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Abstract

Kawarabayashi proved that for any integer k ≥ 4, every k-connected graph contains
two triangles sharing an edge, or admits a k-contractible edge, or admits a k-contractible
triangle. This implies Thomassen’s result that every triangle-free k-connected graph contains
a k-contractible edge. In this paper, we extend Kawarabayashi’s technique and prove a more
general result concerning k-contractible cliques.
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1 Introduction

A graph is k-connected if it has at least k+1 vertices and contains no vertex cut of size smaller
than k. An edge (or a subgraph) in a k-connected graph is k-contractible if its contraction results
in a k-connected graph. Tutte [6] showed that if G is a 3-connected graph then G = K4 or G
contains a 3-contractible edge. This result is used to show that all 3-connected graphs can be
obtained from K4 by two simple operations. Those 4-connected graphs without 4-contractible
edges are characterized in [2] and [4].

Thomassen [5] showed that for k ≥ 4, every k-connected graph contains a triangle or admits
a k-contractible edge. This result is then used in [5] to prove a conjecture of Lovász. Extending
techniques of Egawa [1], Kawarabayashi [3] improved Thomassen’s result by showing that for
k ≥ 4, every k-connected graph contains two triangles sharing an edge, or admits a k-contractible
edge not contained in any triangle, or admits a k-contractible triangle which does not share an
edge with any other triangle.

A clique in a graph is a maximal complete subgraph, and a clique of size i is called an i-clique.
(Note that if two cliques share an edge then both cliques are of size at least 3.) With this notation,
Kawarabayashi’s result can be stated as follows. For any integer k ≥ 4, every k-connected graph
contains two triangles sharing an edge, or admits a k-contractible i-clique for some 2 ≤ i ≤ 3.

We aim to investigate the existence of a k-contractible subgraph of larger size in a k-connected
graph. It turns out that the existence of such subgraphs depends on the number of triangles
sharing a common edge. We are able to modify Kawarabayashi’s method and prove the following
more general result.

(1.1) Theorem. Let t ≥ 0 and k ≥ max{4, t+3} be integers, and let G be a k-connected graph.
Then one of the following holds.

(i) There is an edge contained in t + 1 triangles in G.

(ii) There exist two cliques in G sharing at least one edge.

(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection
is non-empty.

(iv) There is a k-contractible clique in G of size at most t + 2.

When t = 0 and G is triangle-free, (i), (ii), and (iii) of Theorem (1.1) cannot hold. Hence,
Theorem (1.1) implies that G admits a k-contractible edge, and we obtain Thomassen’s result as
a consequence. When t = 1 and no two triangles in G share an edge, (i), (ii), and (iii) cannot
hold. Hence, Kawarabayashi’s result follows from Theorem (1.1).

We consider simple graphs only. Let G be a graph. We use V (G) and E(G) to denote the
vertex set and edge set of G, respectively. For any x ∈ V (G), NG(x) denotes the neighborhood
of x in G, and we write dG(x) = |NG(x)|. Let H be a subgraph of G. Then NG(H) denotes the
set of vertices of G−V (H) each of which is adjacent to a vertex in V (H). When H is connected,
we use G/H to denote the graph obtained from G by contracting H . Also, for any e ∈ E(G), we
use G/e to denote the graph obtained from G by contracting e.

To prove Theorem (1.1), we first observe that if an i-clique in a k-connected graph is not k-
contractible, then its vertex set must be contained in a vertex cut of size at most k+ i−2 (unless
G is small). We then define a collection of vertex cuts arising from non-contractible cliques. In
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section 2, we derive properties about those cuts and associated components. It turns out that we
only need to consider those cuts of size at most k + 1. We complete the proof of Theorem (1.1)
in Section 3.

2 Cuts and components

Let G be a k-connected graph. Let K be an i-clique in G, where i ≥ 2, and let u denote the
vertex of G/K representing the contraction of K. Suppose G/K is not k-connected. Then either
there is a vertex cut S′ of G/K such that |S′| ≤ k − 1 or G/K is a complete graph on at most
k vertices. In the former case, since G is k-connected, S′ is not a cut in G, and hence, u ∈ S′.
Note that S := (S′−{u})∪V (K) is a cut in G. Since G is k-connected and because |S′| ≤ k− 1,
we have k ≤ |S| ≤ k + i − 2. Therefore, if an i-clique K in G is not k-contractible then either
V (K) is contained in a cut of size at least k and at most k + i − 2 or G/K is a complete graph
on at most k vertices.

Again, let G be a k-connected graph. For any clique K in G which is not k-contractible, let
CK(G) denote the collection of minimum cuts in G containing V (K). (Note that if CK(G) = ∅
then G/K is a complete graph with at most k vertices.) Thus, if S ∈ CK(G) and T is a
cut in G containing V (K) then |T | ≥ |S|, and T ∈ CK(G) if, and only if, |T | = |S|. Define
C(G) =

⋃
K CK(G), where the union is taken over all cliques K in G which are not k-contractible.

For i ≥ 2 and k ≤ j ≤ k + i − 2, let Cj
i (G) := {S ∈ C(G) : |S| = j and S ∈ CK(G) for some

i-clique K in G}. The following observation shows when C(G) �= ∅.

(2.1) Lemma. Let t ≥ 0 and k ≥ max{4, t + 3} be integers, and let G be a k-connected graph.
Then one of the following holds.

(i) There is an edge contained in t + 1 triangles in G.

(ii) There is a k-contractible clique in G of size at most t + 2.

(iii) C(G) �= ∅.

Proof. Suppose (i) fails. Then every clique in G has size at most t + 2, which implies that G is
not a complete graph (because k ≥ t + 3). Let x, y be two non-adjacent vertices of G. Then any
clique K in G contains x or y but not both; for othetwise, G/K is not complete, which implies
CK(G) �= ∅, and hence, (iii) holds.

Let X be a clique in G containing x. Then y /∈ V (X). We may assume that G/X is a
complete graph on at most k vertices; for otherwise, either X is k-contractible ((ii) holds) or
CX(G) �= ∅ ((iii) holds). So let Y denote a clique in G containing V (G) − V (X). Therefore, we
may choose cliques X, Y in G such that V (X) ∪ V (Y ) = V (G), x ∈ V (X), and y ∈ V (Y ), and
subject to this property, X ∩ Y is maximal. Note that X ∩ Y is a complete graph, and because
V (X) ∪ V (Y ) = V (G), every vertex of G is adjacent to all vertices in capY , and hence, every
clique of G contains X ∩ Y .

Since X ∩ Y is complete, |V (X ∩ Y )| ≤ t + 2 ≤ k − 1. Therefore, because G is k-connected,
there is an edge uv in G with u ∈ V (X) − V (Y ) and v ∈ V (Y ) − V (X). Let K be a clique in
G containing uv. Then K contains x or y, but not both. Without loss of generality, we may
assume x ∈ V (K) and y /∈ V (K). Now we may assume that G/K is a complete graph on at most
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k vertices; for otherwise, either K is k-contractible ((ii) holds) or CK(G) �= ∅ ((iii) holds). Thus
V (G)−V (K) is contained a clique L in G. Note that y ∈ V (L) and V (K)∪ V (L) = V (G). Also
note that if v /∈ V (L) then v is not adjacent to some vertex v′ ∈ V (L), and hence, v′ /∈ V (Y )
(because v ∈ V (Y ) and Y is a clique). Thus, K ∩ L �= X ∩ Y . Since X ∩ Y ⊆ K ∩ L, K and L
contradict the choice of X and L. �

Our second lemma concerns the sizes of components associated with cuts in C(G).

(2.2) Lemma. Let t ≥ 0 and k ≥ max{4, t + 3} be integers, and let G be a k-connected graph.
Then one of the following holds.

(i) There is an edge contained in t + 1 triangles in G.

(ii) There exist two cliques in G sharing at least one edge.

(iii) There is a k-contractible clique in G of size at most t + 2.

(iv) C(G) �= ∅, and for any S ∈ C(G) and any component H of G − S, we have |V (H)| ≥ k − t,
and if k = 4 and S ∈ C5

3(G) then |V (H)| ≥ 4.

Proof. By Lemma (2.1), if C(G) = ∅ then (i) or (iii) holds. So we may assume that C(G) �= ∅,
and let S ∈ C(G). Without loss of generality, we may assume that S ∈ Cj

i (G), where i ≥ 2 and
k ≤ j ≤ k + i− 2, and let K be an i-clique such that S ∈ CK(G). Note that |S − V (K)| ≤ k − 2.
Let H be a component of G − S.

First, assume |V (H)| = 1. Let x denote the only vertex in V (H). Since G is k-connected,
dG(x) ≥ k. Therefore, since |S − V (K)| ≤ k − 2, we see that x has at least two neighbors in
V (K). Thus, i ≥ 3 (since K is a clique) and (ii) holds.

So assume |V (H)| ≥ 2, and let xy ∈ E(H). We may assume that xy is contained in at most
t triangles; for otherwise we have (i). Thus |NG(x) ∩ NG(y)| ≤ t. We may further assume that
x and y each have at most one neighbor in K, as otherwise, i ≥ 3 (since K is a clique) and (ii)
holds. Therefore, |V (H)| ≥ |NG(x) ∪ NG(y)| − |S − V (K)| − 2 ≥ |NG(x)| + |NG(y)| − |NG(x) ∩
NG(y)|− (k− 2)− 2 ≥ 2k− t− k = k− t. As a consequence, (iv) holds when k �= 4 or S ∈ C5

3(G).
Now let us consider the case when k = 4 and S ∈ C5

3(G). Then K is a 3-clique and |S−V (K)| =
2. Since k ≥ t + 3 and k = 4, we see that t ≤ 1. Suppose |V (H)| < 4. Since |V (H)| ≥ k − t ≥ 3,
|V (H)| = 3 and t = 1. If any vertex of H has two neighbors in K, then we see that (i) holds
(since t = 1). So we may assume that each vertex of H has at most one neighbor in K. Since G is
4-connected, this forces each vertex of H to be adjacent to at least one vertex in S−V (K). Since
|S − V (K)| = 2 and |V (H)| = 3, at least two vertices of H must share a neighbor in S − V (K).
If H is a triangle then (i) holds (since t = 1). So we may assume that H is a path. Again, since
G is 4-connected, the two degree 1 vertices of H are adjacent to both vertices in S − V (K), and
the degree 2 vertex of H is adjacent to one vertex in S − V (K). This implies (i). �

The next lemma will allow us to focus on those cuts from C(G) whose size is at most k + 1.

(2.3) Lemma. Let t ≥ 0 and k ≥ max{4, t + 3} be integers, and let G be a k-connected graph.
Then one of the following holds.

(i) There is an edge contained in t + 1 triangles in G.
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(ii) There exist two cliques in G sharing at least one edge.

(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection
is non-empty.

(iv) There is a k-contractible clique in G of size at most t + 2.

(v) C(G) �= ∅, and for any S ∈ C(G) and for any component H of G − S, some edge of H
belongs to a unique clique in G whose size is 2 or 3. Moreover, if an edge of H is contained
in a clique in G of size at least 4 then some edge of H is not contained in any triangle.

Proof. By Lemma (2.1), we may assume C(G) �= ∅, as otherwise (i) or (iv) holds. So we may
assume that C(G) �= ∅. Let S ∈ C(G). Without loss of generality, assume that L is an l-clique
such that S ∈ CL(G). Note that k ≤ |S| ≤ k + l − 2.

Let H be a component of G − S. We may assume that |V (H)| ≥ k − t ≥ 3; for otherwise, it
follows from Lemma (2.2) that (i) or (ii) or (iv) holds. If every edge of H belongs to a unique
clique in G of size at most 3, then (v) holds. If some edge of H is contained in two cliques in G
then (ii) holds. So we may assume that some edge e of H is contained in a j-clique in G, say J ,
with j ≥ 4. Let |V (J ∩ H)| = s. Clearly s ≤ j.

We may assume that no two vertices of J∩H share a common neighbor outside J , for otherwise
(ii) holds. Thus |N(J∩H)| ≥ s(k−(j−1))+(j−s). We may also assume that each vertex of J∩H
has at most one neighbor in L; otherwise because L is a clique, (ii) holds. Hence, |N(J∩H)−S| ≥
|N(J∩H)|−|S|+(|L|−s) ≥ s(k−(j−1))+(j−s)−(k+l−2)+(l−s) = (s−1)k−(s−1)j−s+2.
Since k ≥ t + 3 and t + 2 ≥ j, |N(J ∩ H) − S| ≥ (s − 1)(t + 3) − (s − 1)(t + 2) − s + 2 = 1.

Thus, |V (H)−V (J ∩H)| ≥ |N(J ∩H)−S| ≥ 1. So at least one vertex in H does not belong
to V (J). Therefore, there is an edge e′ of H which has exactly one incident vertex in J . If e′

belongs to a triangle in G, then (iii) holds. If e′ does not belong to any triangle in G, then (v)
holds. �

For a k-connected graph G, let C′(G) = Ck
2 (G) ∪ Ck

3 (G) ∪ Ck+1
3 (G). Note that when (v) of

Lemma (2.3) holds, some edge of H is contained in a unique clique in G of size at most 3, and
so, C′(G) �= ∅ or G has a contractible clique of size at most 3.

(2.4) Lemma. Let t ≥ 0 and k ≥ max{4, t + 3} be integers, and let G be a k-connected graph.
Then one of the following holds.

(i) There is an edge contained in t + 1 triangles in G.

(ii) There exist two cliques in G sharing at least one edge.

(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection
is non-empty.

(iv) There is a k-contractible clique in G of size at most t + 2.

(v) C′(G) �= ∅, and for any S, S′ ∈ C′(G) and for any component H of G − S, V (H) �⊆ S′.
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Figure 1: Cuts and components

Proof. Assume that (i) – (iv) fail. Then by (v) oof Lemma (2.3), C′(G) �= ∅. Let S, S′ ∈ C′(G),
H be a component of G − S, and H ′ be a component of G − S′. Let W = G − (S ∪ V (H)) and
W ′ = G − (S′ ∪ V (H ′)). Let H1, H2, and H3 denote V (H ∩ H ′), V (H) ∩ S′, and V (H ∩ W ′),
respectively. Let W1, W2, and W3 denote V (W ∩H ′), V (W )∩ S′, and V (W ∩W ′), respectively.
Let Q1, Q2, and Q3 denote S ∩ V (H ′), S ∩ S′, and S ∩ V (W ′), respectively. See Figure 1.

Suppose (v) fails as well, with H1 = ∅ = H3. Then by by (v) of Lemma (2.3), H2 = V (H)
contains two adjacent vertices x and y of G such that xy belongs to a unique clique in G of size
at most 3. In particular, |NG(x)∩NG(y)| ≤ 1. Thus, since G is k-connected, |NG(x)∪NG(y)| ≥
2k − 1.

We claim that |H2| ≥ k−1. If |S| = k then |H2| ≥ |NG(x)∪NG(y)|− |S| ≥ 2k−1−k = k−1.
Now suppose |S| = k + 1. Then there is a 3-clique T such that S ∈ CT (G). Since we assume (ii)
fails, T shares no edge with any other clique. Hence both x and y have at most one neighbor in
T . Therefore, |(NG(x) ∪ NG(y)) ∩ S| ≤ k, and so, |H2| ≥ |(NG(x) ∪ NG(y)) − S| ≥ |(NG(x) ∪
NG(y))| − |(NG(x) ∪ NG(y)) ∩ S| ≥ 2k − 1 − k = k − 1.

Similarly, we can show that if H1 = W1 = ∅ then |Q1| ≥ k − 1, if W1 = W3 = ∅ then
|W2| ≥ k − 1, and if H3 = W3 = ∅ then |Q3| ≥ k − 1. We distinguish three cases.

Case 1. |S′| = k and |S| = k.
In this case, |Q2 ∪ W2| = |S′| − |H2| ≤ k − (k − 1) = 1. Therefore, W1 �= ∅ or W3 �= ∅; as

otherwise, |W2| = |V (W )| ≥ k − 1 ≥ 3, a contradiction. So by symmetry, assume W1 �= ∅. Then
Q1 ∪ Q2 ∪ W2 is a cut in G. Since G is k-connected, |Q1 ∪ Q2 ∪ W2| ≥ k, and so, |Q1| ≥ k − 1.
Thus |Q2 ∪ Q3| = |S| − |Q1| ≤ 1, and hence |Q2 ∪ Q3 ∪ W2| ≤ 2. Therefore, since G is k-
connected and k ≥ 4, Q2 ∪ Q3 ∪ W2 cannot be a cut in G. So W3 = ∅. Since H3 = ∅, we have
|Q3| = |V (W ′)| ≥ k − 1 ≥ 3, a contradiction.

Case 2. |S′| = k + 1 and |S| = k, or |S′| = k and |S| = k + 1.
Suppose |S′| = k+1 and |S| = k. Then |Q2∪W2| = |S′|−|H2| ≤ 2. So W1 �= ∅ or W3 �= ∅; for

otherwise, |W2| = |V (W )| ≥ k − 1 ≥ 3, a contradiction. By symmetry, we may assume W1 = ∅.
Then |Q1 ∪Q2 ∪W2| ≥ k because G is k-connected. Hence, |Q1| ≥ k − 2. Since |S| = k, we have
|Q2∪Q3| ≤ 2. Then W3 �= ∅, as otherwise, |Q3| ≥ k−1 ≥ 3, a contradiction. So Q3∪Q2∪W2 is a
cut in G. Since G is k-connected and k ≥ 4, we must have k = 4, |Q2| = 0, and |Q3| = |W2| = 2.
Since |S′| = 5, we have |V (H)| = |H2| = 3 and S′ ∈ C5

3(G). Hence H is a triangle, and by (v) of
Lemma (2.3), no two vertices of H has a common neighbor in S. However this would force some
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vertex in V (H) to have degree at most 3 in G, a contradiction.
Now assume |S′| = k and |S| = k + 1. Then |Q2 ∪ W2| = |S′| − |H2| ≤ 1. Therefore, W1 �= ∅

or W3 �= ∅, for otherwise, |W2| = |V (W )| ≥ k − 1 ≥ 3, a contradiction. Let T denote a 3-clique
such that S ∈ CT (G). By symmetry, assume that V (T ) ⊆ Q1 ∪ Q2.

Suppose W3 = ∅. Then W1 �= ∅ and Q1 ∪ Q2 ∪ W2 is a cut in G containing V (T ). Since
S ∈ CT (G), |Q1 ∪ Q2 ∪ W2| ≥ |S| = k + 1. This, together with |Q2 ∪ W2| ≤ 1, implies |Q1| ≥ k,
and hence, |Q2∪Q3| = |S|− |Q1| ≤ 1. On the other hand, since H3 = ∅ = W3, |Q3| = |V (W ′)| ≥
k − 1 ≥ 3, a contradiction.

So W3 �= ∅. Then W2 ∪ Q2 ∪ Q3 is a cut in G, and hence, |W2 ∪ Q2 ∪ Q3| ≥ k. Thus, since
|Q2 ∪W2| ≤ 1, |Q3| ≥ k − 1, and so, |Q1 ∪Q2| = |S| − |Q3| ≤ 2. Now |Q1 ∪Q2 ∪W2| ≤ 3, which
implies that Q1 ∪ Q2 ∪ W2 cannot be a cut in G. So W1 = ∅. Since H1 = ∅, |Q1| = |V (H ′)| ≥
k − 1 ≥ 3, a contradiction.

Case 3. |S| = |S′| = k + 1.
Then |W2∪Q2| = |S′|−|H2| ≤ k+1−(k−1) = 2. Note that W1 �= ∅ or W3 �= ∅, for otherwise,

|W2| = |V (W )| ≥ k − 1 ≥ 3, a contradiction. Let T denote a 3-clique such that S ∈ CT (G). By
symmetry, assume V (T ) ⊆ Q1 ∪ Q2.

First, assume W1 = ∅. Then |Q1| = |V (H ′)| ≥ k−1 (since H1 = ∅) and W3 �= ∅. Now W3 �= ∅
implies that W2 ∪ Q2 ∪ Q3 is a cut in G, and hence, |W2 ∪ Q2 ∪ Q3| ≥ k ≥ 4. Also |Q1| ≥ k − 1
implies |Q2 ∪ Q3| = |S| − |Q1| ≤ k + 1 − (k − 1) = 2. Since |W2 ∪ Q2| ≤ 2 and |Q2 ∪ Q3| ≤ 2,
we have k = 4, Q2 = ∅, |Q3| = |W2| = 2, |S′| = |S| = 5, and |H2| = |V (H)| = 5 − 2 = 3. Thus,
S ∈ C5

3(G) and |V (H)| = 3, contradicting (iv) of Lemma (2.2) (since we assume (i), (ii), (iii) of
Lemma (2.2) fail).

Now assume W1 �= ∅. Then Q1 ∪ Q2 ∪ W2 is a cut in G containing V (T ). Since S ∈ CT (G),
we see that |Q1 ∪ Q2 ∪ W2| ≥ |S| = k + 1. Since |W2 ∪ Q2| ≤ 2, |Q1| ≥ k − 1, and so,
|Q2 ∪ Q3| ≤ |S| − |Q1| ≤ (k + 1) − (k − 1) = 2. If W3 = ∅ then |Q3| = |V (W ′)| ≥ k − 1 ≥ 3
(since H3 = ∅), a contradiction. So W3 �= ∅. Thus W2 ∪ Q2 ∪ Q3 is a cut in G, and hence,
|W2 ∪ Q2 ∪ Q3| ≥ k ≥ 4. This implies that k = 4, Q2 = ∅, |W2| = 2, |Q3| = 2, |S| = |S′| = 5,
and |H2| = |V (H)| = 5 − 2 = 3. Again, S ∈ C5

3(G) and |V (H)| = 3, which contradicts (iv) of
Lemma (2.2). �

3 Proof of the main result

In this section, we prove Theorem (1.1). Our argument is similar to that in [3] which was first
introduced by Egawa [1]. Let G be a k-connected graph and let t ≥ 0 be an integer, and assume
k ≥ max{4, t + 3}. We first show that it suffices to consider cuts in C′(G). We then complete the
proof by investigating the sizes of components associated with cuts in C′(G).

Suppose for a contradiction that Theorem (1.1) is false. Then we have the following.

(1) No edge of G is contained in t + 1 triangles.

(2) No two cliques in G share an edge.

(3) No clique in G of size at least 4 shares a vertex with a clique in G of size at least 3.

(4) No clique in G is k-contractible.

Therefore, it follows from (v) of Lemma (2.3) that C′(G) �= ∅. We choose S ∈ C′(G) and a
component H of G − S such that

7



(5) |V (H)| is minimum.

By (1) – (4) and by (iv) of Lemma (2.2), |V (H)| ≥ k − t ≥ 3. Let W = G − (S ∪ V (H)).
Next we show that

(6) S ∈ Ck+1
3 (G).

Suppose S /∈ Ck+1
3 (G). Then |S| = k. By (1) – (4) and (v) of Lemma (2.3), we may choose

an edge of H which belongs to a unique clique K in G of size at most 3. Let S′ ∈ CK(G). Then
|S′| ≤ k + 1. Let H ′ be a component of G − S′ and let W ′ = G − (S′ ∪ V (H ′)).

Let H1, H2, and H3 denote V (H ∩ H ′), V (H) ∩ S′, and V (H ∩ W ′), respectively. Let W1,
W2, and W3 denote V (W ∩ H ′), V (W ) ∩ S′, and V (W ∩ W ′), respectively. Let Q1, Q2, and Q3

denote S ∩ V (H ′), S ∩ S′, and S ∩ V (W ′), respectively. (See Figure 1.)
By (1) – (4) and by (v) Lemma (2.4), we have H1 �= ∅ �= W3 or H3 �= ∅ �= W1. By symmetry,

we may assume that H1 �= ∅ �= W3. Then H2∪Q2∪Q1 is a cut in G containing V (K). Therefore,
since S′ ∈ CK(G) and by (5), |H2∪Q2∪Q1| ≥ |S′|+1. Since W3 �= ∅, W2∪Q2∪Q3 is a cut in G,
and so, |W2∪Q2∪Q3| ≥ k = |S|. This implies that |S|+ |S′| = |H2∪Q2∪Q1|+ |W2∪Q2∪Q3| ≥
(|S′| + 1) + |S|, a contradiction.

By (6), let T be a 3-clique in G such that S ∈ CT (G).

(7) For any clique K in G containing an edge of H and for any S′ ∈ CK(G), |S′| = k + 1.
Let K denote a clique containing an edge of H , and let S′ ∈ CK(G). Let H ′ be a component

of G−S′ and let W ′ = G− (S′∪V (H ′)). Let H1, H2, and H3 denote V (H ∩H ′), V (H)∩S′, and
V (H ∩W ′), respectively. Let W1, W2, and W3 denote V (W ∩H ′), V (W ) ∩ S′, and V (W ∩W ′),
respectively. Let Q1, Q2, and Q3 denote S ∩ V (H ′), S ∩ S′, and S ∩ V (W ′), respectively. (See
Figure 1.) Note that V (K) ⊆ Q2 ∪ H2.

Suppose |S′| = k. Then S′ ∈ C′(G). Hence, by (1) – (4) and by (v) of Lemma (2.4), we may
assume from symmetry that H1 �= ∅ �= W3. Then H2 ∪Q2 ∪Q1 and W2 ∪Q2 ∪Q3 are cuts in G.
Since V (K) ⊆ Q2 ∪ H2, it follows from the choice of S (see (5)) that |H2 ∪ Q2 ∪ Q1| ≥ |S| + 1.
Since W2 ∪ Q2 ∪ Q3 is a cut in G, |W2 ∪ Q2 ∪ Q3| ≥ k = |S′|. This implies that |S| + |S′| =
|H2 ∪ Q2 ∪ Q1| + |W2 ∪ Q2 ∪ Q3| ≥ (|S| + 1) + |S′|, a contradiction.

Thus, for any clique K containing an edge of H , if S′ ∈ CK(G) then |S′| ≥ k + 1. Hence by
(v) of Lemma (2.3), every edge of H is contained in a unique clique in G which is of size 3. So
|S′| = k + 1. So we have (7).

Next, we take a spanning tree P of H , and label the edges of P as e1, . . . , em such that for each
1 ≤ i ≤ m the subgraph of H induced by {e1, . . . , ei} is connected. For each 1 ≤ i ≤ m, it follows
from (7) that ei belongs to a 3-clique Ti in G, and for any Si ∈ CTi(G), we have |Si| = k + 1.

Let Hi be a component in G−Si and let W i = G− (Si ∪V (Hi)). Let Hi
1, Hi

2 and Hi
3 denote

V (H ∩ Hi), V (H) ∩ Si and V (H ∩ W i), respectively. Let W i
1, W i

2 and W i
3 denote V (W ∩ Hi),

V (W ) ∩ Si and V (W ∩ W i), respectively. Let Qi
1, Qi

2 and Qi
3 denote S ∩ V (Hi), S ∩ Si and

S ∩ V (W i), respectively. Since T is fixed, we may assume that the notation is chosen so that
V (T ) ⊆ Qi

1 ∪ Qi
2 for all 1 ≤ i ≤ m.

Note that V (Ti) ⊆ Hi
2 ∪ Qi

2, and |V (Ti ∩ T )| ≤ 1 (since |V (Ti ∩ H)| ≥ 2).

(8) Hi
3 = ∅, |Hi

2| = |Qi
3| + 1 and |Qi

3| ≥ 1, and |V (H)| ≥ k.
First, assume Hi

3 �= ∅. Then Hi
2∪Qi

2∪Qi
3 is a cut in G containing V (K). Hence by (5) and since

Si ∈ CK(G), |Hi
2∪Qi

2∪Qi
3| ≥ |Si|+1 = k+2. So |Hi

2| ≥ (k+2)−|Qi
2∪Qi

3| = |Qi
1|+1. If W i

1 �= ∅,
then Qi

1∪Qi
2∪W i

2 is a cut in G containing V (T ). Since S ∈ CT (G), |Qi
1∪Qi

2∪W i
2| ≥ |S| = k+1.
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This shows 2k + 2 = |S| + |Si| = |Hi
2 ∪ Qi

2 ∪ Qi
3| + |Qi

1 ∪ Qi
2 ∪ W i

2| ≥ 2k + 3, a contradiction. So
W i

1 = ∅. Therefore, |V (H)| = |Hi
1| + |Hi

2| + |Hi
3| ≥ |Hi

1| + |Qi
1| + 1 = |V (Hi)| + 1. This shows

that Si and Hi contradict the choices of S and H (see (5)).
Thus, Hi

3 = ∅. It follows from (1) – (4) and (v) of Lemma (2.4) that Hi
1 �= ∅ �= W i

3. So
Hi

2 ∪ Qi
2 ∪ Qi

1 is a cut in G containing V (Ti) ∪ V (T ), and W i
2 ∪ Qi

2 ∪ Qi
3 is a cut in G. Since

S ∈ CT (G) and by (5), |Hi
2 ∪Qi

2 ∪Qi
1| ≥ k + 2. Since G is k-connected, |W i

2 ∪Qi
2 ∪Qi

3| ≥ k. This
shows that |S|+ |Si| ≥ 2k+2. On the other hand, |S| = |Si| = k+1. Hence |Hi

2∪Qi
2∪Qi

1| = k+2
and |W i

2 ∪ Qi
2 ∪ Qi

3| = k. So we have |Hi
2| = |Qi

3| + 1. Since |Hi
2| ≥ 2, we have |Qi

3| ≥ 1.
To prove |V (H)| ≥ k, we first show that there is an edge of G whose incident vertices are

contained in Hi
1. For otherwise, any z ∈ V (Hi

1) has all its neighbors contained in Hi
2 ∪ Qi

2 ∪ Qi
1.

Since z is adjacent to at most one vertex of T as well as to at most one vertex of Ti, and since
|V (Ti ∩ T )| ≤ 1, we see that dG(z) ≤ |Hi

2 ∪ Qi
1 ∪ Qi

2| − 3 = (k + 2) − 3 = k − 1, a contradiction
(since G is k-connected).

So let xy be an edge of G such that x, y ∈ V (Hi
1). Note that x and y each have at most

one neighbor in T as well as at most one neighbor in Ti. So |(NG(x) ∪ NG(y)) ∩ (Hi
2 ∪ Qi

2 ∪
Qi

1)| ≤ k + 1. Also since xy is contained in only one triangle (by (2) and (7)), we see that
|NG(x) ∩ NG(y)| ≤ 1. Therefore, since G is k-connected, |NG(x) ∪ NG(y)| ≥ 2k − 1. Hence
|Hi

1| ≥ |NG(x)∪NG(y)| − |(NG(x)∪NG(y))∩ (Hi
2 ∪Qi

2 ∪Qi
1)| ≥ (2k− 1)− (k + 1) = k− 2. This

means |V (H)| ≥ |Hi
1| + |Hi

2| ≥ (k − 2) + 2 = k, completing the proof of (8).

Next we show that
(9) |NG(U) ∩ V (H)| ≥ |U | + 1 for all non-empty subsets U of S − V (T ).
Suppose for some non-empty subset U of S−V (T ) we have |NG(U)∩V (H)| ≤ |U |. Note that

|U | ≤ |S−V (T )| ≤ k−2 < |V (H)|. So V (H)−NG(U) �= ∅. Thus, S∗ := (S−U)∪(NG(U)∩V (H))
is a cut in G containing V (T ). Since S ∈ CT (G) and |S∗| ≤ |S|, we see S∗ ∈ CT (G). Note that
H − NG(U) contains a component H∗ of G− S∗ and |V (H)−NG(U)| < |V (H)|. So S∗ and H∗

contradict the choices of S and H (see (5)).

(10) NG(Qi
3) ∩ V (H) = Hi

2.
By (8), we have Hi

3 = ∅. So NG(Qi
3) ∩ V (H) ⊆ Hi

2. Since |Hi
2| = |Qi

3| + 1 (by (8)) and
|NG(Qi

3) ∩ V (H)| ≥ |Qi
3| + 1 = |Hi

2| (by (9)), we have (10).

(11) For any 1 ≤ j ≤ m, |⋃j
i=1(NG(Qi

3) ∩ V (H))| ≤ |⋃j
i=1 Qi

3| + 1.
We prove (11) by induction on j. When j = 1, (11) follows from (8) and (10). So assume

j ≥ 2. If Qj
3 ⊆ ⋃j−1

i=1 Qi
3, the result follows from the induction hypothesis. Hence, we may

assume Qj
3 �⊆ ⋃j−1

i=1 Qi
3. For convenience, let R := Qj

3 ∩ (
⋃j−1

i=1 Qi
3) and A := (NG(Qj

3) ∩ V (H)) ∩
(
⋃j−1

i=1 NG(Qi
3)∩V (H)). Note that |A| = |(NG(Qj

3)∩(
⋃j−1

i=1 NG(Qi
3)))∩V (H)| ≥ |NG(R)∩V (H)|.

We claim that |A| ≥ |R| + 1. If R �= ∅, then |A| ≥ |NG(R) ∩ V (H)| ≥ |R| + 1 (by (9)). Now
assume R = ∅. Since {e1, . . . , ej} induces a connected subgraph of H , |Hj

2 ∩ (
⋃j−1

i=1 Hi
2)| ≥ 1. By

(10), A = (NG(Qj
3) ∩ (

⋃j−1
i=1 NG(Qi

3))) ∩ V (H) = Hj
2 ∩ (

⋃j−1
i=1 Hi

2), and so, |A| ≥ 1. Therefore,
|A| ≥ |R| + 1.

Thus |⋃j
i=1(N(Qi

3)∩V (H))| = |(NG(Qj
3)∩V (H))∪(

⋃j−1
i=1 (NG(Qi

3)∩V (H)))| ≤ (|⋃j−1
i=1 Qi

3|+
1) + (|Qj

3| + 1) − (|R| + 1) ≤ |⋃j
i=1 Qi

3| + 1. This proves (11).

Since P is a spanning tree of H and E(P ) = {e1, . . . , em}, we see that
⋃m

i=1 Hi
2 = V (H).

Note that
⋃m

i=1(NG(Qi
3) ∩ V (H)) =

⋃m
i=1 Hi

2. Hence it follows from (11) that |V (H)| ≤

9



|⋃m
i=1 NG(Qi

3)| + 1 ≤ |S − V (T )| + 1 ≤ k + 1 − 3 + 1 = k − 1, contradicting (8). This com-
pletes the proof of Theorem (1.1).
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