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Abstract

Johnson proved that if s,¢ are coprime integers, then the r-th moment of the
size of an (s,t)-core is a polynomial of degree 2r in t for fixed s. After that, by
defining a statistic size on elements of affine Weyl group, which is preserved under
the bijection between minimal coset representatives of &;/&; and t-cores, Thiel
and Williams obtained the variance and the third moment about the mean of the
size of an (s,t)-core. Later, Ekhad and Zeilberger stated the first six moments
about the mean of the size of an (s,t)-core and the first nine moments about the
mean of the size of an (s, s + 1)-core using Maple. To get the moments about the
mean of the size of a self-conjugate (s,t)-core, we proceed to follow the approach
of Thiel and Williams, however, their approach does not seem to directly apply to
the self-conjugate case. In this paper, following Johnson’s approach, by Ehrhart
theory and Euler-Maclaurin theory, we prove that if s, are coprime integers, then
the r-th moment about the mean of the size of a self-conjugate (s,t)-core is a
polynomial of degree 2r in ¢ for fixed s. Then, based on a bijection of Ford, Mai
and Sze between self-conjugate (s, t)-cores and lattice paths in L%J X L%J rectangle
and a formula of Chen, Huang and Wang on the size of self-conjugate (s, t)-cores,
we obtain the variance, the third moment and the forth moment about the mean
of the size of a self-conjugate (s, t)-core.

Keywords: (s,t)-core, self-conjugate partition, lattice path, Ehrhart theory, Euler-
Maclaurin theory
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1 Introduction

The objective of this paper is to give the variance, the third moment and the forth
moment about the mean of the size of a self-conjugate (s, t)-core.

A partition is a finite nonincreasing sequence of positive integers (Ay, A, ..., ). We
write A = (A1, Ag, ..., Ap), and say the length of A is m. The Young diagram of A is



defined to be a left-justified array of boxes with A\; boxes in the ith row from the top. For
each box B of A, one can associate its hook length h(B), which is the number of boxes
directly below and directly to the right of B (including B itself) in the Young diagram
of A\. The conjugation of A is the partition g = (u1, o, - . ., f1r,) where

pi =#{j: Aj =20, 1 <j<m}, for 1 <i <Ay

A partition A is called a self-conjugate partition if A = u; we often use X’ to denote the
conjugation of .

For a positive integer ¢, a partition \ is a t-core if it has no box with hook length of
a multiple of ¢. Let s be another positive integer, we say that A is an (s, t)-core if it is
simultaneously an s-core and a t-core, if A = X we say A is a self-conjugate (s, t)-core.

Let s and t be coprime positive integers. Anderson [3] showed that the number of

s+t s

cores is ( Ls/ QLJS 72%/ QJ). Olsson and Stanton [I3] proved that there exists a unique (s, t)-core
with the maximum size %. Armstrong, Hanusa and Jones [4] posed the following

conjecture on the average size of an (s,t)-core and the average size of a self-conjugate
(s,t)-core.

(s,t)-cores is L(SH). Ford, Mai and Sze [§] proved the number of self-conjugate (s, t)-

Conjecture 1.1 Assume s and t are coprime integers. Then the average size of an
(s,t)-core and the average size of a self-conjugate (s,t)-core are both equal to

(s+t+1)(254— 1)(t—1). (L1)

Stanley and Zanello [14] showed that the conjecture for the average size of an (s, t)-
core holds for ¢t = s + 1. Based on this work, Aggarwal [I] proved the average size of an
(s,ms+ 1)-core is (S+ms+;i(5_1)ms. Chen, Huang and Wang [6] proved this conjecture for
the self-conjugate case. And Johnson [I0] proved this conjecture concerning the average
size of an (s,t)-core by Ehrhart theory and Euler-Maclaurin theory. He also gave an
alternative derivation for the result of Chen, Huang and Wang. After that, Wang [16]
gave another proof for Johnson’s result by using special cyclic complex-value functions

and some special generating functions.

Regarding the size of an (s,t)-core as a random variable, Thiel and Williams [15]
extended Johnson’s method to compute the variance and the third moment about the
mean of the size of an (s, t)-core as follows.

Theorem 1.1 If s and t are coprime positive integers, then the variance and the third
moment about the mean of the size of an (s,t)-core are

st(s—1)(t—1)(s+t)(s+t+1)
1440
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and
st(s —1)(t —1)(s+t)(s+t+1)(2s* + 2st* — 3s? — 3t? — 3st — 3)

60480 ’

respectively.

Using Maple, Ekhad and Zeilberger [7] stated new polynomials for the first six mo-
ments about the mean of the size of an (s, t)-core, and the first nine moments about the
mean of the size of an (s, s + 1)-core.

Motivated by these works, in this paper we are concerned with the moments about
the mean of the size of a self-conjugate (s, t)-core. We found that the approach of Thiel
and Williams [I5] can not be directly applied to the self-conjugate (s, t)-core. To get the
variance of the random size of an (s,t)-core, Thiel and Williams defined a statistic size
on elements of affine Weyl group, which is preserved under the bijection of Lascoux [11]
between minimal coset representatives of ét /&, and t-cores. Using this statistic size,
they gave another derivation for the maximum size of an (s, t)-core and the average size
of an (s,t)-core. Moreover, they obtained the variance and the third moment about the
mean of the size of an (s,t)-core. But the statistic size on elements of affine Weyl group
in type C, is not equal to the number of boxes of the corresponding self-conjugate core
under the bijection of Hanusa and Jones [9] between the minimal coset representatives
of C, /Cy and the self-conjugate 2t-cores.

Let &+ denote the random size of a self-conjugate (s, t)-core in this paper. In order to
calculate the moments about the mean of £ ;, in Section |2} following Johnson’s approach,
by Ehrhart theory and Euler-Maclaurin theory we first prove that the variance, the
third moment and the forth moment about the mean of the random variable ¢, are
polynomials of degree 4, 6 and 8 in ¢, respectively. To determine these polynomials, we
need some special values. Thus, in Section [3, based on a bijection of Ford, Mai and

Sze between self-conjugate (s,t)-cores and lattice paths in FJ X { J rectangle and a

t
2 2
formula of Chen, Huang and Wang on the size of self-conjugate (s, t)-cores, we give the
formulae for the variance about the mean of &, for ¢t = 2, 3,4, the third moment about
the mean of &, for t = 2,3,4,5,6, and the forth moment about the mean of ¢, for
t=2,3,4,5,6,7,8. In Section [d, combining the theorems in Section [2] and the formulae
in Section [3, we deduce the variance, the third moment and the forth moment about
the mean of &, by the method of undetermined coefficients. And we state them as the

following theorems.

Theorem 1.2 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable &, is

st(s—1)(s+t)(s+t+1)(2t —3)

Ms(s,t) = TAA0 , if t is even;
t(s—1)(t—1 t)(2 2t + 3
My(s,1) = 2 (s = 1)( )1<Z4J(r) J2s+243) et i odd



Theorem 1.3 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable &, is

Ms(s,t) = 120960515(3 —1)(s +t)(s+t+1)(16t*s* — 61ts* + 60s* — 61t*s + 16t°s
+ 60st + 66t> — 27t — 30t), if t is even;
1
Ms(s,t) = 120960315(5 —1)(t — 1)(s + t)(16ts® + 16t>s + 32t°s* — 305 — 30> — 29ts”

— 29t%s — 665% — 66t — T2st — 27s — 27Tt), if t is odd.

Theorem 1.4 Let s and t be coprime integers with s odd. Then the variance about the
mean of the random variable &, is

1
My(s,t) = mst(s — 1) (s +t)(s +t + 1)(124t3s* — 766t*s* + 1671ts* — 1260s*
+ 248153 + 3342t%s3 — 2520t — 1532353 — 4579¢%s% + 621 5%t + 124t s>
+ 3975357 — 125411 s 4 12605 + 621st* — 3319t3s + 12605t — 488t°s
+ 2304t*s + 153012 + 528t° + 25213 — 1512t%), if t is even;
My(s,t) = mst(s —1)(t — 1)(s +1)(5285° — 1800ts — 488t°s + 124t°s* + 336t"s

— 1186t*s? + 372t*s® + 2729¢%s + 39t3s% — 1396t3s% + 372t3s* + 36942 s>
+ 391283 — 11861%s* + 124t%s° + 2729ts> + 336ts* — 488ts° + 135st? + 1355%t
+ 1512s* 4 25253 + 1512t* + 528> — 1530s% — 1530t + 252t), if t is odd.

2 The degrees of moments about the mean of ¢,

In this section, by Ehrhart theory and Euler-Maclaurin theory we will prove that if s, ¢
are coprime positive integers, then the r-th moment about the mean of the random
variable &, is a polynomial of degree 27 in ¢ for fixed s.

Let us recall some notions of Ehrhart theory. Given any finite point set {vy,vq,...,v,} C
Z", a lattice polytope P C R" is the smallest convex set containing these points, that is

P ={xiv; + zova+ -+ 2,0, allz; >0and oy + 29 + -+ + 2, = 1}.

For a positive integer ¢, define tP to be the polytope obtained by scaling P by ¢, that
is, scaling any point x € P by 1/t. For t > 0, let L(P,t) denote the number of lattice
points in ¢t P, that is,

L(P,t) = #{Z" N tP}.
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Ehrhart showed that L(P,t) is a polynomial of degree n in t. This result is named
Ehrhart’s theorem. For more detailed introduction to Ehrhart theory, see [5]. Another
fact we need is Ehrhart reciprocity [12], which states that

L(P,—t) = (—1)"L(P", 1),

where P° denotes the interior of P. The results of Ehrhart theory can be extended to an
analogy between integrating a polynomial over a region and summing it over the lattice
points in a polytope. Specifically, if f is a polynomial of degree d on R", then we have
Jip [ is a polynomial of degree d + n. Euler-Maclaurin theory says that the discrete
analog

L(f,P,t): Z f(l’)

cE€Z"NtP

is also a polynomial of degree d + n. Ehrhart reciprocity [2] also can be extended as
L(f,P,—t) = (=1)"L(f, P°,1).
Recall that a standard simplex A, C R"*! is a special polytope of dimension n and
it can be realized by hyperplane description, namely,
A, = {(xo,xl,...,xn) eR"™: go4+2,+---+2z,=1and all z;, > 0}.
In the case of the standard simplex, the dilate tA,, is given by
tA, = {(xo,:cl,...,:cn) eR"™: go+21+ -+, =t and all z, > O}.
Note that the points in the interior of tA,, satisfy that x; > 0 for 0 < k < n.
In [10], the set of (s,t)-cores is parameterized by the set T'Dg(t), where
TD4(t) = {(Zs,i)ieZ/sZ: Z 25 =t, Z izs; =0 (mod s), zs;, =0 (mod 1), z5; > O} ,
i€Z/sL i€Z/sT.

and the elements in T'Dy(t) are called Johnson’s z-coordinates by Wang in [16]. It has
been proved [10] that T'D(t) is a rational simplex and a sublattice of tA;_;.

To compute the number of (s,t)-cores and the average size of an (s, t)-core, Johnson
[10] established the following relation between (s, t)-cores and lattice points in the simplex

tA_q.

Lemma 2.1 Let s,t be coprime positive integers, then the number of (s,t)-cores is equal
to 1/s multiplying the number of lattice points in the simplex t Ay 1, which is a polynomial
of degree s — 1 in t. And the number of self-conjugate (s,t)-cores is equal to the number
of lattice points in the simplex [t/2|A |5/

Moreover, Wang [16] used the z-coordinates to express the size of an (s,t)-core as
follows.



Lemma 2.2 Fiz coprime s,t > 1. The size |A| of an (s,t)-core A, in the extended z-

. . . 271 271
coordinates, is given by f(z)=—"57+*57 Yicz/sz Zil—i‘Mg(Z), where z = (250, -+, Zs,5-1)
and My(z) € Zlzsp, - - ., 2ss-1] is the “leftover” cyclic homogeneous quadratic with only
‘mized’ terms (i.e., no square terms 23270, e ,zis_l), and with coefficients sum —is(s2 —

1).
By Euler-Maclaurin theory, Johnson gave the following lemma.

Lemma 2.3 Let s,t be coprime positive integers, then the sum of sizes over all (s,t)-
cores is equal to 1/s multiplying the sum of f(z) over the lattice points in the simplex
tAg_1 where f(z) is defined in Lemma which is a polynomial of degree s+ 1 in t.

Combining Lemma [2.1) and Lemma [2.3] Johnson proved the following theorem.

Theorem 2.4 For fized s, and t relatively prime to s, then the average size of an (s,t)-
core is a polynomial of degree 2 in t.

In [I0], Johnson proved that the set of self-conjugate (s, t)-cores can be parameterized
by the subset of points (2s,)icz/sz € T'Ds(t) satisfying the symmetry z,; = 2, _;, which
corresponds to the set of lattice points in the simplex [¢/2]A|;/5). In other words,
assume s = 2k + 1, a lattice point u = (ug,uy,...,ug) € [t/2|A|5)2) corresponds to
a self-conjugate (s,t)-core, which the corresponding point z € T'D4(t) is of the form
2= (2uo+ 1, uy, ..., U, Ug, ..., uy), if t is odd; and z = (2ug, uy, . .., Ug, Uk, ..., uy), if ¢
is even.

Thus, by Lemma , we can express the size of a self-conjugate (s, t)-core as follows.

Lemma 2.5 If s and t are coprime positive integers, assume s is odd, say s = 2k + 1,
then the size of a self-conjugate (s,t)-core X is given by

fi(u) =

{f(2u0 + Ly, ug, g, u),  if € s odd; (2.1)

fQuo,ug, ... ug, ug, .., uy), if t is even.

where w = (ug, w1, ..., uy) is a lattice point in the simplex [t/2]N |52, and f is defined
in Lemma [2.2.

To get the moments about the mean of the random variable ;;, we first prove that
the r-th moment of &, is a polynomial of degree 27 in ¢.

Theorem 2.6 For fized s, and t relatively prime to s. Then E] ;‘,t] s a polynomial of
degree 2r in t.



Proof. Let Dy, denote the set of all self-conjugate (s, t)-cores and |A| denote the random
variable ¢, then

o Z)\GDsyt A|T

E[¢ ] = E[|N"] =
€1, = BIIAP] = =252
Since s and t are coprime, without loss of generality, we assume that s is odd, say

s =2k + 1.

To prove E[¢{,] is a polynomial of degree 2r in ¢, we first prove that X\cp, , |A|" and
| Ds¢| are both polynomials in ¢. First, we concern with |Ds,|. Denote |Ds,| by F(s,t).
We claim that F(s,t) is a polynomial of degree k in . By Lemma[2.1]

F(s,t) = > 1

uEZk+1ﬂLt/2JALS/2J

()

_ (Lt/QIJ{M)

Obviously, it is a polynomial of degree k in ¢.
We proceed to consider Y cp, , [Al". Let G,(s,t) denote X\cp_, [Al". According to
Lemma [2.5) we get
Gr(s,t) = > Si(w). (2.2)
uEZk"'lﬂl_t/QJALS/QJ

By the definition of f in Lemma , we have that f](u) is a polynomial of degree 2r in
u. It follows from Euler-Maclaurin theory that G, (s,t) is a polynomial of degree k + 2r
in ¢.

To prove that the r-th moment of &, is a polynomial of degree 27 in ¢, we aim to
show that each root of F(s,t) is also a root of G,(s,t).

When ¢ is odd, since F(s,t) = (Lt/iﬁk), the roots of F'(s,t) are —1,—3,..., —(2k—1).
On the other hand, by Ehrhart reciprocity, we obtain that

Gy(s,—2) = (=1)* 3_ fi(u) (2.3)

u€e)
where
Q= Z’H—l N (—L—JZ/2JALS/2J)O
= {(uoaulw"uuk) e NFFYwg +uy + - +up = —|—2/2] and all u; > 1}.
For —|—x/2] <k, by the definition of €, the interior of —|—x/2]A || is empty. Thus

G,(s,t) vanishes at t = —1,-3,...,—(2k — 1). It follows that G.(s,t)/F(s,t) is a
polynomial of degree 2r in t.



Similarly, one can show that E| g,t] is a polynomial of degree 2r in ¢ when ¢ is even.
Note that in this case, both F(s,t) and G,(s,t) vanish at ¢t = —2,—4,...,—2k. This
completes the proof. |

From Theorem [2.6] we can deduce the following theorem which determines the degree
of the r-th moment about the mean of ;.

Theorem 2.7 For fizved s, and t relatively prime to s, the r-th moment about the mean
E[(&.:— E[&4])7] of the random variable &, is a polynomial of degree 2r in t, forr > 2.
If we denote E[(&s+ — E[&s4])"] by M,.(s,t), then

M, (s,t) = M,(s,—s — 1),

for s is odd.

Proof. Let M,(s,t) denote the r-th moment about the mean of the random variable &,
then

M, (s,t) = E[(& — E[€s4])']

-3 (1) Biesd-mie.
I (r)Gi(s,t) (_(s—l)(t—l)(s—kt—l—l))?ﬂ_i‘ (2.4)

24

By Theorem [2.6] %((;f)) is a polynomial of degree 2¢ in ¢. On the other hand, it is

obvious that (— (871)(“212(5”“))7“_1 is a polynomial of degree 2r — 2i in t. Thus, by ([2.4))

we find that M, (s,t) is a polynomial of degree 2r in t.

Now we are in the position to prove M,.(s,t) = M,(s, —s—t). Replacing t with —s—1¢

in leads to
M, (s —5 — f) = - <r Gi(s,—s — 1) (_(s—1)(—s—t—1)<—t+1)>“’" 25)

i) F(s,—s—1) 24

(2

Thus, to prove M, (s,t) = M,(s,—s —t), it suffices to show

Gi(s,t)  Gi(s,—s —1)
Flst) ~ Fls,—s—1) (26)

By Ehrhart reciprocity, we have

Gi(s,—s —t) = (=1)" 3_ fi(u)

u€es)



where

—s—1 o
Q=7n (— { 82 J ALS/QJ) . (2.7)

Since

—s—t °
zen (=25 )

:{(uo,ul,...,uk)6Nk+1:u0+u1+~-~+uk:—{

—s—1

J and all u; > 1}

= {(anula---auk) € N g +uy + -+ +uy, = [t/2] and all u; ZO}

= [t/2] A2,
we arrive at that Gy(s, —s —t) = (—1)*G;(s,t) by combining (2.2)) and Similarly,

we get F(s,—s —t) = (—1)*F(s,t). It implies that (2.6) holds. Comblmng . -,
we conclude that M, (s,—s —t) = M,(s,t). This completes the proof.

3 Moments of the random variable ¢;; for special ¢

In Section , we have proved that if s,¢ are coprime positive integers, then E[({: —
E[&4])7] is a polynomial of degree 2r in ¢ for » > 2. If we have 2r + 1 values of this
polynomial, we can determine this polynomial. Hence, to determine these polynomials,
we will give the formulae for the variance about the mean for ¢t = 2,3, 4, and the third
moment about the mean for ¢t = 2,3,4,5,6, and the forth moment about the mean of
Esp for t =2,3,4,5,6,7,8 in this section.

We begin with a review of the work on the structure of self-conjugate (s,t)-cores.
Throughout this section, let A be a self-conjugate partition, we define

MD(\) = {h | h is the hook length of a cell on the main diagonal of )\}.

It is clear that MD(\) uniquely determines A. Ford, Mai and Sze [§] characterized the
main diagonal hook lengths set of a self-conjugate t-core. We restate this characterization
as the following theorem.

Theorem 3.1 Let )\ be a self-conjugate partition. Then X\ is a t-core if and only if both
of the following hold:

(1)If h € MD(\) with h > 2t, then h — 2t € M D());

(2)If h,l € MD(X), then h+1 % 0 (mod 2t).

To describe the main diagonal hook lengths of a self-conjugate (s, t)-core, Ford, Mai
and Sze [§] introduced an integer array A = (A;;)1<i<|s/2]1<j<|t/2], Where

Aj=st—(2j—1)s—(2i—1)t, 1<i < |s/2), 1<j < [t/2]. (3.1)

9



83 | 67 [ 51 | 35| 19| 3

57 | 41 | 25 | 9 | =7 |-23

31 | 15 | =1 |—=17|—=33|—49

5 | =9 =27 —-43|-59|—=T75

Figure 1: A lattice path in the array A(8,13)

Let P(A) be the set of lattice paths in A from the lower-left corner to the upper-right
corner. See, Figure [I] for an example of s = 8, ¢ = 13, and the solid lines represent a
lattice path in P(A). For a lattice path in P(A), let M4(P) denote the set of positive
entries A; ; below P and the absolute values of negative entries above P.

Ford, Mai and Sze [§] stated the following theorem.

Theorem 3.2 Assume that s and t are coprime. Let A be the array as given in (3.1)).
Then there is a bijection ¢ between the set P(A) of lattice paths and the set of self-
conjugate (s,t)-cores such that for P € P(A), the set of main diagonal hook lengths of
o(P) is given by M4(P).

Based on Theorem [3.2] Ford, Mai and Sze [§] deduced that the number of self-

conjugate (s,t)-cores is

(/2] + 11/2)
( [s/2] > (3:2)

Chen, Huang and Wang [6] proved the following theorem due to the bijection ¢,
which was used to calculate the expectation of the random variable & ;.

Theorem 3.3 For any lattice path P in P(A), we have

oAy = EZDE=D (33)

24 (4,7) is above P

Notice that each lattice path P € P(A) corresponds to a unique sequence (1my, ma, ..., M|¢/2])
satisfying

[s/2] >my > - > myyaj—1 > Mz >0,

where m; is the number of boxes in the i-th column above the lattice path P in array
A. Hence, Theorem [3.3] can be restated as follow.

10



Lemma 3.4 Let s,t be coprime positive integers. Denoting the self-conjugate (s,t)-core
whose corresponding sequence is (M1, Ma, ..., Mya)) by A(mi,ma, ..., my2), we have

§2 _ 2 [t/2] m;
D S A (3.4

j=1 =0

IA(ma, ma, ..., mye))| =

Applying Lemma we can deduce the formulae for the variance, the third moment
and the forth moment about the mean of the random variable ¢, for small ¢. Recall
that the r-th moment about the mean of the random variable &, ; is given by

2aen., (1Al = E[IA[])

E[(gs,t - E[gs,t})r] = ‘Ds t‘ )

(3.5)

where D, denotes the set of all self-conjugate (s, t)-cores.

First, let us consider the case for t = 2.

Theorem 3.5 Let s be an odd positive integer, then the variance about the mean of the
random variable & o s

s(s —1)(s+2)(s+3)
720 ’

Ms(s,2) =

the third moment about the mean of the random variable & is

s(s = 1)(s =3)(s +2)(s +5)(s +3)
30240 ’

]\43(87 2) =

and the forth moment about the mean of the random variable &5 s

s(s = 1)(s+3)(s+2)(s* +4s® — 115> — 305 + 84)

My(s.2) =
1(5,2) 241920

Proof. Notice that the set of 2-core partitions consists of those partitions of staircase
shape (i,7 — 1,...,1) for i € N, along with the empty partition. Since s is odd, we
assume that s = 2k 4+ 1. By (3.2), we have that the number of (2k + 1, 2)-cores is k + 1.

Let A be a self-conjugate (s,2)-core. By (L.I), we obtain E[|\]] = k+2 that is,

the expectation of the random variable ;5 is k(k” . Thus, by the deﬁmtlon , the
variance of the random variable £ 5 can be expressed as follows

Sren,, (A - HEED)?

Ma(s,2) = k+ 1
e (1) _ k(R+2)\?
YGRS

=1

11



k(3k® + 12k + 13k + 2)

= . 3.6
50 (3.6)
Substituting k£ with (s —1)/2 in (3.6) leads to
-1 2
My(s,2) = S =D £2) (s +3) (3.7)

720

Using the same method, we get that the third moment and the forth moment about
the mean of the random variable ;o are

s(s—=1)(s —=3)(s+2)(s+5)(s+3)

and
s(s —1)(s+3)(s+2)(s* +4s> — 11s* — 30s + 84)
Ma(s,2) = 241920 ’ (3.9)
respectively. |

Next we proceed to give the variance, the third moment and the forth moment about
the mean of the random variable ;3.

Theorem 3.6 Let s be odd and relatively prime to 3, then the variance about the mean
of the random variable &, 3 1s

s(s —1)(2s+9)(s + 3)
240 ’
the third moment about the mean of the random variable &3 is
s(s —1)(s+3)(s—3)(2s+ 11)(s+ )
2240

and the forth moment about the mean of the random variable &3 s

MQ(S, 3) =

Mg(S, 3) =

s(s —1)(s+ 3)(6s° + 63s* + 415> — 1092s* — 729s + 8127)
Mi(s,3) = 26830 ‘

Proof. When t = 3, we have |t/2] = 1. Thus the array A(s,3) consists of one column,
and [s/2]| rows. For example, see Figure [2| for A(13,3). To get the moments about
the mean of & 3, we need to compute |D; 3|, E[¢; 3] and the formula for the size of each
self-conjugate (s, 3)-core.

First, let us consider |D;3|. Since t = 3, by (3.2) we have

Dys = |5/2] + 1. (3.10)
By (1.1)), we get ) )
E[¢] = (Hiés_) (3.11)
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23

17

11

5

—1

—7

Figure 2: A lattice path in the array A(13,3)

Now we are in the position to concern with the size of a self-conjugate (s, 3)-core. By
Lemma 3.4 each 0 < m; < |s/2] corresponds to a unique (s, 3)-core. Let A(my) denote
this (s, 3)-core, then we have

D(s,3) ={A(m1): 0<my <|[s/2]}. (3.12)

Setting j = 1 in the definition (3.1) of A; ;, we have
A =2s—3(2i—1), 1<i<|s/2]. (3.13)

Combining (3.4)) and (3.13)) leads to

82 -1 my
Al = S =3 A
=0
2
1
S 5~ 2smu o+ 3m]. (3.14)

Applying (3.10), (3.11)), (3.12)) and (3.14)) to (3.5)), we get

52 (52— 1)/3 — 2smy + 3m2 — (s +4)(s — 1)/12)°
Mofs;3) = D /2] +1 '

m1=0

(3.15)

Since s is odd and relatively prime to 3, we can assume that s = 6k + 1 or s = 6k + 5
for certain nonnegative integer k.

When s = 6k + 1, the equality (3.15]) can be rewritten as

3k (122 + 4k — 2(6k + 1)my + 3m2 — k(6k + 5)/2)°
Mo(s,3) = 3, 3/<:i1 1

m1=0

13



k(3k + 2)(12k + 11)(6k + 1)
20 '
Substituting k by 3%1 in the above equality, we get

My(s,3) — s(s — 1)(2;440— 9)(s + 3).

When s = 6k + 5, we have

342 (12k2 4 20k + 8 — 2(6k + 5)my + 3m2 — (2k + 3)(3k + 2)/2)°

My(s,3) = 20 3k+3
(6 + 5)(3k + 2)(3k + 4)(12k + 19)

60
Substituting k by 5%5 in the above equality, we get

M(s.3) = s(s — 1)(2;4—(1)— 9)(s + 3)‘

Thus, we assert that when s is odd and relatively prime to 3,

Ma(s.3) = s(s — 1)(2;4—(})— 9)(s + 3).

By the same argument, we obtain

s(s—=1)(s+3)(s—3)(2s+ 11)(s+5)

Ms(s,3) = 2240

and

M4(S, 3) =

s(s —1)(s+ 3)(6s° + 63s* 4 415> — 1092s* — 7295 + 8127)

26830

Now we concern with the case for ¢t = 4.

(3.16)

(3.17)

(3.18)

Theorem 3.7 Let s be an odd positive integer, then the variance about the mean of the

random variable & 4 15

_s(s= (s +4)(s+5)

M2(574) 79 3

the third moment and the forth moment about the mean of the random variable & 4 are

s(s —1)(s+4)(s +5)(2s* + 8s — 27)

Ms(s,4) =
and
s(s—1)(s+4)(s +5)(23s* + 18453 — 191s? — 22365 + 4046)
M4(8, 4) =
25200
respectively.
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351 9
27 1 1
19 | =7
11 [—=15
3 |23
-5 | =31

Figure 3: A lattice path in the array A(13,4)

Proof. When t = 4, we have |t/2] = 2. Thus the array A(s,4) consists of two columns
and [s/2]| rows. For example, see Figure 3| for A(13,4).

To get the moments about the mean of &4, it suffices to obtain |D; 4|, E[¢,4] and
the formula for the size of each self-conjugate (s, 4)-core.

First we consider |Ds 4| and E[&;4]. Since t = 4, by (3.2), we have

1Dy 4 = (LS/Q% " 2>. (3.19)
By , we get . ,
B[] = (SJFL;S_). (3.20)

We proceed to consider the size of each self-conjugate (s, 4)-core. By Lemma , each
sequence (my,mg) satisfying |s/2] > m; > mg > 0 corresponds to a unique (s, 4)-core,
denoted by A(mq,ms). Thus

D(s,4) = {\(my,ma): [s/2] > my > my > 0}. (3.21)

Setting j = 1,2 in the definition (3.1 of A;;, we have

A =3s—4(2i—1), 1<i < |s/2] (3.22)
and
Substituting (3.22)) and (3.23]) into (3.4)), we obtain
B(s2—1) ™ i
M ma)| = 2D Sh A SR
i=0 =0

15



5(s* —1
= (88) — 3smy + 4m7] — smy + 4ms. (3.24)

Since s is odd, we can assume s = 2k 4 1 for certain nonnegative integer k. Substituting
(3.19), (3.20), (3.21)and (3.24)) into (3.5), we get

S 0<ma<mi<|ss2) (5(s* —1)/8 = 3smy + 4m] — smy 4+ 4m3 — (s +5)(s — 1)/8)2
(\_s/2j+2>
2
 Socmacmi<k (5K +K)/2 — (3my + ma)(2k + 1) + 4m? + 4m3 — k(k +3)/2)°

: (37)

MQ(S, 4) =

k(2k +5)(2k +1)(k + 3)
18 )

Substituting k& by % in the above equality, we get

My(s,4) = s(s — 1)(57—;— 4)(s + 5)' (3.25)

By the same argument, we have that

s(s —1)(s+4)(s+5)(2s* + 8s — 27)

M;s(s,4) = 2
and
-1 4 5)(23s* 4 184s% — 191s% — 2236 4046
M, (s.4) = s(s —1)(s+4)(s+ 5)(23s* + 184s s s+ ) (3.27)
25200
|

Using the same approach, we can deduce the third moments about the mean of &,
for t = 5,6, and the forth moments about the mean of &, for ¢t = 5,6,7,8. We omit the
details of these proofs, and state these results as the following theorems.

Theorem 3.8 Let s be odd and relatively prime to 5, then the third moment and the
forth moment about the mean of the random variable &5 are

s(s — 1)(s + 5)(50s® + 58952 + 8885 — 5535)

M. = 2
and
My(s,5) = s(s—1)(s+ 5)(59455 + 10021s* + 3643653 — 12869052 — 4897505 + 1294125)
nee 120960 )
(3.29)
respectively.
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Theorem 3.9 Let s be odd and relatively prime to 6, then the third moment and the
forth moment about the mean of the random variable & ¢ are

3s(s —1)(s +6)(s + 7)(5s* + 30s — 79)

M. = )
and
_ 4 3 2
My(s,6) = s(s —1)(s+ 7)(s+ 6)(443s* + 5316s° + 2099s* — 83094 + 125316)’ (3.31)
44800
respectively.

Theorem 3.10 Let s be odd and relatively prime to 7, then the forth moment about the
mean of the random variable & 7 is

s(s — 1)(s + 7)(15945° + 366735 + 21780557 — 28486052 — 32325095 + 6257937)
Ma(s,7) = 57600 ‘
(3.32)

Theorem 3.11 Let s be an odd positive integer, then the forth moment about the mean
of the random variable &g 1s

s(s — 1)(s + 8)(s + 9)(049s* + 151845 + 2411552 — 2920685 + 404832)
Mi(s, 8) = 21600 '
(3.33)

4 Moments about the mean of ¢;;

In this section, based on the theorems in Section [2] and [3] we will give the proofs of
Theorem [1.2] [I.3] and [I.4]

Before proving the main theorems of this paper, we first concern with the r-th mo-
ments M, (s,t) about the mean of &, for t = 0,1, which will be used in the following
proofs of our main results.

Lemma 4.1 Let s be an odd integer, then M,.(s,0) =0 and M,(s,1) = 0.

Proof. Recall that G, (s, t) is the sum of |A|" over all self-conjugate (s, t)-cores and F'(s, t)
is the number of all self-conjugate (s,t)-cores. Since 1-core is the empty partition, we

have G,(s,1) =0 and F(s,1) = 1. By (2.4)), we get

M, (s,1) = 0. (4.1)

17



For ¢t = 0, by (2.2]) we deduce that

s2—1

G.(s,0) = f1(0,0,...,0) = (— o

)" (4.2)
Substituting the above equality into (2.4)), we have

- (?”) Gi(s,0) (_ (s = D(=D(s + 1)>H

M, (s,0) =" 51

=0

SO ()

(4.3)

The proof is completed. 1
Now we are ready to prove the main results of this paper.

Proof of Theorem . Corollary suggests that Ms(s,t) is a polynomial of degree
4 in t. Thus, if we obtain 5 special values of this polynomial, then we can determine
this polynomial by the method of undetermined coefficients. According to the proof of
Theorem [2.6] we must treat odd and even values of ¢ separately.

First, let us concern with the case that ¢ is odd. Under the condition that s is odd,
we have that —s, —s — 2, —s — 4 are odd. Thus, to determine the formula for Ms(s, 1),
it suffices to get the values of Ms(s,t) at t = —s, —s — 2, —s — 4,1, 3. Corollary says
that

Msy(s, —s —t) = Ms(s,t). (4.4)

Thus, from Theorem [3.5] Theorem [3.7| and Lemma [4.1], we get

Ms(s,—s) = My(s,0) =0, (4.5)
Ma(s, —s — 2) = My(s,2) = &= 1)(37;02)(3 +3) (4.6)
Ma(s, —s — 4) = My(s, 4) = 5= 1)<S7;F s +5) (4.7)

On the other hand, by Theorem [3.6) and Lemma [4.T we get

Ms(s,1) =0, (4.8)

M(s.3) = s(s — 1)(2;4—(1)— 9)(s + 3)‘ (4.9)
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The equalities (4.5) and (4.8) suggest that —s and 1 are both roots of Ms(s,t). Notice
that Ms(s,t) are polynomials of degree 4 in ¢. Thus, we can assume that

My(s,t) = (s +1)(t — 1)tz + ty + 2), (4.10)
where x, y, z are polynomials in s. Substituting (4.6)), (4.7) and (4.9) into (4.10) leads
to

s(s—1)(2s+9)
9x + 3 =
r+oy+z 180 ,
—1 2
(s+20°z—(s+2)y+z= L 14Z§+ )’
s(s—1)(s+4)
4)% — 4 =
(s+4)yz—(s+4)y+=2 558
Solving these equations gives
o505 = 1) (1.11)
r=——s(s— :
720 ’
1, 1, 1
_ 1 _ b 412
Y= 720" T 140" T 180” (4.12)
2 =0. (4.13)

Substituting (4.11)), (4.12)) and (4.13)) into (4.10)), we arrive at

My(s.t) = st(s+1t)(t — 1)(114—01)(25 + 2t + 3).

We turn to the case that t is even. Under the condition that s is odd, we have
—s —1,—s — 3 are even. Thus, to determine the formula for Ms(s,t), we only need the
values of Ms(s,t) at t =0, —s—1,—s—3,2,4. By Theorem [3.6] Lemma[.1and equation
(4.4), we have

My(s,—s — 1) = Ms(s,1) =0, (4.14)

Ma(s, —s — 3) = My(s,3) = &= 1)(2543 Ns+3) (4.15)

On the other hand, from Theorem [3.5] Theorem [3.7] and Lemma [£.1, we deduce that

Msy(s,0) =0, (4.16)
Ma(s,2) — s(s—l)(i;)Q)(stB)’ (4.17)
Ma(s, 4) — s(s—l)(s7—;—4)(s+5). (4.18)
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The equalities (4.14) and (4.16) mean that 0 and —s — 1 are roots of Ms(s,t). Notice
that Ms(s,t) are polynomials of degree 4 in ¢. Thus, we can assume

My(s,t) =t(s+t+ 1)z + ty + 2), (4.19)

where z, y, z are polynomials in s. Substituting (4.15)), (4.17) and (4.18)) into (4.19), we
obtain

s(s—1)(s+2)

4 2 =
T+2y+=z 1240 )
s(s—1)(2s+9)
3%z — (s+3 =
(543 — (s +8)y + 2 = DL,
s(s—1)(s+4)
16 4 =
T +4y+z 988
Solving these equations gives
s(s—1)
= 4.20
YT 0 (4.20)
3 s? s
=——— = — + — 4.21
Y7720 288 T 480’ (4.21)
s?(s —1)
=" 4.22
: 180 (4.22)
Substituting (4.20)—(4.22)) into (4.19)), we conclude that
st(s+t+1)(2t —3)(s —1)(s+ 1)
Ms(s,t) =
as desired. 1

Proof of Theorem[1.5. By Corollary 2.7, M3(s,t) is a polynomial of degree 6 in ¢. Thus,
if we obtain 7 special values of this polynomial, then this polynomial can be determined.
With the same method in the proof of Theorem [I.2] we consider that ¢ is odd and ¢ is
even separately.

First, let us concern with the case that ¢ is odd. Under the condition that s is odd,
—s,—s —2,—s —4,—s — 6 are odd. From Corollary 2.7 we get

Ms(s, —s —t) = Mjs(s,t). (4.23)

Combining Theorem (3.5, Theorem (3.7, Theorem , Lemma and equation ({4.23),

we get

Ms(s, —s) = M;3(s,0) =0, (4.24)

Mi(s, —s — 2) = My(s,2) — s(s—1)(s— 3);;;45)(5 +5)(s+ 3)’ (4.25)
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s(s —1)(s+4)(s+5)(2s* + 8s — 27)

M;s(s,—s —4) = Ms(s,4) = 4.26
3s(s —1 6 7)(5s? + 305 — 79
My(s, —s — 6) = My(s, 6) = oots = D5+ 6)(s 4+ 7)(5s” + 305 = 79) (4.27)
1120
And from Theorem Theorem Theorem [3.§ and Lemma [£.1] we have
M;(s,1) =0, (4.28)
s(s—1)(s+3)(s—3)(2s+ 11)(s+ 5)
Ma(s.3) — 4.2
3(8a 3) 2240 ) ( 9)
s(s — 1)(s + 5)(50s° + 58952 + 8885 — 5535)
M. 5) = . 4.30
Combining (4.24)—(4.30]), we obtain
1
Ms(s,t) = 120960375(5 —1)(t — 1)(s + t)(16ts® + 16t>s + 32t*s* — 305 — 30> — 29ts”

— 29t%s — 665% — 66t — T2st — 27s — 27Tt).

Now we turn to the case that t is even. Under the condition that s is odd, then
—s—1,—s—3,—s—5 are even. Combining Theorem [3.6] Theorem [3.8, Lemma [£.1] and
equation (4.23]), we get

Ms(s,—s — 1) = M3(s,1) =0, (4.31)
—1 3)(s—3)(2 11 )
M(s, —s — 3) = My(s,3) = 25— D +3)(s =3)@s+ 1)(s +5) (4.32)
2240
-1 3 2 _
Mi(s,—5 — 5) = Ma(s.5) = 20— D5+ D)0 + 58052 1 8885 — 5535)
6048
In view of Theorem [3.6] Theorem [3.8 and Lemma [.1], we have

Ms(s,0) =0, (4.34)

s(s—=1)(s=3)(s+2)(s+5)(s+3)
M;(s,2) = 4.35
3(87 ) 30240 ’ ( )

-1 4 25> -2
Ma(s,4) = s(s—1)(s+4)(s+5)(2s* + 8s 7), (4.36)

840

-1 2 —

Mi(s,6) — 3s(s —1)(s+6)(s+ 7)(5s* + 30s 79). (4.37)
1120
Combining (4.31))—(4.37)) immediately induces
_ 1 _ 2.2 2 2 aqg2 3
Ms(s,t) = 1209608t(8 D(s+t)(s+t+1)(16t°s" — 61ts” 4+ 60s° — 61t°s + 16t°s

+ 60st + 66t* — 27t — 30t°).
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Proof of Theorem . Corollary suggests that My(s,t) is a polynomial of degree 8
in t. Thus, if 9 special values of this polynomial are known, then we can determine this
polynomial by the method of undetermined coefficients. By the same approach to the
proof of Theorem [T.2] and Theorem we obtain

1
My(s,t) = 835100 st(s+t+1)(s — 1)(s +1)(124t3s* — 766t*s* + 1671ts* — 1260s*

+ 2481453 + 3342t%5% — 2520t 5% — 1532633 — 4579125 + 6215%t + 124t° s>
+3975t35% — 1254t%s? + 1260s% + 621st> — 3319t3s + 1260st — 488t°s
+2304t*s + 1530t + 528t° + 252t° — 1512t*), if ¢ is even;

My(s,t) = 1835100 st(s — 1)(t — 1)(s + 1)(528s° — 1800ts — 488t°s + 1241°s* + 336t*s
— 1186t%s% + 372t1s> + 2729t s + 39t3s% — 13961353 + 372t3s* + 3694t% s>
+ 39t%s% — 1186t%s* + 1241%s° 4+ 2729ts> + 336ts" — 488ts® + 1355t + 13557t
+1512s* + 2525 + 1512t* 4 528° — 15305 — 1530¢% 4 252t%), if ¢ is odd.
This completes the proof. |
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