
Unicyclic Graphs with Maximum
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Abstract

The general Randić index Rα(G) of a graph G is defined as the sum of

the weights (d(u)d(v))α of all edges uv of G, where d(u) denotes the

degree of a vertex u in G and α is an arbitrary real number. In this

paper, we show that among all unicyclic graphs with n vertices, S+
n has

the maximum general Randić index for 0 < α < 1, where S+
n denotes

the unicyclic graph obtained from the star Sn on n vertices by joining

its two vertices of degree one; T⌈n+1

2
⌉,⌊n+1

2
⌋ has the maximum general

Randić index for α > 2 and n ≥ 7, where T⌈n+1

2
⌉,⌊n+1

2
⌋ is a triangle with

two balanced leaf branches. For 1 < α ≤ 2, we also give the structure

description for the graphs with maximum general Randić index. The

case for α < 0 is much more complicated and left for further study.

∗Supported by National Science Foundation of China.



1 Introduction

For a (molecular) graph G = (V, E), the general Randić index Rα(G) of G is defined

as the sum of (d(u)d(v))α over all edges uv of G, where d(u) denotes the degree of a

vertex u of G, i.e., Rα(G) =
∑

uv∈E (d(u)d(v))α, where α is an arbitrary real number.

It is well known that R− 1

2

was introduced by Randić [9] in 1975 as one of the many

graph-theoretical parameters derived from the graph underlying some molecule. Later,

in 1998 Bollobás and Erdös [1] generalized this index by replacing −1

2
with any real

number α, which is called the general Randić index. The research background of Randić

index together with its generalization appears in chemistry or mathematical chemistry

and can be found in the literature (see [1],[2], [9]). Recently, finding bounds for the

general Randić index of a given class of graphs, as well as related problem of finding

the graphs with maximum or minimum general Randić index, attracted the attention

of many researchers, and many results have been obtained (see [1]-[2], [4]-[10]).

A simple connected graph G is called unicyclic if it contains exactly one cycle. From

this definition, one can see that a unicyclic graph has the same number of vertices and

edges, and it is a cycle or a cycle with trees attached to its vertices. For n ≥ 3, let S+
n

denote the unicyclic graph obtained from the star Sn on n vertices by joining its two

vertices of degree one. For α = −1

2
, Gao and Lu [4] showed that for a unicyclic graph

G, R− 1

2

(G) ≥ (n − 3)(n − 1)−
1

2 + 2(2n − 2)−
1

2 + 1

2
, and the equality holds if and only

if G ∼= S+
n . For general α, Wu and Zhang [10] showed that among unicyclic graphs

on n vertices, the cycle Cn for α > 0 and S+
n for −1 ≤ α < 0, respectively, has the

minimum general Randić index. For α < −1, they gave the structure description of the

unicyclic graphs with minimum general Randić index. But, unfortunately, they could

not determine which of them can achieve the minimum value. Li, Wang and Zhang [7]

completely solved the case for α < −1, which was left unsolved by Wu and Zhang [10].

In this paper, we focus on investigating the unicyclic graphs with maximum general

Randić index for α > 0. The case for α < 0 is much more complicated and left for

further study. For convenience, we need some additional notations and terminologies.

Denote by d(u) and N(u) the degree and neighborhood of the vertex u, respectively.

A vertex of degree 1 in a graph is called a leaf vertex (or simply, a leaf ) and the edge

incident with the leaf is called a leaf edge. A vertex adjacent to some leaf vertices

is called a leaf branch. The class G of graphs is defined as follows: G consists of the



unicyclic graphs each of which has a triangle as its unique cycle, and the vertices not on

the cycle are leaves. A graph in class G is called a triangle with leaves, denoted by Ta,b,c,

where a, b and c are nonnegative integers that denote the degrees of the vertices on the

triangle, respectively. And we have a + b + c = n + 3. Obviously, if two of the three

numbers a, b, c are 2, then the graph is S+
n . Particularly, if c = 2, a triangle with two

leaf branches Ta,b,2 is simply Ta,b. Ta,b is balanced if |a− b| ≤ 1, i.e., Ta,b = T⌈n+1

2
⌉,⌊n+1

2
⌋.

Undefined notations and terminologies can be found in [3].

2 The case for 0 < α < 1

Following the proof idea and technique completely similar to those in [10], we can

show the following lemmas and get our Theorem 2.6. Their proofs are omitted.

Lemma 2.1 Suppose that the star Sn, n ≥ 2, is disjoint from a graph G and v is its

center. For a vertex u ∈ V (G), let G1 = G
⋃

Sn + uv, and G2 be the graph obtained

from G by attaching a star Sn+1 to the vertex u with u as its center as shown in Figure

2.1. If u is not an isolated vertex, then Rα(G2) > Rα(G1) for 0 < α < 1.
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Figure 2.1

By Lemma 2.1, we have the following Lemma.

Lemma 2.2 Assume G has the maximum general Randić index among unicyclic graphs

of order n. If T is a tree attached to a vertex v of the unique cycle in G, then T must

be a star with v as its center.

Let G1 be a unicyclic graph with the unique cycle C and Sa+1, Sb+1 are the two stars

attached to two vertices u and w of C, respectively. Assume the two paths between u
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and w on C are Puw and Pwu. Suppose the degrees of all vertices on Puw are two (if

there exists such vertex) in G, |E(Puw)| = c and |E(Pwu)| ≥ 3. Now transform G1 into

a new unicyclic graph G2 as follows: contract the path Puw into one vertex u(w), and

attach a star Sa+b+c+1 to it (see Figure 2.2). Next we show that this transformation

will increase the value of the general Randić index of the graph for 0 < α < 1.

Lemma 2.3 Let G1 and G2 be the two unicyclic graphs described above. If a, b ≥ 1,

then Rα(G2) > Rα(G1) for 0 < α < 1.

It is easy to verify the following lemma.

Lemma 2.4 Let G1 and G2 be two unicyclic graphs with the same order n, and their

unique cycles are i-cycle and (i− 1)-cycle respectively, i ≥ 4. Furthermore, for each of

the two graphs, the vertices not on the cycle are leaves adjacent to exactly one vertex

of the cycle. Then Rα(G2) > Rα(G1) for 0 < α < 1.

Lemma 2.5 Let H1, H2, H3 be three unicyclic graphs, each of which has a 4-cycle as

its unique cycle, and the vertices not on the cycle are leaves that are neighbors of

two nonadjacent vertices of the cycle, as shown in Figure 2.3. If a ≥ b ≥ 1, then

Rα(H3) > Rα(H1) for 0 < α < 1.

From Lemmas 2.2, 2.3, 2.4 and 2.5, we conclude that

Theorem 2.6 For 0 < α < 1, the unicyclic graph with maximum general Randić index

must be in G.
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It is easy to show the following lemma by elementary calculus.

Lemma 2.7 Let f(x) = xα−1(x + bα − 2), 0 < α < 1, bα > 2. Then f(x) is

monotonously increasing for x ≥ b − 1.

Theorem 2.8 Among all the unicyclic graphs, S+
n has the maximum general Randić

index for 0 < α < 1.

Proof. Suppose that G is the unicyclic graph with maximum general Randić index,

but not S+
n . By Theorem 2.6, G = Ta,b,c for some integers a, b, c, and without lose of

generality, suppose a ≥ c = n + 3 − a − b ≥ b, then c ≥ 3. We have

Rα(Ta,b,c) = Rα(Ta,b,n+3−a−b) = (a − 2)aα + (b − 2)bα

+(n + 1 − a − b)(n + 3 − a − b)α + aαbα + (aα + bα)(n + 3 − a − b)α.

Define f(x) = (x − 2)xα + (b − 2)bα + (n + 1 − b − x)(n + 3 − b − x)α + xαbα + (xα +

bα)(n + 3 − b − x)α, where x ≥ n + 3 − b − x and x ≥ b. Then

f ′(x) = (α + 1)[xα − (n + 3 − b − x)α] − α(bα − 2)[(n + 3 − b − x)α−1 − xα−1]

−αxα−1(n + 3 − b − x)α−1[x − (n + 3 − b − x)].

Case 1: bα ≤ 2.

If x = n + 3 − b − x, i.e., x = (n + 3 − b)/2, then f ′(x) = 0.

If x > n+3− b−x, by the mean-value theorem, xα − (n+3− b−x)α = αξα−1[x−

(n + 3 − b − x)], where ξ ∈ (n + 3 − b − x, x).

f ′(x) = αξα−1[x − (n + 3 − b − x)] − αxα−1(n + 3 − b − x)α−1[x − (n + 3 − b − x)]

+α[xα − (n + 3 − b − x)α] + α(2 − bα)[(n + 3 − b − x)α−1 − xα−1]

> α[x − (n + 3 − b − x)](ξα−1 − xα−1) + α[xα − (n + 3 − b − x)α]

+α(2 − bα)[(n + 3 − b − x)α−1 − xα−1].



Since 0 < α < 1, n + 3 − b − x < ξ < x and bα ≤ 2, we have f ′(x) > 0.

Therefore, Rα(Ta+1,b,c−1) > Rα(Ta,b,c), a contradiction.
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Case 2: bα > 2.

If x = n + 3 − b − x, i.e., x = (n + 3 − b)/2, then f ′(x) = 0.

If x > n+3− b−x, by the mean-value theorem, xα − (n+3− b−x)α = αξα−1[x−

(n + 3 − b − x)], where ξ ∈ (n + 3 − b − x, x).

f ′(x) = αξα−1[x − (n + 3 − b − x)] − αxα−1(n + 3 − b − x)α−1[x − (n + 3 − b − x)]

+α[xα − (n + 3 − b − x)α] + α(2 − bα)[(n + 3 − b − x)α−1 − xα−1]

> α[x − (n + 3 − b − x)](ξα−1 − xα−1)

+α[xα−1(x + bα − 2) − (n + 3 − b − x)α−1(n + 3 − b − x + bα − 2)].

By Lemma 2.7, we have xα−1(x+bα−2)−(n+3−b−x)α−1(n+3−b−x+bα−2) > 0, thus

f ′(x) > 0. Hence, Rα(Ta+1,b,c−1) > Rα(Ta,b,c), a contradiction. The proof is complete.

3 The case for α > 1

Lemma 3.1 Suppose a unicyclic graph G has a path v1v2v3 such that d(v1) = i > 1,

d(v3) = q > 1, v1v3 /∈ E(G) and N(v1)∩N(v3) = ∅. Let N(v1)\v2 = {u1, u2, · · · , ui−1},

N(v3) \ v2 = {w1, w2, · · · , wq−1}. By deleting the edges v3w1, v3w2, · · · , v3wq−1, and

adding the new edges v1w1, v1w2, · · · , v1wq−1, we get a new unicyclic graph G′, as

shown in Figure 3.1. Then Rα(G′) > Rα(G).
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Proof. Let d(v2) = j. Considering the values of the general Randić index of G and G′,

we have

Rα(G′) − Rα(G) = (i + q − 1)α(
i−1∑

k=1

d(uk)
α +

q−1∑

k=1

d(wk)
α) + (i + q − 1)αjα + jα

−iα
i−1∑

k=1

d(uk)
α − qα

q−1∑

k=1

d(wk)
α − (ij)α − (qj)α

≥ (i + q − 1)αjα + jα − (ij)α − (qj)α = jα((i + q − 1)α − iα − qα + 1) = jαf(i, q).

Without lose of generality, suppose i ≥ q. f(i, q) = ((i + q − 1)α − iα) − (qα − 1) =

α(q − 1)(ξα−1

1 − ξα−1

2 ) > 0, where ξ1 ∈ (i, i + q − 1), ξ2 ∈ (1, q).

From Lemma 3.1, we conclude that

Lemma 3.2 Let G be the unicyclic graph with maximum general Randić index, then

the unique cycle of G must be 3-cycle or 4-cycle, and the vertices not on cycle are

leaves.

Now we will show that the unique cycle of the extremal graph is not a 4-cycle.

Theorem 3.3 For α > 1, the unicyclic graph with the maximum general Randić index

must be in G.

Proof. By contradiction, suppose that G is the unicyclic graph with the maximum

general Randić index and the unique cycle of G is v1v2v3v4. Denote by a, b, c and d the

numbers of the leaves of vertices v1, v2, v3 and v4, respectively, as shown in Figure 3.2.

Case 1: a, c > 0 or b, d > 0
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Assume a ≥ c > 0. Let G′ and G′′ be the unicyclic graphs as shown in Figure 3.2.

We have

Rα(G) = a(a + 2)α + b(b + 2)α + c(c + 2)α + d(d + 2)α

+(a + 2)α((b + 2)α + (d + 2)α) + (c + 2)α((b + 2)α + (d + 2)α)

Rα(G′) = a(a + 2)α + b(b + 2)α + (c − 1)(c + 1)α + d(d + 2)α

+(a + 2)α((b + 2)α + (d + 2)α) + (c + 1)α((b + 2)α + (d + 2)α)

Rα(G′′) = (a + 1)(a + 3)α + b(b + 2)α + (c − 1)(c + 1)α + d(d + 2)α

+(a + 3)α((b + 2)α + (d + 2)α) + (c + 1)α((b + 2)α + (d + 2)α)

Let f(x) = (x + (b + 2)α + (d + 2)α)(x + 2)α. Thus,

Rα(G) − Rα(G′) = (c + (b + 2)α + (d + 2)α)(c + 2)α

−(c − 1 + (b + 2)α + (d + 2)α)(c + 1)α

= f(c) − f(c − 1) = f ′(ξ1),

Rα(G′′) − Rα(G′) = (a + 1 + (b + 2)α + (d + 2)α)(a + 3)α

−(a + (b + 2)α + (d + 2)α)(a + 2)α

= f(a + 1) − f(a) = f ′(ξ2),

where ξ1 ∈ (c − 1, c) and ξ2 ∈ (a, a + 1). By a ≥ c ≥ 1, α > 1 and since

f ′′(x) = α(x + 2)α−2(2(x + 2) − (1 − α)(x + (b + 2)α + (d + 2)α))

= α(x + 2)α−2((1 + α)x + 4 + (α − 1)((b + 2)α + (d + 2)α)) > 0

for any x > 0, we know that f ′(ξ2) > f ′(ξ1), which implies that Rα(G′′) > Rα(G) for

α > 1, a contradiction.
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Case 2: Otherwise, suppose c = d = 0 and a ≥ b ≥ 0.

Let H be the unicyclic graph as shown in Figure 3.3. For a ≥ 1, we have

Rα(H) − Rα(G)

= (a + 1)(a + 3)α + b(b + 2)α + (a + 3)α(b + 2)α + 2α((a + 3)α + (b + 2)α)

−a(a + 2)α − b(b + 2)α − (a + 2)α(b + 2)α − 2α((a + 2)α + (b + 2)α) − 4α

> (a + 3)α − 4α ≥ 0.

And it is easy to verify that the inequality holds for a = b = 0, a contradiction.

In the following, we only consider the case α > 2.

Lemma 3.4 For α > 2, we have

(i) for n ≥ 7, Rα(S+
n ) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋);

(ii) for n = 5 and n = 6, when α ≥ α′, Rα(S+
n ) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋); when 2 < α < α′,

Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋) < Rα(S+

n ), where α′ is the root of equation Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋) = Rα(S+

n ).

Proof. When n − 3 is even, suppose that n − 3 = 2k. Let f(k) = Rα(Tk+2,k+2) −

Rα(S+
n ) = 2(k + 2)α+1 + (2α+1 − 4)(k + 2)α + (k + 2)2α − [2α+1(k + 1)α+1 + 2α(2α+1 −

2)(k + 1)α + 4α]. We have

f ′(k) = 2(α + 1)(k + 2)α + α(2α+1 − 4)(k + 2)α−1 + 2α(k + 2)2α−1

−[(α + 1)2α+1(k + 1)α + α2α(2α+1 − 2)(k + 1)α−1]

> [α(k + 2)α(k + 2)α−1 − (α + 1)2α+1(k + 1)α]

+[α(k + 2)α(k + 2)α−1 − α2α(2α+1 − 2)(k + 1)α−1]

> [α(k + 2)α−1 − (α + 1)2α+1] + α[(k + 2)α − 2α(2α+1 − 1)].



We consider the case of k ≥ 4. Since α > 2,

f ′(k) > α6α−1 − (α + 1)2α+1 + α6α − α2α(2α+1 − 1)

= 7α6α−1 − α2α+1 − α22α+1 + (α2α − 2α+1)

> α2α−1[7 · 3α−1 − 4 − 2α+2] = α2α−1[(2 · 3α − 2α+2) + (3α−1 − 4)]

≥ α2α−1[2 − 1] > 0.

Since f(4) > 0, then f(k) > f(4) > 0 when k ≥ 4. For k = 2 and k = 3, we can

verify f(k) > 0.

So, for k ≥ 2, i.e., n ≥ 7, f(k) > 0, and we have Rα(S+
n ) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋).

For k = 1, we have f(1) = 2 · 3α + (2 · 6α − 3 · 4α) + (9α − 2 · 8a). When α ≥ 6,

9α − 2 · 8a > 0, so f(1) > 0; when 2 < α < 6, by a Maple program, we can verify

that when α′ < α < 6, f(1) > 0, and when 2 < α < α′, f(1) < 0, where α′ is the

root of equation f(1) = 0, i.e., when α ≥ α′, Rα(S+

5 ) < Rα(T3,3); when 2 < α < α′,

Rα(T3,3) < Rα(S+

5 ).

By the same method, we have similar conclusion for n − 3 odd. The details are

omitted.

Lemma 3.5 For α > 2 and 1 ≤ x ≤ y = n − x − 3, Rα(Tx+2,y+2) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋).

Proof. Case 1: x = 1 (see Figure 3.4)
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We only consider the case for n − 3 even, since the case for n − 3 odd is similar.

In this case, let f(k) = Rα(Tk+2,k+2) − Rα(T2k+1,3), by using the same method as

Lemma 3.4, we have the following result: When k ≥ 5, f ′(k) > 0. Since f(5) > 0,



f(k) > f(5) > 0 when k ≥ 5. For k = 2, k = 3 and k = 4, we can directly verify that

Rα(Tn−1,2) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋).

Case 2: x ≥ 2 (see Figure 3.4)

Let f(x) = Rα(Tx+2,y+2), i.e., f(x) = (x + 2)α+1 + (n − x − 1)α+1 + (2α − 2)[(x +

2)α + (n − x − 1)α] + (x + 2)α(n − x − 1)α. We have

f ′(x) = (α + 1)[(x + 2)α − (n − x − 1)α] + α(2α − 2)[(x + 2)α−1 − (n − x − 1)α−1]

+α(x + 2)α−1(n − x − 1)α−1(n − 2x − 3)

= α(x + 2)α−1(n − x − 1)α−1(n − 2x − 3) − α(α + 1)(n − 2x − 3)ξα−1

1

−α(α − 1)(2α − 2)(n − 2x − 3)ξα−2

2 ,

where ξ1, ξ2 ∈ (x + 2, n − x − 1). Since α > 2 and 2 ≤ x ≤ y = n − x − 3, we have

f ′(x) = α(n − 2x − 3)[(x + 2)α−1(n − x − 1)α−1 − (α + 1)ξα−1

1 − (α − 1)(2α − 2)ξα−2

2 ].

Let g(x) = (x + 2)α−1(n − x − 1)α−1 − (α + 1)ξα−1

1 − (α − 1)(2α − 2)ξα−2

2 , we have

g(x) ≥ (x + 2)α−1(n − x − 1)α−1

−(α + 1)(n − x − 1)α−1 − (α − 1)(2α − 2)(n − x − 1)α−2

= (n − x − 1)α−2[(n − x − 1)((x + 2)α−1 − (α + 1)) − (α − 1)(2α − 2)]

≥ (n − x − 1)α−2[(x + 2)(4α−1 − (α + 1)) − (α − 1)(2α − 2)]

≥ (n − x − 1)α−2[4α − 4(α + 1) − (α − 1)(2α − 2)]

= (n − x − 1)α−2[4α − α2α + 2α − 2α − 6] > 0.

Then f ′(x) > 0 for x < n−x− 3 = y. Therefore Rα(Tx+2,y+2) < Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋). The

proof is thus complete.

Lemma 3.6 For α > 2 and y ≥ x ≥ n + 3 − x − y > 2, there exists an integer

2 ≤ a ≤ n − 1, such that Rα(Tx,y,n+3−x−y) < Rα(Ta,n+1−a).

Proof. Case 1: y − x ≥ n + 3 − y − x

Now we will prove that f(x) = Rα(Tx,y,n+3−x−y) is an increasing function of x when

α > 2. Let A = n + 3 − y, we have

f(x) = (x− 2)xα + (y − 2)yα + (A− x− 2)(A− x)α + xα(A− x)α + yα(xα + (A− x)α).



Consider

f ′(x) = (α + 1)xα − 2αxα−1 − (α + 1)(A − x)α + 2α(A − x)α−1

+αxα−1(A − x)α − αxα(A − x)α−1 + αyα(xα−1 − (A − x)α−1)

= α(α + 1)(x − (A − x))ξα−1

1

+α(x − (A − x))[(α − 1)(yα − 2)ξα−2

2 − xα−1(A − x)α],

where ξ1, ξ2 ∈ (A − x, x). Since α > 2 and y ≥ x ≥ A − x, we have

f ′(x) > α(α + 1)(x − (A − x))(A − x)α−1

+α(x − (A − x))[(A − x)α−2(xα − 2 − xα−1(A − x))]

= α(x − (A − x))[(α + 1)(A − x)α−1 + (A − x)α−2(xα−1(x − (A − x)) − 2)]

≥ α(x − (A − x))[(α + 1)(A − x)α−1 − 2(A − x)α−2] ≥ 0.

This means that f(x) = Rα(Tx,y,n+3−x−y) is an increasing function of x.

Thus, Rα(Tx,y,n+3−x−y) < Rα(Tn+3−2x−y,y).

Case 2: y − x < n + 3 − y − x

By Case 1, we only need to prove the following proposition: for x ≥ n+3−2x > 2,

Rα(Tx,x,n+3−2x) is an increasing function of x when α > 2.

We have f(x) = Rα(Tx,x,n+3−2x) = 2(x − 2)xα + (n + 1 − 2x)(n + 3 − 2x)α + x2α +

2xα(n + 3 − 2x)α, then

f ′(x) = 2(α + 1)(xα − (n + 3 − 2x)α) − 4α(xα−1 − (n + 3 − 2x)α−1)

+2αxα−1[x(xα−1 − (n + 3 − 2x)α−1) − (n + 3 − 2x)α−1(x − (n + 3 − 2x))],

Since x(xα−1−(n+3−2x)α−1) = x(x−(n+3−2x))(α−1)ξα−2

1 , where ξ1 ∈ (n+3−2x, x),

we have

x(xα−1 − (n + 3 − 2x)α−1) − (n + 3 − 2x)α−1(x − (n + 3 − 2x))

= x(x − (n + 3 − 2x))(α − 1)ξα−2

1 − (n + 3 − 2x)α−1(x − (n + 3 − 2x))

> (n + 3 − 2x)(x − (n + 3 − 2x))(n + 3 − 2x)α−2

−(n + 3 − 2x)α−1(x − (n + 3 − 2x)) = 0.

Then f ′(x) > 2(α + 1)(xα − (n + 3 − 2x)α) − 4α(xα−1 − (n + 3 − 2x)α−1)

≥ 2(α + 1)x(xα−1 − (n + 3 − 2x)α−1) − 4α(xα−1 − (n + 3 − 2x)α−1)

= [2(α + 1)x − 4α](xα−1 − (n + 3 − 2x)α−1) > 0.



Then f(x) = Rα(Tx,x,n+3−2x) is an increasing function of x.

Subcase 1: If n+3− 2x is even, since f(x) is an increasing function of x, we have

Rα(Tx,x,n+3−2x) < Rα(Tn+1

2
, n+1

2

).

Subcase 2: If n + 3− 2x is odd, since f(x) is an increasing function of x, without

loss of generality, we only need to prove for x ≥ 3, Rα(Tx,x,3) < Rα(Tx+1,x) in the

following. Let f(x) = Rα(Tx+1,x)−Rα(Tx,x,1) = (x + 1)α+1 − 2(x + 1)α + xα(x + 1)α +

2α[xα + (x + 1)α] − xα+1 + 2xα − x2α − 3α(1 + 2xα). We have

f ′(x) = (α + 1)[(x + 1)α − xα] + [α(2α − 2)(x + 1)α−1 − α(2 · 3α − 2α − 2)xα−1

+α(x + 1)α−1xα−1] + 2αxα[(x + 1)α−1 − xα−1]

> αxα−1[(2α − 2) − (2 · 3α − 2α − 2) + (x + 1)α−1] + 2αxα · xα−2

= αxα−1[2α+1 − 2 · 3α + (x + 1)α−1 + 2xα−1],

for x ≥ 4, 2α+1−2 ·3α +(x+1)α−1 +2xα−1 > 0. So f ′(x) > 0, i.e., f(x) is an increasing

function in x ≥ 4. And we can verify that f(4) > 0. Thus, f(x) ≥ f(4) > 0. We can

also see that f(3) > 0, therefore, Rα(Tx,x,1) < Rα(Tx+1,x). The proof is complete.

From Lemma 3.4, Lemma 3.5 and Lemma 3.6, we conclude

Theorem 3.7 For α > 2, among all the unicyclic graphs, Ta,b = T⌈n+1

2
⌉,⌊n+1

2
⌋ has the

maximum general Randić index for n ≥ 7; for n = 5 and n = 6, Ta,b = T⌈n+1

2
⌉,⌊n+1

2
⌋ has

the maximum general Randić index when α ≥ α′, Ta,b = S+
n has the maximum general

Randić index when 2 < α < α′, where α′ is the root of equation Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋) =

Rα(S+
n ).

4 Concluding remarks

In this paper, we study unicyclic graphs with maximum general Randić index for

α > 0. We use the following table to summarize our main results.

α 0 < α < 1 1 < α ≤ 2 α > 2

extremal unicyclic graph S+
n in G for n ≥ 7, T⌈n+1

2
⌉,⌊n+1

2
⌋



For n = 5 and n = 6, Ta,b = T⌈n+1

2
⌉,⌊n+1

2
⌋ has the maximum general Randić index for

α ≥ α′, Ta,b = S+
n has the maximum general Randić index for 2 < α < α′, where α′

is the root of equation Rα(T⌈n+1

2
⌉,⌊n+1

2
⌋) = Rα(S+

n ). The case for α < 0 is much more

complicated and left for further study.
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