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Abstract

Proposed as a general framework, Liu and Yu [4] (Discrete Math.
231 (2001) 311-320) introduced (n, k, d)-graphs to unify the concepts
of deficiency of matchings, n-factor-criticality and k-extendability.
Let G be a graph and let n, k and d be non-negative integers such
that n + 2k + d ≤ |V (G)| − 2 and |V (G)| − n − d is even. If when
deleting any n vertices from G, the remaining subgraph H of G
contains a k-matching and each such k-matching can be extended to a
defect-d matching in H, then G is called an (n, k, d)-graph. In [4], the
recursive relations for distinct parameters n, k and d were presented
and the impact of adding or deleting an edge also was discussed for
the case d = 0. In this paper, we continue the study begun in [4] and
obtain new recursive results for (n, k, d)-graphs in the general case d ≥ 0.
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1. Introduction

In this paper we consider only finite, undirected and simple graphs. Denote by NG(x)
set of neighbors of a vertex x in G. If no confusion occurs, we write N(x) for NG(x). Let
G be a graph with vertex set V (G) and edge set E(G). A matching M of G is a subset
of E(G) such that any two edges of M have no vertices in common. A matching of k

edges is called a k-matching. Let d be a non-negative integer. A matching is called a
defect-d matching of G if it covers exactly |V (G)| − d vertices of G. Clearly, a defect-0
matching is a perfect matching. A necessary and sufficient condition for a graph to have
a defect-d matching was given by Berge [1].

Theorem 1.1 (Berge [1]) Let G be a graph and let d be an integer such that 0 ≤ d ≤
|V (G)| and |V (G)| ≡ d (mod 2). Then G has a defect-d matching if and only if for any
S ⊆ V (G)

o(G− S) ≤ |S|+ d.

For a subset S of V (G), we denote by G[S] the subgraph of G induced by S and we
write G− S for G[V (G) \ S]. The number of odd components of G is denoted by o(G).
Let M be a matching of G. If there is a matching M ′ of G such that M ⊆ M ′, then
we say that M can be extended to M ′ or M ′ is an extension of M . If each k-matching
can be extended to a perfect matching in G, then G is called k-extendable. To avoid
triviality, we require that |V (G)| ≥ 2k+2 for k-extendable graphs. This family of graphs
was instroduced by Plummer [6] and studied extensively by Lovász and Plummer [5].

A graph G is called n-factor-critical if after deleting any n vertices the remaining
subgraph of G has a perfect matching. This concept is introduced by Favaron [2] and
Yu [8], independently, which is a generalization of the notions of the well-known factor-
critical graphs and bicritical graphs (the cases of n = 1 and n = 2). Characterizations of
n-factor-critical graphs, properties of n-factor-critical graphs and its relationships with
other graphic parameters (e.g., degree sum, toughness, binding number, connectivity,
etc.) have been discussed in [2], [3] and [8].

Let G be a graph and let n, k and d be non-negative integers such that |V (G)| ≥
n + 2k + d + 2 and |V (G)| − n − d is even. If when deleting any n vertices from G,
the remaining subgraph of G contains a k-matching and each of such k-matchings can be
extended to a defect-d matching in the subgraph, then G is called an (n, k, d)-graph. This
term was introduced by Liu and Yu [4] as a general framework to unify the concepts of
defect-d matchings, n-factor-criticality and k-extendability. In particular, (n, 0, 0)-graphs
are exactly n-factor-critical graphs and (0, k, 0)-graphs are just the same as k-extendable
graphs. This framework enables the authors to prove a series of general results which
include many earlier results of matchig theory as special cases. In [4], Liu and Yu provided
the following necessary and sufficient conditions for a graph to be an (n, k, d)-graph.
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Theorem 1.2 A graph G is an (n, k, d)-graph if and only if the following conditions are
satisfied.

(i) For any S ⊆ V (G) and |S| ≥ n, then

o(G− S) ≤ |S| − n + d.

(ii) For any S ⊆ V (G) such that |S| ≥ n + 2k and G[S] contains a k-matching,

o(G− S) ≤ |S| − n− 2k + d.

Besides necessary and sufficient conditions, one interesting problem is to find recursive
relations for different parameters n, k and d. Here, we list some of the relevant results
(i.e., Theorems 1.3-1.6) presented in [4] for the convenience of the reader.

Theorem 1.3 Every (n, k, d)-graph G is also an (n′, k′, d)-graph where 0 ≤ n′ ≤ n,
0 ≤ k′ ≤ k and n′ ≡ n (mod 2).

In particular, for d = 0, the following result was proved.

Theorem 1.4 If G is an (n, k, 0)-graph and n ≥ 1, k ≥ 2, then G is a (n + 2, k − 2, 0)-
graph.

The authors in [4] also considered other recursive properties of (n, k, d)-graphs, for
instance, determining the parameters n

′
, k

′
and d

′
such that, when adding or deleting an

edge from an (n, k, d)-graph, the resulting graph is a (n
′
, k

′
, d

′
)-graph. The focus in [4] is

mostly on the case of d = 0 and obtained several interesting results. For graphs obtained
by adding an edge to an (n, k, d)-graph, the following result was shown.

Theorem 1.5 Let G be an (n, k, 0)-graph with n, k ≥ 1. Then for any edge e /∈ E(G),
G ∪ e is an (n, k − 1, 0)-graph.

Moreover, for graphs obtained by deleting an edge from an (n, k, d)-graph, there is
the following result.

Theorem 1.6 Let G be an (n, k, 0)-graph, n ≥ 2 and k ≥ 1. Then for any edge e of G,

(i) G− e is an (n− 2, k, 0)-graph.

(ii) G− e is an (n, k − 1, 0)-graph.

3



Note that the recursive results for d > 0 are not investigated in [4]. In this paper,
our main focus is to extend Theorems 1.4 - 1.6 to the case of d ≥ 0. The results are
natural extensions of those in the case of d = 0, but the proofs are somewhat more
involved. Section 2 is devoted to recursive relations for graphs obtained by adding an
edge to an (n, k, d)-graph. Section 3 presents a recursive relation for graphs obtained by
adding a vertex. Similar recursive results for graphs obtained by deleting an edge from
an (n, k, d)-graph are presented in Section 4.

2. Recursive relations for adding an edge

In this section, we consider recursive relations for graphs obtained by adding an edge to
an (n, k, d)-graph. First we have the following result.

Theorem 2.1 For any n > d ≥ 0 and k ≥ 1, if G is an (n, k, d)-graph, then G∪ e is an
(n, k − 1, d)-graph for any e /∈ E(G).

Proof. For k = 1, since G is an (n, 1, d)-graph, by Theorem 1.3, it is also an (n, 0, d)-
graph. Hence G ∪ e is an (n, 0, d)-graph.

So assume that k ≥ 2. If G∪e is not an (n, k−1, d)-graph for some edge e /∈ E(G), then
there exists an n-subset S′ ⊆ V (G) and a (k−2)-matching M ′ = {x1y1, x2y2, . . . , xk−2yk−2}
such that the (k − 1)-matching e ∪ M ′ can not be extended to a defect-d matching of
G − S′. Let e = xy and S′′ = V (M ′). By Theorem 1.1, there exists a vertex set
S1 ⊆ G − S′ − S′′ − x − y such that o(G − S′ − S′′ − x − y − S1) ≥ |S1| + d + 1. Since
G is an (n, k, d)-graph, according to Theorem 1.3, it is also an (n, k − 2, d)-graph. From
Theorem 1.2 (ii), o(G− S′ − S′′ − x− y − S1) ≤ o(G− S′ − S′′ − S1) + 2 ≤ |S1|+ d + 2.
By a simple parity argument, we have o(G − S′ − S′′ − x − y − S1) = |S1| + d + 2. Let
S2 = S1 ∪ {x, y}. Then, o(G− S′ − S′′ − S2) = |S2|+ d.

Claim 1. S′ ∪ S2 is an independent set in G.

Suppose e1 = uv is an edge in G[S′ ∪ S2]. Then uv ∪M ′ is a (k − 1)-matching. Let
S = (S′ ∪S2−u− v)∪ (S′′ ∪{u, v}) which is of order |S2|+n+2(k− 1)− 2 and contains
a (k − 1)-matching. Since G is an (n, k, d)-graph, according to Theorem 1.3, G is also
an (n, k − 1, d)-graph. Then from Theorem 1.2 (ii) and recall the fact that |S2| ≥ 2, we
have

o(G− S′ − S′′ − S2) = o(G− S) ≤ |S| − n− 2(k − 1) + d = |S2|+ d− 2,

a contradiction.

Let H = G− S′ − S′′ − S2.

Claim 2. No even component of H is connected to S′ ∪ S2.
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Assume that there is an edge, say e2 = uv, joining an even component C of H to
S2 ∪ S′, where u ∈ S′ ∪ S2 and v ∈ V (C). Then e2 ∪ M ′ is a (k − 1)-matching. Let
S = (S′ ∪ S2 − u) ∪ (S′′ ∪ {u, v}) which is of order n − 1 + |S2| + 2(k − 1) and contains
a (k − 1)-matching. Since G is an (n, k, d)-graph, it is also an (n, k − 1, d)-graph. Hence
Theorem 1.2 (ii) implies that o(G−S) ≤ |S| − n− 2(k− 1) + d = |S2| − 1 + d. However,
since the total number of odd components increases by at least one upon deleting v from
the even component C, we have that o(G− S) ≥ o(G− S′ − S′′ − S2) + 1 = |S2|+ d + 1,
a contradiction.

Claim 3. For every odd component O of H, there do not exist two independent edges
e3 = u1v1 and e4 = u2v2 joining O to S′ ∪ S2, where u1, u2 ∈ S′ ∪ S2 and v1, v2 ∈ V (O).

Suppose, to the contrary, that e3 and e4 are two such edges. Then e3 ∪ e4 ∪ M ′ is
a k-matching. Let S = (S′ ∪ S′′ − u1 − u2) ∪ (S′′ ∪ {u1, u2, v1, v2}) which is of order
|S2|+n−2+2k and contains a k-matching. Since G is an (n, k, d)-graph, then according
to Theorem 1.2 (ii), we have

o(G− S) ≤ |S| − n− 2k + d = |S2|+ n− 2 + 2k − n− 2k + d = |S2| − 2 + d.

However, since the total number of odd components does not decrease by deleting v1 and
v2 from the odd component O, we have o(G − S) ≥ o(G − S′ − S′′ − S2) = |S2| + d, a
contradiction.

According to Claim 3, we conclude that for any odd component O of H, if it is
connected to S2 or S′ in graph G−S′′, then either |N(V (O))∩ (S′ ∪S2)| = 1 or |N(S′ ∪
S2) ∩ V (O)| = 1.

Since G is an (n, k, d)-graph, G−S′′ is an (n, 2, d)-graph by Theorem 1.6 (ii). Suppose
that there are h odd components connected to neither S′ nor S2, and t odd components
C1, C2, . . . , Ct with |N(S′ ∪ S2) ∩ V (Ci)| = 1, 1 ≤ i ≤ t, and p = |S2| + d − h − t

odd components D1, D2, . . . , Dp with |N(V (Di)) ∩ (S′ ∪ S2)| = 1, 1 ≤ i ≤ p. Then
h+ t+ p = |S2|+ d. Let U =

⋃p
i=1 N(V (Di)) ∩ (S′ ∪ S2) = {u1, u2, . . . , uq}. We consider

the following three cases:

Case 1. n ≤ t. Let S3 =
⋃n

i=1 V (Ci) ∩N(S′ ∪ S2). Then |S3| = n. Now we consider
the n-set S3 and (k − 2)-matching M

′
. From Claim 1, S′ ∪ S2 is an independent set

in G − S′′. In G − S′′ − S3, S′ ∪ S2 must be matched by vertices of |S2| + d − h − n

odd components from Cn+1, Cn+2, . . . , Ct, D1, D2, . . . , Dp and any maximum matching
of G − S′′ − S3 must miss at least one vertex from each of h odd components which is
connected to neither S′ nor S′′. Altogether, a maximum matching of G − S′′ − S3 will
miss at least

h + |S2|+ n− (|S2|+ d− h− n) = 2n + 2h− d ≥ d + 2

vertices (recall that n > d ≥ 0), which contradicts to the fact that G− S′′ is an (n, 2, d)-
graph.
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Case 2. t < n ≤ q+t. Let S3 = (
⋃t

i=1 V (Ci)∩N(S′∪S2))
⋃{u1, u2, . . . , un−t}. Now we

consider the n-set S3 and (k−2)-matching M
′
. Suppose that there are f odd components

Di1 , Di2 , . . . , Dif among D1, D2, . . . , Dp which are connected to {u1, u2, . . . , un−t} in G−
S′′. It is obvious that f ≥ n−t. Note that each vertex of (S′∪S2)−S3 can only be matched
by vertices from |S2|+d−h−t−f odd components {D1, D2, . . . , Dp}\{Di1 , Di2 , . . . , Dif }
in G−S′′−S3. Furthermore, any maximum matching of G−S′′−S3 must miss at least
one vertex from Dij , 1 ≤ j ≤ f , and at least one vertex from each of h odd components
which is connected to neither S′ nor S′′. Thus any maximum matching of G − S′′ − S3

must miss at least

f + h + |S2|+ n− (n− t)− (|S2|+ d− h− f − t) = 2h + 2t + 2f − d

≥ 2h + 2t + 2n− 2t− d

≥ d + 2

vertices, which implies that G− S′′ is not an (n, 2, d)-graph, a contradiction again.

Case 3. n > q+t. Let S3 = (
⋃t

i=1 V (Ci)∩N(S′∪S2))
⋃

U
⋃

S4, where S4 ⊆ S′∪S2−U

and |S4| = n − q − t. Now we consider the n-set S3 and (k − 2)-matching M
′
. Note

that any maximum matching of G − S′′ − S3 must miss at least one vertex from each
of the h odd components connected to neither S′ nor S2 and at least one vertex from
|S2|+ d− h− t odd components D1, D2, . . . , Dp. Furthermore, |S2|+ n− (n− t) vertices
of S′ ∪ S2 − S3 must be missed by any maximum matching of G − S′′ − S3. Thus any
maximum matching of G− S′′ − S3 must miss at least

h + |S2|+ d− h− t + |S2|+ n− (n− t) = 2|S2|+ d ≥ d + 4

vertices (|S2| ≥ 2), which implies that G − S′′ is not an (n, 2, d)-graph, a contradiction
again.

This completes the proof.

Suppose n, k ≥ 1. Clearly Theorem 1.5 is a special case of Theorem 2.1. Note that the
additional condition n > d in Theorem 2.1 is necessary. For example, consider a complete
bipartite graph K3,d+2 with bipartition U = {u1, u2, u3} and W = {w1, w2, . . . , wd+2}.
Let H be a graph obtained by replacing each wi by a complete graph K2m+1, 1 ≤ i ≤ d+2.
Obviously, H is a (1, 2, d)-graph, but H ∪ u1u2 is not a (1, 1, d)-graph for d > 0. An
interesting property of the graph H is that H is a (1, 2, d)-graph, but not a (3, 0, d)-
graph for d > 0. So the conclusion of Theorem 1.4 does not always hold for n > d > 0.

Similarly, under the additional condition n > d, we have the following result which
extends Theorem 1.4 to the case of d > 0.

Theorem 2.2 For any n > d ≥ 0 and k ≥ 2 , if G is an (n, k, d)-graph, then G is also
an (n + 2, k − 2, d)-graph.
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Proof. Suppose that G is not an (n + 2, k− 2, d)-graph. Then there exist a vertex set S′

of order n + 2 and (k − 2)-matching M ′ such that M ′ can not be extended to a defect-d
matching of G− S′, i.e., G− S′ − S′′ has no defect-d matchings.

Claim. S′ is an independent set in G.

If e = uv is an edge in G[S′], then e ∪M ′ can be extended to a defect-d matching of
G − (S′ − u − v) since G is an (n, k − 1, d)-graph, i.e., G − S′ − V (M ′) has a defect-d
matching, a contradiction.

Let u, v be two vertices in S′ and G′ = G∪uv. By Theorem 2.1, G′ is an (n, k−1, d)-
graph. That is, uv ∪M ′ can be extended to a defect-d matching M of G− (S′ − {u, v}).
Then M is also a defect-d matching of G− S′ which contains M ′, a contradiction.

This completes the proof.

3. Recursive relation for adding a vertex

Let G be a graph and x /∈ V (G). Denote by G + x the graph obtained by joining
each vertex of G to x. Here we consider the recursive result of adding a vertex to an
(n, k, d)-graph.

Theorem 3.1 Let G be an (n, k, d)-graph with k > 0 and n > d. Then G + x is an
(n + 1, k − 1, d)-graph for any vertex x /∈ V (G).

Proof. Denote G′ = G + x. Let S be an (n + 1)-set of V (G′) and M ′ a (k − 1)-matching
of G′ − S. We consider the following cases:

Case 1. x ∈ S. Since G is an (n, k, d)-graph, it is also an (n, k − 1, d)-graph. Let
S′ = S − {x}. Then M ′ can be extended to a defect-d matching M of G− S′. Then M

is also a defect-d matching of G′ − S which contains the (k − 1)-matching M ′.

Case 2. x ∈ V (M ′). Let xy be an edge of the (k− 1)-matching M ′. If N(y)∩ S 6= ∅,
then let z ∈ N(y)∩S. Then M ′′ = (M ′−xy)∪yz is a (k−1)-matching and S′′ = S−{z}
is an n-set. Hence M ′′ can be extended to a defect-d matching M of G − S′′. Then
(M−{yz})∪{xy} is also a defect-d matching of G′−S which contains M ′. If N(y)∩S = ∅,
then let z be any vertex of S. According to Theorem 2.1, G∪yz is an (n, k−1, d)-graph.
Then M ′′ = (M ′ − xy) ∪ yz be a (k − 1)-matching and S′′ = S − {z} is an n-set. Hence
M ′′ can be extended to a defect-d matching M of (G∪yz)−S′′. Then (M −{yz})∪{xy}
is also a defect-d matching of G′ − S which contains M ′.

Case 3. x ∈ V (G) − S − V (M ′). Since G is an (n, k, d)-graph, G is an (n, k − 1, d)-
graph. Let y be any vertex of S and set S′ = S − y. Then M ′ can be extended to a
defect-d matching M of G− S′. Then dM (y) = 0 or dM (y) = 1. If dM (y) = 0, then it is
obvious that M is also a defect-d matching of G′ − S which contains M ′. If dM (y) = 1,
let NM (y) = z. Then (M − yz) ∪ xz is also a defect-d matching of G′ − S.
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4. Recursive relations for deleting an edge

By presenting an example H ∼= dK2m+1 ∪ K2, m ≥ 1, Liu and Yu [4] observed that
Theorem 1.6 (i) does not hold for d > 0 in general. Clearly H is a (2, 1, d)-graph. But
H−e is not a (0, 1, d)-graph, where e is the edge in the component K2 of H. Furthermore,
the graph H implies that Theorem 1.6 (ii) does not hold for d > 0 as well. Note that
the graph H constructed above is not connected. We present a connected example by
modifying H as follows. Let H ′ = H + u. It is obvious that H ′ is a (3, 1, d)-graph, but
H ′ − e is not a (1, 1, d)-graph. Moreover, H ′ is a connected counterexample to Theorem
1.6 (ii) for d > 0.

In this section, we provide structural theorems for G− e to be an (n− 2, k, d)-graph
and an (n, k − 1, d)-graph, respectively. Also, we discuss the impact of deleting an edge
from bipartite (n, k, d)-graphs.

Theorem 4.1 Let G be an (n, k, d)-graph with n ≥ 2. Then, for an edge uv ∈ E(G),
G− uv is not an (n− 2, k, d)-graph if and only if there exists a vertex subset S ⊆ V (G)
with |S| = n− 2 + 2k such that G[S] contains a k-matching and G− S is the union of d

odd components, each of which is factor-critical, and the single edge uv.

Proof. (⇐) The sufficient condition is obvious.

(⇒) Let G′ = G− uv. If G′ is not an (n− 2, k, d)-graph, then there exists a (n− 2)-
set S′ ⊆ V (G′) and a k-matching M ′ which can not be extended to a defect-d matching
of G′ − S′. Let S′′ = V (M ′). Then, by Theorem 1.1, there exists a vertex set S1 ⊆
V (G′)−S′−S′′ such that o(G′−S′−S′′−S1) ≥ |S1|+d+1. Then we have {u, v}∩ (S′∪
S′′ ∪ S1) = ∅, for otherwise, since G is an (n, k, d)-graph, from (ii) of Theorem 1.2, we
have o(G′−S′−S′′−S1) = o(G−S′−S′′−S1) ≤ |S1|+d, a contradiction. Since G is an
(n, k, d)-graph, we have o(G′−S′−S′′−S1) ≤ o(G−S′−S′′−S1)+2 ≤ |S1|+d+2. By a
simple parity argument, we have o(G′−S′−S′′−S1) = |S1|+ d + 2. Furthermore, since
|S1|+d+2 = o(G′−S′−S′′−S1) ≤ o(G−S′−S′′−S1)+2, we have o(G−S′−S′′−S1) =
|S1| + d. Thus uv must be a bridge of an even component of G − S′ − S′′ − S1, which
implies that G− S′ − S′′ − S1 contains at least one even component.

Let H = G− S′ − S′′ − S1.

Claim 1. H has exactly one even component.

Suppose that H has more than one even component. Let C1 and C2 be two such
even components of H and x1 ∈ V (C1), x2 ∈ V (C2). Since o(H) = |S1| + d and, by
deleting x1 and x2 from C1 and C2, the total number of the odd components increases
by at least two, we have o(H − x1− x2) ≥ |S1|+ d + 2. However, G is an (n, k, d)-graph,
from (ii) of Theorem 1.2, so o(G− (S′∪{x1, x2})−S′′−S1) = o(H−x1−x2) ≤ |S1|+d,
a contradiction.

Claim 2. |S1| = 0.
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Suppose |S1| ≥ 1. Let C be the even component of H, x ∈ S1, and y ∈ V (C). Since
G is an (n, k, d)-graph, from (ii) of Theorem 1.2, we have o(H−y) = o(G−(S′∪{x, y})−
S′′−(S1−x)) ≤ |S1|+d−1. However, the total number of the odd components increases
when deleting the vertex y from the even component C. Since o(H) = |S1|+ d, we have
o(H − y) ≥ |S1|+ d + 1, a contradiction. Thus |S1| = 0.

Let S = S′ ∪ S′′. Then G− S is the union of one even component C which contains
edge uv and d odd components O1, O2, . . . , Od. Since o(G′−S′−S′′−S1) = |S1|+d+2 and
uv is a bridge of C, without loss of generality, we may assume that C−uv = Od+1∪Od+2.
Then G′ − S is the union of d + 2 odd components O1, O2, . . . , Od+2. Without loss of
generality, suppose u ∈ Od+1 and v ∈ Od+2.

Claim 3. C ∼= K2 and each odd component Oi, 1 ≤ i ≤ d, is factor-critical.

Suppose that |V (C)| ≥ 4. Without loss of generality, assume that x is a vertex
different from u in Od+1. Since G is an (n, k, d)-graph, from Theorem 1.2 (ii), we have
o(G−(S′∪{u, x})−S′′) ≤ d. However, the total number of the odd components does not
decrease by deleting u and x from Od+1, which implies that o(G− (S′ ∪ {u, x})− S′′) =
o(G′ − (S′ ∪ {u, x})− S′′) = d + 2, a contradiction. So |V (C)| = 2 and E(C) = {uv}.

If |Oj | = 1, for all j, we are done. So suppose that for some j (1 ≤ j ≤ d), |Oj | ≥ 3
and there exists a vertex x ∈ V (Oj) such that Oj−x has no perfect matching. Then any
maximum matching of G−(S′∪{u, x})−S′′ will miss at least d+2 vertices. However, since
G is an (n, k, d)-graph, G− (S′ ∪{u, x})−S′′ has a defect-d matching, a contradiction.

From the definition of (n, k, d)-graphs, there exists no such vertex set S mentioned in
Theorem 4.1 for d = 0. So Theorem 1.6 follows from Theorem 4.1.

Though Theorem 1.6 (i) may not hold for d > 0 in general, but there are classes of
graphs for which Theorem 1.6 (i) holds for d > 0 without the additional condition n > d.
We will see that bipartite graphs are one of such classes.

Theorem 4.2 Let G be a bipartite (n, k, d)-graph with n ≥ 2. Then, for each edge e of
G, G− e is an (n− 2, k, d)-graph.

Proof. Let e = uv ∈ E(G). Suppose that G − uv is not an (n − 2, k, d)-graph. Then,
by Theorem 4.1, there exists a vertex set S ⊆ V (G), |S| = n − 2 + 2k, such that G[S]
contains a k-matching and G − S is the union of d factor-critical components and the
single edge e = uv since a bipartite graph of order more than 1 is not factor-critical, each
odd component is a singleton, i.e. |V (G)| = |S|+ d + 2 = n + 2k + d. However, from the
definition of the (n, k, d)-graph, we have n + 2k + d ≤ |V (G)| − 2, a contradiction.

Theorem 1.6 (ii) does not directly extend to the case d > 0 in general. However,
sometimes we can characterize the edges which cause the statement in Theorem 1.6 (ii)
to fail.
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Theorem 4.3 Let G be an (n, k, d)-graph with k ≥ 1, and uv ∈ E(G) such that

max{dG(u), dG(v)} ≥ 2k.

Then G − uv is not an (n, k − 1, d)-graph if and only if there exists a vertex subset
S ⊆ V (G) with |S| = n− 2 + 2k such that G[S] contains a (k − 1)-matching and G− S

is the union of d factor-critical odd components and the single edge uv.

Proof. (⇐) The sufficient condition is obvious.

(⇒) Let G′ = G − uv. Suppose that G′ is not a (n, k − 1, d)-graph. Then there
exist a n-set S′ ⊆ V (G) and a (k − 1)-matching M ′ which can not be extended to a
defect-d matching of G′ − S′. Denote V (M ′) by S′′. By Theorem 1.1, there exists a
vertex set S1 ⊆ V (G′ − S′ − S′′) such that o(G′ − S′ − S′′ − S1) ≥ |S1| + d + 1. Then
we have {u, v} ∩ (S′ ∪ S′′ ∪ S1) = ∅, for otherwise, since G is an (n, k, d)-graph, from
(ii) of Theorem 1.2, we have o(G′ − S′ − S′′ − S1) = o(G − S′ − S′′ − S1) ≤ |S1| + d,
a contradiction. Moreover, that G is an (n, k, d)-graph implies o(G′ − S′ − S′′ − S1) ≤
o(G − S′ − S′′ − S1) + 2 ≤ |S1| + d + 2. By a simple parity argument, we conclude
o(G′−S′−S′′−S1) = |S1|+d+2 and o(G−S′−S′′−S1) = |S1|+d. Thus uv must be a
bridge of an even component C of G−S′−S′′−S1, which implies that G−S′−S′′−S1

contains at least one even component.

Claim 1. ((NG(u) ∪NG(v)) ∩ (V (G)− S′ − S′′))− {u, v} = ∅.
Suppose that ux is an edge in G−S′−S′′− v. Since G is an (n, k, d)-graph, ux∪M ′

is a k-matching of G − S′ which can be extended to a defect-d matching M of G − S′.
Then M is a defect-d matching which contains M ′ but not uv, a contradiction.

Claim 1 implies that C is a complete graph consisting of the single edge uv.

Claim 2. S1 = ∅.
Without loss of generality, assume that dG(u) ≥ 2k (i.e., dG(u) > |S′′|+ |{v}|). Thus

N(u) ∩ S′ 6= ∅ or N(u) ∩ S1 6= ∅. Consider the case of N(u) ∩ S′ 6= ∅. Let x ∈ N(u) ∩ S′

and y ∈ S1 6= ∅. Since G is an (n, k, d)-graph, the k-matching M ′∪ux can be extended to
a defect-d matching of G− (S′∪ y−x). Thus o(G− (S′∪ y−x)− (S′′∪ux)− (S1− y)) ≤
|S1|−1+d. On the other hand, since o(G−S′−S′′−S1) = |S1|+d and C is a single edge,
G− (S′ ∪ y− x)− (S′′ ∪ ux)− (S1− y) has |S1|+ d + 1 odd components, a contradiction.
For the case of N(u) ∩ S1 6= ∅, we get a similar contradiction.

Claim 3. C is the only even component of G− S′ − S′′ .

The arguments are similar to that of Claim 2. Suppose that there is another even
component C ′ in G−S′−S′′. Let y ∈ V (C ′). Then there exists an edge ux ∈ E(C, S′) so
that the k-matching M ′ ∪ ux can be extended to a defect-d matching of G− (S′ ∪ y− x)
which implies that o(G − (S′ ∪ y − x) − (S′′ ∪ ux) − S1) ≤ |S1| + d. However, since
o(G − S′ − S′′ − S1) = |S1| + d and the number of odd components increases upon
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deleting y from C ′, G − (S′ ∪ y − x) − (S′′ ∪ ux) − S1 has at least |S1| + d + 2 odd
components, a contradiction.

Claim 4. Each odd component of G− S′ − S′′ is factor-critical.

Suppose that O is an odd component of G−S′−S′′ which is not factor-critical. Hence
there exists a vertex y ∈ V (O) such that O − y has no perfect matching. Since G is an
(n, k, d)-graph, G − S′′ is an (n, 1, d)-graph. Thus, for any x ∈ NG(u) ∩ S′, ux can be
extended to a defect-d matching of G− (S′ ∪ y− x)− S′′, which is impossible since such
a matching will miss at least d + 2 vertices.

Let S = S′ ∪ S′′. From the claims above, G− S is the union of d factor-critical odd
components and a single edge uv.

Finally, we present an example to show that the restriction max{dG(u), dG(v)} ≥ 2k

in Theorem 4.3 is necessary. Let G be the graph with vertices x1, x2, x3, x4, x5 and the
edges x1x2, x2x3, x3x4, x4x5, x5x1, x2x4, x3x5. Taking n disjoint copies of G and an edge
e = uv, join the vertices u and v to x3 and x4 in each copy of G. Denote the resulting
graph by H. Then max{dH(u), dH(v)} = 2n+1 < 2(n+1). One can verify that H is an
(1, n + 1, n + 1)-graph and H − uv is not an (1, n, n + 1)-graph. However, for any vertex
subset S ⊆ V (H) with |S| = 2n + 1 such that H[S] contains a n-matching, H − S is not
the union of n + 1 factor-critical odd components and a single edge uv.

This article is merely the first of series of investigations of a general framework to unify
the various extendabilities and factor-criticalities. So far we have discussed the charac-
terization of (n, k, d)-graphs and the recursive relations only. The important aspects of
(n, k, d)-graphs, such as decomposition procedure, Gallai-type structural theorems and
algorithms for finding (n, k, d)-graphs, have not been explored yet. More research on this
subject will follow.
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