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Abstract

Johnson proved that if s, t are coprime integers, then the r-th moment of the
size of an (s, t)-core is a polynomial of degree 2r in t for fixed s. After that, by
defining a statistic size on elements of affine Weyl group, which is preserved under
the bijection between minimal coset representatives of S̃t/St and t-cores, Thiel
and Williams obtained the variance and the third moment about the mean of the
size of an (s, t)-core. Later, Ekhad and Zeilberger stated the first six moments
about the mean of the size of an (s, t)-core and the first nine moments about the
mean of the size of an (s, s + 1)-core using Maple. To get the moments about the
mean of the size of a self-conjugate (s, t)-core, we proceed to follow the approach
of Thiel and Williams, however, their approach does not seem to directly apply to
the self-conjugate case. In this paper, following Johnson’s approach, by Ehrhart
theory and Euler-Maclaurin theory, we prove that if s, t are coprime integers, then
the r-th moment about the mean of the size of a self-conjugate (s, t)-core is a
polynomial of degree 2r in t for fixed s. Then, based on a bijection of Ford, Mai
and Sze between self-conjugate (s, t)-cores and lattice paths in

⌊
s
2

⌋
×
⌊
t
2

⌋
rectangle

and a formula of Chen, Huang and Wang on the size of self-conjugate (s, t)-cores,
we obtain the variance, the third moment and the forth moment about the mean
of the size of a self-conjugate (s, t)-core.

Keywords: (s, t)-core, self-conjugate partition, lattice path, Ehrhart theory, Euler-
Maclaurin theory

AMS Subject Classification: 05A17, 05A15

1 Introduction

The objective of this paper is to give the variance, the third moment and the forth
moment about the mean of the size of a self-conjugate (s, t)-core.

A partition is a finite nonincreasing sequence of positive integers (λ1, λ2, . . . , λm). We
write λ = (λ1, λ2, . . . , λm), and say the length of λ is m. The Young diagram of λ is
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defined to be a left-justified array of boxes with λi boxes in the ith row from the top. For
each box B of λ, one can associate its hook length h(B), which is the number of boxes
directly below and directly to the right of B (including B itself) in the Young diagram
of λ. The conjugation of λ is the partition µ = (µ1, µ2, . . . , µλ1) where

µi = #{j : λj ≥ i, 1 ≤ j ≤ m}, for 1 ≤ i ≤ λ1.

A partition λ is called a self-conjugate partition if λ = µ; we often use λ′ to denote the
conjugation of λ.

For a positive integer t, a partition λ is a t-core if it has no box with hook length of
a multiple of t. Let s be another positive integer, we say that λ is an (s, t)-core if it is
simultaneously an s-core and a t-core, if λ = λ′ we say λ is a self-conjugate (s, t)-core.

Let s and t be coprime positive integers. Anderson [3] showed that the number of

(s, t)-cores is 1
s+t

(
s+t
s

)
. Ford, Mai and Sze [8] proved the number of self-conjugate (s, t)-

cores is
(
bs/2c+bt/2c
bs/2c

)
. Olsson and Stanton [13] proved that there exists a unique (s, t)-core

with the maximum size (s2−1)(t2−1)
24

. Armstrong, Hanusa and Jones [4] posed the following
conjecture on the average size of an (s, t)-core and the average size of a self-conjugate
(s, t)-core.

Conjecture 1.1 Assume s and t are coprime integers. Then the average size of an
(s, t)-core and the average size of a self-conjugate (s, t)-core are both equal to

(s+ t+ 1)(s− 1)(t− 1)

24
. (1.1)

Stanley and Zanello [14] showed that the conjecture for the average size of an (s, t)-
core holds for t = s+ 1. Based on this work, Aggarwal [1] proved the average size of an

(s,ms+ 1)-core is (s+ms+2)(s−1)ms
24

. Chen, Huang and Wang [6] proved this conjecture for
the self-conjugate case. And Johnson [10] proved this conjecture concerning the average
size of an (s, t)-core by Ehrhart theory and Euler-Maclaurin theory. He also gave an
alternative derivation for the result of Chen, Huang and Wang. After that, Wang [16]
gave another proof for Johnson’s result by using special cyclic complex-value functions
and some special generating functions.

Regarding the size of an (s, t)-core as a random variable, Thiel and Williams [15]
extended Johnson’s method to compute the variance and the third moment about the
mean of the size of an (s, t)-core as follows.

Theorem 1.1 If s and t are coprime positive integers, then the variance and the third
moment about the mean of the size of an (s, t)-core are

st(s− 1)(t− 1)(s+ t)(s+ t+ 1)

1440
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and
st(s− 1)(t− 1)(s+ t)(s+ t+ 1)(2s2t+ 2st2 − 3s2 − 3t2 − 3st− 3)

60480
,

respectively.

Using Maple, Ekhad and Zeilberger [7] stated new polynomials for the first six mo-
ments about the mean of the size of an (s, t)-core, and the first nine moments about the
mean of the size of an (s, s+ 1)-core.

Motivated by these works, in this paper we are concerned with the moments about
the mean of the size of a self-conjugate (s, t)-core. We found that the approach of Thiel
and Williams [15] can not be directly applied to the self-conjugate (s, t)-core. To get the
variance of the random size of an (s, t)-core, Thiel and Williams defined a statistic size
on elements of affine Weyl group, which is preserved under the bijection of Lascoux [11]
between minimal coset representatives of S̃t/St and t-cores. Using this statistic size,
they gave another derivation for the maximum size of an (s, t)-core and the average size
of an (s, t)-core. Moreover, they obtained the variance and the third moment about the
mean of the size of an (s, t)-core. But the statistic size on elements of affine Weyl group
in type C̃t is not equal to the number of boxes of the corresponding self-conjugate core
under the bijection of Hanusa and Jones [9] between the minimal coset representatives
of C̃t/Ct and the self-conjugate 2t-cores.

Let ξs,t denote the random size of a self-conjugate (s, t)-core in this paper. In order to
calculate the moments about the mean of ξs,t, in Section 2, following Johnson’s approach,
by Ehrhart theory and Euler-Maclaurin theory we first prove that the variance, the
third moment and the forth moment about the mean of the random variable ξs,t are
polynomials of degree 4, 6 and 8 in t, respectively. To determine these polynomials, we
need some special values. Thus, in Section 3, based on a bijection of Ford, Mai and
Sze between self-conjugate (s, t)-cores and lattice paths in

⌊
s
2

⌋
×
⌊
t
2

⌋
rectangle and a

formula of Chen, Huang and Wang on the size of self-conjugate (s, t)-cores, we give the
formulae for the variance about the mean of ξs,t for t = 2, 3, 4, the third moment about
the mean of ξs,t for t = 2, 3, 4, 5, 6, and the forth moment about the mean of ξs,t for
t = 2, 3, 4, 5, 6, 7, 8. In Section 4, combining the theorems in Section 2 and the formulae
in Section 3, we deduce the variance, the third moment and the forth moment about
the mean of ξs,t by the method of undetermined coefficients. And we state them as the
following theorems.

Theorem 1.2 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable ξs,t is

M2(s, t) =
st(s− 1)(s+ t)(s+ t+ 1)(2t− 3)

1440
, if t is even;

M2(s, t) =
st(s− 1)(t− 1)(s+ t)(2s+ 2t+ 3)

1440
, if t is odd.
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Theorem 1.3 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable ξs,t is

M3(s, t) =
1

120960
st(s− 1)(s+ t)(s+ t+ 1)(16t2s2 − 61ts2 + 60s2 − 61t2s+ 16t3s

+ 60st+ 66t2 − 27t− 30t3), if t is even;

M3(s, t) =
1

120960
st(s− 1)(t− 1)(s+ t)(16ts3 + 16t3s+ 32t2s2 − 30s3 − 30t3 − 29ts2

− 29t2s− 66s2 − 66t2 − 72st− 27s− 27t), if t is odd.

Theorem 1.4 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable ξs,t is

M4(s, t) =
1

4838400
st(s− 1)(s+ t)(s+ t+ 1)(124t3s4 − 766t2s4 + 1671ts4 − 1260s4

+ 248t4s3 + 3342t2s3 − 2520ts3 − 1532t3s3 − 4579t2s2 + 621s2t+ 124t5s2

+ 3975t3s2 − 1254t4s2 + 1260s2 + 621st2 − 3319t3s+ 1260st− 488t5s

+ 2304t4s+ 1530t2 + 528t5 + 252t3 − 1512t4), if t is even;

M4(s, t) =
1

4838400
st(s− 1)(t− 1)(s+ t)(528s5 − 1800ts− 488t5s+ 124t5s2 + 336t4s

− 1186t4s2 + 372t4s3 + 2729t3s+ 39t3s2 − 1396t3s3 + 372t3s4 + 3694t2s2

+ 39t2s3 − 1186t2s4 + 124t2s5 + 2729ts3 + 336ts4 − 488ts5 + 135st2 + 135s2t

+ 1512s4 + 252s3 + 1512t4 + 528t5 − 1530s2 − 1530t2 + 252t3), if t is odd.

2 The degrees of moments about the mean of ξs,t

In this section, by Ehrhart theory and Euler-Maclaurin theory we will prove that if s, t
are coprime positive integers, then the r-th moment about the mean of the random
variable ξs,t is a polynomial of degree 2r in t for fixed s.

Let us recall some notions of Ehrhart theory. Given any finite point set {v1, v2, . . . , vn} ⊂
Zn, a lattice polytope P ⊂ Rn is the smallest convex set containing these points, that is

P = {x1v1 + x2v2 + · · ·+ xnvn : all xi ≥ 0 and x1 + x2 + · · ·+ xn = 1}.

For a positive integer t, define tP to be the polytope obtained by scaling P by t, that
is, scaling any point x ∈ P by 1/t. For t ≥ 0, let L(P, t) denote the number of lattice
points in tP , that is,

L(P, t) = #{Zn ∩ tP}.

4



Ehrhart showed that L(P, t) is a polynomial of degree n in t. This result is named
Ehrhart’s theorem. For more detailed introduction to Ehrhart theory, see [5]. Another
fact we need is Ehrhart reciprocity [12], which states that

L(P,−t) = (−1)nL(P ◦, t),

where P ◦ denotes the interior of P . The results of Ehrhart theory can be extended to an
analogy between integrating a polynomial over a region and summing it over the lattice
points in a polytope. Specifically, if f is a polynomial of degree d on Rn, then we have∫
tP f is a polynomial of degree d + n. Euler-Maclaurin theory says that the discrete

analog
L(f, P, t) =

∑
x∈Zn∩tP

f(x)

is also a polynomial of degree d+ n. Ehrhart reciprocity [2] also can be extended as

L(f, P,−t) = (−1)nL(f, P ◦, t).

Recall that a standard simplex ∆n ⊂ Rn+1 is a special polytope of dimension n and
it can be realized by hyperplane description, namely,

∆n =
{

(x0, x1, . . . , xn) ∈ Rn+1 : x0 + x1 + · · ·+ xn = 1 and all xk ≥ 0
}
.

In the case of the standard simplex, the dilate t∆n is given by

t∆n =
{

(x0, x1, . . . , xn) ∈ Rn+1 : x0 + x1 + · · ·+ xn = t and all xk ≥ 0
}
.

Note that the points in the interior of t∆n satisfy that xk > 0 for 0 ≤ k ≤ n.

In [10], the set of (s, t)-cores is parameterized by the set TDs(t), where

TDs(t) =

(zs,i)i∈Z/sZ :
∑

i∈Z/sZ
zs,i = t,

∑
i∈Z/sZ

izs,i ≡ 0 (mod s), zs,i ≡ 0 (mod 1), zs,i ≥ 0

 ,
and the elements in TDs(t) are called Johnson’s z-coordinates by Wang in [16]. It has
been proved [10] that TDs(t) is a rational simplex and a sublattice of t∆s−1.

To compute the number of (s, t)-cores and the average size of an (s, t)-core, Johnson
[10] established the following relation between (s, t)-cores and lattice points in the simplex
t∆s−1.

Lemma 2.1 Let s, t be coprime positive integers, then the number of (s, t)-cores is equal
to 1/s multiplying the number of lattice points in the simplex t∆s−1, which is a polynomial
of degree s− 1 in t. And the number of self-conjugate (s, t)-cores is equal to the number
of lattice points in the simplex bt/2c∆bs/2c.

Moreover, Wang [16] used the z-coordinates to express the size of an (s, t)-core as
follows.
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Lemma 2.2 Fix coprime s, t ≥ 1. The size |λ| of an (s, t)-core λ, in the extended z-
coordinates, is given by f(z)=− s2−1

24
+ s2−1

24

∑
l∈Z/sZ z

2
s,l+M2(z), where z = (zs,0, . . . , zs,s−1)

and M2(z) ∈ Z[zs,0, . . . , zs,s−1] is the “leftover” cyclic homogeneous quadratic with only
‘mixed’ terms (i.e., no square terms z2

s,0, . . . , z
2
s,s−1), and with coefficients sum − 1

24
s(s2−

1).

By Euler-Maclaurin theory, Johnson gave the following lemma.

Lemma 2.3 Let s, t be coprime positive integers, then the sum of sizes over all (s, t)-
cores is equal to 1/s multiplying the sum of f(z) over the lattice points in the simplex
t∆s−1 where f(z) is defined in Lemma 2.2, which is a polynomial of degree s+ 1 in t.

Combining Lemma 2.1 and Lemma 2.3, Johnson proved the following theorem.

Theorem 2.4 For fixed s, and t relatively prime to s, then the average size of an (s, t)-
core is a polynomial of degree 2 in t.

In [10], Johnson proved that the set of self-conjugate (s, t)-cores can be parameterized
by the subset of points (zs,i)i∈Z/sZ ∈ TDs(t) satisfying the symmetry zs,i = zs,−i, which
corresponds to the set of lattice points in the simplex bt/2c∆bs/2c. In other words,
assume s = 2k + 1, a lattice point u = (u0, u1, . . . , uk) ∈ bt/2c∆bs/2c corresponds to
a self-conjugate (s, t)-core, which the corresponding point z ∈ TDs(t) is of the form
z = (2u0 + 1, u1, . . . , uk, uk, . . . , u1), if t is odd; and z = (2u0, u1, . . . , uk, uk, . . . , u1), if t
is even.

Thus, by Lemma 2.2, we can express the size of a self-conjugate (s, t)-core as follows.

Lemma 2.5 If s and t are coprime positive integers, assume s is odd, say s = 2k + 1,
then the size of a self-conjugate (s, t)-core λ is given by

f1(u) =

f(2u0 + 1, u1, . . . , uk, uk, . . . , u1), if t is odd;

f(2u0, u1, . . . , uk, uk, . . . , u1), if t is even.
(2.1)

where u = (u0, u1, . . . , uk) is a lattice point in the simplex bt/2c∆bs/2c, and f is defined
in Lemma 2.2.

To get the moments about the mean of the random variable ξs,t, we first prove that
the r-th moment of ξs,t is a polynomial of degree 2r in t.

Theorem 2.6 For fixed s, and t relatively prime to s. Then E[ξrs,t] is a polynomial of
degree 2r in t.
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Proof. Let Ds,t denote the set of all self-conjugate (s, t)-cores and |λ| denote the random
variable ξs,t, then

E[ξrs,t] = E[|λ|r] =

∑
λ∈Ds,t

|λ|r

|Ds,t|
.

Since s and t are coprime, without loss of generality, we assume that s is odd, say
s = 2k + 1.

To prove E[ξrs,t] is a polynomial of degree 2r in t, we first prove that
∑
λ∈Ds,t

|λ|r and
|Ds,t| are both polynomials in t. First, we concern with |Ds,t|. Denote |Ds,t| by F (s, t).
We claim that F (s, t) is a polynomial of degree k in t. By Lemma 2.1,

F (s, t) =
∑

u∈Zk+1∩bt/2c∆bs/2c

1

=

(
bt/2c+ bs/2c
bs/2c

)

=

(
bt/2c+ k

k

)
.

Obviously, it is a polynomial of degree k in t.

We proceed to consider
∑
λ∈Ds,t

|λ|r. Let Gr(s, t) denote
∑
λ∈Ds,t

|λ|r. According to
Lemma 2.5, we get

Gr(s, t) =
∑

u∈Zk+1∩bt/2c∆bs/2c

f r1 (u). (2.2)

By the definition of f in Lemma 2.2, we have that f r1 (u) is a polynomial of degree 2r in
u. It follows from Euler-Maclaurin theory that Gr(s, t) is a polynomial of degree k + 2r
in t.

To prove that the r-th moment of ξs,t is a polynomial of degree 2r in t, we aim to
show that each root of F (s, t) is also a root of Gr(s, t).

When t is odd, since F (s, t) =
(
bt/2c+k

k

)
, the roots of F (s, t) are −1,−3, . . . ,−(2k−1).

On the other hand, by Ehrhart reciprocity, we obtain that

Gr(s,−x) = (−1)k
∑
u∈Ω

f r1 (u) (2.3)

where

Ω = Zk+1 ∩ (−b−x/2c∆bs/2c)◦

=
{

(u0, u1, . . . , uk) ∈ Nk+1 : u0 + u1 + · · ·+ uk = −b−x/2c and all ui ≥ 1
}
.

For −b−x/2c ≤ k, by the definition of Ω, the interior of −b−x/2c∆bs/2c is empty. Thus
Gr(s, t) vanishes at t = −1,−3, . . . ,−(2k − 1). It follows that Gr(s, t)/F (s, t) is a
polynomial of degree 2r in t.
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Similarly, one can show that E[ξrs,t] is a polynomial of degree 2r in t when t is even.
Note that in this case, both F (s, t) and Gr(s, t) vanish at t = −2,−4, . . . ,−2k. This
completes the proof.

From Theorem 2.6, we can deduce the following theorem which determines the degree
of the r-th moment about the mean of ξs,t.

Theorem 2.7 For fixed s, and t relatively prime to s, the r-th moment about the mean
E[(ξs,t−E[ξs,t])

r] of the random variable ξs,t is a polynomial of degree 2r in t, for r ≥ 2.
If we denote E[(ξs,t − E[ξs,t])

r] by Mr(s, t), then

Mr(s, t) = Mr(s,−s− t),

for s is odd.

Proof. Let Mr(s, t) denote the r-th moment about the mean of the random variable ξs,t,
then

Mr(s, t) = E[(ξs,t − E[ξs,t])
r]

=
r∑
i=0

(
r

i

)
E[ξis,t](−E[ξs,t])

r−i

=
r∑
i=0

(
r

i

)
Gi(s, t)

F (s, t)

(
−(s− 1)(t− 1)(s+ t+ 1)

24

)r−i
. (2.4)

By Theorem 2.6, Gi(s,t)
F (s,t)

is a polynomial of degree 2i in t. On the other hand, it is

obvious that
(
− (s−1)(t−1)(s+t+1)

24

)r−i
is a polynomial of degree 2r− 2i in t. Thus, by (2.4)

we find that Mr(s, t) is a polynomial of degree 2r in t.

Now we are in the position to prove Mr(s, t) = Mr(s,−s−t). Replacing t with −s−t
in (2.4) leads to

Mr(s,−s− t) =
r∑
i=0

(
r

i

)
Gi(s,−s− t)
F (s,−s− t)

(
−(s− 1)(−s− t− 1)(−t+ 1)

24

)r−i
. (2.5)

Thus, to prove Mr(s, t) = Mr(s,−s− t), it suffices to show

Gi(s, t)

F (s, t)
=
Gi(s,−s− t)
F (s,−s− t)

. (2.6)

By Ehrhart reciprocity, we have

Gi(s,−s− t) = (−1)k
∑
u∈Ω

f i1(u)
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where

Ω = Zk+1 ∩
(
−
⌊−s− t

2

⌋
∆bs/2c

)◦
. (2.7)

Since

Zk+1 ∩
(
−
⌊−s− t

2

⌋
∆bs/2c

)◦
=
{

(u0, u1, . . . , uk) ∈ Nk+1 : u0 + u1 + · · ·+ uk = −
⌊−s− t

2

⌋
and all ui ≥ 1

}
=
{

(u0, u1, . . . , uk) ∈ Nk+1 : u0 + u1 + · · ·+ uk = bt/2c and all ui ≥ 0
}

= bt/2c∆bs/2c,

we arrive at that Gi(s,−s− t) = (−1)kGi(s, t) by combining (2.2) and (2.7). Similarly,
we get F (s,−s − t) = (−1)kF (s, t). It implies that (2.6) holds. Combining (2.4)–(2.6),
we conclude that Mr(s,−s− t) = Mr(s, t). This completes the proof.

3 Moments of the random variable ξs,t for special t

In Section 2, we have proved that if s, t are coprime positive integers, then E[(ξs,t −
E[ξs,t])

r] is a polynomial of degree 2r in t for r ≥ 2. If we have 2r + 1 values of this
polynomial, we can determine this polynomial. Hence, to determine these polynomials,
we will give the formulae for the variance about the mean for t = 2, 3, 4, and the third
moment about the mean for t = 2, 3, 4, 5, 6, and the forth moment about the mean of
ξs,t for t = 2, 3, 4, 5, 6, 7, 8 in this section.

We begin with a review of the work on the structure of self-conjugate (s, t)-cores.
Throughout this section, let λ be a self-conjugate partition, we define

MD(λ) =
{
h | h is the hook length of a cell on the main diagonal of λ

}
.

It is clear that MD(λ) uniquely determines λ. Ford, Mai and Sze [8] characterized the
main diagonal hook lengths set of a self-conjugate t-core. We restate this characterization
as the following theorem.

Theorem 3.1 Let λ be a self-conjugate partition. Then λ is a t-core if and only if both
of the following hold:

(1)If h ∈MD(λ) with h > 2t, then h− 2t ∈MD(λ);

(2)If h, l ∈MD(λ), then h+ l 6≡ 0 (mod 2t).

To describe the main diagonal hook lengths of a self-conjugate (s, t)-core, Ford, Mai
and Sze [8] introduced an integer array A = (Ai,j)1≤i≤bs/2c,1≤j≤bt/2c, where

Ai,j = st− (2j − 1)s− (2i− 1)t, 1 ≤ i ≤ bs/2c, 1 ≤ j ≤ bt/2c. (3.1)
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83 67 51 35 19 3

57 41 25 9 −7 −23

31 15 −1 −17 −33 −49

5 −9 −27 −43 −59 −75

Figure 1: A lattice path in the array A(8, 13)

Let P(A) be the set of lattice paths in A from the lower-left corner to the upper-right
corner. See, Figure 1 for an example of s = 8, t = 13, and the solid lines represent a
lattice path in P(A). For a lattice path in P(A), let MA(P ) denote the set of positive
entries Ai,j below P and the absolute values of negative entries above P .

Ford, Mai and Sze [8] stated the following theorem.

Theorem 3.2 Assume that s and t are coprime. Let A be the array as given in (3.1).
Then there is a bijection φ between the set P(A) of lattice paths and the set of self-
conjugate (s, t)-cores such that for P ∈ P(A), the set of main diagonal hook lengths of
φ(P ) is given by MA(P ).

Based on Theorem 3.2, Ford, Mai and Sze [8] deduced that the number of self-
conjugate (s, t)-cores is

(
bs/2c+ bt/2c
bs/2c

)
. (3.2)

Chen, Huang and Wang [6] proved the following theorem due to the bijection φ,
which was used to calculate the expectation of the random variable ξs,t.

Theorem 3.3 For any lattice path P in P(A), we have

| φ(A) |= (s2 − 1)(t2 − 1)

24
−

∑
(i,j) is above P

Ai,j. (3.3)

Notice that each lattice path P ∈ P(A) corresponds to a unique sequence (m1,m2, . . . ,mbt/2c)
satisfying

bs/2c ≥ m1 ≥ · · · ≥ mbt/2c−1 ≥ mbt/2c ≥ 0,

where mi is the number of boxes in the i-th column above the lattice path P in array
A. Hence, Theorem 3.3 can be restated as follow.
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Lemma 3.4 Let s, t be coprime positive integers. Denoting the self-conjugate (s, t)-core
whose corresponding sequence is (m1,m2, . . . ,mbt/2c) by λ(m1,m2, . . . ,mbt/2c), we have

|λ(m1,m2, . . . ,mbt/2c)| =
(s2 − 1)(t2 − 1)

24
−
bt/2c∑
j=1

mj∑
i=0

Ai,j. (3.4)

Applying Lemma 3.4, we can deduce the formulae for the variance, the third moment
and the forth moment about the mean of the random variable ξs,t for small t. Recall
that the r-th moment about the mean of the random variable ξs,t is given by

E[(ξs,t − E[ξs,t])
r] =

∑
λ∈Ds,t

(|λ| − E[|λ|])r

|Ds,t|
, (3.5)

where Ds,t denotes the set of all self-conjugate (s, t)-cores.

First, let us consider the case for t = 2.

Theorem 3.5 Let s be an odd positive integer, then the variance about the mean of the
random variable ξs,2 is

M2(s, 2) =
s(s− 1)(s+ 2)(s+ 3)

720
,

the third moment about the mean of the random variable ξs,2 is

M3(s, 2) =
s(s− 1)(s− 3)(s+ 2)(s+ 5)(s+ 3)

30240
,

and the forth moment about the mean of the random variable ξs,2 is

M4(s, 2) =
s(s− 1)(s+ 3)(s+ 2)(s4 + 4s3 − 11s2 − 30s+ 84)

241920
.

Proof. Notice that the set of 2-core partitions consists of those partitions of staircase
shape (i, i − 1, . . . , 1) for i ∈ N, along with the empty partition. Since s is odd, we
assume that s = 2k + 1. By (3.2), we have that the number of (2k + 1, 2)-cores is k + 1.

Let λ be a self-conjugate (s, 2)-core. By (1.1), we obtain E[|λ|] = k(k+2)
6

, that is,

the expectation of the random variable ξs,2 is k(k+2)
6

. Thus, by the definition (3.5), the
variance of the random variable ξs,2 can be expressed as follows

M2(s, 2) =

∑
λ∈Ds,2

(
|λ| − k(k+2)

6

)2

k + 1

=
k∑
i=1

((
i+1

2

)
− k(k+2)

6

)2

k + 1

11



=
k(3k3 + 12k2 + 13k + 2)

60
. (3.6)

Substituting k with (s− 1)/2 in (3.6) leads to

M2(s, 2) =
s(s− 1)(s+ 2)(s+ 3)

720
. (3.7)

Using the same method, we get that the third moment and the forth moment about
the mean of the random variable ξs,2 are

M3(s, 2) =
s(s− 1)(s− 3)(s+ 2)(s+ 5)(s+ 3)

30240
(3.8)

and

M4(s, 2) =
s(s− 1)(s+ 3)(s+ 2)(s4 + 4s3 − 11s2 − 30s+ 84)

241920
, (3.9)

respectively.

Next we proceed to give the variance, the third moment and the forth moment about
the mean of the random variable ξs,3.

Theorem 3.6 Let s be odd and relatively prime to 3, then the variance about the mean
of the random variable ξs,3 is

M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
,

the third moment about the mean of the random variable ξs,3 is

M3(s, 3) =
s(s− 1)(s+ 3)(s− 3)(2s+ 11)(s+ 5)

2240

and the forth moment about the mean of the random variable ξs,3 is

M4(s, 3) =
s(s− 1)(s+ 3)(6s5 + 63s4 + 41s3 − 1092s2 − 729s+ 8127)

26880
.

Proof. When t = 3, we have bt/2c = 1. Thus the array A(s, 3) consists of one column,
and bs/2c rows. For example, see Figure 2 for A(13, 3). To get the moments about
the mean of ξs,3, we need to compute |Ds,3|, E[ξs,3] and the formula for the size of each
self-conjugate (s, 3)-core.

First, let us consider |Ds,3|. Since t = 3, by (3.2) we have

|Ds,3| = bs/2c+ 1. (3.10)

By (1.1), we get

E[ξs,3] =
(s+ 4)(s− 1)

12
. (3.11)

12
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17

11

5
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−7

Figure 2: A lattice path in the array A(13, 3)

Now we are in the position to concern with the size of a self-conjugate (s, 3)-core. By
Lemma 3.4, each 0 ≤ m1 ≤ bs/2c corresponds to a unique (s, 3)-core. Let λ(m1) denote
this (s, 3)-core, then we have

D(s, 3) = {λ(m1) : 0 ≤ m1 ≤ bs/2c}. (3.12)

Setting j = 1 in the definition (3.1) of Ai,j, we have

Ai,1 = 2s− 3(2i− 1), 1 ≤ i ≤ bs/2c. (3.13)

Combining (3.4) and (3.13) leads to

|λ(m1)| = s2 − 1

3
−

m1∑
i=0

Ai,1

=
s2 − 1

3
− 2sm1 + 3m2

1. (3.14)

Applying (3.10), (3.11), (3.12) and (3.14) to (3.5), we get

M2(s, 3) =
bs/2c∑
m1=0

((s2 − 1)/3− 2sm1 + 3m2
1 − (s+ 4)(s− 1)/12)

2

bs/2c+ 1
.

(3.15)

Since s is odd and relatively prime to 3, we can assume that s = 6k + 1 or s = 6k + 5
for certain nonnegative integer k.

When s = 6k + 1, the equality (3.15) can be rewritten as

M2(s, 3) =
3k∑

m1=0

(12k2 + 4k − 2(6k + 1)m1 + 3m2
1 − k(6k + 5)/2)

2

3k + 1

13



=
k(3k + 2)(12k + 11)(6k + 1)

20
.

Substituting k by s−1
6

in the above equality, we get

M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
.

When s = 6k + 5, we have

M2(s, 3) =
3k+2∑
m1=0

(12k2 + 20k + 8− 2(6k + 5)m1 + 3m2
1 − (2k + 3)(3k + 2)/2)

2

3k + 3

=
(6k + 5)(3k + 2)(3k + 4)(12k + 19)

60
.

Substituting k by s−5
6

in the above equality, we get

M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
.

Thus, we assert that when s is odd and relatively prime to 3,

M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
. (3.16)

By the same argument, we obtain

M3(s, 3) =
s(s− 1)(s+ 3)(s− 3)(2s+ 11)(s+ 5)

2240
(3.17)

and

M4(s, 3) =
s(s− 1)(s+ 3)(6s5 + 63s4 + 41s3 − 1092s2 − 729s+ 8127)

26880
. (3.18)

Now we concern with the case for t = 4.

Theorem 3.7 Let s be an odd positive integer, then the variance about the mean of the
random variable ξs,4 is

M2(s, 4) =
s(s− 1)(s+ 4)(s+ 5)

72
,

the third moment and the forth moment about the mean of the random variable ξs,4 are

M3(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(2s2 + 8s− 27)

840

and

M4(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(23s4 + 184s3 − 191s2 − 2236s+ 4046)

25200
,

respectively.
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19 −7

11 −15

3 −23

−5 −31

Figure 3: A lattice path in the array A(13, 4)

Proof. When t = 4, we have bt/2c = 2. Thus the array A(s, 4) consists of two columns
and bs/2c rows. For example, see Figure 3 for A(13, 4).

To get the moments about the mean of ξs,4, it suffices to obtain |Ds,4|, E[ξs,4] and
the formula for the size of each self-conjugate (s, 4)-core.

First we consider |Ds,4| and E[ξs,4]. Since t = 4, by (3.2), we have

|Ds,4| =
(
bs/2c+ 2

2

)
. (3.19)

By (1.1), we get

E[ξs,4] =
(s+ 5)(s− 1)

8
. (3.20)

We proceed to consider the size of each self-conjugate (s, 4)-core. By Lemma 3.4, each
sequence (m1,m2) satisfying bs/2c ≥ m1 ≥ m2 ≥ 0 corresponds to a unique (s, 4)-core,
denoted by λ(m1,m2). Thus

D(s, 4) = {λ(m1,m2) : bs/2c ≥ m1 ≥ m2 ≥ 0}. (3.21)

Setting j = 1, 2 in the definition (3.1) of Ai,j, we have

Ai,1 = 3s− 4(2i− 1), 1 ≤ i ≤ bs/2c (3.22)

and
Ai,2 = s− 4(2i− 1), 1 ≤ i ≤ bs/2c. (3.23)

Substituting (3.22) and (3.23) into (3.4), we obtain

|λ(m1,m2)| = 5(s2 − 1)

8
−

m1∑
i=0

Ai,1 −
m2∑
j=0

Aj,2

15



=
5(s2 − 1)

8
− 3sm1 + 4m2

1 − sm2 + 4m2
2. (3.24)

Since s is odd, we can assume s = 2k+ 1 for certain nonnegative integer k. Substituting
(3.19), (3.20), (3.21)and (3.24) into (3.5), we get

M2(s, 4) =

∑
0≤m2≤m1≤bs/2c (5(s2 − 1)/8− 3sm1 + 4m2

1 − sm2 + 4m2
2 − (s+ 5)(s− 1)/8)

2(
bs/2c+2

2

)
=

∑
0≤m2≤m1≤k (5(k2 + k)/2− (3m1 +m2)(2k + 1) + 4m2

1 + 4m2
2 − k(k + 3)/2)

2(
k+2

2

)
=
k(2k + 5)(2k + 1)(k + 3)

18
.

Substituting k by s−1
2

in the above equality, we get

M2(s, 4) =
s(s− 1)(s+ 4)(s+ 5)

72
. (3.25)

By the same argument, we have that

M3(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(2s2 + 8s− 27)

840
(3.26)

and

M4(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(23s4 + 184s3 − 191s2 − 2236s+ 4046)

25200
. (3.27)

Using the same approach, we can deduce the third moments about the mean of ξs,t
for t = 5, 6, and the forth moments about the mean of ξs,t for t = 5, 6, 7, 8. We omit the
details of these proofs, and state these results as the following theorems.

Theorem 3.8 Let s be odd and relatively prime to 5, then the third moment and the
forth moment about the mean of the random variable ξs,5 are

M3(s, 5) =
s(s− 1)(s+ 5)(50s3 + 589s2 + 888s− 5535)

6048
(3.28)

and

M4(s, 5) =
s(s− 1)(s+ 5)(594s5 + 10021s4 + 36436s3 − 128690s2 − 489750s+ 1294125)

120960
,

(3.29)
respectively.
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Theorem 3.9 Let s be odd and relatively prime to 6, then the third moment and the
forth moment about the mean of the random variable ξs,6 are

M3(s, 6) =
3s(s− 1)(s+ 6)(s+ 7)(5s2 + 30s− 79)

1120
(3.30)

and

M4(s, 6) =
s(s− 1)(s+ 7)(s+ 6)(443s4 + 5316s3 + 2099s2 − 83094s+ 125316)

44800
, (3.31)

respectively.

Theorem 3.10 Let s be odd and relatively prime to 7, then the forth moment about the
mean of the random variable ξs,7 is

M4(s, 7) =
s(s− 1)(s+ 7)(1594s5 + 36673s4 + 217805s3 − 284860s2 − 3232509s+ 6257937)

57600
.

(3.32)

Theorem 3.11 Let s be an odd positive integer, then the forth moment about the mean
of the random variable ξs,8 is

M4(s, 8) =
s(s− 1)(s+ 8)(s+ 9)(949s4 + 15184s3 + 24115s2 − 292968s+ 404832)

21600
.

(3.33)

4 Moments about the mean of ξs,t

In this section, based on the theorems in Section 2 and 3, we will give the proofs of
Theorem 1.2, 1.3 and 1.4.

Before proving the main theorems of this paper, we first concern with the r-th mo-
ments Mr(s, t) about the mean of ξs,t for t = 0, 1, which will be used in the following
proofs of our main results.

Lemma 4.1 Let s be an odd integer, then Mr(s, 0) = 0 and Mr(s, 1) = 0.

Proof. Recall that Gr(s, t) is the sum of |λ|r over all self-conjugate (s, t)-cores and F (s, t)
is the number of all self-conjugate (s, t)-cores. Since 1-core is the empty partition, we
have Gr(s, 1) = 0 and F (s, 1) = 1. By (2.4), we get

Mr(s, 1) = 0. (4.1)

17



For t = 0, by (2.2) we deduce that

Gr(s, 0) = f r1 (0, 0, . . . , 0) = (−s
2 − 1

24
)r. (4.2)

Substituting the above equality into (2.4), we have

Mr(s, 0) =
r∑
i=0

(
r

i

)
Gi(s, 0)

F (s, 0)

(
−(s− 1)(−1)(s+ 1)

24

)r−i

=
r∑
i=0

(
r

i

)(
−s

2 − 1

24

)i (
s2 − 1

24

)r−i

=

(
s2 − 1

24
− s2 − 1

24

)r
= 0. (4.3)

The proof is completed.

Now we are ready to prove the main results of this paper.

Proof of Theorem 1.2. Corollary 2.7 suggests that M2(s, t) is a polynomial of degree
4 in t. Thus, if we obtain 5 special values of this polynomial, then we can determine
this polynomial by the method of undetermined coefficients. According to the proof of
Theorem 2.6, we must treat odd and even values of t separately.

First, let us concern with the case that t is odd. Under the condition that s is odd,
we have that −s,−s − 2,−s − 4 are odd. Thus, to determine the formula for M2(s, t),
it suffices to get the values of M2(s, t) at t = −s,−s− 2,−s− 4, 1, 3. Corollary 2.7 says
that

M2(s,−s− t) = M2(s, t). (4.4)

Thus, from Theorem 3.5, Theorem 3.7 and Lemma 4.1, we get

M2(s,−s) = M2(s, 0) = 0, (4.5)

M2(s,−s− 2) = M2(s, 2) =
s(s− 1)(s+ 2)(s+ 3)

720
, (4.6)

M2(s,−s− 4) = M2(s, 4) =
s(s− 1)(s+ 4)(s+ 5)

72
. (4.7)

On the other hand, by Theorem 3.6 and Lemma 4.1, we get

M2(s, 1) = 0, (4.8)

M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
. (4.9)
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The equalities (4.5) and (4.8) suggest that −s and 1 are both roots of M2(s, t). Notice
that M2(s, t) are polynomials of degree 4 in t. Thus, we can assume that

M2(s, t) = (s+ t)(t− 1)(t2x+ ty + z), (4.10)

where x, y, z are polynomials in s. Substituting (4.6), (4.7) and (4.9) into (4.10) leads
to

9x+ 3y + z =
s(s− 1)(2s+ 9)

480
,

(s+ 2)2x− (s+ 2)y + z =
s(s− 1)(s+ 2)

1440
,

(s+ 4)2x− (s+ 4)y + z =
s(s− 1)(s+ 4)

288
.

Solving these equations gives

x =
1

720
s(s− 1), (4.11)

y =
1

720
s3 +

1

1440
s2 − 1

480
s, (4.12)

z = 0. (4.13)

Substituting (4.11), (4.12) and (4.13) into (4.10), we arrive at

M2(s, t) =
st(s+ t)(t− 1)(s− 1)(2s+ 2t+ 3)

1440
.

We turn to the case that t is even. Under the condition that s is odd, we have
−s− 1,−s− 3 are even. Thus, to determine the formula for M2(s, t), we only need the
values of M2(s, t) at t = 0,−s−1,−s−3, 2, 4. By Theorem 3.6, Lemma 4.1 and equation
(4.4), we have

M2(s,−s− 1) = M2(s, 1) = 0, (4.14)

M2(s,−s− 3) = M2(s, 3) =
s(s− 1)(2s+ 9)(s+ 3)

240
. (4.15)

On the other hand, from Theorem 3.5, Theorem 3.7 and Lemma 4.1, we deduce that

M2(s, 0) = 0, (4.16)

M2(s, 2) =
s(s− 1)(s+ 2)(s+ 3)

720
, (4.17)

M2(s, 4) =
s(s− 1)(s+ 4)(s+ 5)

72
. (4.18)
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The equalities (4.14) and (4.16) mean that 0 and −s − 1 are roots of M2(s, t). Notice
that M2(s, t) are polynomials of degree 4 in t. Thus, we can assume

M2(s, t) = t(s+ t+ 1)(t2x+ ty + z), (4.19)

where x, y, z are polynomials in s. Substituting (4.15), (4.17) and (4.18) into (4.19), we
obtain

4x+ 2y + z =
s(s− 1)(s+ 2)

1440
,

(s+ 3)2x− (s+ 3)y + z =
s(s− 1)(2s+ 9)

480
,

16x+ 4y + z =
s(s− 1)(s+ 4)

288
.

Solving these equations gives

x =
s(s− 1)

720
, (4.20)

y =
s3

720
− s2

288
+

s

480
, (4.21)

z = −s
2(s− 1)

480
. (4.22)

Substituting (4.20)–(4.22) into (4.19), we conclude that

M2(s, t) =
st(s+ t+ 1)(2t− 3)(s− 1)(s+ t)

1440
,

as desired.

Proof of Theorem 1.3. By Corollary 2.7, M3(s, t) is a polynomial of degree 6 in t. Thus,
if we obtain 7 special values of this polynomial, then this polynomial can be determined.
With the same method in the proof of Theorem 1.2, we consider that t is odd and t is
even separately.

First, let us concern with the case that t is odd. Under the condition that s is odd,
−s,−s− 2,−s− 4,−s− 6 are odd. From Corollary 2.7, we get

M3(s,−s− t) = M3(s, t). (4.23)

Combining Theorem 3.5, Theorem 3.7, Theorem 3.9, Lemma 4.1 and equation (4.23),
we get

M3(s,−s) = M3(s, 0) = 0, (4.24)

M3(s,−s− 2) = M3(s, 2) =
s(s− 1)(s− 3)(s+ 2)(s+ 5)(s+ 3)

30240
, (4.25)
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M3(s,−s− 4) = M3(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(2s2 + 8s− 27)

840
, (4.26)

M3(s,−s− 6) = M3(s, 6) =
3s(s− 1)(s+ 6)(s+ 7)(5s2 + 30s− 79)

1120
. (4.27)

And from Theorem 3.5, Theorem 3.7, Theorem 3.8 and Lemma 4.1, we have

M3(s, 1) = 0, (4.28)

M3(s, 3) =
s(s− 1)(s+ 3)(s− 3)(2s+ 11)(s+ 5)

2240
, (4.29)

M3(s, 5) =
s(s− 1)(s+ 5)(50s3 + 589s2 + 888s− 5535)

6048
. (4.30)

Combining (4.24)–(4.30), we obtain

M3(s, t) =
1

120960
st(s− 1)(t− 1)(s+ t)(16ts3 + 16t3s+ 32t2s2 − 30s3 − 30t3 − 29ts2

− 29t2s− 66s2 − 66t2 − 72st− 27s− 27t).

Now we turn to the case that t is even. Under the condition that s is odd, then
−s− 1,−s− 3,−s− 5 are even. Combining Theorem 3.6, Theorem 3.8, Lemma 4.1 and
equation (4.23), we get

M3(s,−s− 1) = M3(s, 1) = 0, (4.31)

M3(s,−s− 3) = M3(s, 3) =
s(s− 1)(s+ 3)(s− 3)(2s+ 11)(s+ 5)

2240
, (4.32)

M3(s,−s− 5) = M3(s, 5) =
s(s− 1)(s+ 5)(50s3 + 589s2 + 888s− 5535)

6048
. (4.33)

In view of Theorem 3.6, Theorem 3.8 and Lemma 4.1, we have

M3(s, 0) = 0, (4.34)

M3(s, 2) =
s(s− 1)(s− 3)(s+ 2)(s+ 5)(s+ 3)

30240
, (4.35)

M3(s, 4) =
s(s− 1)(s+ 4)(s+ 5)(2s2 + 8s− 27)

840
, (4.36)

M3(s, 6) =
3s(s− 1)(s+ 6)(s+ 7)(5s2 + 30s− 79)

1120
. (4.37)

Combining (4.31)–(4.37) immediately induces

M3(s, t) =
1

120960
st(s− 1)(s+ t)(s+ t+ 1)(16t2s2 − 61ts2 + 60s2 − 61t2s+ 16t3s

+ 60st+ 66t2 − 27t− 30t3).
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Proof of Theorem 1.4. Corollary 2.7 suggests that M4(s, t) is a polynomial of degree 8
in t. Thus, if 9 special values of this polynomial are known, then we can determine this
polynomial by the method of undetermined coefficients. By the same approach to the
proof of Theorem 1.2 and Theorem 1.3, we obtain

M4(s, t) =
1

4838400
st(s+ t+ 1)(s− 1)(s+ t)(124t3s4 − 766t2s4 + 1671ts4 − 1260s4

+ 248t4s3 + 3342t2s3 − 2520ts3 − 1532t3s3 − 4579t2s2 + 621s2t+ 124t5s2

+ 3975t3s2 − 1254t4s2 + 1260s2 + 621st2 − 3319t3s+ 1260st− 488t5s

+ 2304t4s+ 1530t2 + 528t5 + 252t3 − 1512t4), if t is even;

M4(s, t) =
1

4838400
st(s− 1)(t− 1)(s+ t)(528s5 − 1800ts− 488t5s+ 124t5s2 + 336t4s

− 1186t4s2 + 372t4s3 + 2729t3s+ 39t3s2 − 1396t3s3 + 372t3s4 + 3694t2s2

+ 39t2s3 − 1186t2s4 + 124t2s5 + 2729ts3 + 336ts4 − 488ts5 + 135st2 + 135s2t

+ 1512s4 + 252s3 + 1512t4 + 528t5 − 1530s2 − 1530t2 + 252t3), if t is odd.

This completes the proof.
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