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Abstract. The vertex arboricity va(G) of a graph G is the minimum
number of subsets into which the vertex set V (G) can be partitioned
so that each subset induces an acyclic subgraph. The fractional version
of vertex arboricity is introduced in this paper. We determine fractional
vertex arboricity for several classes of graphs, e.g., complete multipartite
graphs, cycles, integer distance graphs, prisms and Peterson graph.

Key words: vertex arboricity; tree coloring; fractional vertex arborici-

ty; fractional tree coloring

1 Introduction

In this paper, we use Z to denote the set of all integers and |S| for the cardinality
of a set S (|S| = +∞ means that S is an infinite set).

A k-coloring of a graph G is a mapping g from V (G) to {1, 2, . . . , k}. With
respect to a given k-coloring, Vi denotes the set of all vertices of G colored with
i, and 〈Vi〉 denotes the subgraph induced by Vi in G. If Vi induces a subgraph
whose connected components are trees, then g is called a k-tree coloring. The
vertex arboricity of a graph G, denoted by va(G), is the minimum integer k for
which G has a k-tree coloring. In other words, the vertex arboricity va(G) of
G is the minimum number of subsets into which the vertex set V (G) can be
partitioned so that each subset induces an acyclic subgraph (i.e., a forest).

In fact, if Vi is an independent set for each i (1 ≤ i ≤ k), then g is called a
proper k-coloring and the chromatic number χ(G) of a graph G is the minimum
integer k of colors for which G has a proper k-coloring. So the proper coloring
is a special case of the tree coloring.

Kronk and Mitchem [4] proved that va(G) ≤ d∆(G)+1
2 e for any graph G.

Chartrand etc. [2] showed va(K(p1, p2, . . . , pn)) = n−max{k |
∑k

i=0 pi ≤ n−k}
for the complete n-partite graph K(p1, p2, . . . , pn), where p0 = 0, 1 ≤ p1 ≤ p2 ≤
· · · ≤ pn.

In this paper, we introduce the fractional version of vertex arboricity and
to determine fractional vertex arboricity for several families of graphs. This is
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the first paper in a series of investigations on fractional vertex arboricity, its
relationship with other graphic parameters.

2 Fractional Vertex Arboricity of Graphs

Let S be a set of subsets of a set V . A covering of V is a collection of elements
L1, L2, . . . , Lj of S such that V ⊆ L1 ∪ · · · ∪ Lj .

For any graph G, let F(G) be the set of all subsets of V (G) that induce
forests of G.

We now define the fractional vertex arboricity vaf (G) of a graph G as follows.

Definition 1. A fractional tree coloring of a graph G is a mapping g from F(G)
to the interval [0, 1] such that

∑

L contains x

g(L) ≥ 1, for any x ∈ V (G).

The weight of a fractional tree coloring is the sum of its values, and the fractional
vertex arboricity of a graph G is the minimum possible weight of a fractional

coloring, that is,

vaf (G) = min







∑

L∈F(G)

g(L) | g is a fractional tree coloring of G







.

Clearly, we have vaf (H) ≤ vaf (G) for any subgraph H of G.

If we restrict the range of a mapping g to {0, 1} instead of [0, 1], then vaf (G)
is the usual vertex arboricity, va(G).

If g is a va(G)-tree coloring of G and Vi = {v | v ∈ V (G), g(v) = i} (1 ≤ i ≤
va(G)), then we can define a mapping h : F(G) −→ [0, 1] by

h(L) =

{

1, for L = Vi, 1 ≤ i ≤ va(G),

0, otherwise.

such that h is a fractional tree coloring of G which has the weight va(G). There-
fore, it follows immediately that vaf (G) ≤ va(G).

Conversely, if G has a (0, 1)-valued fractional tree coloring g of weight k.
Then the support of g consists of k forests V1, V2, . . . , Vk whose union is V (G).
If we color any vertex v with the smallest i such that v ∈ Vi, then we have a
k-tree coloring of G. Thus the vertex arboricity of G is the minimum weight of
a (0, 1)-valued fractional tree coloring.

Remark 1. Vertex arboricity of a finite graph G can be seen as an optimal so-
lution of an integer programming and its fractional version can be viewed as an
optimal solution of its relaxed problem, i.e., a linear programming problem.



To each set Li ∈ F(G) we associate a (0, 1)-variable xi with it. The vector
x = {xi} is an indicator of the sets we have selected for the covering. Let M

be the vertex-forest incident matrix of G, i.e., the (0, 1)-matrix whose rows are
indexed by V (G), columns are indexed by F(G) and (i, j)-entry is 1 only when
vi ∈ Lj . The condition that the indicator vector x corresponds to a covering is
simply Mx ≥ 1 (that is, every coordinate of Mx is at least 1). Hence the vertex
arboricity of G is precisely the optimal value of the integer programming

Min
∑

i xi

Subject to

Mx ≥ 1

xi = 0 or 1 (1 ≤ i ≤ |F(G)|) .

(1)

The relaxation of the integer programming (1) is the following linear pro-
gramming

Min
∑

i xi

Subject to

Mx ≥ 1

0 ≤ xi ≤ 1 (1 ≤ i ≤ |F(G)|)

(2)

and the optimal value of (2) is the fractional vertex arboricity of G.

Using Weak Duality Theorem for dual problems, we can derive the lower
bound for vaf (G).

Lemma 1. Let G be a finite graph, t = max {|L| | L ∈ F(G)}, then vaf (G) ≥
|V (G)|

t
.

Proof. The dual linear programming of (2) is the following

Max
∑

j yj

Subject to

MT y ≤ 1

0 ≤ yj ≤ 1 (1 ≤ i ≤ |V |).

(3)

Thus, if we define f to take the value f(v) on each vertex of V (G) with
0 ≤ f(v) ≤ 1 and MT y ≤ 1 for y = (f(v1), . . . , f(vn))T with n = |V |, then y
is a feasible solution of (3).

Let ω be the objective value of (3) for some feasible solution y. Since (2) and
(3) are a pair of dual problems, from Weak Duality Theorem (see [1]), we have
ω ≤ vaf (G).

If we assign each vertex of G with a weight 1
t
, then we have a feasible solution

of (3). Thus vaf (G) ≥ |V (G)|
t

. ut



Therefore, vaf (G) ≥ 1 for any nonempty graph G. Clearly, vaf (G) = 1 if a
graph G is a forest.

For a complete n−partite graph G = K(m1, m2, . . . , mn), we denote the
vertices of n-partite of V (G) by

X1 = {v11, v12, . . . , v1m1
}

X2 = {v21, v22, . . . , v2m2
}

· · ·

Xn = {vn1, vn2, . . . , vnmn
},

where |Xi| = mi for 1 ≤ i ≤ n.

Theorem 1. Let n ≥ 2. For a complete n-partite graph G = K(m1, m2, . . . ,

mn),

vaf (G) = n −
n

m + 1
, for m1 = m2 = · · · = mn = m,

and

n −
m

m + 1
≤ vaf (G) ≤ n −

m(n + 1)

(m + 1)2
,

for m1 = m2 = · · · = mn−1 = m > mn = n.

Proof. (1) For m ≥ 3, it is easy to see that t = max{|X | | X ∈ F(G)} = m+1. So
vaf (G) ≥ mn

m+1 = n − n
m+1 by Lemma 1. Define a mapping h1 : F(G) −→ [0, 1]

by

h1(X) =

{

1
(m+1)(n−1) , for X = Xi ∪ {vkj}, 1 ≤ i, j, k ≤ n, i 6= k,

0, otherwise.

Since there are exactly (m+1)(n−1) forests that have nonzero weights containing
vertex vij for 1 ≤ i, j ≤ m, h1 is a fractional tree coloring of G. The number of
(m + 1)-forests that contain m elements in Xi is

(

n−1
1

)(

m
1

)

= m(n− 1). So there

are nm(n−1) elements in F that have nonzero values or vaf (G) ≤ nm(n−1)
(m+1)(n−1) =

n − n
m+1 . Therefore vaf (G) = n − n

m+1 .

(2) For m = 2, it is straight forward to verify that t = max{|X | |X ∈ F(G)} = 3.
So vaf (G) ≥ 2n

3 . Define a mapping h2 : F(G) → [0, 1] by

h2(X) =

{

1
3(n−1) , for |X | = 3 and there exist i < j such that X ⊆ Xi ∪ Xj ,

0, otherwise.

The number of all 3-forests that contain two elements in X1 is 2(n − 1) and
the number of all 3-forests that contain one element in X1 is also 2(n − 1). So
there are 4(n − 1) + 4(n − 2) + · · · + 8 + 4 = 2(n − 1)n elements in F that
have nonzero values. Then h2 is a fractional tree coloring of G which has weight

1
3(n−1)2(n − 1)n = 2n

3 or vaf (G) ≤ 2n
3 . Therefore vaf (G) = 2n

3 .



(3) For m = 1, define a mapping h3 : F(G) → [0, 1] by

h3(X) =

{

1
n−1 , if |X | = 2,

0, otherwise.

Then h3 is a fractional tree coloring of G which has weight n
2 . Thus vaf (G) ≤ n

2 .

It is easy to see that t = max{|X | |X ∈ F(G)} = 2, so vaf (G) ≥ |V (G)|
t

= n
2 .

Hence, vaf (G) = n
2 .

(4) For m1 = m2 = · · · = mn−1 = m > n and mn = n, define a mapping
h4 : F(G) → [0, 1] by

h4(X) =























1
(n−1)(m+1) , if X = Xi ∪ {vnj} for i < n

or X = Xn ∪ {vkj} for k < n,

nm−m−2
(n−1)(m+1)2(n−2) , if X = Xi ∪ {vkj} for i, k < n,

0, otherwise.

It is not hard to verify that h4 is a fractional tree coloring. Moreover, there
are n(n − 1) + (n − 1)m forests that contain elements of Vn and have nonzero
values,

(

n−1
1

)(

n−2
1

)(

m
1

)

forests that do not contain any element of Vn and have
nonzero values. Hence, h4 has the weight

n + m

m + 1
+ (n − 1)(n − 2)m

nm − m − 2

(n − 1)(m + 1)2(n − 2)

=
n + m

m + 1
+ m

nm − m − 2

(m + 1)2
= n −

m(n + 1)

(m + 1)2
.

So vaf (G) ≤ n − m(n+1)
(m+1)2 .

Since t = max{|X | |X ∈ F(G)} = m + 1, so vaf (G) ≥ |V (G)|
t

= n+(n−1)m
m+1 =

n − 1 + 1
m+1 = n − m

m+1 . ut

Next, we determine fractional vertex arboricities of several familiar graphs:
cycles, prism of cycles and Petersen graph.

Theorem 2. (1) For an n-cycle Cn, vaf (Cn) = n
n−1 .

(2) Let Lh be the prism of two h-cycles (h ≥ 3). Then 2h
h+1 ≤ vaf (Lh) ≤ 2.

(3) For Petersen graph P (5, 2), we have vaf (P (5, 2)) = 10
7 .

Proof. (1) Suppose that Cn = a0a1 · · · an−1a0. Let Pi = aiai+1 · · · ai+n−2, where
the subscripts are taken with modulo n and 0 ≤ i ≤ n − 1. It is obvious that
every ai is contained in exactly n − 1 paths P0, . . . , Pi, Pi+2, . . . , Pn−1. Define
a mapping g : F → [0, 1] by

g(X) =

{

1
n−1 , if X = Pi (i = 0, 1, . . . , n − 1),

0, otherwise.



Then g is a fractional tree coloring of Cn which has weight ΣX∈F(Cn)g(X) =
n

n−1 , so vaf (Cn) ≤ n
n−1 . Clearly, t = max{|X | | X ∈ F(Cn)} = n − 1, hence

vaf (Cn) ≥ n
n−1 . Therefore vaf (Cn) = n

n−1 .

(2) Denote 2h vertices of the prism Lh by u1, u2, . . . , uh and v1, v2, . . . , vh.
Then the edges of Lh are uiui+1, vivi+1 and uivi (1 ≤ i ≤ n). Clearly, t =
max{|X | | X ∈ F} = h + 1 and thus vaf (Lh) ≥ 2h

h+1 . If we color the vertices
u1, u2, . . . , uh−1, vh−1, v1 by 0 and the vertices v2, v3, . . . , vh−2, vh, uh by 1,
then it yields a tree coloring. Thus vaf (Lh) ≤ va(Lh) ≤ 2.

(3) Denote the vertex set of Petersen graph P (5, 2) by {a, b, c, d, e, a1, b1, c1,

d1, e1} and then the edge set is {ab, bc, cd, de, ea, aa1, bb1, cc1, dd1, ee1, a1c1,

a1d1, b1d1, b1e1, c1e1}. Since any eight vertices of P (5, 2) would induce a cycle,
we see max{|X | | X ∈ F} = 7. Then vaf (P (5, 2)) ≥ 10

7 by Lemma 1.
Let

S1 = {a, b, c, d, a1, b1, e1}, S2 = {a, b, c, d, d1, c1, e1},

S3 = {b, c, d, e, e1, a1, d1}, S4 = {b1, b, c, d, e, c1, a1},

S5 = {c1, c, d, e, a, d1, b1}, S6 = {c, d, e, a, a1, e1, b1},

S7 = {d, d1, e, a, b, e1, c1}, S8 = {d, e, a, b, b1, a1, c1},

S9 = {e, a, b, c, c1, b1, d1}, S10 = {e1, e, a, b, c, a1, d1},

S11 = {a, a1, c1, c, d, e1, b1}, S12 = {a, a1, d1, d, c, b1, e1},

S13 = {b, b1, d1, d, e, a1, c1}, S14 = {b, b1, e1, e, d, c1, a1},

S15 = {c, c1, e1, e, a, b1, d1}, S16 = {c, c1, a1, a, e, b1, d1},

S17 = {d, d1, b1, b, a, c1, e1}, S18 = {d, d1, a1, a, b, c1, e1},

S19 = {e, e1, b1, b, c, d1, a1}, S20 = {e, e1, c1, c, b, a1, d1}.

Clearly, each Si (1 ≤ i ≤ 20) induces a forest and each vertex is contained in
exactly fourteen such forests. Define a mapping g by

g(X) =

{

1
14 , if X = Si (1 ≤ i ≤ 20),

0, otherwise ,

then g is a fractional tree coloring with the weight 20
14 = 10

7 . Hence, vaf (P (5, 2)) ≤
10
7 and thus vaf (P (5, 2)) = 10

7 . ut

In general, it is rather difficult to determine the exact values of either va(G)
or vaf (G) for an infinite graph G. In the following, we investigate a family of
special infinite graphs, integer distance graphs, and are able to determine values
of vaf (G) for some special cases. For a set D of positive integers, the integer

distance graph G(D) is a graph with vertex set Z and two vertices x and y are
adjacent if and only if |x − y| ∈ D, where D is called the distance set.

Theorem 3. (1) For D = {1, 2, . . . , m}, vaf (G(D)) = m+1
2 .



(2) Let P be the set of all prime numbers, then vaf (G(P )) = 2.

Proof. (1) Let

S0 = {. . . , 0, 1, m + 1, m + 2, 2(m + 1), 2(m + 1) + 1, . . .},

S1 = {. . . , 1, 2, m + 2, m + 3, 2(m + 1) + 1, 2(m + 1) + 2, . . .},

S2 = {. . . , 2, 3, m + 3, m + 4, 2(m + 1) + 2, 2(m + 1) + 3, . . .},

· · ·

Sm−1 = {. . . , −2, −1, m − 1, m, 2m, 2m + 1, 3m + 1, 3m + 2, . . .},

Sm = {. . . , −1, 0, m, m + 1, 2m + 1, 2m + 2, 2(m + 1) + m, 3(m + 1), . . .}.

Then each of S0, S1, . . . , Sm induces a forest and each integer i is contained in
exactly two Sj (0 ≤ j ≤ m). Define a mapping g : F → [0, 1] by

g(X) =

{

1
2 , if X = Sj (j = 0, 1, . . . , m),

0, otherwise.

Then g is a fractional tree coloring of G(D) which has the weight
ΣX∈F(G(D))g(X) = m+1

2 , so vaf (G(D)) ≤ m+1
2 .

On the other hand, let H be a subgraph induced by vertices 0, 1, . . . , m. Then
H is a complete graph of order m + 1 and thus vaf (G(D)) ≥ vaf (H) = m+1

2 by
Theorem 1. Therefore, vaf (G(D)) = m+1

2 .

(2) Let Si = {n | n ≡ i (mod 2), n ∈ Z} (i = 0, 1), then Si induces a forest. It
is obvious that each integer is contained in exactly one of such forests. Define a
mapping g : F → [0, 1] by

g(X) =

{

1, if X = Si (i = 0, 1),

0, otherwise.

Then g is a fractional tree coloring which has the weight 2. So vaf (G(P )) ≤ 2.
Suppose that H is the subgraph induced by vertices 0, 1, 2, . . . , 7. It is easy
to verify that t = max{|X | | X ⊆ V (H) and X induces a forest of H} = 4
and the vertex subset {0, 1, 2, 3} induces a tree. So vaf (H) ≥ 8

4 = 2. Hence
vaf (G(P )) = 2. ut
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