z be
a vertex contained in F,, N dG”. Then since (F,...,F,) is a tight partial net in H,
there are vertices z; € V(F;), 1 < i < n such that z, = z and any two consecutive
vertices from z,, ..., 21 are contained in a facial cycle of H. Thus, by planarity, either
G—A{v1,.. s Um, 215,20} or G—{ug,..., Um,21,...,2,} has two infinite components.
This contradicts (3) because n < m.

Next we show that H — V(I (F,)) has two infinite blocks. For otherwise, assume
that H — V(I (F,)) has just one infinite block, say B. Because F,, N9G" = ), it follows
from (1) that all vertices of F), have finite degree in H and each face of H incident with
a vertex of F), is bounded by a cycle. Hence the face of B containing Iz (F,) is incident
with only finitely many vertices and edges of H. Since B is 2-connected, the face of B
containing Iz (F,) is bounded by a non-dividing cycle in H, denoted F,, ;1. Now it is
easy to see that (Fy,...,F,, Fj,+1) is a tight partial net in H, contradicting the choice
of (Fl, ‘e ,Fn).

Let B', B" denote the infinite blocks of H — V(I (Fy)) such that C7 C B” and
C’]’- C B’ for all sufficiently large j. By planarity, we see that the neighbors of B’ on F,
are all contained in wu,, F,v,,.

When |[V(K' N K")| is even, then m > 2. Since v;Fiu; has at least two edges and
by (3) and 4-connectivity of G, Iy(F3) has two disjoint paths from vy Fiu; — vy or from
v1Fiu1 — ug to ve Fhug internally disjoint from £y U F>. Hence there is an edge wiws of
v1 F1up such that vy, w1, we, u; occur on v Fiup in order and there are two disjoint paths
in Iy (Fy) from vy Flw; to veFyus or from we Fjuy to vaFoug which are internally disjoint
from Fy U Fy. When |V(K'N K")| is odd, then by (3), there exist two disjoint paths in
Iy (Fy) from vy Fywy or from we Fyug to vg Fyus which are internally disjoint from Fy U Fy.
Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), we see that H contains a 2-way infinite Fj-Tutte path P through
wiwy. If |[V(K'N K") — {x,y}| is even, then P is a spanning 2-way infinite path in G.
If [V(K'NK") — {x,y}| is odd, then (P — wjws) + {w, ww;, wws} is a spanning 2-way
infinite path in G. 0

It is easy to see that Theorem (1.1) follows from Theorems (5.1), (6.1), and (6.2).
ACKNOWLEDGMENT. The author thanks two referees for their helpful comments. In
particular, the author would like to thank the referee who pointed out a missing case in
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