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Abstract Image stitching is still challenging in consumer-
level photography due to imperfect image captures. Recen-
t works show that seam-cutting approaches can effectively
relieve the artifacts that generated by local misalignment.
Normally, the seam-cutting approach is described in terms
of energy minimization. However, few of existing method-
s consider the human perception in their energy function-
s, which sometimes causes that there exists another seam
that is perceptually better than the one with the minimum
energy. In this paper, we propose a novel perception-based
seam-cutting approach that considers the nonlinearity and
the nonuniformity of human perception into the energy min-
imization. Our method uses a sigmoid metric to characterize
the perception of color discrimination and a saliency weight
to simulate that the human eye inclines to pay more attention
to the salient objects. In addition, our approach can be eas-
ily integrated into other stitching pipelines. Representative
experiments demonstrate substantial improvements over the
conventional seam-cutting approach.

Keywords Image stitching · Seam-cutting · Human
perception · Energy minimization

1 Introduction

Image stitching is a well studied topic in computer vision
and graphics [13, 29, 30], which mainly consists of align-
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Fig. 1 A stitching result comparison between different seam-cutting
approaches. a Overlapping region. b Stitching result corresponding to
the conventional seam-cutting approach. c Stitching result correspond-
ing to our perception-based seam-cutting approach.

ment [4, 8, 15, 31, 32, 34, 35], composition [9, 10, 12, 21, 26]
and blending [6, 7, 17, 21, 22, 28]. In consumer-level pho-
tography, it is difficult to achieve perfect alignment due to
unconstrained shooting environment. Thus, image composi-
tion becomes the most crucial step to produce artifacts-free
stitching results.

The seam-cutting approach [1,11,18,20,37] is a power-
ful composition method, which intends to find an invisible
seam in the overlapping region of the aligned images. Ex-
isting methods usually express the problem in terms of en-
ergy minimization and minimize it via graph-cut optimiza-
tion [2, 3, 19]. Normally, for a given overlapping region of
the aligned images, different energy functions correspond to
different seams, and certainly correspond to different stitch-
ing results (Fig. 1). Conversely, in order to obtain a plausi-
ble stitching result, we desire to define a perception-based
energy function such that the perceptually best seam has the
minimum energy.

In recent years, many efforts have been devoted to seam-
cutting by penalizing the photometric difference using vari-
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Fig. 2 A process comparison between the conventional and our perception-based seam-cutting approaches. a Overlapping region. b Euclidean-
metric color difference. c Sigmoid-metric color difference. d Average pixel saliency. e,f Corresponding seams. g,h Corresponding stitching results.

ous energy functions. The Euclidean-metric color difference
is used in [20] to define the smoothness term in their energy
function and the gradient difference is taken into accoun-
t in [1]. Eden et al. [11] proposed an energy function that
allows for large motions and exposure differences, but the
camera setting is required. Jia and Tang [18] associated the
smoothness term with the gradient smoothness and the gra-
dient similarity to reduce the structure complexity along the
seam. Zhang et al. [37] combined the alignment errors and
the Gaussian-metric color difference in their energy func-
tion to handle misaligned areas with similar colors. Howev-
er, few of existing methods consider the human perception
in their energy functions, which sometimes causes that there
exists another seam that is perceptually better than the one
with the minimum energy.

The seam-cutting approach has also been applied in im-
age alignment. Gao et al. [16] proposed a seam-driven im-
age stitching framework, which finds the best homography
warp from some candidates with the minimal seam cost in-
stead of the one with the minimal alignment error. Zhang
and Liu [36] combined homography and content-preserving
warps [24] to locally align the images, where the seam cost
is used as a quality metric to predict how well a homog-

raphy warp enables plausible stitching. Lin et al. [23] pro-
posed a seam-guided local alignment, which iteratively im-
proves warping by adaptive feature weighting according to
their distances to the current seam.

In this paper, we propose a novel perception-based seam-
cutting approach that considers the nonlinearity and the nonuni-
formity of human perception into the energy minimization.
Our proposed method consists of three stages (Fig. 2). In
the first stage, we calculate the sigmoid-metric color differ-
ence of the given overlapping region as the smoothness term
to characterize the perception of color discrimination. Then,
we calculate the average pixel saliency of the given overlap-
ping region as the saliency weight to simulate that the human
eye inclines to pay more attention to the salient objects. Fi-
nally, we minimize the perception-based energy function by
the graph-cut optimization to obtain the seam and the corre-
sponding stitching result.

Experiments demonstrate that our perception-based seam-
cutting approach outperforms the conventional seam-cutting
approach. A user study shows that our stitching results are
more consistent with the human perception.

Major contributions of the paper are summarized as fol-
lows.
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1. We proposed a perception-based seam-cutting approach
to create nearly perception-consistent stitching results.

2. Our approach can be easily integrated into other stitch-
ing pipelines.

2 Approach

In this section, we first show more details of the convention-
al seam-cutting approach, then propose the perception-based
energy function, finally summarize our seam-cutting frame-
work.

2.1 Conventional seam-cutting approach

Given a pair of aligned images denoted by I0 and I1, let P be
their overlapping region and L = {0, 1} be a label set, where
“0” corresponds to I0 and “1” corresponds to I1, then a seam
means assigning a label lp ∈ L to each pixel p ∈ P. The goal
of seam-cutting approaches is to find a labeling l (i.e., a map
from P to L) that minimizes the energy function

E(l) =
∑
p∈P

Dp(lp) +
∑

(p,q)∈N

S p,q(lp, lq), (1)

where N ⊂ P × P is a neighborhood system of pixels. The
data term Dp(lp) represents the cost of assigning a label lp to
a pixel p ∈ P, and the smoothness term S p,q(lp, lq) represents
the cost of assigning a pair of labels (lp, lq) to a pair of pixels
(p, q) ∈ N.

The data term is defined as
Dp(1) = 0, Dp(0) = µ, if p ∈ ∂I0 ∩ ∂P,
Dp(0) = 0, Dp(1) = µ, if p ∈ ∂I1 ∩ ∂P,
Dp(0) = Dp(1) = 0, otherwise,

(2)

where µ is a very large penalty to avoid mislabeling, ∂Ik∩∂P
is the common border of Ik (k = 0, 1) and P respectively
(Fig. 1a). In fact, the data term Dp(lp) fixes the endpoints
of the seam as the intersections of the two colored polylines
(Fig. 2e).

The smoothness term is defined as

S p,q(lp, lq) =
1
2
|lp − lq|(I∗(p) + I∗(q)), (3)

I∗(·) = ‖I0(·) − I1(·)‖2, (4)

where I∗(·) denotes the Euclidean-metric color difference.
The energy function (1) is minimized by the graph-cut

optimization to obtain the seam and the stitching result (Fig. 1b).
Obviously, the definition of the energy function plays the
most important role in the seam-cutting approach.

(a) (b) (c) (d)

Fig. 3 Toy example. a,c Visualizations of the Euclidean-metric and the
sigmoid-metric color difference. b,d Corresponding seams.

2.2 Perception-based energy function

In the experiments, there may exist another seam l† that is
perceptually better than the seam l∗ that minimizes the ener-
gy function (1). Therefore, we desire to define a perception-
based energy function such that the perceptually best seam
has the minimum energy.

2.2.1 Sigmoid metric

Fig. 3 shows a toy example where l∗ is not perceptually best.
In fact, the seam l∗ shown in b crosses the local misalign-
ment area (marked in light blue in a), because the Euclidean-
metric color difference does not give it a large enough penal-
ty. In contrast, the seam l† shown in d avoids the local mis-
alignment area (marked in red in c), because the sigmoid-
metric color difference successfully distinguishes it from the
alignment area.

In particular, the perception of colors is nonlinear as it
has a color discrimination threshold, which means that the
human eye cannot differentiate some colors from others even
if they are different. Let τ denote the threshold, the percep-
tion of color discrimination can be characterized as

– if I∗(·) < τ, color difference is invisible,
– if I∗(·) ≈ τ, sensitivity of discrimination rises rapidly,
– if I∗(·) > τ, color difference is visible.

We want to define a quality metric to measure the visi-
bility of color difference such that the cost of invisible terms
approximates zero while the cost of visible terms approxi-
mates one. Fortunately, the sigmoid function

sigmoid(x) =
1

1 + e−4κ(x−τ) , (5)

is a suitable quality metric for our purpose.
Now we explain how to determine the parameters τ and

κ. Briefly, given an overlapping region P of the aligned im-
ages, the threshold τ plays the role for roughly dividing P
into an alignment area and a misalignment area by the col-
or difference, which is very similar to determine a thresh-
old to divide a gray image into a background region and a
foreground region. Thus, we employ the well-known Ostu’s
algorithm [27] to determine a suitable τ with the maximum
between-class variance. On the other hand, κ represents how
rapidly the sensitivity of color discrimination rises around τ.
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(a) (b) (c) (d)

Fig. 4 Toy example. a Visualization of the sigmoid-metric color dif-
ference. c Average pixel saliency. b,d Corresponding seams.

Normally, κ = 1/ε will have a good practical performance,
where ε is the width of bins of the histogram used in Ostu’s
algorithm, which is set to 0.06 in our experiments.

The smoothness term is modified to

S̃ p,q(lp, lq) =
1
2
|lp − lq|(I†(p) + I†(q)), (6)

I†(·) = sigmoid(I∗(·)), (7)

where I†(·) denotes the sigmoid-metric color difference. As
shown in Fig. 2c, I†(·) enforces the misalignment area more
distinguishable from the alignment area than I∗(·) such that
l† successfully avoids crossing the misalignment area.

2.2.2 Saliency weights

Fig. 4 shows another toy example where l∗ is not perceptu-
ally best. In fact, the seams l∗ and l† shown in b and d both
cross the local misalignment area. Though the energy of l†
is greater, it is perceptually better than l∗ in aspect of the hu-
man perception since the location where the artifact arises is
less remarkable than l∗.

In particular, the perception of image contents is nonuni-
form, which means that the human eye inclines to pay more
attention to the salient objects. Thus, the artifact in the salien-
t region is more remarkable than the one in the non-salient
region.

In order to benefit from these observations, we define a
saliency weight

Wp,q =

{
0, if p | q ∈ ∂]P,
1 +

ω(p)+ω(q)
2 , otherwise,

(8)

where ω(·) denotes the average pixel saliency of P (Fig. 2d).
We normalize Wp,q into the range of [1, 2] for avoiding over-
penalizing. Because the final panoramas are usually cropped
into rectangles in consumer-level photography, we optional-
ly set Wp,q to 0 if either p or q is located in the common
border ∂]P of the canvas and P (green line in Fig. 2a).

The perception-based energy function is defined as

Ẽ(l) =
∑
p∈P

Dp(lp) +
∑

(p,q)∈N

Wp,q · S̃ p,q(lp, lq), (9)

where Wp,q rises the penalty of S̃ p,q(lp, lq) according to ω(·).
Fig. 2f shows that the endpoints of the seam have more free-
dom on ∂]P than the seam shown in Fig. 2e.

2.3 Proposed Seam-cutting Framework

Our seam-cutting framework is summarized in Algorithm 1.

Algorithm 1 Perception-based seam-cutting framework.
Input: An overlapping region P of aligned images I0 and I1.
Output: A stitching result.

1. Calculate I∗(P) in Eq. 4;
2. Calculate τ in Eq. 5 via Ostu’s algorithm [27];
3. Calculate I†(P) in Eq. 7 and S̃ p,q in Eq. 6;
4. Calculate ω(P) via salient object detection [38] and Wp,q in Eq. 8;
5. Calculate Dp(P) in Eq. 2;
6. Minimize Ẽ(l) in Eq. 9 via graph-cut optimization [3], and blend

I0 and I1 via gradient domain fusion [28].

3 Experiments

In our experiments, we first use SIFT [25] to detect and
match features from the input images and use RANSAC [14]
to determine a global homography warp for aligning them.
Then, for the overlapping region, we use Ostu’s algorith-
m [27] to estimate the threshold τ and use the salient object
detection [38] to calculate the pixel saliency weight. Finally,
we use the graph-cut optimization [3] to obtain the seam and
blend the aligned images via gradient domain fusion [28] to
create a mosaic.

We compare our approach with the conventional seam-
cutting approach and other mature stitching tools including
AutoStitch [4, 5] and Microsoft ICE1. For the sake of fair-
ness, stitching results of the conventional and our perception-
based seam-cutting approaches are based on the same ho-
mography alignment. The comparisons are done on our own
dataset as well as public available datasets including Paral-
lax [36] and SEAGULL [23].

Fig. 5 shows an illustrated example in [36]. Input images
have parallax, which can be seen from the flowerpot. AutoS-
titch suffers from ghosting artifacts, Microsoft ICE and the
conventional seam-cutting approach cannot create plausible
results either. Visual artifacts are shown in red rectangle. Our
method creates an artifacts-free result that is comparable to
Parallax and SEAGULL.

Fig. 6 shows another illustrated example in [36]. Input
images have parallax, which can be observed from the mod-
el plane. AutoStitch suffers from ghosting artifacts, Microsoft
ICE and the conventional seam-cutting approach suffer from
structure inconsistency. Visual artifacts are shown in red rect-
angle. Our method creates an artifacts-free result that is com-
parable to Parallax and SEAGULL.

1 http://research.microsoft.com/en-us/um/redmond/

groups/ivm/ice
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Fig. 5 Comparison between different stitching methods. a Input images. b AutoStitch. c Microsoft ICE. d Conventional seam-cutting approach. e
Parallax. f SEAGULL. g Our method.

Fig. 6 Comparison between different stitching methods. a Input images. b AutoStitch. c Microsoft ICE. d Conventional seam-cutting approach. e
Parallax. f SEAGULL. g Our method.
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Table 1 Seam quality of the conventional seam-cutting approach, the one that only uses the sigmoid metric and ours.

No. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

Base 0.393 0.290 0.209 0.078 0.179 0.209 0.118 0.390 0.270 0.284

Sigmoid 0.332 0.170 0.186 0.086 0.163 0.201 0.077 0.393 0.225 0.304

Ours 0.271 0.231 0.188 0.077 0.156 0.174 0.074 0.234 0.307 0.253

No. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

Base 0.203 0.420 0.296 0.395 0.349 0.320 0.228 0.376 0.366 0.449

Sigmoid 0.209 0.291 0.252 0.362 0.284 0.259 0.240 0.345 0.180 0.401

Ours 0.179 0.288 0.252 0.352 0.284 0.240 0.172 0.335 0.195 0.277

Fig. 7 Comparison between ‘Base’ and ‘Ours’. Top: ‘Base’. Bottom: ‘Ours’.
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Fig. 8 Seam quality of different patch size. a, b, c, d correspond to 01, 07, 12, 20 in Table 1.

In Fig. 5 and 6, the input images and the fourth stitching
results are from the project website of Parallax2 and the fifth
stitching results are from the project website of SEAGUL-
L3. It is worth to note that, even without the advanced local
alignment as in Parallax and SEAGULL, the combination of
the global homography alignment and our perception-based
seam-cutting approach can still produce comparable stitch-
ing results.

2 http://web.cecs.pdx.edu/˜fliu/project/stitch/
3 http://www.linkaimo.com/publications/

ImageStitching/ImageStitching.html

3.1 Quantitative assessment

In the composition stage, a visible seam may produce struc-
ture inconsistency visual artifacts [33] (Fig. 5 and 6). We
utilize the assessment strategy in [23] to quantitatively mea-
sure the seam’s performance. Specifically, for each pixel pi

on the stitching seam, we extract a m×m local patch (in pix-
els) centered at pi. Then, we calculate the zero-normalized
cross-correlation score (ZNCC) between the local patch in
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Fig. 9 Result of user study. Red indicates ‘Base’ wins. Blue indicates
‘Ours’ wins. Yellow indicates an even.

the target image and that in the reference image. Finally, a-
long the seam, we define the quality measure as

M(seam) =
1
N

N∑
i=1

(1 −
ZNCC(pi) + 1

2
), (10)

where N is the total number of pixels on the seam.
Now we use the quality measure to quantitatively com-

pare the conventional and our perception-based seam-cutting
approaches. We test the two methods on 20 groups of images
including 8 from our own dataset and 12 from the public
available datasets of Parallax [36] and SEAGULL [23]. Ta-
ble 1 shows the comparison result between the conventional
approach (‘Base’) and our approach (‘Ours’). We also com-
pare the result of the seam-cutting approach that only uses
the sigmoid metric (‘Sigmoid’, set Wp,q := 1 in Eq. 9). A s-
maller value usually indicates a perceptually better stitching
seam and a more plausible stitching result.

In most of the cases, the seam quality of our approach
is better than the one that only uses the sigmoid metric and
both are better than the conventional one. In some examples
(i.e. 02, 03, 09, 19), the seam qualities of the approach that
only uses the sigmoid metric are slightly better than ours,
but the stitching results are all visually plausible. We show a
comparison of the stitching results (01, 02, 12, 14, 19) with
significantly improved seam quality in Fig. 7. All 20 groups
of examples are provided in the supplementary material in-
cluding the intermediate seam result and the final stitching
result of three methods.

We experimentally find that the quality measure is stable
in a reasonable range of m (Fig. 8). Here we set m to 15 in
our experiments.

3.2 Subjective assessment

In order to investigate whether our proposed method is more
consistent with the human perception, we conduct a user s-
tudy to compare the conventional and our perception-based

(a)

(b)

Fig. 10 Integration with APAP. a ‘Base’. b ‘Ours’. Artifacts are indi-
cated in red circle.

seam-cutting approaches. We invite 15 participants to rank
15 unannotated groups of stitching results (make a choice
from 3 options: 1. A is better than B, 2. B is better than A,
3. A and B are even). Fig. 9 shows the result, which demon-
strates that our stitching results win most users’ favor. All
15 groups of examples are provided in the supplementary
material.

3.3 Integration

Besides the homography alignment, our proposed approach
can be easily integrated with other advanced alignment. Fig. 10
shows an example from Parallax [36]. Given the overlapping
region of the aligned images by APAP [34], our perception-
based seam-cutting approach successfully creates an artifacts-
free result while the conventional one fails.

4 Conclusion

In this paper, we propose a perception-based seam-cutting
approach to handle image stitching challenges in consumer-
level photography. Experiments show that our method out-
performs the conventional seam-cutting approach. A com-
prehensive evaluation including quantitative and subjective
assessment demonstrates that our results are more consistent
with the human perception. In the future, we plan to gener-
alize our method in the seam-driven framework to deal with
the image alignment.
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