Infinite paths in planar graphs IV, dividing cycles

Xingxing Yu [∗] School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, USA and Center for Combinatorics Nankai University Tianjin, 300071, China

February 10, 2006

Abstract

Nash-Williams conjectured that a 4-connected infinite planar graph contains a spanning 2-way infinite path if, and only if, the deletion of any finite set of vertices results in at most two infinite components. In this paper, we prove the Nash-Williams conjecture for graphs with no dividing cycles and for graphs with infinitely many vertex disjoint dividing cycles. A cycle in an infinite plane graph is called dividing if both regions of the plane bounded by this cycle contain infinitely many vertices of the graph.

[∗]Partially supported by NSF grant DMS-0245530, NSA grant MDA-904-03-1-0052, and RGC grant HKU7056/04P

1 Introduction

We use the terminology in [8], [9], and [10]. For convenience we repeat some here. Let H be a (finite or infinite) subgraph of a (finite or infinite) graph G , let $v_1, \ldots, v_k \in V(G)$, and $\{u_i, w_i\} \subseteq V(H) \cup \{v_1, \ldots, v_k\}$, $i = 1, \ldots, m$. Then $H + \{v_1, \ldots, v_k, u_1w_1, \ldots, u_mw_m\}$ denotes the graph with vertex set $V(H) \cup \{v_1, \ldots, v_k\}$ and edge set $E(H) \cup \{u_1w_1,\ldots,u_kw_k\}$. For any $x \in V(H) \cup E(H)$, we write $H + x$ instead of $H + \{x\}.$

Let C be a cycle in a plane graph G and let $x, y \in V(C)$. When $x \neq y$ then xCy denotes the subpath of C from x to y in clockwise order, and when $x = y$ then xCy denotes the trivial path consisting of $x = y$ only. For a (finite or infinite) path P and $x, y \in V(P)$, we use xPy to denote the unique finite path in P between x and y.

By the Jordan curve theorem, each cycle C in a (finite or infinite) plane graph G divides the plane into two closed regions whose intersection is C. If G is infinite and exactly one of these two closed regions, say \mathcal{D} , contains a finite subgraph of G , then we use $I_G(C)$ to denote the subgraph of G contained in D. If there is no danger of confusion, we use $I(C)$ instead of $I_G(C)$. Note that $C \subseteq I(C)$, and if $I(C) = C$ then C is a facial cycle.

A graph G is k-indivisible, where k is a positive integer, if, for every finite $X \subseteq V(G)$, $G-X$ has at most $k-1$ infinite components. Nash-Williams ([2], [3], and [7]) conjectured that a 4-connected infinite planar graph contains a spanning 2-way infinite path if, and only if, G is 3-indivisible.

In [8] and [9], the Nash-Williams conjecture is established for 2-indivisible graphs. To deal with those graphs which are 3-indivisible but not 2-indivisible, we define dividing cycles in an infinite plane graph G as those cycles C for which $I_G(C)$ is not defined. A non-dividing cycle in G is then a cycle which is not dividing. Let $\gamma(G)$ denote the maximum number of vertex disjoint dividing cycles in an infinite plane graph G. With this notation, we may divide 3-indivisible infinite plane graphs G into three classes: those with $\gamma(G) = 0$ (including all 2-indivisible graphs), those with $\gamma(G) = \infty$, and those for which $\gamma(G)$ is a positive integer. (Note that, when $\gamma(G) = 0$, the drawing of G may be modified to give a VAP-free drawing of G ; see [5] and [1].) The objective of this paper is to give a proof of the following result, which establishes the Nash-Williams conjecture for two of these three classes.

 (1.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume that $\gamma(G) = 0$ or $\gamma(G) = \infty$. Then G contains a spanning 2-way infinite path.

Throughout the rest of the paper, graphs will be finite unless it is clear from the context or otherwise mentioned. In Section 2 we summarize those concepts and results from [8], [9] and [10] which will be used in this paper. We prove in Section 3 three lemmas concerning 2-way infinite Tutte paths in two special classes of graphs. These lemmas will serve as bases for inductive arguments. Section 4 includes results which show that certain finite sequences of non-dividing cycles guarantee the existence of a 2-way infinite Tutte path. Theorem (1.1) will be proved in Section 5 for graphs with $\gamma(G) = 0$. The proof of Theorem (1.1) will then be completed in Section 6.

2 Nets and Tutte paths

A net in an infinite plane graph G is a sequence $N := (C_1, C_2, \ldots)$ of cycles in G such that $I(C_i)$ is defined for all $i \geq 1$, and the following properties are satisfied:

- (1) $I(C_i) \subseteq I(C_{i+1})$ for all $i \geq 1$,
- (2) $\bigcup_{i=1}^{\infty} I(C_i) = G$, and
- (3) either $C_i \cap C_j = \emptyset$ for all $i \neq j$, or for $i \geq 1$, $C_i \cap C_{i+1}$ is a non-trivial path, $C_i \cap C_{i+1} \subseteq C_{i+1} \cap C_{i+2}$, and neither endvertex of $C_i \cap C_{i+1}$ is an endvertex of $C_{i+1} \cap C_{i+2}$.

If $C_i \cap C_j = \emptyset$ for all $i \neq j$, then N is called a *radial net*; otherwise, N is a *ladder net*. Let $\partial N = \emptyset$ if N is a radial net; otherwise, let $\partial N = \bigcup_{i=1}^{\infty} (C_i \cap C_{i+1}).$

Let G be a (finite or infinite) graph and H be a (finite or infinite) subgraph of G . An H -bridge of G is a (finite or infinite) subgraph of G which is induced by either (1) an edge of $E(G) - E(H)$ whose incident vertices are in $V(H)$ or (2) the edges contained in a component of $G - V(H)$ and the edges from that component to H. Also, we say that G is $(4, H)$ -connected if, for any $T \subseteq V(G)$ with $|T| \leq 3$, every component of $G-T$ contains a vertex of H. The following result is Theorem (2.1) in [10] (its 4-connected version is shown in [9]), which gives a structural description of graphs with nets.

 (2.1) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph with a facial cycle C such that G is $(4, C)$ -connected, and let S denote the set of vertices of G of infinite degree. Then $|S| \leq 2$, and there is a set F of edges of G such that

- (1) for any $f \in F$, f is incident with a vertex in S,
- (2) $G F$ has a net $N = (C_1, C_2, \ldots), C \subseteq I(C_1), S \subseteq \partial N$, and for any $f \in F$ both incident vertices of f are contained in a common infinite S-bridge of ∂N ,
- (3) if $|S| = 1$, then either one S-bridge of ∂N contains all vertices incident with edges in F or each S-bridge of ∂N contains infinitely many vertices incident with edges in F, and

(4) if $|S| = 2$, then for any $T \subseteq V(G) - S$ with $|T| \leq 3$, S is contained in a component of $(G - F) - T$.

For an infinite plane graph G, let ∂G denote the subgraph of G such that for each $x \in V(G) \cup E(G)$, $x \in \partial G$ if and only if $x \notin (E(I(D)) - E(D)) \cup (V(I(D)) - V(D))$ for every cycle D in G. Clearly, $\partial G = \emptyset$ when G admits a radial net. From Theorem (2.1), we can show that when G does not admit a radial net then ∂G is a path, or a 1-way infinite path, or a 2-way infinite path. The following observation will be useful.

 (2.2) Lemma. Let G be a 2-connected infinite plane graph and C be a facial cycle of G such that G is $(4, C)$ -connected. If G is 2-indivisible, then all but one face of G are bounded by cycles, and ∂G is precisely the subgraph of G lies on the boundary of the exceptional face of G.

Proof. Suppose G is 2-indivisible and let R be a face of G. Suppose R is incident with a vertex or edge which is not in ∂G . Then there exists some cycle D in G such that R is incident with some element of $(E(I(D)) - E(D)) \cup (V(I(D)) - V(D))$. This shows that R is a face of $I(D)$. Since $I(D)$ is a 2-connected plane graph, R is bounded by a cycle. Now assume that all vertices or edges of G incident with R are in ∂G . Then since G is 2-indivisible, it follows from Theorem (2.1) that ∂G is precisely the subgraph of G that lies on the boundary of R. \Box

The next result is a generalization of Lemma (2.3) in [9].

 (2.3) Lemma. Let G be a 2-connected infinite plane graph and let C be a facial cycle of G such that G is $(4, C)$ -connected and $\gamma(G) = 0$. Then there is an infinite sequence (D_1, D_2, \ldots) of cycles in G such that $C \subseteq I(D_1)$ and the following properties hold:

- (1) for each $i \geq 1$, $I(D_i) \subseteq I(D_{i+1})$, and $D_i \cap D_{i+1}$ is minimal among all subgraphs $D_i \cap D^*$ arising from cycles D^* in G such that $I(D_i) \subseteq I(D^*)$,
- (2) for each $i \geq 1$, G has no finite $I(D_i)$ -bridge,
- (3) for each $i \geq 1$, $D_i \cap D_{i+1} \subseteq D_{i+1} \cap D_{i+2}$, and
- (4) $\bigcup_{i \geq 1} I(D_i) = G.$

The proof of Lemma (2.3) in [9] uses two properties: (a) for any finite $X \subseteq V(G)$, $G - X$ has only finitely many components, and (b) every cycle in G is non-dividing (implied by cohesiveness). In the above lemma, (a) is guaranteed by the assumption that G is planar and $(4, C)$ -connected, and (b) is guaranteed by the assumption that $\gamma(G) = 0.$

In the remainder of this section, we state several results concerning Tutte paths in finite or infinite plane graphs. Let G be a (finite or infinite) graph and H be a (finite or infinite) subgraph of G. If B is an H-bridge of G, then the vertices in $V(H \cap B)$ are called *attachments* of B (on H). The subgraph H is a Tutte subgraph of G if every H -bridge of G is finite and has at most three attachments. For a (finite or infinite) subgraph C of G, we say that H is a C-Tutte subgraph of G if H is a Tutte subgraph of G and every H-bridge of G containing an edge of C has at most two attachments. A (finite or infinite) Tutte path is a (finite or infinite) path which is a Tutte subgraph.

The following result is the main theorem in [7].

 (2.4) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Assume that $x \in V(C)$, $e \in E(C)$, and $y \in V(G - x)$. Then G contains a C-Tutte path P from x to y such that $e \in E(P)$.

The next result is (2.6) from [4].

(2.5) Lemma. Let G be a 2-connected plane graph with a facial cycle C. Let $u, v \in$ $V(C)$ be distinct, let $e, f \in E(C)$, and assume that u, v, e, f occur on C in clockwise order. Then G contains a vCu-Tutte path P from u to v such that $\{e, f\} \subseteq E(P)$.

We remark here that both Lemma (2.4) and Lemma (2.5) may be applied when e or f or both are vertices. We need Lemma (3.3) from [10], which will be convenient for extending Tutte paths.

 (2.6) Lemma. Let K be a connected (finite or infinite) plane graph, C be a facial walk of K, Q be a path between p and q on C, $u \in V(C)-V(Q)$, L be a subgraph of $K-V(Q)$, and Q' be a cycle in L or a path in L or a 2-way infinite path in L. Suppose the following three conditions are satisfied:

- (1) for any $(L \cup Q)$ -bridge B of K, $|V(B \cap L)| \leq 1$ and $V(B \cap L) \subseteq V(Q')$,
- (2) K $V(L)$ is finite and all vertices of $K V(L)$ have finite degree in K, and
- (3) L contains a Q'-Tutte subgraph T with $u \in V(T)$ and $|V(Q') \cap V(T)| \geq 2$.

Then $K - V(T)$ contains a path S between p and q such that $S \cup T$ is a Q-Tutte subgraph of K, and every T-bridge of L containing no edge of Q' is also an $(S \cup T)$ -bridge of K.

The following result is Corollary (3.7) in [9].

 (2.7) Lemma. Let G be a 2-connected infinite plane graph with a ladder net N, and let $x \in V(\partial N)$ and $uv \in E(\partial N)$ such that $u \in V(x\partial Nv)$. Then G contains a 1-way infinite ∂N -Tutte path P from x such that $uv \in E(P)$ and $u \in V(xPv)$.

We also need Theorem (1.2) from [10].

(2.8) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph, let C be a facial cycle of G, let $x \in V(C)$ and $uv \in E(C)$ with $x \neq v$, and let Q denote the subpath of $C - v$ between u and x. Assume that G is $(4, C)$ -connected and v is contained in the infinite component of $G - V(Q)$. Then G contains a 1-way infinite C-Tutte path P from x such that $uv \in E(P)$ and $u \in V(xPv)$.

3 Two-way infinite Tutte paths

The goal of this section is to prove three results on 2-way infinite Tutte paths. These results will be used as bases for inductive arguments.

 (3.1) Lemma. Let G be a 2-connected 3-indivisible infinite plane graph, let C be a facial cycle of G, and let $u, v \in V(C)$ be distinct such that G is $(4, C)$ -connected and $G - \{u, v\}$ has two infinite components. Then for any $e \in E(C)$, G contains a 2-way infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that the face of G bounded by C is an open disc. Since G is $(4, C)$ -connected, G has at most three $\{u, v\}$ -bridges: G_1 containing vCu, G_2 containing uCv, and possibly a third $\{u, v\}$ -bridge induced by uv (when $uv \in E(G)$). Since $G - \{u, v\}$ has two infinite components, G_1 and G_2 are infinite. For each $i \in \{1,2\}$, let B_i be the infinite block of G_i . Since G is 2-connected, $B_1 \cap vCu$ and $B_2 \cap uCv$ are nontrivial paths. Let $u' \in V(B_2 \cap uCv)$ with uCu' minimal, and let $v' \in V(B_1 \cap vCu)$ with vcv' minimal. See Figure 1, where the possible edge uv is not drawn. Let $G' := G$ if $uv \notin E(G)$; otherwise, let $G' := G - uv$. Then G' has exactly two infinite $\{u', v'\}$ -bridges, one containing B_1 and the other containing B_2 .

Figure 1: G, L and R

Since G is $(4, C)$ -connected, neither $u'Cv$ nor $v'Cu$ is an edge; for otherwise, $G \{u', v\}$ or $G - \{u, v'\}$ has a component containing no vertex of C, a contradiction. Let L

be obtained from G' by replacing the $\{u', v'\}$ -bridge of G' containing B_2 with the edge $u'v'$, and let R be obtained from G' by replacing the $\{u', v'\}$ -bridge of G' containing B_1 with the edge $v'u'$. Let $C_L := v'Cu' + u'v'$ and $C_R := u'Cv' + v'u'$. We may assume that the edges are added so that the faces of L and R bounded by C_L and C_R , respectively, are open discs. See Figure 1. Because G is 3-indivisible, both L and R are 2-indivisible. Since G is $(4, C)$ -connected and since $V(C_L) \cup V(C_R) = V(C)$, L must be $(4, C_L)$ -connected and R must be $(4, C_R)$ -connected.

By symmetry, we may assume that $e \in E(v'Cu')$, and let $e = ab$ so that v', b, a, u' occur on C_L in clockwise order. Since $v' \in B_1$, we see that b is in the infinite component of $L - V(aC_Lu')$. Hence, by Theorem (2.8), there is a 1-way infinite C_L -Tutte path P_L from u' in L such that $e \in E(P_L)$ and $a \in V(u'P_Lb)$. By planarity, $u'v' \notin E(P_L)$ and, therefore, $u \in V(P_L)$. We claim that $v' \in V(P_L)$. For otherwise v' is contained in a P_L -bridge B of L. Clearly, $u' \in V(B \cap P_L)$. Since P_L is a C_L -Tutte path of L, $|V(B \cap P_L)| = 2$ and B is finite. Let $v'' \in V(B \cap P_L) - \{u'\}$. Then v'' lies on C and $v'Cv'' - v'' \nsubseteq B_1$, contradicting the choice of v'.

If $v = v'$ or $uv \notin E(G)$ then we use Theorem (2.8) to find a 1-way infinite C_R -Tutte path P_R in R from v' and through v'u'. It is easy to see that $P := P_L \cup (P_R - v')$ is a 2-way infinite C-Tutte path in G such that $e \in E(P)$.

Now assume $v \neq v'$ and $uv \in E(G)$. Suppose $u = u'$. In R we use Theorem (2.8) to find a 1-way infinite C_R -Tutte path P_R from u' and through u'v'. Then $v \in V(P_R)$. Let P_u denote the infinite u-bridge of P_L and P_v denote the infinite v-bridge of P_R . Clearly $e \in E(P_u)$. It is easy to verify that $P := (P_u \cup P_v) + uv$ gives the desired 2-way infinite C-Tutte path in G.

Hence we may assume $u \neq u'$. Suppose $e \in E(vCu)$. In R, we use Theorem (2.8) to find a 1-way infinite C_R -Tutte path P_R from v' and through the edge of $u'Cv'$ incident with v'. Then $v'u' \notin E(P_R)$ and $v \in V(P_R)$. By a similar argument as above for showing $v' \in V(P_L)$, we can show that $u' \in V(P_R)$. Let P_u denote the infinite u-bridge of P_L and P_v denote the infinite v-bridge of P_R . Since $e \in E(vCu)$, $e \in E(P_u)$. It is easy to verify that $P := (P_u \cup P_v) + uv$ gives the desired 2-way infinite C-Tutte path in G.

To deal with the remaining case when $e \in E(uCu')$, we view $G_i + uv$ (for each $1 \leq$ $i \leq 2$) as a plane graph with a facial cycle C_i , where $C_1 = vCu + uv$ and $C_2 = uCv + uv$. In $G_1 + uv$ we apply Theorem (2.8) to find a 1-way infinite C_1 -Tutte path P_1 from u through uv. In $G_2 + uv$ we apply Theorem (2.8) to find a 1-way infinite C_2 -Tutte path P_2 from v through e. Because $\{v, u'\}$ is a 2-cut in G_2 , we see that $vu \in E(P_2)$. Hence, $P := P_1 \cup P_2$ gives the desired 2-way infinite C-Tutte path in G.

For the next two lemmas, we need additional notation. Let G be a 2-connected 3-indivisible infinite plane graph, and let C be a facial cycle of G such that G is $(4, C)$ connected. Let H be an infinite block of $G - V(C)$ and let D be the cycle of H which bounds the face of H containing C. See Figure 2. Let w_1, \ldots, w_b denote the attachments

Figure 2: Illustration for Lemma (3.2)

on H of $(H \cup C)$ -bridges of G which occur on D in clockwise order. Let $p_j, q_j \in V(C)$ with $p_j C q_j$ maximal such that $\{p_j, w_j\}$ is contained in an $(H \cup C)$ -bridge of $G, \{q_j, w_j\}$ is contained in an $(H \cup C)$ -bridge of G, and any $(H \cup C)$ -bridge of G containing some $w_l \neq w_j$ contains no vertex of $V (p_j C q_j) - \{p_j, q_j\}$. Note that p_j and q_j are well defined because G is $(4, C)$ -connected. Let J_j denote the union of $p_j C q_j$ and those $(H \cup C)$ bridges of G whose attachments are all contained in $V(p_j C q_j) \cup \{w_j\}$. (Note that if $p_j = q_j$ then J_j is induced by a single edge.) Let L_j denote the union of $q_j C p_{j+1}$ and those ($H \cup C$)-bridges of G whose attachments are all contained in $V(q_j C p_{j+1})$, where $p_{b+1} = p_1.$

(3.2) Lemma. Let G, C, H, D and $w_j, J_j, L_j \ (1 \leq j \leq b)$ be defined as above. Let $e \in E(C)$. Suppose there is some $1 \leq j \leq b$ such that L_j is infinite and $e \notin E(L_j)$. Then G contains a 2-way infinite C -Tutte path through e .

Proof. Without loss of generality, we may assume that $j = 1$. Since $e \in E(p_2Cq_1)$, $e \in E(p_r C p_{r+1})$ for some $w_r \neq w_1$ or $e \in E(q_{r-1} C q_r)$ for some $w_r \neq w_2$. Note the symmetry between clockwise and counter clockwise orientations of C, and also note the symmetry between w_1 and w_2 . We may therefore assume that $e \in E(p_r C p_{r+1})$ for some $w_r \neq w_1$.

Since G is 3-indivisible and L_1 is infinite, H is 2-indivisible. Since G is $(4, C)$ connected and by planarity, H is $(4, D)$ -connected. Hence by Theorem (2.8) , H contains a 1-way infinite D-Tutte path P from w_1 and through w_r .

Since G is 2-connected and L_1 is infinite, $L_1 - q_1$ contains a 1-way infinite path from p_2 . Let $L'_1 := L_1 + q_1 p_2$ such that $C'_1 := q_1 C p_2 + q_1 p_2$ is a facial cycle of L'_1 . By Theorem (2.8), L'_1 has a 1-way infinite C'_1 -Tutte path Q_1 from q_1 such that $q_1p_2 \in E(Q_1)$.

In $J_1 + p_1w_1$, we apply Lemma (2.4) to find a p_1Cq_1 -Tutte path P_1 from w_1 to p_1 and through q_1 .

We apply Lemma (2.6) to $K := G - V((J_1 \cup L_1) - \{p_1, p_2, w_1\}),$ $H, p_2Cp_1, D, P, p_2, p_1, w_1$ (as K, L, Q, Q', T, p, q, u , respectively). Note that the conditions of Lemma (2.6) are satisfied. In particular, $w_1, w_r \in V(P)$ implies that $|V(P \cap D)| \geq 2$. Hence, by Lemma (2.6), there is a path S in $K - V(P)$ between p_2 and p_1 such that $S \cup P$ is a p_2Cp_1 -Tutte subgraph in K and every P-bridge of H containing no edge of D is also an $(S \cup P)$ -bridge of K.

We may assume that $e \in E(S)$. This may be seen as follows. By planarity and because $w_r \in V(P)$, p_r and p_{r+1} are cut vertices of $K - V(P)$. Hence, $p_r, p_{r+1} \in V(S)$, $(J_r \cup L_r) - w_r$ is a $\{p_r, p_{r+1}\}\$ -bridge of $K - V(P)$, and $p_r S p_{r+1} \subseteq (J_r \cup L_r) - w_r$. In $(J_r \cup L_r) + p_{r+1}w_r$, we apply Lemma (2.5) to find a p_rCp_{r+1} -Tutte path S_r from p_r to w_r such that $p_{r+1}w_r, e \in E(S_r)$. By replacing the subpath p_rSp_{r+1} of S with $S_r - w_r$, we obtain the desired path S through e .

Now $P^* := P \cup P_1 \cup S \cup (Q_1 - q_1)$ is a 2-way infinite path through e. Note that every P^{*}-bridge of G is one of the following: an $(S \cup P)$ -bridge of H, or a P₁-bridge of J_1 , or a Q_1 -bridge of L'_1 . Hence, P^* is a 2-way infinite C-Tutte path in G through e .

(3.3) Lemma. Let G, C, H, D and $w_j, J_j, L_j \ (1 \leq j \leq b)$ be defined as above. Let $e \in E(C)$. Suppose there is some $1 \leq j \leq b$ such that J_j is infinite and e is not contained in the unique infinite block of $J_j - w_j$. Then G contains a 2-way infinite C-Tutte path through e.

Proof. Without loss of generality, we may assume that $j = 1$. If $e \in E(J_1)$, we choose an arbitrary $w_r \neq w_1$. Since e is not contained in the infinite block of $J_j - w_j$, there is a vertex $v \in V(p_1Cq_1 - \{p_1, q_1\})$ such that the infinite $\{w_1, v\}$ -bridge of J_1 does not contain e₁. In this case, let J_1^* denote the infinite $\{w_1, v\}$ -bridge of J_1 . Now assume $e \notin E(J_1)$. Then $e \in E(q_1Cp_1)$, and hence $e \in E(p_rCp_{r+1})$ for some $w_r \neq w_1$ or $e \in E(q_{r-1}Cq_r)$ for some $w_r \neq w_1$. Let $J_1^* = J_1$ and $v := p_1$.

Note the symmetry between clockwise and counter clockwise orientations of C. We may therefore assume that when $e \notin E(J_1)$ we have $e \in E(p_r C p_{r+1})$ for some $w_r \neq w_1$, and when $e \in E(J_1)$ then $q_1 \in V(J_1^*)$.

Since G is 3-indivisible and J_1 is infinite, H is 2-indivisible. Since G is $(4, C)$ connected and by planarity, H is $(4, D)$ -connected. Hence by Theorem (2.8) , H contains a 1-way infinite D-Tutte path P from w_1 and through w_r .

Since G is 3-indivisible and H is infinite, J_1^* must be 2-indivisible. Let X be a path in J_1 from w_1 to $V(vCq_1 - \{v, q_1\})$ such that $X \cap C$ consists of a single vertex x. Let J_1^v and J_1^q denote the subgraphs of J_1^* such that $v \in V(J_1^q)$, $q_1 \in V(J_1^q)$, $J_1^v \cap J_1^q = X$, and $J_1^v \cup J_1^q = J_1^*$. Then either J_1^v or J_1^q is finite.

Suppose J_1^q is finite. Then $J_1^{\dot{q}}$ contains a path Q from w_1 to q_1 such that Q is contained in the facial cycle of G which contains $\{w_1, w_2, q_1, p_2\}$. Let $J' := J_1^* + vw_1$

be the plane graph in which $C' := (Q \cup vCq_1) + vw_1$ is a facial cycle. Since G is 3indivisible and H is infinite, $J' - V(Q)$ has a unique infinite component, denoted J'' . Then $v \in V(J'')$; for otherwise, by planarity, the neighbors of J'' , which are furtherest apart on Q , form a 2-cut S in G such that the component of $G - S$ containing J'' has no vertex of C, contradicting $(4, C)$ -connectivity of G. By Theorem (2.8) , J' contains a 1-way infinite C'-Tutte path Y from q_1 such that $vw_1 \in E(Y)$ and $w_1 \in V(q_1 Y v)$. Hence, $Y - vw_1$ consists of a path P' from w_1 to q_1 and a 1-way infinite path P'' from v such that $P' \cap P'' = \emptyset$ and $P' \cup P''$ is a vCq_1 -Tutte subgraph of J_1^* .

When J_1^v is finite, we may apply the same argument to $J_1^* + q_1w_1$ as in the preceding paragraph to show that J_1^* contains a path P' from w_1 to v and a 1-way infinite path P'' from q_1 such that $P' \cap P'' = \emptyset$ and $P' \cup P''$ is a vCq_1 -Tutte subgraph of J_1^* .

Next we apply Lemma (2.6) to $K := G - V(J_1^* - \{v, q_1, w_1\}), H, q_1 Cv, D, P, v, q_1, w_1)$ (as K, L, Q, Q', T, p, q, u , respectively). Note that the conditions of Lemma (2.6) are satisfied. In particular, $w_1, w_r \in V(P)$ implies that $|V(P) \cap V(D)| \geq 2$. Hence, by Lemma (2.6), there is a path S in $K - V(P)$ between q_1 and v such that $S \cup P$ is a q_1Cv -Tutte subgraph in K and every P-bridge of H containing no edge of D is also an $(S \cup P)$ -bridge of K.

Because $w_1, w_r \in V(P)$ and by the same argument as in previous lemma, we may assume that $e \in E(S)$. Let $P^* := P \cup S \cup P' \cup P''$. Then every P^* -bridge of G is either an $(S \cup P)$ -bridge of H or a $(P' \cup P'')$ -bridge of J_1 . Hence P^* is a 2-way infinite C-Tutte path in G through e .

4 Tight partial nets

Let G be a 2-connected infinite plane graph. A tight partial net in G is a sequence (F_1, \ldots, F_n) of vertex disjoint non-dividing cycles in G, where n is a positive integer, such that $I(F_1) = F_1$ and for each $1 \leq i \leq n-1$, $I(F_i) \subseteq I(F_{i+1})$ and every $(I(F_i) \cup F_{i+1})$ bridge of $I(F_{i+1})$ has at most one attachment on F_{i+1} .

A separation of a graph G is an ordered pair (G_1, G_2) of subgraphs of G such that $E(G_i) \neq E(G)$ for $i \in \{1,2\}, E(G_1 \cap G_2) = \emptyset$, and $G_1 \cup G_2 = G$. The following observation will be convenient.

(4.1) Lemma. Let G be a 2-connected infinite plane graph and let (F_1, \ldots, F_n) be a tight partial net in G. Then

- (1) there is a plane embedding of G such that $I(F_n)$ is contained in the closed disc in the plane bounded by F_n , and
- (2) for any distinct $x, y \in V(F_n)$, there is a separation (M_1, M_2) of $I(F_n)$ such that $|V(M_1 \cap M_2)| \leq 2n$, $yF_nx \subseteq M_1$ and $xF_ny \subseteq M_2$.

Proof. Note that F_n is a facial cycle of $G-V(I(F_n)-V(F_n))$. Therefore, $G-V(I(F_n)-V(F_n))$ $V(F_n)$ has a plane embedding in which the open disc bounded by F_n is a face. Since $I(F_n)$ is a finite plane graph, it has a plane embedding such that F_n bounds its infinite face. Hence, by combining the new embedding of $G - V(I(F_n) - V(F_n))$ and the new embedding of $I(F_n)$, we see that G has a plane embedding in which $I(F_n)$ is contained in the closed disc in the plane bounded by F_n . Thus we have (1).

To prove (2), we apply induction on n. Clearly, (2) holds when $n = 1$. So assume $n \geq 2$. For convenience and by (1), let us assume without loss of generality that $I(F_n)$ is contained in the closed disc bounded by F_n . Because (F_1, \ldots, F_n) is a tight partial net, every $(I(F_{n-1}) \cup F_n)$ -bridge of $I(F_n)$ has at most one attachment on F_n . Thus, there exist vertices $x', y' \in V(F_{n-1})$ such that x and x' are incident with a common face of G and y and y' are incident with a common face of G. If $x' = y'$ then by planarity of $I(F_n)$ we see that $I(F_n)$ has a separation (M_1, M_2) such that $V(M_1 \cap M_2) = \{x, x' = y', y\},\$ $yF_nx \subseteq M_1$, and $xF_ny \subseteq M_2$. So we may assume that $x' \neq y'$. Then by induction, $I(F_{n-1})$ has a separation (M'_1, M'_2) such that $|V(M'_1 \cap M'_2)| \leq 2(n-1)$, $y'F_{n-1}x' \subseteq M'_1$, and $x'F_{n-1}y' \subseteq M'_2$. Now by planarity of $I(F_n)$, we see that $I(F_n)$ has a separation (M_1, M_2) such that $V(M_1 \cap M_2) = V(M'_1 \cap M'_2) \cup \{x, y\}, yF_n x \subseteq M_1$, and $xF_n y \subseteq M_2$.

The next result is a reduction lemma which shows that, when there is a certain tight partial net with two non-dividing cycles, an infinite graph can be reduced in a certain way so that the existence of a 2-way infinite Tutte paths is preserved. See Figure 3 for an illustration of the situation described in the lemma and its proof. For a subgraph H of a graph G, we use $N_G(H)$, or simply $N(H)$, to denote the set of vertices in $V(G) - V(H)$ each of which is adjacent to some vertex of H.

Figure 3: Illustration for Lemma (4.2)

(4.2) Lemma. Let G be a 2-connected infinite plane graph and (F_1, F_2) be a tight partial net in G such that G is $(4, F_1)$ -connected. Suppose $I(F_2)$ is contained in the closed disc bounded by F_2 , v_i and u_i are distinct vertices on F_i for $1 \le i \le 2$, and $uv \in$ $E(v_1F_1u_1)$ with v_1, v, u, u_1 on $v_1F_1u_1$ in order. Assume there exist two vertex disjoint paths in $I(F_2)$ from v_1F_1v to $v_2F_2u_2$ or from uF_1u_1 to $v_2F_2u_2$, which are also internally disjoint from $F_1 \cup F_2$. Then there exist $p \in V(v_1F_1u_1 - \{u_1, v_1\}), x, y \in V(v_2F_2u_2),$ and $f \in \{px, py\}$ such that v_2, x, y, u_2 occur on $v_2F_2u_2$ in order and $N(xF_2y - \{x, y\}) \cap$ $V(I(F_2)) \subseteq \{x, y, p\}$ and such that if $(G - V(I(F_2) - (V(F_2) \cup \{p\})) + \{px, py\}$ has a 2-way infinite $(yF_2x + \{p, px, py\})$ -Tutte path through f then G contains a 2-way infinite F_1 -Tutte path through uv.

Proof. Let G_1 be the infinite block of $G - V(F_1)$, and let w_1, \ldots, w_b be the attachments on G_1 of $(G_1 \cup F_1)$ -bridges of G. Because (F_1, F_2) is a tight partial net, $F_2 \subseteq G_1$. By planarity, $w_i \in V(F_2)$. Without loss of generality, we may assume that w_1, \ldots, w_b occur on F_2 in clockwise order. For each w_t , $1 \le t \le b$, let $p_t, q_t \in V(F_1)$ with $p_t F_1 q_t$ maximal such that $\{p_t, w_t\}$ is contained in a $(G_1 \cup F_1)$ -bridge of G , $\{q_t, w_t\}$ is contained in a $(G_1 \cup F_1)$ -bridge of G, and any $(G_1 \cup F_1)$ -bridge of G containing some $w_l \neq w_t$ contains no vertex from $V(p_t F_1 q_t) - \{p_t, q_t\}$. See Figure 3. Note that p_t and q_t are well defined because G is $(4, F_1)$ -connected.

We may assume that there are vertex disjoint paths in $I(F_2)$ from v_1F_1v to $v_2F_2u_2$ and internally disjoint from $F_1 \cup F_2$; the other case can be taken care of in the same way. Then $uv \in E(p_k F_1 p_{k+1})$ for some $w_k \in V(v_2 F_2 u_2 - v_2)$. We choose such w_k that $w_kF_2u_2$ is minimal. Let J_k denote the union of $p_kF_1p_{k+1}$ and those $(G_1 \cup F_1)$ -bridges of G whose attachments are all contained in $V(p_kF_1p_{k+1}) \cup \{w_k\}$. Then there is some $w_r \in V(v_2F_2w_k)$ such that $J_k - p_r$ contains a path from w_k to p_{k+1} and through uv. Select w_r so that $w_rF_2w_k$ is minimal. Let $w_l = w_r$ if $w_r \neq w_k$; otherwise, let $w_l = w_{k-1}$. Let J_l denote the union of $p_l F_1 p_k$ and those $(G_1 \cup F_1)$ -bridges of G whose attachments are all contained in $V(p_lF_1p_k) \cup \{w_l\}.$

Let $G' := G_1 + \{p_k, p_k w_j : w_j \in V(w_l F_2 w_k)\}\$. Since G is $(4, F_1)$ -connected, we see that all $(G_1 \cup F_1)$ -bridges of G containing some $w_j \in V(w_l F_2 w_k - \{w_l, w_k\})$ are induced by the edge $p_k w_j$. Hence $G' = (G - V(I(F_2) - (V(F_2) \cup \{p_k\})) + \{p_k w_l, p_k w_k\}$. Let $F'_2 := w_k F_2 w_l + \{p_k, p_k w_l, p_k w_k\}.$ See Figure 3.

Let $f := p_k w_l$ and assume that G' contains a 2-way infinite F'_2 -Tutte path P' through f. Note that $P' - p_k$ is an F_2 -Tutte subgraph of G_1 and $P' - p_k$ consists of two disjoint 1-way infinite paths. We shall show that the assertion of the lemma holds for $p := p_k$, $x := w_l$ and $y := w_k$.

First, we find a path S from p_{k+1} to p_l by applying Lemma (2.6) to $K :=$ $G - V((J_k \cup J_l) - \{p_l, p_{k+1}, w_l, w_k\})$ (with $K, G_1, p_{k+1}F_1p_l, F_2, P' - p_k, p_{k+1}, p_l, w_l$ as K, L, Q, Q', T, p, q, u , respectively). Clearly, the conditions of Lemma (2.6) hold. In particular, we note that $|V(P'-p_k) \cap V(F_2)| \geq 2$. Hence by Lemma (2.6), there is a path S from p_{k+1} to p_l in $K - V(P'-p_k)$ such that $(P'-p_k) \cup S$ is a $p_{k+1}F_1p_l$ -Tutte subgraph of K, and every $(P'-p_k)$ -bridge of G_1 not containing an edge of F_2 is a $((P'-p_k) \cup S)$ -bridge of K.

Let w_j denote the endvertex of $P' - p_k$ other than w_l . Since P' is a 2-way infinite F_2' -Tutte path in G', we see that $w_k \in V(P')$ (for otherwise, the P'-bridge of G' containing w_k would have three attachments, namely, $p = p_k$ and two on F_2). We shall complete the desired path in G by finding a path from w_j to p_{k+1} and a path from w_l to p_l . We distinguish two cases.

Case 1. $p_k \neq p_l$.

In $J_l + w_l p_k$ we apply Lemma (2.4) to find a $p_l F_1 p_k$ -Tutte path P'_l from p_l to p_k such that $w_l p_k \in E(P'_l)$, and let $P_l := P'_l - p_k$. If $w_k = w_j$, then in $J_k + w_k p_{k+1}$ we apply Lemma (2.5) to find a $p_k F_1 p_{k+1}$ -Tutte path P_k from w_k to p_{k+1} such that $p_k \in V(P_k)$ and $uv \in E(P_k)$. If $w_k \neq w_j$, then in $J_k + \{w_k p_k, w_k p_{k+1}\}\$ we apply Lemma (2.5) to find a $p_k F_1 p_{k+1}$ -Tutte path P'_k from w_k to p_{k+1} such that $w_k p_k, uv \in E(P'_k)$; let $P_k := (P'_k - w_k) + \{w_j, p_k w_j\}.$

Let $P := (P' - p_k) \cup S \cup P_k \cup P_l$. Then every P-bridge of G is one of the following: a $((P' - p_k) \cup S)$ -bridge of K, or a P_k -bridge of $J_k + w_k p_{k+1}$ when $w_k = w_j$, or a P'_k -bridge of $J_k + \{w_k p_k, w_k p_{k+1}\}\$ when $w_k \neq w_j$, or a P'_l -bridge of $J_l + w_l p_k$, or a P' -bridge of G' containing some $w_i \in V(w_l F_2 w_j - \{w_l, w_j\})$ (which has three attachments: p_k , and two on $w_l F_2 w_j$). It is easy to see that P gives the desired 2-way infinite F_1 -Tutte path in G through uv.

Case 2. $p_k = p_l$.

Then $w_l = w_{k-1}$, $w_j = w_k$, J_l is induced by the edge $w_l p_l$, and $J_k - p_k = J_k - p_l$. Since $J_k - p_l$ has a path R from w_k to p_{k+1} and through uv, we let J'_k denote the union of blocks of $J_k - p_k$ each of which contains an edge of R. Let R' denote the path from w_k to p_{k+1} containing uv such that R' is on the boundary of the face of $G - p_k$ which is not a face of G. Let $p' \in V(F_1 \cap J'_k)$ with $p_k F_1 p'$ minimal. By applying Lemma (2.5) we find a R'-Tutte path P_k in J'_k from w_k to p_{k+1} such that $p' \in V(P_k)$ and $uv \in E(P_k)$. Let $P := ((P' - p_k) \cup S \cup P_k) + w_l p_l$. Then every P-bridge of G is one of the following: a $((P' - p_k) \cup S)$ -bridge of K, or a P_k -bridge of J'_k , or a $(J'_k \cup \{p_k\})$ -bridge of J_k with attachments p_k and p' , or a subgraph of J_k obtained from a P_k -bridge B of J'_k with two attachments by adding p_k and all edges from p_k to $B - V(P_k)$. Thus, P gives the desired 2-way infinite F_1 -Tutte path in G through uv. \Box

The next lemma shows that certain tight partial nets can force the existence of a 2-way infinite Tutte path. Let G be a 2-connected infinite plane graph which is 3 indivisible but not 2-indivisible, let (F_1, \ldots, F_n) be a tight partial net in G such that G is $(4, F_1)$ -connected, and assume that $I(F_n)$ is drawn in the closed disc bounded by F_n . For $1 \leq i \leq n$, let u_i, v_i be distinct vertices of F_i such that any two consecutive vertices from $u_n, \ldots, u_1, v_1, \ldots, v_n$ are contained in a facial cycle of G, and assume that there is no separation (H_1, H_2) of $I(F_n)$ such that $|V(H_1 \cap H_2)| < 2n$, $\{u_n, v_n\} \subseteq V(H_1 \cap H_2)$, $v_n F_n u_n \subseteq H_1$, and $u_n F_n v_n \subseteq H_2$.

(4.3) Lemma. Let G , (F_1, \ldots, F_n) , and $u_i, v_i, 1 \le i \le n$, be defined as above. Suppose either (1) $(G - V(I(F_n) - V(F_n))) - \{u_n, v_n\}$ has two infinite components or (2) $G V(I(F_n))$ has two infinite blocks, say H and H', such that the face of H containing $I(F_n)$ contains H' and is bounded by a cycle, and such that no path in G from H' to $v_nF_nu_n - \{v_n, u_n\}$ is internally disjoint from $I(F_n) \cup H$. Let $uv \in E(v_1F_1u_1)$ such that v_1, v, u, u_1 occur on $v_1F_1u_1$ in order, and assume when $n \geq 2$ there exist two vertex disjoint paths in $I(F_2)$ from v_1F_1v to $v_2F_2u_2$ or from u_1F_1u to $v_2F_2u_2$, which are also internally disjoint from $F_1 \cup F_2$. Then there is a 2-way infinite F_1 -Tutte path in G through uv.

Proof. We apply induction on n. Suppose $n = 1$. If $G - \{u_1, v_1\}$ has two infinite components, then by Lemma (3.1) there is a 2-way infinite F_1 -Tutte path in G through uv. So assume that $G - V(I(F_1))$ has two infinite blocks H and H' such that the face of H containing $I(F_1)$ contains H' and is bounded by a cycle D, and such that no path in G from H' to $v_1F_1u_1 - \{v_1, u_1\}$ is internally disjoint from $H \cup I(F_1)$. Then we see that every $(H \cup F_1)$ -bridge of G has at most one attachment on H (which must be on D), and H' is contained in an infinite $(H \cup F_1)$ -bridge of G. Let w_1, \ldots, w_b denote the attachments on H of $(H \cup F_1)$ -bridges of G and let them occur on D in clockwise order. Let $p_j, q_j \in V(F_1)$ with $p_jF_1q_j$ maximal such that $\{p_j, w_j\}$ is contained in an $(H \cup F_1)$ -bridge of $G, \{q_j, w_j\}$ is contained in an $(H \cup F_1)$ -bridge of G, and any $(H \cup F_1)$ -bridge of G containing some $w_l \neq w_j$ contains no vertex from $V (p_j F_1 q_j) - \{p_j, q_j\}$. Because G is $(4, F_1)$ -connected, p_j and q_j are well defined. Let J_j denote the union of $p_jF_1q_j$ and those $(H \cup F_1)$ -bridges of G whose attachments are all contained in $V(p_j F_1 q_j) \cup \{w_j\}$. Let L_j denote the union of $q_jF_1p_{j+1}$ and those $(H \cup F_1)$ -bridges of G whose attachments are all contained in $V(q_jF_1p_{j+1}),$ where $p_{b+1} = p_1$. Then there is some $1 \leq j \leq b$ such that $H' \subseteq J_j$ or $H' \subseteq L_j$. Recall the assumption that no path in G from H' to $v_1F_1u_1 - \{v_1, u_1\}$ is internally disjoint from $H \cup I(F_1)$. Thus, if $H' \subseteq L_j$ then $L_j \cap F_1 \subseteq u_1F_1v_1$, whence $uv \notin E(L_j)$; if $H' \subseteq J_j$ then uv is not in the unique infinite block of $J_j - w_j$. Hence by Lemma (3.2) and Lemma (3.3) , G contains a 2-way infinite F_1 -Tutte path P through uv.

So assume $n \geq 2$. Note that the conditions of Lemma (4.2) are satisfied. By Lemma (4.2), there exist $p \in V(v_1F_1u_1 - \{u_1,v_1\}), x, y \in V(v_2F_2u_2)$, and an edge $f \in \{px, py\}$ such that if $G' := (G - V(I(F_2) - (V(F_2) \cup \{p\})) + \{px, py\}$ has a 2-way infinite $(yF_2x + \{p, px, py\})$ -Tutte path through f then G has a 2-way infinite F_1 -Tutte path through uv.

Therefore it suffices to show that G' has a 2-way infinite $(yF_2x + \{p, px, py\})$ -Tutte path through f. For convenience, let $F_2' := yF_2x + \{p, px, py\}$ and assume $f = px$. There is a tight partial net (F'_2, \ldots, F'_n) in G' such that $u_i F'_i v_i = u_i F_i v_i$ and $I_{G'}(F'_i) - \{px, py\} \subseteq$ $I_G(F_i)$, for all $2 \leq i \leq n$. (This can be shown by applying induction on i, by noting that any two consecutive vertices from $u_n, \ldots, u_2, v_2, \ldots, v_n$ are contained in a facial cycle of G' and that $\{u_i, v_i\} \subseteq V(I_{G'}(F'_i))$, and by taking $I_{G'}(F'_i)$ minimal subject to the

condition $F'_i \cap F'_{i-1} = \emptyset$.) Note that there is no separation (M_1, M_2) of $I_{G'}(F'_n)$ such that $|V(M_1 \cap M_2)| < 2(n-1), \{u_n, v_n\} \subseteq V(M_1 \cap M_2), \ v_n F'_n u_n \subseteq M_1$, and $u_n F'_n v_n \subseteq M_2$; for otherwise by planarity $I_G(F_n)$ has a separation (H_1, H_2) such that $|V(H_1 \cap H_2)| < 2n$, $\{u_n, v_n\} \subseteq V(H_1 \cap H_2), v_n F_n u_n \subseteq H_1$, and $u_n F'_n v_n \subseteq H_2$, a contradiction. We claim that when $n \geq 3$ there must be two disjoint paths in $I_{G'}(F_3')$ from $v_2F_2'x$ to $v_3F_3'u_3$ or from pF'_2u_2 to $v_3F'_3u_3$, which are internally disjoint from $F'_2 \cup F'_3$. For otherwise, there exist vertices u'_2, v'_2 such that all paths in $I_{G'}(F'_3)$ from $v_2F'_2u_2$ to $v_3F'_3u_3$ internally disjoint from $F_2' \cup F_3'$ intersect $\{u_2', v_2'\}$. Then $I_G(F_n)$ has a separation (H_1, H_2) such that $H_1 \cap H_2 = \{u_n, \ldots, u_3, u'_2, v'_3, v_3, \ldots, v_n\}, v_n F_n u_n \subseteq H_1$, and $u_n F'_n v_n \subseteq H_2$, a contradiction. Therefore, by induction, G' has a 2-way infinite F'_2 -Tutte path through f. \Box

5 Graphs with $\gamma(G) = 0$

In this section we prove Theorem (1.1) for graphs with no dividing cycles.

 (5.1) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph and assume $\gamma(G) = 0$. Then G contains a spanning 2-way infinite path.

Proof. We may assume that G is not 2-indivisible, for otherwise the assertion of this theorem follows from [8] and [9]. Since G is 4-connected and planar and because $\gamma(G) = 0$, it follows from Lemma (2.3) that there is a sequence (D_1, D_2, \ldots) of non-dividing cycles in G such that

(1) for each $i \geq 1$, $I(D_i) \subseteq I(D_{i+1}),$

- (2) for each $i > 1$, G has no finite $I(D_i)$ -bridge,
- (3) for each $i \geq 1$, $D_i \cap D_{i+1} \subseteq D_{i+1} \cap D_{i+2}$, and
- (4) $\bigcup_{i \geq 1} I(D_i) = G.$

If $\overline{D}_i \cap D_{i+1} = \emptyset$ for all $i \geq 1$, then by (4), $(D_1, D_2, ...)$ is a radial net in G, and hence, G is 2-indivisible, a contradiction. So $D_k \cap D_{k+1} \neq \emptyset$ for some positive integer k. By (3), $D_i \cap D_{i+1} \neq \emptyset$ for all $i \geq k$.

Suppose $D_i \cap D_{i+1}$ consists of a single path for all $i \geq k$. Then by planarity and because G is 4-connected, for any positive integer l, $D_i - V(D_i)$, $i \geq l + 1$, are all nonempty and contained in a single component of $G - V(I(D_l))$. By (4), for any finite $X \subseteq V(G), X \subseteq V(I(D_l))$ for some positive integer l. Therefore, $G - X$ has only one infinite component. This shows that G is 2-indivisible, again, a contradiction.

Thus, for some integer $t \geq k$, $D_t \cap D_{t+1}$ consists of at least two vertex disjoint paths, and hence, G has at least two $I(D_t)$ -bridges. Because of (2) and since G is 3-indivisible, G has exactly two $I(D_t)$ -bridges, both infinite. So $D_t \cap D_{t+1}$ consists of exactly two vertex disjoint paths. Therefore, by (2) and (3), we have

(5) for each $i \geq t$, $D_i \cap D_{i+1}$ consists of exactly two vertex disjoint paths and G has exactly two $I(D_i)$ -bridges (both infinite).

By (5) and by (3) , we see that

(6) $\partial G = \bigcup_{i \geq 1} (D_i \cap D_{i+1})$ and has exactly two components, each of which is a path, or a 1-way infinite path, or a 2-way infinite path.

Let N₁ and N₂ denote the two components of ∂G. See Figure 4. Note that $I_G(D_t) \cap$ $N_i \neq \emptyset$ for $i = 1, 2$. So there is a separation (G_1, G_2) of G such that $|V(G_1 \cap G_2)|$ is finite, exactly one vertex of $G_1 \cap G_2$ is on N_i for each $1 \leq i \leq 2$, and both G_1 and G_2 are infinite. Among all such separations (G_1, G_2) of G, there is one such that (7) $|V(G_1 \cap G_2)|$ is minimum.

Let u be the unique vertex of $G_1 \cap G_2 \cap N_1$, and v be the unique vertex of $G_1 \cap G_2 \cap N_2$.

Figure 4: Structure of G

When $|V(G_1 \cap G_2)|$ is even, let $u_n, \ldots, u_1, v_1, \ldots, v_n$ be the vertices in $V(G_1 \cap G_2)$ such that $u_n = u$ and $v_n = v$, and any two consecutive vertices from the sequence are contained in a facial cycle of G. In this case, let F_1 denote the facial cycle of G containing u_1 and v_1 such that $v_1F_1u_1 \subseteq G_1$ and $u_1F_1v_1 \subseteq G_2$. Since $n \geq 2$ (because G is 4-connected), u_1 and v_1 each have finite degree and the faces of G incident with u_1 or v_1 are bounded by cycles. Hence we may further choose (G_1, G_2) , subject to $\{u_n, \ldots, u_1, v_1, \ldots, v_n\} \subseteq V(G_1 \cap G_2)$, so that $v_1F_1u_1$ has at least two edges. (Otherwise, we could simply choose F_1 to be the other facial cycle of G containing u_1v_1 .) Let $H := G$. See the left part of Figure 4.

When $|V(G_1 \cap G_2)|$ is odd, we let $u_n, \ldots, u_1, w, v_1, \ldots, v_n$ be the vertices in $V(G_1 \cap G_2)$ such that $u_n = u$ and $v_n = v$, and any two consecutive vertices from the sequence are contained in a facial cycle of G . In this case, let D denote the cycle in G such that $I(D) - V(D) = \{w\}.$ Because G is 4-connected, D is well defined and $u_1, v_1 \in V(D).$ Without loss of generality, we may assume that $v_1Du_1 \subseteq G_1$ and $u_1Dv_1 \subseteq G_2$. Notice $n \geq 2$ because G is 4-connected. Hence, $u_1, v_1 \in I(D_i) - V(D_i)$ for all sufficiently large i. This implies that u_1 and v_1 are of finite degree in G and the faces of G incident with u_1 or v_1 are bounded by cycles. Hence, we may further choose (G_1, G_2) so that, subject to $\{u_n,\ldots,u_1,v_1,\ldots,v_n\} \subseteq V(G_1 \cap G_2)$, w has at least two neighbors in $v_1Du_1 \{u_1, v_1\}.$ (Otherwise, in $V(G_1 \cap G_2)$ we may replace w with its unique neighbor in $v_1Du_1 - \{v_1, u_1\}$, and continue if necessary. This process must stop because of the above finiteness conditions on u_1 and v_1 .) Therefore, let $w_1, w_2 \in V(v_1Du_1) - \{v_1, u_1\}$ be distinct neighbors of w such that v_1, w_1, w_2, u_1 occur on v_1Du_1 in order and w has no neighbor in $V(w_1Dw_2) - \{w_1, w_2\}$. Let $H := (G - w) + w_1w_2$. Let $F_1 = w_2Dw_1 + w_1w_2$, and assume that w_1w_2 is added such that F_1 is a facial cycle of H. See the right part of Figure 4.

Let (F_1, \ldots, F_m) be a tight partial net in H such that m is maximum. Note that $m \leq n$. By (1) of Lemma (4.1), we may assume that $I_H(F_m)$ is contained in the closed disc bounded by F_m , as illustrated in Figure 4.

Suppose $m < n$. If $F_m \cap (N_1 \cup N_2) \neq \emptyset$, then assume by symmetry that $x \in V(F_m \cap \mathbb{R})$ N_1). Then $V(F_m \cap N_2) = \emptyset$; for otherwise, let $y \in V(F_m \cap N_2)$, then by (2) of Lemma (4.1), G has a separation (H_1, H_2) with $\{x, y\} \subseteq V(H_1 \cap H_2)$ and $|V(H_1 \cap H_2)| = 2m$, exactly one vertex of $H_1 \cap H_2$ is on N_i for $i = 1, 2$, and both H_1 and H_2 are infinite, contradicting (7). Hence $v_n \notin V(I(F_m))$. Since $v_1 \in V(I(F_m))$ and every pair of consecutive vertices from v_1, \ldots, v_n are contained in a facial cycle of G, we must have $v_m \in V(I(F_m))$. Thus there exists some $m \leq j \leq n$ such that $v_j \in V(I(F_m))$ and $v_{j+1} \notin V(I(F_m))$. This shows that $v_j \in V(F_m)$ (since v_j and v_{j+1} is contained in a facial cycle of G). By (2) of Lemma (4.1), $I_H(F_m)$ has a separation (L_1, L_2) such that $|V(L_1 \cap L_2)| \leq 2m$, $\{x, v_j\} \subseteq V(L_1 \cap L_2), v_j F_m x \subseteq L_1$, and $x F_m v_j \subseteq L_2$. Now it is easy to see that G has a separation (G_1, G_2) such that $V(G_1 \cap G_2) = V(L_1 \cap L_2) \cup \{v_{i+1}, \ldots, v_n\}$, exactly one vertex of $L_1 \cap L_2$ is on N_i for $i = 1, 2$, and both G_1 and G_2 are infinite, contradicting (7). So $F_m \cap (N_1 \cup N_2) = \emptyset$. Therefore $H - V(I_H(F_m))$ has a unique infinite block B which contains D_i for all sufficiently large i. Let F_{m+1} denote the cycle bounding the face of B containing $I_H(F_m)$. Then we see that (F_1, \ldots, F_{m+1}) is a tight partial net in H, which contradicts the choice of (F_1, \ldots, F_m) .

Hence, $m = n \geq 2$. We may assume that the notation is chosen so that for $1 \leq i \leq n$, $\{u_i, v_i\} \subseteq V(F_i)$, $v_i F_i u_i \subseteq G_1$, and $u_i F_i v_i \subseteq G_2$. Clearly, there is a separation (H_1, H_2) of $I_H(F_n)$ such that $V(H_1 \cap H_2) = \{u_1, \ldots, u_n, v_1, \ldots, v_n\}$, and for $1 \leq i \leq n$, $v_i F_i u_i \subseteq H_1$ and $u_iF_iv_i \subseteq H_2$. Then by (7) and by planarity, there is no separation (H_1, H_2) of $I_H(F_n)$ such that $|V(H_1 \cap H_2)| < 2n$, $\{u_n, v_n\} \subseteq V(H_1 \cap H_2)$, $v_n F_n u_n \subseteq H_1$, and $u_n F_n v_n \subseteq H_2$.

When $|V(G_1 \cap G_2)|$ is even, $v_1F_1u_1$ has at least two edges. This, together with (7) and 4-connectivity of G, implies that there exist two disjoint paths in $I_H(F_2)$ from $v_1F_1u_1-u_1$ or from $v_1F_1u_1 - v_1$ to $v_2F_2u_2$ and internally disjoint from $F_1 \cup F_2$. Hence there is an edge w_1w_2 of $v_1F_1u_1$ such that v_1, w_1, w_2, u_1 occur on $v_1F_1u_1$ in order and there exist two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$ internally disjoint from $F_1 \cup F_2$. When $|V(G_1 \cap G_2)|$ is odd, then by (7), there exist two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$ internally disjoint from $F_1 \cup F_2$.

Hence by Lemma (4.3), H has a 2-way infinite F_1 -Tutte path P through w_1w_2 . Note that G is 4-connected. Therefore, if $|V(G_1 \cap G_2)|$ is even then P is a spanning 2-way infinite path in G, and if $|V(G_1 \cap G_2)|$ is odd then $(P - w_1w_2) + \{w,ww_1,ww_2\}$ is a spanning 2-way infinite path in G .

6 Graphs with $\gamma(G) = \infty$

Let G be a 4-connected 3-indivisible infinite plane graph, and assume $\gamma(G) = \infty$. Let C be a dividing cycle in G, let G' be the subgraph of G contained in the closed disc of the plane bounded by C, and let $G'' = G - (V(G') - V(C))$. Then $G' \cap G'' = C$, both G' and G'' are 2-indivisible, and both G' and G'' are $(4, C)$ -connected.

Let S' denote the set of vertices of G' of infinite degree. By Theorem (2.1) , there is a set $F' \subseteq E(G')$ incident with vertices in S' such that $G' - F'$ has a net $N' =$ (C'_1, C'_2, \ldots) satisfying the conclusions of Theorem (2.1) (with G', S', F', N' as G, S, F, N , respectively). Similarly, let S'' denote the set of vertices of G'' of infinite degree. Then by Theorem (2.1), there is a set $F'' \subseteq E(G'')$ incident with vertices in S'' such that $G'' - F''$ has a net $N'' = (C_1'', C_2'', \ldots)$ satisfying the conclusions of Theorem (2.1) (with G'', S'', F'', N'' as G, S, F, N , respectively).

Since $\gamma(G) = \infty$, N' or N'' must be a radial net. If both N' and N'' are radial nets, then we say that G admits a 2-way radial net. If exactly one of N' and N'' is a radial net, then we slightly abuse notation and say that G admits a *mixed net*. We deal with these two types of graphs separately.

 (6.1) Theorem. Suppose that G is a 4-connected 3-indivisible infinite plane graph, and assume that G admits a 2-way radial net. Then G contains a spanning 2-way infinite path.

Proof. Because G has a 2-way radial net, it follows from Lemma (2.2) that

(1) G is locally finite and every face of G is bounded by a cycle.

Let (K', K'') be a separation of G such that $V(K' \cap K'')$ is finite, and both K' and K'' are infinite. There exists such a separation (K', K'') of G that (2) $|V(K' \cap K'')|$ is minimum.

When $|V(K' \cap K'')|$ is even (respectively, odd), then let $u_n, \ldots, u_1, v_1, \ldots, v_n$ (respectively, $u_n, \ldots, u_1, w, v_1, \ldots, v_n$ be the vertices in $V(K' \cap K'')$ such that any two consecutive vertices (in cyclic order) from the sequence are contained in a facial cycle of G.

If $|V(K' \cap K'')|$ is even, then let $H := G$ and let F_1 be a facial cycle of H containing $\{u_1, v_1\}$ such that $v_1 F_1 u_1 \subseteq K''$ and $u_1 F_1 v_1 \subseteq K'$. Note that $n \geq 2$ (since G is 4connected). Hence, u_1 and v_1 have finite degrees in G and faces of G incident with u_1

or v_1 are bounded by cycles. Hence, we may choose (K', K'') and F_1 so that $v_1 F_1 u_1$ has at least two edges.

When $|V(K' \cap K'')|$ is odd, let D be the facial cycle of $G - w$ containing $\{u_1, v_1\}$ such that $v_1Du_1 \subseteq K''$ and $u_1Dv_1 \subseteq K'$. Note that D is uniquely defined because G is 4-connected and every face of G is bounded by a cycle (by (1)). Hence we may further select (K', K'') so that, subject to $\{u_1, \ldots, u_n, v_1, \ldots, v_n\} \subseteq V(K' \cap K'')$, w has at least two neighbors in $v_1Du_1 - \{u_1, v_1\}$. Let w_1, w_2 be distinct neighbors of w in $v_1Du_1 - \{u_1, v_1\}$ such that v_1, w_1, w_2, u_1 occur on v_1Du_1 in order, and w has no neighbor in $w_1Dw_2 - \{w_1, w_2\}$. Let $H := (G - w) + w_1w_2$ and let $F_1 := w_2Dw_1 + w_1w_2$. We may assume that if $w_1w_2 \notin E(D)$ then it is represented by a simple arc in the open disc bounded by D.

We wish to apply Lemma (4.3); therefore we need to show that (3) there is a tight partial net (F_1, \ldots, F_n) in H.

To prove (3), assume that we have a maximum tight partial net (F_1, \ldots, F_k) in H. For convenience, we may assume that $I_H(F_k)$ is contained in the closed disc bounded by F_k (see (1) of Lemma (4.1)). Suppose $k < n$.

We claim that $H - V(I_H(F_k))$ has a unique infinite block. Otherwise, since H is 3-indivisible (because G is), $H - V(I_H(F_k))$ has a separation (H', H'') such that $|V(H' \cap$ H'')| \leq 1 and both H' and H'' are infinite. Since G is 3-indivisible, H' and H'' each have exactly one infinite component. Let L' denote the infinite component of H' and L'' the infinite component of H''. Since G is 4-connected and $|V(H' \cap H'')| \leq 1$, L' has at least three neighbors on F_k . Hence by planarity, there are $\{x, y\} \subseteq V(F_k)$ such that x, y are neighbors of $L' - V(H' \cap H'')$, all neighbors of $L' - V(H' \cap H'')$ in F_k are contained in xF_ky , and all neighbors of $L'' - V(H' \cap H'')$ in F_k are contained in yF_kx . By (2) of Lemma (4.1), $I_H(F_k)$ has a separation (M', M'') such that $|V(M' \cap M'')| \leq 2k$, $\{x, y\} \subseteq V(M' \cap M'')$, $xF_ky \subseteq M'$, and $yF_kx \subseteq M''$. Hence, $H - (V(M' \cap M'') \cup V(H' \cap H''))$ has two infinite components. Therefore, if $|V(K' \cap K'')|$ is even, then $G - (V(M' \cap M'') \cup V(H' \cap H''))$ has two infinite components, and if $|V(K' \cap K'')|$ is odd then $G - (V(M' \cap M'') \cup V(H' \cap$ $H''\cup \{w\}$ has two infinite components. Since $k < n$ and $|V(H' \cap H'')| \leq 1$, we see that $|V(M' \cap M'') \cup V(H' \cap H'')| \leq 2n - 1$. Thus $|V(M' \cap M'') \cup V(H' \cap H'')| < |V(K' \cap K'')|$ when $|V(K' \cap K'')|$ is even, and $|V(M' \cap M'') \cup V(H' \cap H'') \cup \{w\}| < |V(K' \cap K'')|$ when $|V(K' \cap K'')|$ is odd. This contradicts the minimality of $|V(K' \cap K'')|$ in (2).

Now let B be the unique infinite block of $H - V(I_H(F_k))$. Because of (1), H is locally finite and every face of H is bounded by a cycle, and only finitely many vertices and edges of B are incident with faces of H which are also incident with vertices of F_k . Therefore, since B is 2-connected and locally finite, the face of B containing $I_H(F_k)$ is bounded by a cycle, say F_{k+1} . Because B is the unique infinite block of $H - V(I_H(F_k))$, F_{k+1} is non-dividing, $I_H(F_k) \subseteq I_H(F_{k+1})$, and every $(I_H(F_k) \cup F_{k+1})$ -bridge of $I_H(F_{k+1})$ has at most one attachment on F_{k+1} . However, this shows that (F_1, \ldots, F_{k+1}) is a tight partial net in H, contradicting the choice of (F_1, \ldots, F_k) . Thus, we have (3).

By (1) of Lemma (4.1), we may assume $I_H(F_n)$ is contained in the closed disc bounded by F_n . Because $\{u_1, v_1\} \subseteq V(F_1)$ and any two consecutive vertices from the sequence $u_n, \ldots, u_1, v_1, \ldots, v_n$ are contained in a facial cycle of H, we see that $\{u_1,\ldots,u_1,v_1,\ldots,v_i\} \subseteq V(I_H(F_i))$ for all $1 \leq i \leq n$. Moreover, $\{u_n,v_n\} \subseteq V(F_n)$, as otherwise, $F_n - \{u_n, v_n\}$ is a path or cycle and $G - V(K' \cap K'')$ would have only one infinite component (containing $F_n - \{u_n, v_n\}$), a contradiction. Therefore, because $\{u_1, v_1\} \subseteq V(F_1)$, $v_1 F_1 u_1 \subseteq K''$ (or $v_1 F_1 u_1 \subseteq K'' + w_1 w_2$) and $u_1 F_1 v_1 \subseteq K'$, and any two consecutive vertices from $u_n, \ldots, u_1, v_1, \ldots, v_n$ are contained in a facial cycle of H, it follows from planarity that

(4) for $2 \leq i \leq n$, $\{u_i, v_i\} \subseteq V(F_i)$, $v_i F_i u_i \subseteq K''$, and $u_i F_i v_i \subseteq K'$.

By (2) and (4), $I_H(F_n)$ has no separation (H_1, H_2) such that $|V(H_1 \cap H_2)| < 2n$, $\{u_n, v_n\} \subseteq V(H_1 \cap H_2), v_n F_n u_n \subseteq H_1$, and $u_n F_n v_n \subseteq H_2$.

When $|V(K' \cap K'')|$ is even, $v_1 F_1 u_1$ has at least two edges. This, together with (2) and 4-connectivity of G, implies that there exist two disjoint paths in $I_H(F_2)$ from $v_1F_1u_1 - v_1$ or from $v_1F_1u_1 - u_1$ to $v_2F_2u_2$ internally disjoint from $F_1 \cup F_2$. Hence, there is an edge w_1w_2 of $v_1F_1u_1$ such that v_1, w_1, w_2, u_1 occur on $v_1F_1u_1$ in order and there are two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$ and internally disjoint from $F_1 \cup F_2$. When $|V(K' \cap K'')|$ is odd, then by (2), there are disjoint paths from $v_1F_2w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$ and internally disjoint from $F_1 \cup F_2$. Thus by Lemma (4.3),

(5) there is a 2-way infinite F_1 -Tutte path P through w_1w_2 in H.

Now it is easy to see that if $|V(K' \cap K'')|$ is even then P is a spanning 2-way infinite path in G, and if $|V(K' \cap K'')|$ is odd then $(P - w_1w_2) + \{w,ww_1,ww_2\}$ is a spanning 2-way infinite path in G .

Finally, we deal with graphs which admit mixed nets.

(6.2) Theorem. Let G be a 4-connected 3-indivisible infinite plane graph, and assume that G admits a mixed net. Then G contains a spanning 2-way infinite path.

Proof. Let C be a dividing cycle in G, let G' denote the subgraph of G contained in the closed disc bounded by C, and let $G'' := G - (V(G') - V(C))$. Because G admits a mixed net, we may assume that G' has a radial net $N' := (C'_1, C'_2, \ldots)$ with $C \subseteq I_{G'}(C'_i)$, and for some (possibly empty) set F'' of edges of G'' incident with vertices of infinite degree in $G'', G'' - F''$ has a ladder net $N'' := (C''_1, C''_2, \ldots)$ with $C \subseteq I_{G''}(C''_1)$. Note that $\partial G''$ is a path, or a 1-way infinite path, or a 2-way infinite path. Also note that each face of G is either a face of G' or a face of G''. Thus, in view of Lemma (2.2) ,

(1) all but one face of G are bounded by cycles, and $\partial G''$ is precisely the subgraph of G that lies on the boundary of the exceptional face of G.

Because the cycles C''_i are dividing cycles in G and $C''_i \cap \partial G'' \neq \emptyset$ for large *i*, there is a separation (K', K'') of G such that $C'_j \subseteq K'$ and $C''_j \subseteq K''$ for sufficiently large j, $V(G_1 \cap G_2) = V(C''_i)$ if $|V(C''_i \cap \partial G''| \leq 2$, and $V(G_1 \cap G_2)$ is the vertex set of the path in C_i'' between two vertices of $\partial G''$ and internally disjoint from $\partial G''$. Hence,

(2) there exists a separation (K', K'') of G such that $V(K' \cap K'')$ is finite, $C_i' \subseteq K'$ for all large i, $C_i'' - V(\partial G'') \subseteq K''$ for all large i, and $1 \leq |V(K' \cap K'') \cap V(\partial G'')| \leq 2$. Moreover, the vertices in $V(K' \cap K'')$ can be ordered as x_1, x_2, \ldots, x_k with $x_1, x_k \in V(\partial G'')$, $x_i \neq x_j$ except possibly $x_1 = x_k$, and for each $1 \leq i \leq k-1$, $\{x_i, x_{i+1}\}\$ is contained in a facial cycle of G.

Note that we include the possibility $1 = |V(K' \cap K'') \cap V(\partial G'')|$, because $\partial G''$ may be a trivial path. We choose (K', K'') such that, subject to conditions in (2) , (3) $|V(K' \cap K'')|$ is minimum.

When $|V(K' \cap K'') \cap V(\partial G'')| = 2$, let $V(K' \cap K'') \cap V(\partial G'') = \{x, y\}$, and otherwise, let $x = y$ be the only vertex in $V(K' \cap K'') \cap V(\partial G'')$. Note that when $x = y$, $G (V(K' \cap K'') - \{x = y\})$ has two infinite blocks.

If $|V(K' \cap K'') - \{x, y\}|$ is even (respectively, odd), then let $x = u_m, u_{m-1}, \ldots, u_1, v_1$, $\overline{\ldots v_{m-1}}$, $v_m = y$ (respectively, $x = u_m$, $u_{m-1}, \ldots, u_1, w, v_1, \ldots v_{m-1}, v_m = y$) be the vertices in $V(K' \cap K'')$, such that any two consecutive vertices from $u_m, \ldots, u_1, v_1, \ldots v_m$ (respectively, $u_m, \ldots, u_1, w, v_1, \ldots v_m$) are contained in a facial cycle of G, and $u_m C''_j v_m \subseteq$ $C''_j \cap C''_{j+1}$ for all large j. See Figure 5.

 $|V(K' \cap K'') - \{x, y\}|$ is even $|V(K' \cap K'') - \{x, y\}|$ is odd

Figure 5: Structure of G

When $|V(K' \cap K'') - \{x, y\}|$ is even, let $H := G$ and let F_1 be the facial cycle of G containing u_1 and v_1 such that $v_1F_1u_1 \subseteq K''$ and $u_1F_1v_1 \subseteq K'$. Note that $n \ge 2$, and so, $u_1, v_1 \notin \partial G''$. By (1), u_1 and v_1 are of finite degree in G and all faces of G incident with u_1 or v_1 are bounded by cycles. Hence we may choose (G_1, G_2) and F_1 so that $v_1F_1u_1$ has at least two edges.

When $|V(K' \cap K'') - \{x, y\}|$ is odd, we have $m \geq 2$ (because G is 4-connected). Let D be the facial cycle of $G - w$ containing u_1 and v_1 such that $v_1Du_1 \subseteq K''$ and $u_1 D v_1 \subseteq K'$. Because G is 4-connected and $w \notin \partial G''$, D is well defined and $u_1, v_1 \notin$

 $V(\partial G'')$. Hence by (1), u_1 and v_1 are of finite degree in G and all faces of G incident with u_1 or v_1 are bounded by cycles. Therefore, we may further choose (K', K'') so that, subject to $\{u_1, \ldots, u_m, v_1, \ldots, v_m\} \subseteq V(K' \cap K'')$, w has two neighbors w_1 and w_2 in $v_1Du_1 - \{u_1, v_1\}$ such that v_1, w_1, w_2, u_1 occur on v_1Du_1 in order, and w has no neighbor in $w_1Dw_2 - \{w_1, w_2\}$. Let $F_1 := w_2Dw_1 + w_1w_2$ and $H := (G - w) + w_1w_2$. We may assume that if $w_1w_2 \notin E(D)$ then it is represented by a simple arc in the open disc bounded by D. Clearly H is $(4, F_1)$ -connected. Note that $v_1F_1u_1 \subseteq K'' + w_1w_2$ and $u_1F_1v_1 \subseteq K'.$

We wish to apply Lemma (4.3). Let (F_1, \ldots, F_n) denote a tight partial net in H such that n is maximum. Then $n \leq m$. By (1) of Lemma (4.1), we may assume that $I_H(F_n)$ is contained in the closed disc bounded by F_n .

Since $u_1, v_1 \in V(F_1)$ and because any two consecutive vertices from $u_m, \ldots, u_1, v_1, \ldots, v_m$ or from $u_m, \ldots, u_1, w, v_1, \ldots, v_m$ are contained in a facial cycle of G, we see that for each $1 \leq i \leq n$, $\{u_i, \ldots, u_1, v_1, \ldots, v_i\} \subseteq V(I_H(F_i))$. Therefore, $\{u_n, v_n\} \subseteq V(F_n)$, for otherwise, $F_n - \{u_n, v_n\}$ is a path or a cycle and $H - V(I(F_n))$ would have just one infinite component (containing $F_n - \{u_n, v_n\}$). Hence, again because any two consecutive vertices of $u_m, \ldots, u_1, v_1, \ldots, v_m$ are contained in a facial cycle of H, we see that $u_i, v_i \in V(F_i)$ for all $1 \leq i \leq n$. By planarity and because $v_1 F_1 u_1 \subseteq K''$ (or $v_1F_1u_1 \subseteq K'' + w_1w_2$) and $u_1F_1v_1 \subseteq K'$, we have $v_iF_iu_i \subseteq K''$ and $u_iF_iv_i \subseteq K'$ for $2 \leq i \leq n$.

We consider two cases.

Case 1. $n = m$.

Then $H - V(I_H(F_m))$ has two infinite blocks (which is used when applying Lemma (4.3)). Note that $u_m \neq v_m$, since $H - V(I_H(F_{m-1}))$ has a unique infinite block containing F_m .

Because of the separation (K', K'') , $(H - V(I_H(F_m) - V(F_m))) - \{u_m, v_m\}$ has two infinite components. Hence by planarity and by (3) , there is no separation (H', H'') of $I_H(F_m)$ such that $|V(H' \cap H'')| < 2m$, $\{u_m, v_m\} \subseteq V(H' \cap H'')$, $v_m F_m u_m \subseteq H''$, and $u_m F_m v_m \subseteq H'.$

When $|V(K' \cap K'')|$ is even, then $m \geq 2$. Since $v_1 F_1 u_1$ has at least two edges and by (3) and 4-connectivity of G, $I_H(F_2)$ has two disjoint paths from $v_1F_1u_1 - v_1$ or from $v_1F_1u_1 - u_1$ to $v_2F_2u_2$ internally disjoint from $F_1 \cup F_2$. Hence there is an edge w_1w_2 of $v_1F_1u_1$ such that v_1, w_1, w_2, u_1 occur on $v_1F_1u_1$ in order and there are two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ to $v_2F_2u_2$ or from $w_2F_1u_1$ to $v_2F_2u_2$, which are internally disjoint from $F_1 \cup F_2$. When $|V(K' \cap K'')|$ is odd, then by (3), there are two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$, which are internally disjoint from $F_1 \cup F_2$. Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), there is a 2-way infinite F_1 -Tutte path P in H through w_1w_2 . When $|V(K' \cap K'')|$ is even, we see that P is a spanning 2-way infinite path in G. When $|V(K' \cap K'')|$ is odd, then $(P - w_1w_2) + \{w,ww_1,ww_2\}$ is a spanning 2-way infinite path in G.

Case 2. $n < m$.

First, we show that $I_H(F_n) \cap \partial G'' = \emptyset$. For otherwise, $F_n \cap \partial G'' \neq \emptyset$. Let z be a vertex contained in $F_n \cap \partial G''$. Then since (F_1, \ldots, F_n) is a tight partial net in H, there are vertices $z_i \in V(F_i)$, $1 \leq i \leq n$ such that $z_n = z$ and any two consecutive vertices from z_n, \ldots, z_1 are contained in a facial cycle of H. Thus, by planarity, either $G - \{v_1, \ldots, v_m, z_1, \ldots, z_n\}$ or $G - \{u_1, \ldots, u_m, z_1, \ldots, z_n\}$ has two infinite components. This contradicts (3) because $n < m$.

Next we show that $H - V(I_H(F_n))$ has two infinite blocks. For otherwise, assume that $H - V(I_H(F_n))$ has just one infinite block, say B. Because $F_n \cap \partial G'' = \emptyset$, it follows from (1) that all vertices of F_n have finite degree in H and each face of H incident with a vertex of F_n is bounded by a cycle. Hence the face of B containing $I_H(F_n)$ is incident with only finitely many vertices and edges of H . Since B is 2-connected, the face of B containing $I_H(F_n)$ is bounded by a non-dividing cycle in H, denoted F_{n+1} . Now it is easy to see that $(F_1, \ldots, F_n, F_{n+1})$ is a tight partial net in H, contradicting the choice of (F_1, \ldots, F_n) .

Let B', B'' denote the infinite blocks of $H - V(I_H(F_n))$ such that $C_j'' \subseteq B''$ and $C_j' \subseteq B'$ for all sufficiently large j. By planarity, we see that the neighbors of B' on F_n are all contained in $u_n F_n v_n$.

When $|V(K' \cap K'')|$ is even, then $m \geq 2$. Since $v_1 F_1 u_1$ has at least two edges and by (3) and 4-connectivity of G, $I_H(F_2)$ has two disjoint paths from $v_1F_1u_1 - v_1$ or from $v_1F_1u_1 - u_1$ to $v_2F_2u_2$ internally disjoint from $F_1 \cup F_2$. Hence there is an edge w_1w_2 of $v_1F_1u_1$ such that v_1, w_1, w_2, u_1 occur on $v_1F_1u_1$ in order and there are two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ to $v_2F_2u_2$ or from $w_2F_1u_1$ to $v_2F_2u_2$ which are internally disjoint from $F_1 \cup F_2$. When $|V(K' \cap K'')|$ is odd, then by (3), there exist two disjoint paths in $I_H(F_2)$ from $v_1F_1w_1$ or from $w_2F_1u_1$ to $v_2F_2u_2$ which are internally disjoint from $F_1\cup F_2$. Hence, the conditions of Lemma (4.3) are satisfied.

By Lemma (4.3), we see that H contains a 2-way infinite F_1 -Tutte path P through w_1w_2 . If $|V(K' \cap K'') - \{x, y\}|$ is even, then P is a spanning 2-way infinite path in G. If $|V(K' \cap K'') - \{x, y\}|$ is odd, then $(P - w_1w_2) + \{w, ww_1, ww_2\}$ is a spanning 2-way infinite path in G .

It is easy to see that Theorem (1.1) follows from Theorems (5.1) , (6.1) , and (6.2) .

ACKNOWLEDGMENT. The author thanks two referees for their helpful comments. In particular, the author would like to thank the referee who pointed out a missing case in the original proof of Lemma (3.1), brought up references [1] and [5], and helped clarify several ambiguous places.

References

- [1] R. Halin, Zur häufungspunktfreien Darstellung abzählbarer Graphen in der Ebene, Arch. Math. 17 (1960) 239–243.
- [2] C. St. J. A. Nash-Williams, Hamiltonian lines in infinite graphs with few vertices of small valency, *Aequationes Math.* **7** (1971) 59–81.
- [3] C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory in New Directions in Graph Theory (ed. F. Harary), Academic Press, New York (1973) 149–186.
- [4] R. Thomas and X. Yu, 4-Connected projective-planar graphs are hamiltonian, J. Combin. Theory Ser. B 62 (1994) 114–132.
- [5] C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory *Ser. B* **29** (1980) 244-271.
- [6] C. Thomassen, Infinite graphs in Selected Topics in Graph Theory Vol. 2, Academic Press, New York (1983) 129–160.
- [7] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory, 7 (1983) 169–176.
- [8] X. Yu, Infinite paths in planar graphs I, graphs with radial nets, J. Graph Theory 47 (2004) 147–162.
- [9] X. Yu, Infinite paths in planar graphs II, structures and ladder nets, J. Graph Theory 48 (2005) 247–266.
- [10] X. Yu, Infinite paths in planar graphs III, 1-way infinite paths, J. Graph Theory 51 (2006) 175–198.