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Abstract

Convolutional Neural Network (CNN) has proven to be a highly efficient ap-
proach to face recognition. In this paper, we introduce a new layer to embed
the patch strategy in convolutional architectures to improve the effectiveness
of face representation. Meanwhile, a multi-branch CNN is constructed to
learn features of each cropped patch by the patch strategy, and then fuses
all the patch features together to form the entire face representation. Com-
pared with the traditional patch methods, our approach has the advantage
that no extra space is needed to store the facial patches since the images
are cropped online. Moreover, due to the end-to-end training, this approach
makes a better use of the interactions between global and local features in the
model. Two baseline CNNs (i.e., AlexNet and ResNet) are used to analyze
the effectiveness of our method. Experiments show that the proposed system
achieves comparable performance with other state-of-the-art methods on the
LFW and YTF face verification tasks. To ensure the reproducibility, the
publicly available training set CASIA-WebFace is used.

1. Introduction

Convolutional Neural Network (CNN) has attracted extensive attention
in image processing, pattern recognition, computer vision [1, 2, 4, 3], im-
proving the state of classification problems. Particularly, benefiting from the
discriminative and effective representations extracted by CNN models, face
recognition (FR) via CNN has achieved great success [5, 6, 7, 8].
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Many FR techniques based on CNN focus on learning discriminative and
generalized representations. As is well known, effective feature extraction
plays a crucial role in FR process [9, 6, 10]. Choosing an appropriate face
representation can make the subsequent face processing not only computa-
tionally feasible but also robust to possible intrinsic and extrinsic facial varia-
tions. Existing face features can be divided into two categories: global-based
features and local-based features [9]. The global-based face representation
captures more semantic information embodied in every part of the face image,
which corresponds to some holistic characteristic of the face. In contrast, the
local-based feature vector corresponds to certain local face region, and only
encodes the detailed attributes within this specific area [9]. Indeed, local
features extracted from different face regions have several advantages such
as insensitivity to local variations [11], while global features themselves are
discriminative but not effective enough for FR. Thus, face recognition can
generally benefit more by integrating global features with local features.

Recently, the strategy of fusing patches has been adopted to extract fea-
tures of various face regions with CNN models. The primary framework of
these methods processes multi-patch features by classifiers or multi-patch
ensemble CNN models. Sun et al. [6] resorted to multi-patch ensemble mod-
els to boost performance. They divided the face images into 100 patches
including the global and local ones and trained these patches with multiple
CNN models separately. Later, they selected the best 25 patches from 400
cropped ones and employed both identification and verification signals as su-
pervision, improving the performance by a large margin [7]. Hu et al. [12]
sampled 30 patches from five facial regions to explore the spatial informa-
tion of facial parts by concatenating all the features of 30 patches. Besides,
by taking advantage of multiple CNNs, Ding and Tao [13] extracted comple-
mentary deep features from six patches and compressed the high-dimensional
representations by a three-layer stacked auto-encoder (SAE). However, the
existing multi-patch based methods cannot make a better use of the interac-
tions among multiple patches because the models are trained separately on
individual patches.

In this paper, we introduce a patch strategy in CNN architectures to learn
complementary and effective features in an end-to-end fashion. A new net-
work layer is proposed to uniformly sample several facial patches within the
CNN model. Meanwhile, we construct a multi-branch network structure to
implement the complementary information extraction and integration. For
each patch, we use a convolutional network branch to learn and extract its
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feature. Then we fuse features from the entire face and its local regions.
Especially, all features are first normalized by BatchNorm and then cascad-
ed together. Finally, the concatenation of features is further integrated by
a fully-connected layer without dimensionality reduction. The trade-off be-
tween the global features and local features can be completed in the proposed
framework due to end-to-end training. We explore two different baseline deep
network architectures (AlexNet and ResNet) to verify the effectiveness of our
approach. The contributions of our work are summarized below:

• The proposed approach enables the network to divide a face image into
patches and to learn patch features simultaneously.

• No extra space is needed to store the local patches since the model
takes an entire face image as input and the images are cropped online.

• Compared with existing multi-patch based methods, the face represen-
tations can be intensified by optimizing the parameters of each patch
in a single model and better performance is acquired.

• Comparable results with the state-of-the-art are achieved with less
training data.

The rest of this paper is organized as follows. In Section 2, we review
the literature of various feature extraction approaches. Section 3 presents
the idea of the patch strategy and the proposed multi-branch networks. In
Section 4, we describe the CNN structures in detail. Experimental results
are reported in Section 5. Finally, the conclusion is given in Section 6.

2. Related Work

Effective face representation plays a crucial role in face recognition. Sev-
eral recognition techniques have been developed to capture discriminative
features for better performance. Appearance-based methods are studied to
extract global information from the entire face, such as principal component
analysis (PCA), linear discriminant analysis (LDA) and locality preserving
projection (LPP). However, they are sensitive to local variations like poses, il-
luminations and expressions. To avoid the problems, local characteristics are
researched mainly by partitioning the whole image into patches for feature
extraction. Two-dimensional PCA and two-dimensional LDA were used to
project facial regions into local subspaces for better performance on occluded
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faces [14]. In [15], the authors employed dimensionality reduction approach
to extract robust features from multiple facial parts. To take advantage of
both global and local characteristics, model-based methods also draw the
attention. Zhu [16] extracted local features from various face regions and
adopted NMF decomposition on different sampled features to achieve better
performance. Hariri et al. [17] encoded and fused different kinds of features
and modalities using covariance-based descriptors.

Recently, deep learning has become a focus topic of face recognition since
it is powerful to learn highly discriminative features. In contrast to the
above traditional methods with hand-crafted features and classifiers, deep
learning based approaches propagate information in a complex hierarchical
structure and automatically learn features by mapping low-level features to
more abstract high-level ones. The approaches usually include two steps:
high-dimensional feature extraction and classifier design. More specifically,
a CNN model is first trained to extract a high dimensional feature vector
[6, 2, 12]; then, Joint Bayesian [6] or metric learning method [18] is used for
classification. The CNN models naturally integrate the feature extractor and
the classifier in an end-to-end fashion. The face representations obtained by
the methods are more effective and general.

The success of CNN has inspired extensive researches on deep face recog-
nition. Researchers of Facebook in 2014 initiated the feature extraction by
CNN and achieved state-of-the-art results at that time [5]. They presented
a representative system named DeepFace, which employed explicit 3D face
model and learned the face representations in a nine-layer deep neural net-
work. Later on, Sun et al. extended this work by DeepID series of papers
[6, 7]. The ultimate verification accuracy they attained on LFW is 99.47%
with 25 CNN models. Very recently, deeper network architectures such as
GoogleNet proposed by Szegedy et al. [3] and ResNet presented in [2] have
been widely used for face recognition. FaceNet [8] employed the Inception
model [3] to directly learn the triplet embedding for face verification, achiev-
ing the accuracy of 99.63% on LFW. Wen et al. [19] supervised the CNN
by a novel signal center loss together with the softmax loss and obtained the
state-of-the-art accuracy on three important face recognition benchmarks.
Following the trend, we learn face features by using CNN and further intro-
duce the patch strategy to improve the performance of face representation in
the paper.

4



3. Patch Strategy Embedding in Networks

In this section, we present the proposed approach based on multi-patch.
The patch strategy of sampling patches and the proposed framework are
described in detail, respectively. Both the intuitive illustration and the in-
terpretation are also given for a better understanding.

3.1. The Proposed Patch Strategy

We propose a patch strategy to divide an input training image into d-
ifferent patches online. Different from [7] that randomly croped 25 patches
over the face image using dense facial landmarks, we uniformly sample six
image patches of size 136 × 136 pixels with sparse facial key points from an
aligned face image. Figure 1 shows the six cropped patches. The position
of each facial patch is constant for all the images. In contrast to cropping
face images offline, the proposed patch strategy is conducted online. A new
network layer named “crop-data” is introduced into convolutional networks
to implement it. Given a batch of training face images, the crop-data layer
crops each image into a facial patch using the corresponding cropping win-
dow (x, y, w, h) with top-left corner at (x, y) of size (w, h). In particular, the
top left coordinates (x, y) of six patches shown in Fig. 1b are (0, 0), (42, 0),
(45, 25), (27, 50), (26, 75), (45, 88), respectively. w × h is just the size of the
cropped patches. After cropping, the layer sends the patches to different
network branches. This operation and the subsequent convolution, pooling
etc. are carried out simultaneously during training. The layer serves as a
bridge to connect the network branches about the whole images and the local
patches together. It makes us achieve an end-to-end network architecture.

By this operation, no extra space is needed to store the local patches.
Besides, not only multimodal face features can be extracted from different
facial regions in a single model, but also the complementary information
contained in the whole image and its local patches can be explored. In this
way, it can capture the interaction among different facial regions and better
leverage the holistic information of an image and its details. Furthermore,
our patch strategy enables the optimization of the CNN model to utilize the
prior knowledge that the face patches belong to.

3.2. Networks With Patch Strategy

Our framework for face representation consists of two parts: feature ex-
traction from the holistic face image and the local patches using CNNs, and
feature fusion by a fully-connected layer.
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Figure 1: (a) The original aligned face image. (b) Image patches uniformly sampled from
the aligned image.

For the feature extraction, as shown in Fig. 2, we take a well-designed
and widely used network architecture to extract features from an entire face,
and denote it by CNN-1 as a baseline network. The CNN-2 is constructed
according to CNN-1 for a local face region. The main difference between
CNN-1 and CNN-2 is that CNN-1 is deeper than CNN-2. The details of
CNN-1 and CNN-2 will be presented in Sect. 4. Using the proposed networks,
we select the output of the last layer of CNN-1 and CNN-2 as global features
and local features, respectively. For the feature fusion, we first normalize
global features and local features by BatchNorm [20] and then cascade them
together, which can boost the performance and speed up the convergence of
networks. Furthermore, the concatenation of all features is integrated by a
fully-connected layer without dimensionality reduction. The output of this
layer is taken as the face representation.

In our network architectures, a complex structure is proposed for the
entire images that have rich information. For the cropped patches, it is
appropriate to use a network with relatively fewer parameters to learn effi-
cient patch features. This is due to the difference in size and the semantic
meaning between a holistic image and its patches. Consequently, a structure
similar to but simpler than CNN-1 is designed for the local patches with
less information. To evaluate the contribution of each sampled patch to the
face representation, we adopt the same network architectures for different
patches, avoiding the influence from CNN structures. More specifically, the
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Figure 2: Flowchart of the proposed networks with patch strategy. The CNN extracting
features from the entire image is denoted as CNN-1, while a similar but simple structure,
denoted by CNN-2, is designed to extract patch features. The representations are extracted
from the last hidden layer and used to predict n identity classes (n = 10575).

parameters of CNN-2 for various patches are not shared so that the features
learned by each CNN-2 are adaptive to multimodal information included in
different face regions. In contrast with existing works related to multiple
patches, the proposed framework takes a holistic image as input and samples
local patches with the crop-data layer, then sends them to different network
branches. In this way, multimodal features are learned and interact with
each other during training in an end-to-end fashion, which further boosts
the performance of the face representation.

3.3. Interpretation of the Proposed Framework

Let D = {(Xi, yi)}Ni=1 be the training set, where Xi denotes the i-th
training sample, yi is the ground-truth label and N is the number of the
training samples in D. For an input image Xi, the feature extraction process
of Xi is denoted as xi = conv(Xi, θc), where conv(·) represents the feature
extraction function defined in CNN, θc is the parameter to be learned and
xi is the extracted feature vector.

In the proposed framework, the parameters of each branch are learned
simultaneously in a CNN model. The final representation fJ(X) of an face
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image X in our end-to-end training architecture is the feature vector

fJ(X) = W Tx + b, (1)

where x = [x0, x1, . . . ,xn], W ∈ R(n+1)d×(n+1)d and b ∈ R(n+1)d. Here
xi = conv(Ii, θci) ∈ Rd is the feature vector of the i-th patch Ii cropped from
X. They are extracted from the last layer of each branch in Fig. 2. For
simplicity, I0 = X is the holistic image. As is known, effective features are
obtained by optimizing the parameters of CNNs using backpropagation. We
present the backpropagation gradient of the parameters as following.

Let L(D; θc) be the loss function to measure the error between the pre-
diction value and the ground truth. The prediction score vector of X is the
output of the last layer, denoted as p(X). For the parameter wi of i-th
network branch, the backpropagation gradient of wi is

∇wiL(D; θc) =
1

|M |
∑

(X,y)∈M

∂L(D; θc)

∂p(X)
× ∂p(X)

∂fJ(X)
× ∂fJ(X)

∂x
× ∂x

∂wi
, (2)

where M is a mini-batch randomly drawn from the training set.
In contrast to our approach, the traditional multi-patch based methods

usually crop patches offline and take the patches as input to train multiple
models separately. They combine all features extracted from pre-trained
models together as the final face representations, denoted as

fS(X) = [x0,x1, . . . ,xn], (3)

All the patch features xi are extracted from the penultimate layer of the
networks. The backpropagation gradient of the parameters in this layer is

∇wiL(Di; θci) =
1

|Mi|
∑

(Ii,yi)∈Mi

∂L(Di; θci)

∂p(Ii)
× ∂p(Ii)

∂xi
× ∂xi

∂wi
, (4)

where Di = {(I
(n)
i , yn)}Nn=1, I

(n)
i is the i-th patch of the n-th sample and Mi

is a mini-batch randomly drawn from Di. Due to the randomness of Mi,
different patches may belong to different persons in a mini-batch of distinct
models.

From (3), fS simply concatenates the obtained features for feature fusing.
For the proposed approach, we embed the global features and the local fea-
tures into a new space by an affine mapping. It can enhance the contribution
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of certain features to the final representation and reduce the influences of
other features. Moreover, the interactions between global and local features
by fJ can be better utilized. On the other hand, from the optimization as-
pect, the update of the parameters of different models is independent of each
other as shown in (4). In other words, information from a patch cannot affect
the others during training though different patches have a high correlation
with each other. Different from (4), each CNN branch of our method shares
the gradient propagated back from the last two layers in a mini-batch (see
(2)). It implies the update of the parameters of each branch interacts with
each other mutually. Overall, a nice tradeoff between global features and
local features can be achieved by our system, which benefits effective and
discriminative representations.

4. Network Architectures

A large number of the CNN architectures are developed with powerful
capabilities to represent face in the literature. Here, we select two typical
networks AlexNet [1] and ResNet [2], which contain the most mainstream
components of CNN architectures, as our baseline networks. By using the two
baseline networks, we make our experiments to have universal applicability
as much as possible. More implementation details of the two networks are
described as follows.

AlexNet: AlexNet, proposed by Geoffrey and Alex, drew attention on
the ImageNet 2012 Challenge for its powerful performance of extracting fea-
tures. It is the first deep CNN that achieves significant success on large scale
datasets. It also has good generalization to extract features in many other
application situations, especially computer vision tasks [21]. The architecture
contains 5 convolutional layers, 3 max-pooling layers and 3 fully-connected
layers, which are typical components in a common CNN architecture. Here
we use it as a baseline model for learning face features. To make it com-
parable with face recognition and to accelerate the training, we conduct a
slight modification by reducing the number of neurons of the fc6 layer and
the fc7 layer from 4, 096 to 2, 048 and 1, 024, respectively. The output of the
fc7 layer is used as the feature of a holistic face.

ResNet: ResNet, emerging as a deeper CNN architecture, won the 1st
place on the ILSVRC 2015 classification task. It takes advantage of a well-
designed short-cut layer to force the convergence of networks, and makes the
training easier when the depth increases larger. Due to its good generaliza-
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Table 1: The architectures of CNN-1 and CNN-2 constructed based on AlexNet.
CNN-1 CNN-2

Name
Fliter Size
,Stride

Output Size Name
Fliter Size
,Stride

Output Size

input - 227× 227× 3 input - 227× 227× 3
crop-data - 136× 136× 3

conv1 11× 11, 4 55× 55× 96 conv1 7× 7, 2 65× 65× 96
max pool1 3× 3, 2 27× 27× 96 max pool1 3× 3, 2 32× 32× 96
conv2 5× 5, 1 27× 27× 256 conv2 3× 3, 2 16× 16× 256
max pool2 3× 3, 2 13× 13× 256 max pool2 3× 3, 2 13× 13× 256
conv3 3× 3, 1 13× 13× 384 conv3 3× 3, 1 8× 8× 384
conv4 3× 3, 1 13× 13× 384 conv4 3× 3, 2 4× 4× 256
conv5 3× 3, 1 13× 13× 256
max pool3 3× 3, 2 6× 6× 256
fc6 - 1× 2048
fc7 - 1× 1024 fc1 - 1× 1024

tion power to learn features and the property of easier training, we choose
it as another CNN baseline model. In fact, five kinds of depths of ResNet
are provided in [2]: 18-layer, 34-layer, 50-layer, 101-layer and 152-layer. We
select the 18-layer ResNet and take the output of the ave pool layer as the
global facial feature.

The above two baseline networks are used as CNN-1 for a holistic im-
age. For the structure of CNN-2, it is similar to but simpler than CNN-1.
Specifically, the construction of CNN-2 is performed on the two baseline net-
works through selecting the first fewer layers of them appropriately. The
neuron activations of the last hidden layer are considered as patch features
with the equal dimensions of features extracted from CNN-1. For the sake
of convenience, we record the two proposed networks with patch strategy
as Joint-Alex and Joint-Res according to the baseline networks, respectively.
The details of all the network architectures are provided in Table 1 and Table
2, which makes our implementation reproducible.

5. Experiments

In this section, firstly, the details of datasets and the settings of train-
ing and testing are described. A set of experiments are then conducted on
the Labeled Faces in the Wild (LFW) [22] and YouTube Faces (YTF) [23]
datasets for two face verification tasks, including both image to image face
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Table 2: The architectures of CNN-1 and CNN-2 constructed based on ResNet. B(3, 3)
denotes a residual block composed of two 3× 3 convolutional layers. B(3, 3)× 2 denotes 2
blocks in groups of convolutions. Downsampling is conducted by the first layers in conv3 x,
conv4 x and conv5 x.

CNN-1 CNN-2
Name Filter Output Size Name Filter Output Size
input - 224× 224× 3 input - 224× 224× 3

crop-data - 136× 136× 3
conv1 7× 7, 2 112× 112× 64 conv1 7× 7, 2 68× 68× 64
max pool 3× 3, 2 56× 56× 64
conv2 x B(3, 3)× 2 56× 56× 64 conv2 x B(3, 3) 68× 68× 64
conv3 x B(3, 3)× 2 28× 28× 128 conv3 x B(3, 3) 33× 33× 128
conv4 x B(3, 3)× 2 14× 14× 256 conv4 x B(3, 3) 16× 16× 256
conv5 x B(3, 3)× 2 7× 7× 512 conv5 x B(3, 3) 7× 7× 512
ave pool 7× 7, 2 1× 1× 512 ave pool 7× 7, 2 1× 1× 512

verification and video to video face verification. The experiments present
the role of the facial patches and the advantages of the proposed approach
over traditional multi-patch based CNNs. Besides, the comparison with the
state-of-the-art is provided.

5.1. Datasets and Pre-processing

Face verification, deciding whether two faces belong to one subject or not,
is a long-term focused issue of face recognition. To demonstrate the effec-
tiveness of the proposed approach on face verification task, we use several
famous and typical face benchmarks, including LFW dataset, YTF dataset
and CASIA-WebFace dataset [24]. The details of these datasets are as fol-
lows.

LFW: It is a public dataset which contains 13, 233 images of 5, 749 peo-
ple, where 1, 680 subjects have more than two images and 4, 096 subjects
consist of only one image. Moreover, the face images from it are taken under
an unconstrained environment with difficult face variations, such as occlu-
sions, poses, expressions and illuminations. The dataset is organized into
two “Views”. View 1 has 2, 200 pairs for algorithm development. View 2
consists of 10 splits with 3, 000 genuine matches and 3, 000 impostor match-
es. Here, we focus on View 2 for face verification. Further, we choose 2, 592
and 3, 610 pairs from View 2 to intensify the conditions of occlusions and
poses, respectively. Similarly, 4, 695 and 5, 470 pairs are screened out for the
analysis of expressions and illuminations, respectively. The four subsets are
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Figure 3: An example of the face image alignment from the LFW dataset. (a) is the
raw image with five detected facial points. (b) is the normalized face image aligned by
similarity transformation according to the five facial points.

used to evaluate the adaption of the proposed approach on a given specific
face variation.

YTF: The dataset is another famous public face dataset for evaluating
the performance for face recognition. It contains 3, 425 videos of 1, 595 differ-
ent people downloaded from YouTube. Each subject of YTF contains several
videos with different size of frames ranging from 48 to 6, 070. Among the
large scale of face videos, 5, 000 pairs of face videos are selected for demon-
strating the face verification performance. Besides, the face frames of YTF
not only contain large face variations (such as poses, illuminations, expres-
sions and occlusions), but also suffer from different levels of low resolutions.
Based on these, it is treated as a more challenging testing dataset for face
verification.

CASIA-WebFace: The CASIA-WebFace dataset contains face images
of celebrities from websites. It is a typical public dataset with wide face sub-
jects, namely, 10, 575 subjects with 494, 414 face images. Moreover, it has no
overlap with the LFW and YTF datasets and can be treated as a standard
training dataset for developing face recognition methods. Thus, it is fair to
evaluate the performance on LFW and YTF. In fact, there exist many noises
in CASIA-WebFace such as non-face samples and subjects with incorrect la-
bels. After manually deleting noisy data and false detected samples, 437, 633
images of 10, 575 subjects remain for training.

Next, we describe the details of image pre-processing for the mentioned
datasets. For a given face image, five facial landmarks, i.e. the two eye cen-
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ters, the nose tip and the two mouth corners, are detected with the proposed
approach CFAN in [25], as shown in Fig. 3a. According to the detected five
facial landmarks, the face image is aligned by similarity transformation and
normalized to 256×256, as shown in Fig. 3b. The open source detection and
alignment tools are available at https://github.com/seetaface/SeetaFaceEngine.
Based on the aligned images, we resize all images to 227× 227 and 224× 224
as the input of networks designed based on AlexNet and ResNet, respectively.

5.2. Training Methodology

All of the models are trained with the open source deep learning frame-
work Caffe [26]. For the proposed networks based on AlexNet, the input is
227 × 227 RGB images. The size of the input RGB images for the networks
designed on the baseline network ResNet is 224 × 224. We mirror the input
images for all the models when training.

In order to mitigate the overfitting and improve the generalization of the
CNN models, the following techniques are used in this work. Weight decay
parameter [27] as a regular coefficient in the loss function can effectively avoid
overfitting under the normal distribution assumption. It is used for all the
models. Dropout [28] and Local Response Normalization (LRN) [1] are also
adopted to improve the generalization of the neural networks constructed
on the basis of AlexNet. Specifically, we apply dropout after each fully-
connected layer and set the ratio to 0.5 without declaration. LRN is applied
after the first two convolutional layers with the default parameter values. The
CNNs designed based on ResNet use BatchNorm [20] instead of dropout to
accelerate the training by reducing the internal covariant shift of networks.
In addition, Gaussian initialization is used for all the convolutional layers
and the fully-connected layers in each network. To alleviate the saturation
of each network, we use ReLU [29] after each convolutional layer to avoid the
gradient vanishing and to force the network sparse.

The details of the training strategy are presented as follows. Two training
stages are employed. We first train the models with the softmax loss to fast
evaluate the effect of patches and to compare with traditional multi-patch
models. Then we fine-tune the pre-trained models by the center loss proposed
in [29] to achieve better performance. All the CNNs that are constructed
on the basis of the same baseline networks are provided same parameter
settings as the corresponding initial baseline system. Meanwhile, all the
parameter settings except the initial learning rate are same for both two
training stages. In the following, we present the parameter setting of two
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baseline networks when training only with the softmax loss. For AlexNet,
the initial learning rate is set to 0.01 and decreases by 0.5 every 20, 000
iterations. The momentum is set to 0.9 and the weight decay is 5 × 10−4

for the convolutional layers and fully-connected layers. For ResNet, we set
the initial learning rate to be 0.05 and decrease it similar to AlexNet. The
momentum is also set to 0.9 and the weight decay is 1 × 10−4. When fine-
tuning, the learning rate reduces by 0.1 compared with only supervised by
the softmax loss. In this paper, all the experiments are conducted with a
single Titan-X GPU.

5.3. Details for Testing

The deep features of the original image and its horizontally flipped version
are concatenated as the raw representations. For the traditional multi-patch
based CNN models, we use the concatenation of the raw representations of
the holistic image and the patches. The similarity score is calculated by the
cosine distance of a pair of features after transforming the representation by
PCA similar to [19]. We report the results on LFW and YTF following the
standard protocol of restricted, labeled outside data [22]. On the View 2 data
of LFW, 6, 000 given pairs are split into 10-fold. Nine splits are selected to
train a classifier, and then the classification is performed on the last split.
Almost the same testing pattern is adopted on the YTF dataset. The first
2, 500 video pairs are employed for testing and divided into 5 folds, where
4 folds are used for training and the left one is for testing. Besides, we
randomly select 100 pairs of frames per video and use the average cosine
similarity of 100 pairs as the similarity of a test video pair. The estimated
mean classification accuracy and its standard error (SE) are reported [22].

5.4. Evaluations

In this section, firstly, the effect of a single patch and the combinations
are discussed. The performance comparison between our system and tradi-
tional multi-patch based CNN methods is then presented. Especially, the
robustness to unconstrained face variations is analyzed, including occlusions,
poses, illuminations and facial expressions. Finally, we provide the compari-
son between our ultimate results and the state-of-the-art on LFW and YTF
datasets.
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Figure 4: The verification accuracy (%) of an individual patch on LFW. The features are
extracted from the model CNN-1 constructed on the basis of ResNet.

5.4.1. Effect of patches

Different regions of the face contain diverse information and cause differ-
ent performance. A set of experiments are constructed on the LFW dataset
to reveal the contribution of the sampled patches.

First of all, we discuss the role of a single patch. The verification accuracy
of each cropped patch is presented in Fig. 4. As is shown, the patch that
includes more and intact face landmarks performs best due to more effective
information. Besides, the patches containing eyes and nose obtain better
accuracy than those including nose and mouse, which indicates that the
information from eyes may be more useful for face recognition than that
from other landmarks.

To explore the contribution and complement of multiple patches to the
performance, we combine the CNN features of multiple patches together with
features from the holistic image for the computation of the cosine similarity.
It is impossible to present all the combinations of patches, we just provide the
performance of the best one. The comparison with traditional multi-patch
based methods is also provided. For the traditional ones, we use the same C-
NN structures as the network branches described in Sect. 4 to extract features
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Figure 5: The verification accuracy of the combinations of the holistic image and its local
patches on LFW

from individual facial regions. The methods are denoted by Separate-Alex
and Separate-Res accordingly. As reported in Fig. 5, the accuracy improves
as the number of patches increases, but saturates after two patches. This
shows multiple patches contain effective and complementary information but
can also bring a large amount of redundancy. Meanwhile, it indicates that
the two local patches indeed bring effective supplements to features of the
entire face image. Besides, the best combinations are the same for different
methods. Especially, the patches from the best combination of the holistic
image and its local patches are ones having scores of 94.78% and 93.57% in
Fig. 4, respectively.

5.4.2. Comparison with Traditional Multi-patch Based CNNs

In this experiment, we compare the performance between our approach
and traditional multi-patch based CNN methods. To fast evaluation, all the
models employ only the softmax loss for training and the patches from the
best combinations are adopted. The comparison is conducted on the LFW
and YTF benchmarks, and the verification results are reported in Table 3.

From the first two rows of Table 3, Joint-Alex achieves better performance
than Separate-Alex on both LFW and YTF testing benchmarks, improving
the accuracy by 1.32% and 2.6%, respectively. For more powerful CNN archi-
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Table 3: The performance comparison between the proposed approach and multi-patch
models trained separately on LFW and YTF datasets.

Method Networks Acc (%) on LFW Acc (%) on YTF

Separate-Alex 3 96.40 ± 0.26 89.72 ± 0.73
Joint-Alex 1 97.72 ± 0.25 92.32 ± 0.40
Separate-Res 3 97.88 ± 0.21 89.84 ± 0.92
Joint-Res 1 98.42± 0.24 92.72± 0.31

Table 4: The performance under occlusions (O), poses (P), expressions (E) and illumina-
tions (I).

Method
Acc (%) on face variations

O P E I

Separate-Alex 94.60 95.71 95.95 96.07
Joint-Alex 96.57 97.53 97.68 97.72
Separate-Res 97.15 97.78 97.81 97.79
Joint-Res 97.84 98.34 98.30 98.34

tectures like ResNet, Joint-Res outperforms Separate-Res by clear margins
which can be observed from the last two rows of Table 3. It indicates that
the performance of the proposed system is superior to that of the traditional
multi-patch based CNN methods. Besides, it demonstrates the effectiveness
of the system on different and deeper networks. They all imply the represen-
tations we learn are more effective and discriminative.

To further verify that our method can capture more complementary in-
formation, we analyze the robustness of two methods to occlusions, poses,
expressions and illuminations on the LFW dataset. The evaluation is con-
ducted on the four subsets of View 2. Table 4 reports the performance of
two methods under the four conditions. Obviously, Joint-Alex performs bet-
ter than Separate-Alex in the four circumstances, reducing the error by 40%
on average. It also shows that the average error of Joint-Res is 24% lower
than Separate-Res. It proves our system is more robust to occlusions, poses,
expressions and illuminations. Meanwhile, the results of all the methods are
comparable in the case of poses, expressions and illuminations, while they
are worse under occlusions than other three cases. However, our method im-
proves most under occlusions than the others, increasing the accuracy up to
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Table 5: Comparison with the state-of-the-art on the LFW dataset.

Method Images Networks Accuracy ± SE (%)

Web-Scale [32] 4.5M 4 98.37
VGG [30] 2.6M 1 97.27
MultiBatch [31] 2.6M 1 98.20
DeepFace [5] 4.4M 3 97.15 ± 0.27
DeepFace [5] 4.4M 7 97.35 ± 0.25
WebFace [24] 0.4M 1 97.73 ± 0.31
DeepID [6] – 100 97.45 ± 0.26
DeepID2 [7] – 25 98.97 ± 0.25
FaceNet [8] 200M 1 99.63 ± 9
Joint-Alex 0.4M 1 98.03 ± 0.23
Joint-Res 0.4M 1 98.70± 0.16

1.97% by Joint-Alex. These all demonstrate the effectiveness of the proposed
approach.

5.4.3. Performance Comparison with the State-of-the-Art

The comparison with the most recent state-of-the-art on the two datasets
is given in this section.

As shown in Table 5, Joint-Alex achieves an accuracy of 98.03% and
Joint-Res obtains 98.70% accuracy on the LFW dataset. The results of our
models outperform the performance of DeepFace [5], WebFace [24], DeepID
[6] and VGG [30]. Especially for Joint-Res, it reduces the error remarkably
compared with the above methods and also outperforms MultiBatch [31]
and Web-Scale [32] slightly. Besides, the comparable results are achieved
with less training data. Although our best model lowers the accuracy rate
of FaceNet [8] by about 1%, our training sets are far inferior to theirs. With
more training data, the performance is expected to be improved.

To further prove the generation of our models, we also evaluate them
on YTF and report the results in Table 6. It can be observed that the
verification accuracy of 92.32% and 93.12% is obtained by Joint-Alex and
Joint-Res, respectively, which outperforms DeepFace [5] and WebFace [24].
Moreover, with fewer patches, the performance of Joint-Res is comparable
with DeepID2+ (93.2%). It shows the advantage of our system.
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Table 6: Comparison with the state-of-the-art on the YTF dataset.

Method Images Networks Accuracy ± SE (%)

VGG [30] 2.6M 1 97.30
DeepFace [5] 4.4M 1 91.40 ± 1.1
WebFace [24] 0.4M 1 92.24 ± 1.28
DeepID2+ [33] 0.3M 25 93.20 ± 0.2
FaceNet [8] 200M 1 95.12 ± 3.9
Joint-Alex 0.4M 1 92.32 ± 0.40
Joint-Res 0.4M 1 93.12± 0.43

6. Conclusion

This paper proposes a novel approach by embedding a patch strategy
in CNN architectures to learn sufficiently effective features for face recogni-
tion. Different from the traditional patch methods, our work provides the
network with the ability to crop a face image into patches, such that it needs
no extra storage space for face patches. Moreover, the process of cropping
images and learning parameters of each patch can be carried out simulta-
neously in a CNN structure. Additionally, to trade off all patch features,
we cascade the extracted normalized global and local features together, and
then map the concatenated features to a same dimensional feature space by a
fully-connected layer for better fusion. Our method secures effective and ro-
bust representation by strengthening local information, which further boosts
the performance of the face representation. Extensive experiments on LFW
and YTF benchmarks demonstrate the effectiveness and advantages of the
method. Future work will focus on dividing feature maps instead of data
into multiple patches to strengthen more local information. Meanwhile, a
randomized cropping strategy will be explored to reduce redundancy created
by multiple patches.
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[14] Forczmański, P.,  Labȩdź, P.: ’Improving the recognition of occluded
faces by means of two-dimensional orthogonal projection into local sub-
spaces’. International Conference Image Analysis and Recognition, Ni-
agara Falls, Canada, Jun. 2015, pp. 229–238
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