Connected order ideals and P-partitions

Ben P. Zhou*
Center for Combinatorics, LPMC
Nankai University
Tianjin 300071, P.R. China
benpzhou@163.com

Submitted: Sep 16, 2016; Accepted: Mar 5, 2018; Published: Mar 16, 2018
Mathematics Subject Classifications: 05A15, 06A07

Abstract

Given a finite poset P, we associate a simple graph denoted by G_{P} with all connected order ideals of P as vertices, and two vertices are adjacent if and only if they have nonempty intersection and are incomparable with respect to set inclusion. We establish a bijection between the set of maximum independent sets of G_{P} and the set of P-forests, introduced by Féray and Reiner in their study of the fundamental generating function $F_{P}(\mathbf{x})$ associated with P-partitions. Based on this bijection, in the cases when P is naturally labeled we show that $F_{P}(\mathbf{x})$ can factorise, such that each factor is a summation of rational functions determined by maximum independent sets of a connected component of G_{P}. This approach enables us to give an alternative proof for Féray and Reiner's nice formula of $F_{P}(\mathbf{x})$ for the case of P being a naturally labeled forest with duplications. Another consequence of our result is a product formula to compute the number of linear extensions of P.

Keywords: P-partition; P-forest; linear extension; connected order ideal; maximum independent set

1 Introduction

Throughout this paper, we shall assume that P is a poset on $\{1,2, \ldots, n\}$. We use \leqslant_{P} to denote the order relation on P to distinguish from the natural order \leqslant on integers. We say that P is naturally labeled if $i<j$ whenever $i<_{P} j$. A P-partition is a map f from P to the set \mathbb{N} of nonnegative integers such that
(1) if $i<_{P} j$, then $f(i) \geqslant f(j)$;
(2) if $i<_{P} j$ and $i>j$, then $f(i)>f(j)$.

[^0]For more information on P-partitions, we refer the reader to the book [9] of Stanley or the recent survey paper [5] of Gessel. Let $\mathscr{A}(P)$ denote the set of P-partitions. The fundamental generating function $F_{P}(\mathbf{x})$ associated with P-partitions is defined as

$$
F_{P}(\mathbf{x})=\sum_{f \in \mathscr{A}(P)} \mathbf{x}^{f}=\sum_{f \in \mathscr{A}(P)} x_{1}^{f(1)} x_{2}^{f(2)} \cdots x_{n}^{f(n)}
$$

One of the most important problems in the theory of P-partitions is to determine explicit expressions for $F_{P}(\mathbf{x})$. The main objective of this paper is to show that for any naturally labeled finite poset P, the generating function $F_{P}(\mathbf{x})$ can factorise.

Let us first review some background. The first explicit expression for $F_{P}(\mathbf{x})$ was given by Stanley [8]. Recall that a linear extension of P is a permutation $w=w_{1} w_{2} \cdots w_{n}$ on $\{1,2, \ldots, n\}$ such that $i<j$ whenever $w_{i}<_{P} w_{j}$. Let $\mathcal{L}(P)$ be the set of linear extensions of P. For a permutation w, write

$$
\operatorname{Des}(w)=\left\{i \mid 1 \leqslant i \leqslant n-1, w_{i}>w_{i+1}\right\}
$$

for the descent set of w. Stanley [8] showed that

$$
\begin{equation*}
F_{P}(\mathbf{x})=\sum_{w \in \mathcal{L}(P)} \frac{\prod_{i \in \operatorname{Des}(w)} x_{w_{1}} x_{w_{2}} \cdots x_{w_{i}}}{\prod_{j=1}^{n}\left(1-x_{w_{1}} x_{w_{2}} \cdots x_{w_{j}}\right)} . \tag{1}
\end{equation*}
$$

Boussicault, Féray, Lascoux and Reiner [2] obtained a similar formula for $F_{P}(\mathbf{x})$ when P is a forest, namely, every element of P is covered by at most one other element. We say that j is the parent of i, if i is covered by j in P. Björner and Wachs [1] defined the descent set of a forest P as

$$
\begin{equation*}
\operatorname{Des}(P)=\{i \mid \text { if } j \text { is the parent of } i \text {, then } i>j\} . \tag{2}
\end{equation*}
$$

Thus, if $i \in \operatorname{Des}(P)$, then there exists a node $j \in P$ such that $i<_{P} j$ but $i>j$. In particular, when a forest P is naturally labeled, the descent set $\operatorname{Des}(P)$ is empty. For a forest P, Boussicault, Féray, Lascoux, and Reiner's formula is stated as

$$
\begin{equation*}
F_{P}(\mathbf{x})=\frac{\prod_{i \in \operatorname{Des}(P)} \prod_{k \leqslant p i} x_{k}}{\prod_{j=1}^{n}\left(1-\prod_{\ell \leqslant p j} x_{\ell}\right)} . \tag{3}
\end{equation*}
$$

Furthermore, Féray and Reiner [4] obtained a nice formula for $F_{P}(\mathbf{x})$ when P is a naturally labeled forest with duplications, whose definition is given below. Recall that an order ideal of P is a subset J such that if $i \in J$ and $j \leqslant_{P} i$, then $j \in J$. Throughout the rest of this paper, we will use J to represent an order ideal of P. An order ideal J is connected if the Hasse diagram of J is a connected graph. A poset P is called a forest with duplications if for any connected order ideal J_{a} of P, there exists at most one other connected order ideal J_{b} such that J_{a} and J_{b} intersect nontrivially, namely,

$$
J_{a} \cap J_{b} \neq \varnothing, \quad J_{a} \not \subset J_{b} \quad \text { and } \quad J_{b} \not \subset J_{a} .
$$

We would like to point out that a naturally labeled forest must be a naturally labeled forest with duplications, while the Hasse diagram of a naturally labeled forest with duplications needs not to be a forest. Let $\mathcal{J}_{\text {conn }}(P)$ be the set of connected order ideals of P. For a naturally labeled forest with duplications, Féray and Reiner [4] proved that

$$
\begin{equation*}
F_{P}(\mathbf{x})=\frac{\prod_{\left\{J_{a}, J_{b}\right\} \in \Pi(P)}\left(1-\prod_{i \in J_{a}} x_{i} \prod_{j \in J_{b}} x_{j}\right)}{\prod_{J \in \mathcal{J}_{\text {conn }}(P)}\left(1-\prod_{k \in J} x_{k}\right)} \tag{4}
\end{equation*}
$$

where $\Pi(P)$ consists of all pairs $\left\{J_{a}, J_{b}\right\}$ of connected order ideals that intersect nontrivially. Note that when P is a naturally labeled forest (with no duplication), both $\operatorname{Des}(P)$ and $\Pi(P)$ are empty, and each connected order ideal J of P must equal to $\left\{\ell \mid \ell \leqslant{ }_{P} j\right\}$ for some $j \in\{1,2, \ldots, n\}$ and vice versa, and hence formula (4) coincides with formula (3) in this special case.

For any poset P, Féray and Reiner [4] introduced the notion of P-forests and obtained a decomposition of the set $\mathcal{L}(P)$ in terms of linear extensions of P-forests. Recall that a P-forest F is a forest on $\{1,2, \ldots, n\}$ such that for any node i, the subtree rooted at i is a connected order ideal of P, and that for any two incomparable nodes i and j in the poset F, the union of the subtrees rooted at i and j is a disconnected order ideal of P. Let $\mathscr{F}(P)$ stand for the set of P-forests. For example, for the poset P in Figure 1 there are three P-forests F_{1}, F_{2} and F_{3}.

Figure 1: A poset P and the corresponding P-forests.
Féray and Reiner [4] showed that

$$
\begin{equation*}
\mathcal{L}(P)=\biguplus_{F \in \mathscr{F}(P)} \mathcal{L}(F), \tag{5}
\end{equation*}
$$

which was implied in [4, Proposition 11.7]. As was remarked by Féray and Reiner, the decomposition in (5) also appeared in the work of Postnikov [6] and Posnikov, Reiner and Williams [7]. Combining (1), (3) and (5), one readily sees that

$$
\begin{equation*}
F_{P}(\mathbf{x})=\sum_{F \in \mathscr{F}(P)} \frac{\prod_{i \in \operatorname{Des}(F)} \prod_{k \leqslant_{F} i} x_{k}}{\prod_{j=1}^{n}\left(1-\prod_{\ell \leqslant F j} x_{\ell}\right)} . \tag{6}
\end{equation*}
$$

Note that both (1) and (6) are summation formulas for $F_{P}(\mathbf{x})$. However, the expression of $F_{P}(\mathbf{x})$ factored nicely for certain posets, as shown in (3) and (4). Thus it is desirable to ask that for more general posets P whether $F_{P}(\mathbf{x})$ can factorise. In this paper, we show that $F_{P}(\mathbf{x})$ can factorise for any naturally labeled poset P.

Before stating our result, let us first introduce some definitions and notations. In the following we always assume that P is a poset on $\{1,2, \ldots, n\}$. For any graph G, we use $V(G)$ to denote the set of vertices of G. We associate to P a simple graph denoted by G_{P} with the set $\mathcal{J}_{\text {conn }}(P)$ of connected order ideals of P as $V\left(G_{P}\right)$, and two vertices are adjacent if they intersect nontrivially. For example, if P is the poset given in Figure 1, then G_{P} is as illustrated in Figure 2, where we use $\Lambda_{i}^{P}=\left\{k \mid k \leqslant_{P} i\right\}$ to denote the principal order ideal of P generated by i, and adopt the notation $\Lambda_{i, j}^{P}=\Lambda_{i}^{P} \cup \Lambda_{j}^{P}$.

Figure 2: Connected order ideals of P and the graph G_{P}.
The first result of this paper is a bijection between the set of P-forests and the set of maximum independent sets of G_{P}. Recall that an independent set of a graph is a subset of vertices such that no two vertices of the subset are adjacent. A maximum independent set of a graph is an independent set that of largest possible size. For any graph G, we use $\mathscr{M}(G)$ to denote the set of maximum independent sets of G. We have the following result.

Theorem 1. There exists a bijection between the set $\mathscr{F}(P)$ of P-forests and the set $\mathscr{M}\left(G_{P}\right)$ of maximum independent sets of G_{P}.

The proof of this result will be given in Section 2, where we establish a bijection Φ from $\mathscr{F}(P)$ to $\mathscr{M}\left(G_{P}\right)$. Let Ψ be the inverse map of Φ. In view of the fact that $\Psi(M)$ is a forest, for a maximum independent set M of G_{P}, we can define the descent set $\operatorname{Des}(M)$ of M as the descent set $\operatorname{Des}(\Psi(M))$, namely,

$$
\begin{equation*}
\operatorname{Des}(M)=\operatorname{Des}(\Psi(M)), \tag{7}
\end{equation*}
$$

where $\operatorname{Des}(\Psi(M))$ is given by (2). Suppose the graph G_{P} has h connected components, say $C_{1}, C_{2}, \ldots, C_{h}$. As usual, we use $V\left(C_{r}\right)$ to denote the vertex set of C_{r} for $1 \leqslant r \leqslant h$, respectively. It is clear that each maximum independent set of G_{P} is a disjoint union of maximum independent sets of G_{P} 's connected components. Let $\mathscr{M}\left(C_{r}\right)$ denote the set of maximum independent sets of C_{r} for each $1 \leqslant r \leqslant h$, respectively. Given a $M_{r} \in \mathscr{M}\left(C_{r}\right)$, we shall further define a descent set for M_{r} as illustrated below. Let M be a maximum independent set of G_{P} such that $M \cap V\left(C_{r}\right)=M_{r}$. For any $J \in M$, let

$$
\begin{equation*}
\mu(M, J)=\bigcup_{J^{\prime} \in M, J^{\prime} \subset J} J^{\prime} \tag{8}
\end{equation*}
$$

Define $\operatorname{Des}\left(M_{r}, M\right)$ and $\overline{\operatorname{Des}}\left(M_{r}, M\right)$ as

$$
\begin{aligned}
& \operatorname{Des}\left(M_{r}, M\right)=\left\{i \in \operatorname{Des}(M) \mid\{i\}=J \backslash \mu(M, J) \text { for some } J \in M_{r}\right\} \\
& \overline{\operatorname{Des}}\left(M_{r}, M\right)=\left\{J \in M_{r} \mid J \backslash \mu(M, J)=\{i\} \text { for some } i \in \operatorname{Des}\left(M_{r}, M\right)\right\} .
\end{aligned}
$$

It is remarkable that $\operatorname{Des}\left(M_{r}, M\right)$ and $\overline{\operatorname{Des}}\left(M_{r}, M\right)$ are irrelevant to the choice of M when the poset P is naturally labeled. Precisely, we have the following result.

Theorem 2. Suppose that P is a naturally labeled poset and G_{P} has connected components $C_{1}, C_{2}, \ldots, C_{h}$. Let M_{r} be a maximum independent set of C_{r} for some $1 \leqslant r \leqslant h$. Then for any two maximum independent sets M^{1}, M^{2} of G_{P} satisfying $M^{1} \cap V\left(C_{r}\right)=M^{2} \cap V\left(C_{r}\right)=$ M_{r}, we have

$$
\begin{align*}
\operatorname{Des}\left(M_{r}, M^{1}\right) & =\operatorname{Des}\left(M_{r}, M^{2}\right) \tag{9}\\
\overline{\operatorname{Des}}\left(M_{r}, M^{1}\right) & =\overline{\operatorname{Des}}\left(M_{r}, M^{2}\right)
\end{align*}
$$

Therefore, for a naturally labeled poset P and a given $M_{r} \in \mathscr{M}\left(C_{r}\right)$, we can introduce the notation of $\operatorname{Des}\left(M_{r}\right)$ and $\overline{\operatorname{Des}}\left(M_{r}\right)$, which are respectively defined by

$$
\begin{align*}
& \operatorname{Des}\left(M_{r}\right)=\operatorname{Des}\left(M_{r}, M\right), \tag{10}\\
& \overline{\operatorname{Des}}\left(M_{r}\right)=\overline{\operatorname{Des}}\left(M_{r}, M\right),
\end{align*}
$$

where M is some maximum independent set of G_{P} such that $M \cap V\left(C_{r}\right)=M_{r}$.
The main result of this paper is as follows.
Theorem 3. If P is a naturally labeled poset, and the graph G_{P} has h connected components $C_{1}, C_{2}, \ldots, C_{h}$. Then we have

$$
\begin{equation*}
F_{P}(\mathbf{x})=\prod_{r=1}^{h} \sum_{M_{r} \in \mathscr{M}\left(C_{r}\right)} \frac{\prod_{J \in \overline{\operatorname{Des}}\left(M_{r}\right)} \prod_{k \in J} x_{k}}{\prod_{J \in M_{r}}\left(1-\prod_{j \in J} x_{j}\right)} . \tag{11}
\end{equation*}
$$

This paper is organized as follows. In Section 2, we shall give a proof of Theorem 1. In Section 3, we shall prove Theorems 2 and 3. Based on Theorem 3, we provide an alternative proof for Féray and Reiner's formula (4). In Section 4, Theorem 3 will be used to derive the generating function of major index of linear extensions of P, as well as to count the number of linear extensions of P.

2 The bijection Φ between $\mathscr{F}(P)$ and $\mathscr{M}\left(\boldsymbol{G}_{P}\right)$

The aim of this section is to give a proof of Theorem 1. To this end, we shall establish a bijection Φ from $\mathscr{F}(P)$ to $\mathscr{M}\left(G_{P}\right)$ as mentioned before.

To give a description of the map Φ, we first note some properties of $\mathscr{F}(P)$ and $\mathscr{M}\left(G_{P}\right)$. Given $M \in \mathscr{M}\left(G_{P}\right)$ and $J \in M$, let

$$
\begin{align*}
U(M, J) & =\left\{J^{\prime} \in M \mid J^{\prime} \subset J\right\} \tag{12}\\
U_{\max }(M, J) & =\left\{J_{a} \in U(M, J) \mid J_{a} \not \subset J_{b} \text { for any } J_{b} \in U(M, J)\right\} .
\end{align*}
$$

Recall that the set $\mu(M, J)$ is defined in (8), which is also an order ideal of P. Thus

$$
\begin{equation*}
\mu(M, J)=\bigcup_{J^{\prime} \in U(M, J)} J^{\prime}=\bigcup_{J^{\prime} \in U_{\max }(M, J)} J^{\prime} \tag{13}
\end{equation*}
$$

The following assertion will be used in the future proofs.
Lemma 4. For any $M \in \mathscr{M}\left(G_{P}\right)$ and $J \in M$, the intersection of any two elements of $U_{\max }(M, J)$ is empty.

Proof. Let $J_{1}, J_{2} \in U_{\max }(M, J)$. Because $U_{\max }(M, J) \subset M$ and M is an independent set of G_{P}, it follows that J_{1} and J_{2} are not adjacent in G_{P}. Recall that for any two vertices $J_{1}, J_{2} \in \mathcal{J}_{\text {conn }}(P)$ of G_{P}, J_{1} and J_{2} are not adjacent in G_{P} if and only if

$$
J_{1} \cap J_{2}=\varnothing, \quad \text { or } J_{1} \subset J_{2}, \quad \text { or } J_{2} \subset J_{1} .
$$

On the other hand, by the definition of $U_{\max }(M, J)$, there is neither $J_{1} \subset J_{2}$ nor $J_{2} \subset J_{1}$. Hence $J_{a} \cap J_{b}=\varnothing$.

Given a P-forest $F \in \mathscr{F}(P)$, let $\Lambda_{i}^{F}=\left\{j \mid j \leqslant_{F} i\right\}$ denote the principal order ideal of F generated by i. By definition of P-forest, each Λ_{i}^{F} is a connected order ideal of P, although Λ_{i}^{F} is not necessarily a principal order ideal of P. Then by the definition of G_{P}, each Λ_{i}^{F} is a vertex of G_{P}. Moreover, we have the following result.

Lemma 5. For any P-forest $F \in \mathscr{F}(P)$, the principal order ideals $\Lambda_{1}^{F}, \Lambda_{2}^{F}, \ldots, \Lambda_{n}^{F}$ form a maximum independent set of G_{P}.

Proof. We first show that $\left\{\Lambda_{1}^{F}, \Lambda_{2}^{F}, \ldots, \Lambda_{n}^{F}\right\}$ is an independent set of G_{P}, that is, for any two nodes i, j of F, the principal order ideals Λ_{i}^{F} and Λ_{j}^{F} are not adjacent in G_{P}. There are two cases to consider.
(1) The vertices i and j are incomparable in F. Since F is a forest, it is clear that $\Lambda_{i}^{F} \cap \Lambda_{j}^{F}=\varnothing$. This implies that Λ_{i}^{F} and Λ_{j}^{F} are not adjacent in G_{P}.
(2) The vertices i and j are comparable in F. If $i<_{F} j$, then $\Lambda_{i}^{F} \subset \Lambda_{j}^{F}$; If $j<_{F} i$, then $\Lambda_{j}^{F} \subset \Lambda_{i}^{F}$. In both circumstances, Λ_{i}^{F} and Λ_{j}^{F} are not adjacent in G_{P}.

We proceed to show that the independent set $\left\{\Lambda_{1}^{F}, \Lambda_{2}^{F}, \ldots, \Lambda_{n}^{F}\right\}$ is of the largest possible size. To this end, it is enough to verify that $|M| \leqslant n$ for any independent set M of G_{P}. Assume that $M=\left\{J_{1}, J_{2}, \ldots, J_{k}\right\}$ is an independent set of G_{P}, which means that J_{i} is a connected order ideal of P, and J_{i}, J_{j} are not adjacent in G_{P} for any $1 \leqslant i<j \leqslant k$. We further assume that the subscript satisfies $r<s$ whenever $J_{r} \subset J_{s}$. In fact, this can be achieved as follows. Consider M as a poset ordered by set inclusion. Then choose a subscript such that $J_{1} J_{2} \cdots J_{k}$ is a linear extension of M. Such a subscript satisfies the condition that $r<s$ whenever $J_{r} \subset J_{s}$.

For $1 \leqslant s \leqslant k$, let

$$
I_{s}=\bigcup_{1 \leqslant r \leqslant s} J_{r}
$$

It is clear that $I_{s-1} \subseteq I_{s}$ for any $1<s \leqslant k$. We claim that

$$
\begin{equation*}
\varnothing \neq I_{1} \subset I_{2} \subset \cdots \subset I_{k} \subseteq\{1,2, \ldots, n\} \tag{14}
\end{equation*}
$$

which implies that $|M|=k \leqslant n$.
Suppose to the contrary that $I_{s}=I_{s-1}$ for some $1<s \leqslant k$. Thus,

$$
\begin{equation*}
J_{s} \subseteq I_{s}=I_{s-1}=\bigcup_{1 \leqslant r \leqslant s-1} J_{r} \tag{15}
\end{equation*}
$$

The set $U\left(M, J_{s}\right)$ is defined as

$$
U\left(M, J_{s}\right)=\left\{J^{\prime} \mid J^{\prime} \in M, J \subset J_{s}\right\}=\left\{J_{r} \mid 1 \leqslant r \leqslant s-1, J_{r} \subset J_{s}\right\}
$$

Clearly,

$$
\begin{equation*}
\mu\left(M, J_{s}\right)=\bigcup_{J^{\prime} \in U\left(M, J_{s}\right)} J^{\prime} \subseteq J_{s} . \tag{16}
\end{equation*}
$$

Notice that for any $1 \leqslant r \leqslant s-1$, if J_{r} does not belong to $U\left(M, J_{s}\right)$, then $J_{r} \cap J_{s}=\varnothing$, since otherwise J_{r} and J_{s} intersect nontrivially, contradicting the assumption that M is an independent set of G_{P}. In view of relation (15), we have

$$
J_{s} \subseteq \bigcup_{J^{\prime} \in U\left(M, J_{s}\right)} J^{\prime}=\mu\left(M, J_{s}\right)
$$

which together with (13) and (16), leads to

$$
J_{s}=\mu\left(M, J_{s}\right)=\bigcup_{J^{\prime} \in U_{\max }\left(M, J_{s}\right)} J^{\prime}
$$

If $U_{\max }\left(M, J_{s}\right)$ has only one element, say, $U_{\max }\left(M, J_{s}\right)=\left\{J_{r}\right\}$ for some $1 \leqslant r \leqslant s-1$, then $J_{s}=J_{r}$, which is contrary to $J_{r} \subset J_{s}$. Next we may assume that $U_{\max }\left(M, J_{s}\right)$ has more than one element. By Lemma 4, the intersection of any two elements of $U_{\max }\left(M, J_{s}\right)$ is empty. Thus J_{s} is the union of some (at least two) nonintersecting connected order ideals, which can not be connected. This contradicts the fact that J_{s} is a connected order ideal. It follows that $I_{s-1} \subset I_{s}$ for each $1<s \leqslant k$, as desired.

By the above lemma, we can define a map $\Phi: \mathscr{F}(P) \longrightarrow \mathscr{M}\left(G_{P}\right)$ by letting

$$
\Phi(F)=\left\{\Lambda_{1}^{F}, \Lambda_{2}^{F}, \ldots, \Lambda_{n}^{F}\right\}
$$

for any $F \in \mathscr{F}(P)$. In order to show that Φ is a bijection, we shall construct the inverse map of Φ, denoted by Ψ. To give a description of Ψ, we need the following lemma.

Lemma 6. Given $M \in \mathscr{M}\left(G_{P}\right)$ and $J \in M$, there exists a unique j such that

$$
\begin{equation*}
J \backslash \mu(M, J)=\{j\}, \tag{17}
\end{equation*}
$$

where $\mu(M, J)$ is given in (8). Moreover, j is a maximal element of J with respect to the order \leqslant_{P}, and

$$
\begin{equation*}
J_{r} \backslash \mu\left(M, J_{r}\right) \neq J_{s} \backslash \mu\left(M, J_{s}\right) \tag{18}
\end{equation*}
$$

for any distinct $J_{r}, J_{s} \in M$.
Proof. By Lemma 5, we see that each maximum independent set of G_{P} should contain n vertices. Suppose that $M=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$. As in the proof of Lemma 5, we may assume that

$$
\begin{equation*}
r<s \text { whenever } J_{r} \subset J_{s} . \tag{19}
\end{equation*}
$$

For $1 \leqslant s \leqslant n$, let

$$
I_{s}=\bigcup_{1 \leqslant r \leqslant s} J_{r} .
$$

By (14), we see that

$$
\begin{equation*}
\varnothing \neq I_{1} \subset I_{2} \subset \cdots \subset I_{n} \subseteq\{1,2, \ldots, n\} . \tag{20}
\end{equation*}
$$

Therefore, if setting $I_{0}=\varnothing$, we obtain that for $1 \leqslant s \leqslant n$,

$$
\begin{equation*}
\left|I_{s} \backslash I_{s-1}\right|=1 . \tag{21}
\end{equation*}
$$

Let $J=J_{s}$ for some $1 \leqslant s \leqslant n$. In view of (8) and (19), we get that

$$
\mu\left(M, J_{s}\right)=\bigcup_{J^{\prime} \in M, J^{\prime} \subset J_{s}} J^{\prime}=\bigcup_{1 \leqslant r \leqslant s-1, J_{r} \subset J_{s}} J_{r} \subseteq I_{s-1} .
$$

Thus we have

$$
\begin{equation*}
J \backslash \mu(M, J)=J_{s} \backslash \mu\left(M, J_{s}\right)=J_{s} \backslash I_{s-1}=I_{s} \backslash I_{s-1}, \tag{22}
\end{equation*}
$$

where the second equality follows from the fact that for any $1 \leqslant r \leqslant s-1$, either $J_{r} \subset J_{s}$ or $J_{r} \cap J_{s}=\varnothing$. In view of (21) and (22), we arrive at (17) and (18).

It remains to show that the unique element j of $J_{s} \backslash \mu\left(M, J_{s}\right)$ is a maximal element of J_{s} with respect to the order \leqslant_{P}. Suppose that j is not a maximal element of J_{s}. Then there exists a maximal element i of J_{s} such that $j<_{P} i$. By (17) and $j \neq i$, we see that $i \in \mu\left(M, J_{s}\right)$. Therefore, there exists some $J^{\prime} \subset J_{s}$ of and $J^{\prime} \in M$ such that $i \in J^{\prime}$. Since J^{\prime} is an order ideal of P, we get $j \in J^{\prime} \subseteq \mu\left(M, J_{s}\right)$, contradicting with the fact $j \notin \mu\left(M, J_{s}\right)$.

For any $M \in \mathscr{M}\left(G_{P}\right)$, it follows from (17) and (18) that

$$
\{1,2, \ldots, n\}=\biguplus_{J \in M} J \backslash \mu(M, J) .
$$

 J_{b} are the two connected order ideals in M satisfies $J_{a} \backslash \mu\left(M, J_{a}\right)=\{i\}, J_{b} \backslash \mu\left(M, J_{b}\right)=\{j\}$. The following result show an important property for principal order ideals of the poset F_{M}.

Lemma 7. Given $M \in \mathscr{M}\left(G_{P}\right)$, let F_{M} be the poset defined as above. Then for any $1 \leqslant j \leqslant n$ we have $\Lambda_{j}^{F_{M}}=\left\{i \mid i \leqslant_{F_{M}} j\right\}=J$, where $J \in M$ satisfying $J \backslash \mu(M, J)=\{j\}$ as in Lemma 6.

Proof. We use the principle of Noetherian induction.
If j is a minimal element of F_{M} with respect to the order $\leqslant_{F_{M}}$, then J is also a minimal element of M when M is regarded as a poset ordered by set inclusion. Hence $\Lambda_{j}^{F_{M}}=\{j\}$ and there exists no $J^{\prime} \in M$ such that $J^{\prime} \subset J$, which yields that $\mu(M, J)=\varnothing$. So $J=\{j\} \cup \mu(M, J)=\{j\}$, and then $\Lambda_{j}^{F_{M}}=J$.

Suppose that j is not a minimal element of F_{M} (with respect to the order $\leqslant_{F_{M}}$) and $\Lambda_{i}^{F_{M}}=J^{\prime}$ holds for any $i<_{F_{M}} j$, where $J^{\prime} \backslash \mu\left(M, J^{\prime}\right)=\{i\}$. The construction of F_{M} tells us that $i<_{F_{M}} j$ if and only if $J^{\prime} \subset J$. Since $\Lambda_{i}^{F_{M}} \subset \Lambda_{j}^{F_{M}}$ holds for each $i<_{F_{M}} j$, we have

$$
\Lambda_{j}^{F_{M}}=\left\{i \mid i \leqslant F_{M} j\right\}=\{j\} \cup\left(\bigcup_{i<F_{M} j} \Lambda_{i}^{F_{M}}\right)
$$

Then by the induction hypothesis, we get that

$$
\Lambda_{j}^{F_{M}}=\{j\} \cup\left(\bigcup_{J^{\prime} \in M, J^{\prime} \subset J} J^{\prime}\right)=\{j\} \cup \mu(M, J)=J
$$

We proceed to examine more structure of F_{M}, and obtain the following result.
Lemma 8. For any $M \in \mathscr{M}\left(G_{P}\right)$, the poset F_{M} is a P-forest.
Proof. We first show that F_{M} is a forest. Suppose otherwise that F_{M} is not a forest. Then there exists an element i in F_{M} such that i is covered by at least two elements of F_{M}, say j, k. Thus j and k must be incomparable with respect to the order $\leqslant_{F_{M}}$. (Recall that in a poset P, we say that an element u is covered by an element v if $u<_{P} v$ and there is no element w such that $u<_{P} w<_{P} v$.) By Lemma 6, there exist $J_{a}, J_{b}, J_{c} \in M$ such that $J_{a} \backslash \mu\left(M, J_{a}\right)=\{i\}, J_{b} \backslash \mu\left(M, J_{b}\right)=\{j\}$ and $J_{c} \backslash \mu\left(M, J_{c}\right)=\{k\}$. By the construction of F_{M}, we see that $J_{a} \subset J_{b}, J_{a} \subset J_{c}$ and J_{b}, J_{c} are incomparable in M with respect to the set inclusion order. Hence, $J_{b} \not \subset J_{c}, J_{c} \not \subset J_{b}$ and $\left(J_{b} \cap J_{c}\right) \supseteq J_{a} \neq \varnothing$. This implies that J_{b} and J_{c} are adjacent in the graph G_{P}, contradicting the fact that M is an independent set.

We proceed to show that F_{M} is a P-forest. By Lemma 7, for each element i of F_{M}, the subtree $\Lambda_{i}^{F_{M}}=\left\{j \mid j \leqslant_{F_{M}} i\right\}$ of F_{M} rooted at i is a connected order ideal of P. To verify that F_{M} is a P-forest, we still need to check that for $1 \leqslant i, j \leqslant n$, if i and j are incomparable in F_{M}, then the union $\Lambda_{i}^{F_{M}} \cup \Lambda_{j}^{F_{M}}$ is a disconnected order ideal of P. By Lemma 6, assume that J_{a} and J_{b} are the connected order ideals in M such that $J_{a} \backslash \mu\left(M, J_{a}\right)=\{i\}$ and $J_{b} \backslash \mu\left(M, J_{b}\right)=\{j\}$. By Lemma 7, we have $J_{a}=\Lambda_{i}^{F_{M}}$ and $J_{b}=\Lambda_{j}^{F_{M}}$. Since i and j are incomparable in F_{M}, we obtain that $J_{a} \not \subset J_{b}$ and $J_{b} \not \subset J_{a}$. On the other hand, J_{a} and J_{b} are not adjacent in the graph G_{P}. This allows us to conclude that $J_{a} \cap J_{b}=\varnothing$. Therefore, as an order ideal of P, the union $J_{a} \cup J_{b}$ is disconnected, so is the union $\Lambda_{i}^{F_{M}} \cup \Lambda_{j}^{F_{M}}$. Hence F_{M} is a P-forest.

With the above lemma, we can define the inverse map of Φ, denoted by $\Psi: \mathscr{M}\left(G_{P}\right) \rightarrow$ $\mathscr{F}(P)$, by letting

$$
\Psi(M)=F_{M}
$$

for any $M \in \mathscr{M}\left(G_{P}\right)$.
Now we are in a position to give a proof of Theorem 1.
Proof of Theorem 1. We first prove that $\Psi(\Phi(F))=F$ for any P-forest F and $\Phi(\Psi(M))=$ M for any maximum independent set M of G_{P}. The proof of the former statement will be given below, and the proof of the latter will be omitted here. Given a P-forest F, by definition, the image of F under the map Φ is $\Phi(F)=\left\{\Lambda_{1}^{F}, \ldots, \Lambda_{n}^{F}\right\}$, which is a maximum independent set of G_{P} by Lemma 5. Of course, we have $\Lambda_{i}^{F} \subset \Lambda_{j}^{F}$ if and only if $i<_{F} j$. For each $1 \leqslant i \leqslant n$ let $J_{i}=\Lambda_{i}^{F}$ and then denote $M=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$. We proceed to show that $\Psi(M)=F_{M}=F$. Note that both F_{M} and F are posets on $\{1,2, \ldots, n\}$. It remains to show that $i<_{F_{m}} j$ if and only if $i<_{F} j$ for any $i, j \in\{1,2, \ldots, n\}$. Recall that for $1 \leqslant i \leqslant n$ the principal order ideal Λ_{i}^{F} is the subtree of F rooted at i. Hence

$$
J_{i} \backslash \mu\left(M, J_{i}\right)=\Lambda_{i}^{F} \backslash\left(\bigcup_{j<F^{i}} \Lambda_{j}^{F}\right)=\{i\}
$$

holds for each $1 \leqslant i \leqslant n$. By the construction of F_{M}, we know that $i<_{F_{M}} j$ if and only if $J_{i} \subset J_{j}$. On the other hand, in the given P-forest $F, i<_{F} j$ if and only if $\Lambda_{i}^{F} \subset \Lambda_{j}^{F}$. Since $J_{i}=\Lambda_{i}^{F}$ for each $1 \leqslant i \leqslant n$, it follows that $i<_{F_{M}} j$ if and only if $i<_{F} j$. Thus $F_{M}=F$, as desired.

Because $\Psi(\Phi(F))=F$ for any P-forest F, the map Φ is one-to-one. Moreover, since the map Ψ is applicable to any maximum independent set M of G_{P}, the quality $\Phi(\Psi(M))=M$ ensures that Φ is onto. Then Φ is bijective.

We take the poset P in Figure 1 as an example to illustrate Theorem 1 and its proof. There are there P-forests F_{1}, F_{2} and F_{3} as shown in Figure 1. The graph G_{P}, as shown in Figure 2, has three maximum independent sets:

$$
\begin{aligned}
M^{1} & =\left\{\Lambda_{3}^{P}, \Lambda_{4}^{P}, \Lambda_{6}^{P}, \Lambda_{1}^{P}, \Lambda_{2}^{P}, \Lambda_{2,5}^{P}\right\}, \\
M^{2} & =\left\{\Lambda_{3}^{P}, \Lambda_{4}^{P}, \Lambda_{6}^{P}, \Lambda_{1}^{P}, \Lambda_{1,5}^{P}, \Lambda_{2,5}^{P}\right\}, \\
M^{3} & =\left\{\Lambda_{3}^{P}, \Lambda_{4}^{P}, \Lambda_{6}^{P}, \Lambda_{5}^{P}, \Lambda_{1,5}^{P}, \Lambda_{2,5}^{P}\right\} .
\end{aligned}
$$

The principal order ideals of F_{1} is as shown in Figure 3.

Figure 3: The P-forest F_{1} and its principal order ideals.
By the construction of Φ, we have

$$
\begin{aligned}
\Phi\left(F_{1}\right) & =\left\{\Lambda_{1}^{F_{1}}, \Lambda_{2}^{F_{1}}, \ldots, \Lambda_{6}^{F_{1}}\right\} \\
& =\{\{1,3,4,6\},\{1,2,3,4,6\},\{3\},\{4,6\},\{1,2,3,4,5,6\},\{6\}\}
\end{aligned}
$$

which coincides with M^{1}. One can also verify that $\Phi\left(F_{2}\right)=M^{2}$ and $\Phi\left(F_{3}\right)=M^{3}$.
On the other hand, for the maximum independent set M^{1}, if we set $J_{1}=\Lambda_{1}^{P}=$ $\{1,3,4,6\}, J_{2}=\Lambda_{2}^{P}=\{1,2,3,4,6\}, J_{3}=\Lambda_{3}^{P}=\{3\}, J_{4}=\Lambda_{4}^{P}=\{4,6\}, J_{5}=\Lambda_{2,5}^{P}=$ $\{1,2,3,4,5,6\}, J_{6}=\Lambda_{6}^{P}=\{6\}$, then it is straightforward to verify that $J_{i} \backslash \mu\left(M^{1}, J_{i}\right)=\{i\}$ for $1 \leqslant i \leqslant 6$. And then, by definition, in the P-forest $F_{M^{1}}$ there is $2<_{F_{M^{1}}} 5,1<F_{M^{1}} 2$, $3<F_{M^{1}}, 4<F_{M^{1}}, 6<F_{M^{1}} 4$. One readily sees that $F_{M^{1}}=F_{1}$. Similarly, one can verify that $F_{M^{2}}=F_{2}$ and $F_{M^{3}}=F_{3}$.

$3 \quad F_{P}(\mathrm{x})$ for naturally labeled P

The main objective of this section is to prove Theorems 2 and 3. The proofs are based on some properties of certain subgraphs of G_{P}. Although we require that the poset P in Theorems 2 and 3 be naturally labeled, these properties of G_{P} are valid for any finite poset P.

To begin with, let us first introduce some notations. For an order ideal J of P, let $g s(J)$ denote the set of maximal elements of J with respect to the order \leqslant_{P}, namely,

$$
g s(J)=\left\{i \in J \mid \text { there exists no } j \in J \text { such that } i<_{P} j\right\} .
$$

This set is also called the generating set of J. Clearly, when $g s(J)=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, we have $J=\Lambda_{i_{1}}^{P} \cup \Lambda_{i_{2}}^{P} \cup \cdots \cup \Lambda_{i_{k}}^{P}$. Let χ_{J} be the subgraph of G_{P} induced by the vertex subset $\left\{\Lambda_{i_{1}}^{P}, \Lambda_{i_{2}}^{P}, \ldots, \Lambda_{i_{k}}^{P}\right\}$. We have the following assertion.

Lemma 9. For any connected order ideal J of P, the graph χ_{J} is connected.

Proof. Assume that $g s(J)=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. The proof is immediate if $k=1$. In the following we shall assume that $k \geqslant 2$. Define

$$
\operatorname{Conn}\left(i_{1}\right)=\left\{i_{r} \in g s(J) \mid \text { there is a path in } \chi_{J} \text { connecting } \Lambda_{i_{1}}^{P} \text { and } \Lambda_{i_{r}}^{P}\right\} .
$$

Note that i_{1} is always contained in $\operatorname{Conn}\left(i_{1}\right)$. It is enough to show that $\operatorname{Conn}\left(i_{1}\right)=g s(J)$. Otherwise, suppose that $\operatorname{Conn}\left(i_{1}\right) \neq g s(J)$. Let

$$
I_{1}=\bigcup_{j \in \operatorname{Conn}\left(i_{1}\right)} \Lambda_{j}^{P} \quad \text { and } \quad I_{2}=\bigcup_{j \in g s(J) \backslash \operatorname{Conn}\left(i_{1}\right)} \Lambda_{j}^{P} .
$$

Then both I_{1} and I_{2} are nonempty subsets of J satisfying that $I_{1} \cup I_{2}=J$, and both I_{1} and I_{2} are order ideals of P. Since J is a connected order ideal of P, it follows that $I_{1} \cap I_{2} \neq \varnothing$. Thus there exists some $u \in \operatorname{Conn}\left(i_{1}\right)$ and some $v \in g s(J) \backslash \operatorname{Conn}\left(i_{1}\right)$ such that $\Lambda_{u}^{P} \cap \Lambda_{v}^{P} \neq \varnothing$. Since both u and v are maximal elements in the connected order ideal J, we must have $\Lambda_{u}^{P} \not \subset \Lambda_{v}^{P}$ and $\Lambda_{v}^{P} \not \subset \Lambda_{u}^{P}$. This means that Λ_{u}^{P} and Λ_{v}^{P} are adjacent, implying that $v \in \operatorname{Conn}\left(i_{1}\right)$. This leads to a contradiction.

We also need the following lemma.
Lemma 10. Let J be a connected order ideal of P, and let C be any connected subgraph of G_{P}. Assume that J is not adjacent to any vertex of C. If there exists a vertex J_{a} of C such that $J_{a} \subset J$, then $J_{b} \subset J$ for any vertex J_{b} of C.

Proof. We first consider the case when J_{a} and J_{b} are adjacent. In this case, J_{b} and J_{a} intersect nontrivially, and so we have $\varnothing \neq\left(J_{a} \cap J_{b}\right)$. On the other hand, since $J_{a} \subset J$, we obtain that

$$
\begin{equation*}
\varnothing \neq\left(J_{a} \cap J_{b}\right) \subset\left(J \cap J_{b}\right) . \tag{23}
\end{equation*}
$$

Combining (23) and the hypothesis that the vertices J_{b} and J are not adjacent, we get that $J_{b} \subset J$ or $J \subset J_{b}$. If $J \subset J_{b}$, then $J_{a} \subset J \subset J_{b}$, which is impossible because J_{a} and J_{b} intersect nontrivially. Hence we have $J_{b} \subset J$.

We now consider the case when J_{a} is not adjacent to J_{b}. Since C is connected, there exists a sequence $\left(J_{0}=J_{a}, J_{1}, \ldots, J_{k}=J_{b}\right)(k \geqslant 2)$ of vertices of C such that J_{i} is adjacent to J_{i-1} for $1 \leqslant i \leqslant k$. By the above argument, J_{1} is contained in J. Therefore, by a simple recursion we get that $J_{b} \subset J$.

For example, let P be the poset given in Figure 4. The graph G_{P} is illustrated in Figure 5, where we adopt the notation $\Lambda_{i, j}^{P}=\Lambda_{i}^{P} \cup \Lambda_{j}^{P}$ and $\Lambda_{i, j, k}^{P}=\Lambda_{i}^{P} \cup \Lambda_{j}^{P} \cup \Lambda_{k}^{P}$. The graph G_{P} has totally 13 connected components, and among them there are four connected components $C_{1}, C_{2}, C_{3}, C_{4}$ which have more than one vertex.

- To illustrate the assertion of Lemma 9, for example, let $J=\Lambda_{4,5,6}^{P}$, then we have $g s(J)=\{4,5,6\}$. One can verify that the subgraph χ_{J} of G_{P} induced by the vertex subset $\left\{\Lambda_{4}^{P}, \Lambda_{5}^{P}, \Lambda_{6}^{P}\right\}$ is indeed connected.

Figure 4: A naturally labeled poset P.

Figure 5: The graph G_{P} associated to the poset P in Figure 4.

- To illustrate the assertion of Lemma 10, for example, we let $J=\Lambda_{10}^{P}$, and let C be the connected component C_{1} of G_{P}, then $\Lambda_{5}^{P} \subset J$. In this case we see that $J^{\prime} \subset \Lambda_{10}^{P}$ for any $J^{\prime} \in V\left(C_{1}\right)$.

Now we turn to study a special subgraph of G_{P}, which is induced by the principal order ideals of P. This graph also plays an important role in our future proofs. Recall that the set of principal order ideals of P consists of $\Lambda_{1}^{P}, \Lambda_{2}^{P}, \ldots, \Lambda_{n}^{P}$. Let H_{P} be the subgraph of G_{P} induced by the vertex subset $\left\{\Lambda_{1}^{P}, \Lambda_{2}^{P}, \ldots, \Lambda_{n}^{P}\right\}$. For example, for the poset P and the graph G_{P} as illustrated in Figures 4 and 5, the graph H_{P} is as shown in Figure 6. It follows from Lemma 9 that for a given connected order ideal J the induced subgraph χ_{J}

Figure 6: The subgraph H_{P} induced on G_{P} by principal order ideals.
must be a subgraph of certain connected component of H_{P}, where χ_{J} is defined as before Lemma 9. The graph H_{P} admits the following interesting properties.

Lemma 11. Suppose that H_{P} has connected components $D_{1}, D_{2}, \ldots, D_{\ell}$. We have the following two assertions.
(1) Let $1 \leqslant r<s \leqslant \ell$, and let J_{a}, J_{b} be two connected order ideals of P. If $\chi_{J_{a}}$ is a subgraph of D_{r} while $\chi_{J_{b}}$ is a subgraph of D_{s}, then J_{a} and J_{b} are not adjacent in G_{P}.
(2) Given a connected order ideal J, suppose that χ_{J} is a subgraph of the connected component D_{r} of H_{P}, and hence $J \subseteq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{r}\right)} \Lambda_{i}^{P}$. If $J \neq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{r}\right)} \Lambda_{i}^{P}$, then there exists some $\Lambda_{j}^{P} \in V\left(D_{r}\right)$ such that J and Λ_{j}^{P} are adjacent in G_{P}.
Proof. Let us first prove assertion (1). Suppose to the contrary that J_{a} and J_{b} are adjacent in the graph G_{P}. Then $J_{a} \cap J_{b} \neq \varnothing$. Since

$$
J_{a}=\bigcup_{i \in g s\left(J_{a}\right)} \Lambda_{i}^{P}, \quad J_{b}=\bigcup_{j \in g s\left(J_{b}\right)} \Lambda_{j}^{P}
$$

there exist some $i \in g s\left(J_{a}\right)$ and $j \in g s\left(J_{b}\right)$ such that $\Lambda_{i}^{P} \cap \Lambda_{j}^{P} \neq \varnothing$. Notice that Λ_{i}^{P} is a vertex of the connected component D_{r} and Λ_{j}^{P} is a vertex of the connected component D_{s}, so Λ_{i}^{P} and Λ_{j}^{P} are not adjacent in the graph H_{P}. Since the graph H_{P} is a vertex induced subgraph of G_{P}, the order ideals Λ_{i}^{P} and Λ_{j}^{P} are also not adjacent in the graph G_{P}, hence they intersect trivially. Because $\Lambda_{i}^{P} \cap \Lambda_{j}^{P} \neq \varnothing$, we must have $\Lambda_{i}^{P} \subset \Lambda_{j}^{P}$ or $\Lambda_{j}^{P} \subset \Lambda_{i}^{P}$. If $\Lambda_{i}^{P} \subset \Lambda_{j}^{P}$, by Lemmas 9 and 10 we obtain that for any $k \in g s\left(J_{a}\right)$, there is $\Lambda_{k}^{P} \subset \Lambda_{j}^{P}$. Then,

$$
J_{a}=\bigcup_{k \in g s\left(J_{a}\right)} \Lambda_{k}^{P} \subset \Lambda_{j}^{P} \subseteq J_{b}
$$

which implies that J_{a} and J_{b} are not adjacent in the graph G_{P}. If $\Lambda_{j}^{P} \subset \Lambda_{i}^{P}$, we can use a similar argument to deduce that J_{a} and J_{b} are not adjacent in the graph G_{P}. In both cases, we are led to a contradiction.

We proceed to prove assertion (2). Recall that $V\left(D_{r}\right)$ denotes the set of vertices of D_{r}. Assume that $g s(J)=\left\{i_{1}, \ldots, i_{k}\right\}$. Since $J \subseteq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{r}\right)} \Lambda_{i}^{P}$ but $J \neq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{r}\right)} \Lambda_{i}^{P}$, there exists some $\Lambda_{j}^{P} \in V\left(D_{r}\right)$ such that $\Lambda_{j}^{P} \nsubseteq J$. Let

$$
\begin{aligned}
& V_{1}=\left\{\Lambda_{i}^{P} \in V\left(D_{r}\right) \mid \Lambda_{i}^{P} \subseteq J\right\} \\
& V_{2}=\left\{\Lambda_{j}^{P} \in V\left(D_{r}\right) \mid \Lambda_{j}^{P} \nsubseteq J\right\}
\end{aligned}
$$

Clearly, we have $V_{1} \cup V_{2}=V\left(D_{r}\right)$ and $V_{2} \neq \varnothing$. Since χ_{J} is a subgraph of D_{r}, we see that $V_{1} \neq \varnothing$. Because D_{r} is a connected component of H_{P}, there exist some $\Lambda_{i}^{P} \in V_{1}$ and $\Lambda_{j}^{P} \in V_{2}$ such that Λ_{i}^{P} and Λ_{j}^{P} are adjacent in the graph H_{P}. Since H_{P} is a vertex induced subgraph of G_{P}, the vertices Λ_{i}^{P} and Λ_{j}^{P} are also adjacent in G_{P}, which means that Λ_{i}^{P} and Λ_{j}^{P} intersect nontrivially, namely

$$
\Lambda_{i}^{P} \cap \Lambda_{j}^{P} \neq \varnothing, \quad \Lambda_{i}^{P} \not \subset \Lambda_{j}^{P}, \quad \text { and } \Lambda_{j}^{P} \not \subset \Lambda_{i}^{P}
$$

In view of that $\Lambda_{i}^{P} \subseteq J$ and $\Lambda_{j}^{P} \in V_{2}$, we get $J \neq \Lambda_{j}^{P}$ and

$$
J \cap \Lambda_{j}^{P} \neq \varnothing, \quad J \not \subset \Lambda_{j}^{P}, \quad \text { and } \Lambda_{j}^{P} \not \subset J .
$$

Hence J is adjacent to Λ_{j}^{P}, as desired.
With the above lemma, we can further obtain another property of G_{P}.
Lemma 12. Let C_{r} be a connected component of G_{P} with vertex set $V\left(C_{r}\right)$. Let J be a connected order ideal with the graph χ_{J} as defined as above. We have the following two assertions:
(1) Let $J_{r}^{\text {max }}$ denote the set $\bigcup_{J^{\prime} \in V\left(C_{r}\right)} J^{\prime}$. Then $J_{r}^{\text {max }}$ is an isolated vertex of the graph G_{P}.
(2) If χ_{J} is a subgraph of C_{r}, and $J \neq J_{r}^{\max }$, then J is a vertex of C_{r}.

Proof. Let us first prove assertion (1). It is clearly true when $\left|V\left(C_{r}\right)\right|=1$. Suppose $\left|V\left(C_{r}\right)\right| \geqslant 2$. We first prove that $J_{r}^{\max }$ is a connected order ideal. Let V be a set of connected order ideals and assume V satisfies the condition:

$$
\begin{equation*}
V \subseteq V\left(C_{r}\right) \text { and } \bigcup_{J \in V} J \text { is a connected order ideal. } \tag{*}
\end{equation*}
$$

We claim that if V satisfies $\left(^{*}\right)$ and is of the largest possible size, then V must be equal to $V\left(C_{r}\right)$. Otherwise, suppose $V \subset V\left(C_{r}\right)$ but $V \neq V\left(C_{r}\right)$. Since C_{r} is a connected graph and $\left|V\left(C_{r}\right)\right| \geqslant 2$, there exist some $J_{a} \in V$ and $J_{b} \in\left(V\left(C_{r}\right) \backslash V\right)$ such that J_{a} and J_{b} are adjacent in G_{P}. Hence $J_{a} \cap J_{b} \neq \varnothing$, and then $\left(\bigcup_{J \in V} J\right) \cap J_{b} \neq \varnothing$. It follows that the set $V^{\prime}=V \cup\left\{J_{b}\right\}$ also satisfies the condition $\left(^{*}\right)$, and $\left|V^{\prime}\right|=|V|+1$, contradicting the assumption that V is of the largest possible size.

We mow prove that $J_{r}^{\max }$ is not adjacent to any other vertex of G_{P}. For a $J \in \mathcal{J}_{\text {conn }}(P)$, if $J \in V\left(C_{r}\right)$, then $J \subset J_{r}^{\max }$ and so J and $J_{r}^{\max }$ are not adjacent in G_{P}. If $J \notin V\left(C_{r}\right)$, namely, J is not adjacent to any vertex of C_{r}, we need to consider three cases:
(i) There exists some $J_{a} \in V(C)$ such that $J_{a} \subset J$. Then by Lemma 10 we obtain that $J_{b} \subset J$ for any other $J_{b} \in V\left(C_{r}\right)$. Hence $J_{r}^{\max } \subset J$, and it follows that J and $J_{r}^{\max }$ are not adjacent in G_{P};
(ii) There exists some $J_{a} \in V(C)$ such that $J \subset J_{a}$. Then $J \subset J_{r}^{\max }$, and as a consequence, J and $J_{r}^{\text {max }}$ are also not adjacent in G_{P};
(iii) $J \cap J_{a}=\varnothing$ for any $J_{a} \in V\left(C_{r}\right)$. Then $J_{r}^{\max } \cap J=\varnothing$ and, again, \widetilde{J} and J are not adjacent in G_{P}.
Hence we conclude that $J_{r}^{\max }$ is an isolated vertex of the graph G_{P}.
To prove assertion (2), we first analyse some general properties of G_{P}. Suppose the graph H_{P} has ℓ connected components $D_{1}, D_{2}, \ldots, D_{\ell}$. Lemma 9 tells us that for any connected order ideal J^{\prime}, the graph $\chi_{J^{\prime}}$ is connected, and that it must be a subgraph of D_{k} for some $1 \leqslant k \leqslant \ell$. For each $1 \leqslant k \leqslant \ell$, let

$$
\mathcal{J}_{\text {conn }}^{k}(P)=\left\{J \in \mathcal{J}_{\text {conn }}(P) \mid \text { the graph } \chi_{J} \text { is a subgraph of } D_{k}\right\} .
$$

In particular, if $J^{\prime}=\Lambda_{i}^{P} \in V\left(D_{k}\right)$ is a principal order ideal, then the graph $\chi_{J^{\prime}}$ has only one vertex Λ_{i}^{P}, thus $\chi_{J^{\prime}}$ is of course a subgraph of D_{k}. It follows that $V\left(D_{k}\right) \subseteq \mathcal{J}_{\text {conn }}^{k}(P)$ for each $1 \leqslant k \leqslant \ell$. It is clear that

$$
\mathcal{J}_{\text {conn }}(P)=\mathcal{J}_{\text {conn }}^{1}(P) \uplus \mathcal{J}_{\text {conn }}^{2}(P) \uplus \cdots \uplus \mathcal{J}_{\text {conn }}^{\ell}(P) .
$$

For each $1 \leqslant k \leqslant \ell$, let C_{k} be the connected component of G_{P} such that D_{k} is a subgraph of C_{k} (it turns out that for each D_{k}, there exists a unique C_{k} such that D_{k} is a subgraph of C_{k}). We proceed to show that $V\left(C_{k}\right) \subseteq \mathcal{J}_{\text {conn }}^{k}(P)$. Note that if $J_{a} \in \mathcal{J}_{\text {conn }}^{s}(P)$ and $J_{b} \in \mathcal{J}_{\text {conn }}^{t}(P)$ for some $s \neq t$, the first assertion of Lemma 11 tells us that J_{a} and J_{b} are not adjacent in G_{P}. Thus, by the connectivity of C_{k} in G_{P}, all members of $V\left(C_{k}\right)$ must belong to $\mathcal{J}_{\text {conn }}^{k}(P)$ since we already have $V\left(D_{k}\right) \subseteq \mathcal{J}_{\text {conn }}^{k}(P)$. And then, we get that $V\left(D_{k}\right) \subseteq V\left(C_{k}\right) \subseteq \mathcal{J}_{\text {conn }}^{k}(P)$. That is to say, for any $J^{\prime} \in V\left(C_{k}\right)$, the graph $\chi_{J^{\prime}}$ is a subgraph of D_{k}. Therefore, $J^{\prime} \subseteq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{k}\right)} \Lambda_{i}^{P}$ for any $J^{\prime} \in V\left(C_{k}\right)$. This leads to the following equality:

$$
\begin{equation*}
J_{k}^{\max }=\bigcup_{J^{\prime} \in V\left(C_{k}\right)} J^{\prime}=\bigcup_{\Lambda_{i}^{P} \in V\left(D_{k}\right)} \Lambda_{i}^{P} . \tag{24}
\end{equation*}
$$

For the given J, we assume that χ_{J} is a subgraph of the connected component D_{r} of H_{P} for some $1 \leqslant r \leqslant \ell$, and then D_{r} is a subgraph of C_{r}. Thus in view of (24), when $J \neq J_{r}^{\text {max }}$, it follows that $J \neq \bigcup_{\Lambda_{i}^{P} \in V\left(D_{r}\right)} \Lambda_{i}^{P}$. By the second assertion of Lemma 11, in the graph G_{P} we see that J is adjacent to some vertex of D_{r}, therefore, J is also a vertex of C_{r}.

We are almost ready for the proof of Theorem 2. Note that the definition of $\operatorname{Des}(M)$ $\left(M \in \mathscr{M}\left(G_{P}\right)\right)$ is indirect, which uses the map Ψ from $\mathscr{M}\left(G_{P}\right)$ to $\mathscr{F}(P)$. In order to make the proof of Theorem 2 more clear, we shall give another characterization of $\operatorname{Des}(M)$ which only uses the information of M. Before doing this, we shall introduce one more notation. Given $J_{a}, J_{b} \in M$, we say that $J_{a} \prec_{M} J_{b}$ if $J_{a} \subset J_{b}$ and there exists no $J \in M$ such that $J_{a} \subset J \subset J_{b}$. Our new characterization of $\operatorname{Des}(M)$ is as follows.

Lemma 13. Given $M \in \mathscr{M}\left(G_{P}\right)$, then $i \in \operatorname{Des}(M)$ if and only if there exists $j<i$ such that $J_{a} \prec_{M} J_{b}$, where $J_{a}, J_{b} \in M$ are connected order ideals uniquely determined by i, j respectively as in Lemma 7.

Proof. By definition, $i \in \operatorname{Des}(M)=\operatorname{Des}\left(F_{M}\right)$ if and only if the parent of i, say j, is greater than i with respect to the natural order on integers. Recall that if j is the parent of i, then $i<_{F_{M}} j$ and there exists no k such that $i<_{F_{M}} k<_{F_{M}} i$. It follows from Lemma 7 that there exist two connected order ideals J_{a}, J_{b} in M satisfying $J_{a} \backslash \mu\left(M, J_{a}\right)=$ $\{i\}, J_{b} \backslash \mu\left(M, J_{b}\right)=\{j\}$. By the construction of F_{M}, we have $J_{a} \subset J_{b}$ but there exists no $J \in M$ such that $J_{a} \subset J \subset J_{b}$, namely $J_{a} \prec_{M} J_{b}$.

As shown above, the relation \prec_{M} plays an important role for the new characterization of $\operatorname{Des}(M)$. To prove Theorem 2, we also need the following lemma, which is evident by definition. Recall that the set $U_{\max }(M, J)$ is defined by (12).

Lemma 14. Given $J_{a}, J_{b} \in M$, if $J_{a} \prec_{M} J_{b}$ then $J_{a} \in U_{\max }\left(M, J_{b}\right)$.
Now we are in the position to prove Theorem 2. From now on we shall assume that P is naturally labeled.
Proof of Theorem 2. There are two cases to consider.
(1). The connected component C_{r} has only one vertex, say J_{r}. Thus M_{r} can only be the unique one maximum independent set $\left\{J_{r}\right\}$ of C_{r}. By Lemma 7, we have $J_{r} \backslash \mu\left(M^{1}, J_{r}\right)=$ $\{i\}$ for some $i \in\{1,2, \ldots, n\}$. In this case, we first prove that

$$
\begin{equation*}
\operatorname{Des}\left(M_{r}, M^{1}\right)=\operatorname{Des}\left(M_{r}, M^{2}\right)=\varnothing \tag{25}
\end{equation*}
$$

Otherwise, suppose that $\operatorname{Des}\left(M_{r}, M^{1}\right)=\{i\}$. By the definition of $\operatorname{Des}\left(M_{r}, M^{1}\right)$, we have $i \in \operatorname{Des}\left(M^{1}\right)$. By Lemma 13, there exist $j<i$ and $J \in M^{1}$ such that $J \backslash \mu\left(M^{1}, J\right)=\{j\}$ and $J_{r} \prec_{M^{1}} J$.

We proceed to show that it is impossible to have such a pair (i, j). Let us consider the order relation between i and j in the poset P. It cannot be $j<_{P} i$, since $i \in J_{r} \subset J$ and Lemma 6 tells us that j is a maximal element of J. Then it might be $i<_{P} j$, or i and j are incomparable in P. Since P is naturally labeled and $j<i$, it can not be $i<_{P} j$. Suppose that i and j are incomparable in P. Since $J_{r} \backslash \mu\left(M^{1}, J_{r}\right)=\{i\}$, it follows from Lemma 6 that i is a maximal element of J_{r}. We proceed to prove that i is also a maximal elements of J. To see this, it is enough to show that there exists no $k \in J$ satisfying $i<_{P} k$. Note that

$$
J=\{j\} \cup \mu\left(M^{1}, J\right)=\{j\} \cup\left(\bigcup_{J^{\prime} \in U\left(M^{1}, J\right)} J^{\prime}\right)=\{j\} \cup\left(\bigcup_{J^{\prime} \in U_{\max }\left(M^{1}, J\right)} J^{\prime}\right)
$$

By Lemma 14, the relation $J_{r} \prec_{M^{1}} J$ implies that $J_{r} \in U_{\max }\left(M^{1}, J\right)$. Then there are three cases to consider:
(i) If $k=j$, then i and k are incomparable in P;
(ii) If $k \in J_{r}$, in this case we have $k \leqslant_{P} i$, or i and k are incomparable in P, because i is a maximal element of J_{r};
(iii) If $k \in J^{\prime}$ for some $J^{\prime} \in U_{\max }\left(M^{1}, J\right)$ but $J^{\prime} \neq J_{r}$, we obtain that i and k are incomparable in P, since by Lemma 4 we have $J^{\prime} \cap J_{r}=\varnothing$, which implies that for any $u \in J_{r}, v \in J^{\prime}, u$ and v are incomparable in P.

Hence there exists no $k \in J$ such that $i<_{P} k$, i.e., i is a maximal element of J. It follows that $\{i, j\} \subseteq g s(J)$ and then the graphs $\chi_{J_{r}}$ and χ_{J} have a common vertex Λ_{i}^{P}. Then by Lemma 9 , the graphs $\chi_{J_{r}}$ and χ_{J} belong to the same connected component C_{s} of G_{P}. Hence C_{s} has at least two vertices Λ_{i}^{P} and Λ_{j}^{P}. By Lemma 12 and the hypothesis that J_{r} is an isolated vertex of G_{P}, we obtain $J_{r}=\bigcup_{J^{\prime} \in V\left(C_{s}\right)} J^{\prime}$ and $J \subseteq \bigcup_{J^{\prime} \in V\left(C_{s}\right)} J^{\prime}$. This contradicts with the assumption that $J_{r} \prec_{M^{1}} J$. Hence i and j cannot be incomparable in P, a contradiction.

Since such a pair (i, j) can not exist, it follows that $\operatorname{Des}\left(M_{r}, M^{1}\right)=\varnothing$. By using a similar argument, one can also prove that $\operatorname{Des}\left(M_{r}, M^{2}\right)=\varnothing$. Moreover, by the definition of $\overline{\operatorname{Des}}\left(M_{r}, M\right)$, it is clear that

$$
\overline{\operatorname{Des}}\left(M_{r}, M^{1}\right)=\overline{\operatorname{Des}}\left(M_{r}, M^{2}\right)=\varnothing .
$$

(2). C_{r} has at least two vertices. In this case, $M_{r} \subset V\left(C_{r}\right)$. By Lemma 12, we see that $J_{r}^{\max }=\bigcup_{J^{\prime} \in V\left(C_{r}\right)} J^{\prime}$ is an isolated vertex of G_{P}. Hence $J_{r}^{\max } \in M$ holds for any maximum independent set of G_{P}, and in particular $J_{r}^{\max } \in M^{1}$ as well as $J_{r}^{\max } \in M^{2}$.

We first prove that for any $J \in M_{r}$ or $J=J_{r}^{\max }$,

$$
\begin{equation*}
J \backslash \mu\left(M^{1}, J\right)=J \backslash \mu\left(M^{2}, J\right) . \tag{26}
\end{equation*}
$$

To see this, we partition the set $U\left(M^{2}, J\right)$ into two subsets B_{1} and B_{2}, where

$$
\begin{aligned}
& B_{1}=\left\{J_{1} \in U\left(M^{2}, J\right) \mid J_{1} \in V\left(C_{r}\right)\right\}, \\
& B_{2}=\left\{J_{2} \in U\left(M^{2}, J\right) \mid J_{2} \notin V\left(C_{r}\right)\right\} .
\end{aligned}
$$

Assume $J \backslash \mu\left(M^{1}, J\right)=\{j\}$. We claim that $j \notin J_{2}$ for any $J_{2} \in B_{2}$. Otherwise, suppose to the contrary that there exists some $J_{2} \in B_{2}$ such that $j \in J_{2}$. It follows from Lemma 6 that $j \in g s(J)$. On the other hand, since $J_{2} \subset J$, we obtain that $j \in g s\left(J_{2}\right)$. Hence the graph χ_{J} and $\chi_{J_{2}}$ have a common vertex Λ_{j}^{P}. Then by Lemma 9 the graphs χ_{J} and $\chi_{J_{2}}$ belong to the same connected component of G_{P}. We proceed to show that $\chi_{J_{2}}$ is a subgraph of C_{r}. To see this, there are two cases to consider.
(i) Suppose that $J \in M_{r} \subset V\left(C_{r}\right)$ (then $J \neq J_{r}^{\max }$), namely, J is a vertex of the connected component C_{r}. It follows from the second assertion of Lemma 12 that χ_{J} and J are contained in the same connected component C_{r} of G_{P}. Hence both χ_{J} and $\chi_{J_{2}}$ are subgraphs of C_{r}.
(ii) Suppose that $J=J_{r}^{\max }=\bigcup_{J^{\prime} \in V\left(C_{r}\right)} J^{\prime}$. Let $i \in g s(J)$ be a maximal element of J, then there exists some $J^{\prime} \in V\left(C_{r}\right)$ such that $i \in J^{\prime}$. It follows that i is also a maximal element of J^{\prime}, namely, $i \in g s\left(J^{\prime}\right)$. Hence the graphs χ_{J} and $\chi_{J^{\prime}}$ have at least one common vertex Λ_{i}^{P}, and then χ_{J} and $\chi_{J^{\prime}}$ belong to the same connected component of G_{P}. The second assertion of Lemma 12 tells us that for any $J^{\prime} \in V\left(C_{r}\right), \chi_{J^{\prime}}$ and J^{\prime} are contained in the same connected component C_{r} of G_{P}. Hence $\chi_{J}, \chi_{J^{\prime}}$ and $\chi_{J_{2}}$ are all subgraphs of C_{r}.

On the other hand, because $J_{2} \subset J$, we have $J_{2} \neq J_{r}^{\text {max }}$. Then by the second assertion of Lemma 12 we get $J_{2} \in V\left(C_{r}\right)$, leading to a contradiction. Hence the claim, that $j \notin J_{2}$ for any $J_{2} \in B_{2}$, is true.

Recall that $M^{1} \cap V\left(C_{r}\right)=M^{2} \cap V\left(C_{r}\right)=M_{r}$. It is routine to verify that

$$
U\left(M^{1}, J\right) \cap M_{r}=U\left(M^{2}, J\right) \cap M_{r}=B_{1},
$$

Combining (13) and the above identity, we get that

$$
j \in J \backslash \mu\left(M^{1}, J\right) \subseteq J \backslash \bigcup_{J_{1} \in B_{1}} J_{1} .
$$

As we have shown that $j \notin J_{2}$ for any $J_{2} \in B_{2}$, so again by (13) there holds

$$
j \in J \backslash \bigcup_{J^{\prime} \in\left(B_{1} \cup B_{2}\right)} J^{\prime}=J \backslash \bigcup_{J^{\prime} \in U\left(M^{2}, J\right)} J^{\prime}=J \backslash \mu\left(M^{2}, J\right)
$$

Thus, by Lemma 6 , the set $J \backslash \mu\left(M^{2}, J\right)$ contains exactly one element, which can only be j. Therefore, we have

$$
\{j\}=J \backslash \mu\left(M^{2}, J\right)=J \backslash \mu\left(M^{1}, J\right) .
$$

We proceed to show that $\operatorname{Des}\left(M_{r}, M^{1}\right) \subseteq \operatorname{Des}\left(M_{r}, M^{2}\right)$. Let $i \in \operatorname{Des}\left(M_{r}, M^{1}\right)$, and by the definition of $\operatorname{Des}\left(M_{r}, M^{1}\right)$ and Lemma 6 there exists $J_{a} \in M_{r}$ such that $J_{a} \backslash$ $\mu\left(M^{1}, J_{a}\right)=\{i\}$. By Lemma 13, there exist $j<i$ and $J_{b} \in M^{1}$ such that $J_{b} \backslash \mu\left(M^{1}, J_{b}\right)=$ $\{j\}$ and $J_{a} \prec_{M^{1}} J_{b}$. We claim that $J_{b} \in V\left(C_{r}\right)$ or $J_{b}=J_{r}^{\max }$. Suppose otherwise that J_{b} is not a vertex of C_{r} and $J_{b} \neq J_{r}^{\max }$. Since $J_{a} \in V\left(C_{r}\right)$ and $J_{a} \subset J_{b}$, it follows from Lemma 10 that $J^{\prime} \subset J_{b}$ for any $J^{\prime} \in V\left(C_{r}\right)$. Hence $J_{r}^{\max } \subset J_{b}$. Thus we obtain $J_{a} \subset J_{r}^{\max } \subset J_{b}$. Recall that $J_{r}^{\max } \in M^{1}$, the relation $J_{a} \subset J_{r}^{\max } \subset J_{b}$ contradicts the assumption that $J_{a} \prec_{M^{1}} J_{b}$. Recall also that we have shown $J_{r}^{\max } \in M^{2}$. If $J_{b}=J_{r}^{\text {max }}$ then $J_{b} \in M^{2}$. If $J_{b} \in V\left(C_{r}\right)$, then $J_{b} \in M_{r}=M^{2} \cap V\left(C_{r}\right)$, and hence also $J_{b} \in M^{2}$. We further show that $J_{a} \prec_{M^{2}} J_{b}$. Otherwise, suppose there exists some $J_{c} \in M^{2}$ such that $J_{a} \subset J_{c} \subset J_{b}$. By the hypothesis that $J_{a} \prec_{M^{1}} J_{b}$ and $M^{1} \cap V\left(C_{r}\right)=M^{2} \cap V\left(C_{r}\right)=M_{r}$, it follows that $J_{c} \notin M_{r} \subset V\left(C_{r}\right)$. Then by Lemma 10, for any $J^{\prime} \in V\left(C_{r}\right)$, there is $J^{\prime} \subset J_{c}$. Hence $J_{b} \subseteq \bigcup_{J^{\prime} \in V\left(C_{r}\right)} \subset J_{c}$, leading to a contradiction. Thus, for any $i \in \operatorname{Des}\left(M_{r}, M^{1}\right)$, by (26) there exist $J_{a}, J_{b} \in M^{2}$ such that $J_{a} \backslash \mu\left(M^{2}, J_{a}\right)=\{i\}, J_{b} \backslash \mu\left(M^{2}, J_{b}\right)=\{j\}$, $J_{a} \prec_{M^{2}} J_{b}$ and $i>j$. This means $i \in \operatorname{Des}\left(M_{r}, M^{2}\right)$ for any $i \in \operatorname{Des}\left(M_{r}, M^{1}\right)$. Hence $\operatorname{Des}\left(M_{r}, M^{1}\right) \subseteq \operatorname{Des}\left(M_{r}, M^{2}\right)$.

It can be proved in a similar way that $\operatorname{Des}\left(M_{r}, M^{2}\right) \subseteq \operatorname{Des}\left(M_{r}, M^{1}\right)$. So we get $\operatorname{Des}\left(M_{r}, M^{1}\right)=\operatorname{Des}\left(M_{r}, M^{2}\right)$. Combining this and (26), we further obtain $\overline{\operatorname{Des}}\left(M_{r}, M^{1}\right)=$ $\overline{\operatorname{Des}}\left(M_{r}, M^{2}\right)$, as desired.

We proceed to prove Theorem 3.
Proof of Theorem 3. Given a maximum independent set M of G_{P}, let

$$
\overline{\operatorname{Des}}(M)=\{J \in M \mid J \backslash \mu(M, J)=\{i\} \text { for some } i \in \operatorname{Des}(M)\} .
$$

Recall that $\mathscr{M}\left(C_{r}\right)$ is the set of maximum independent sets of C_{r} for each $1 \leqslant r \leqslant h$, respectively. It is clear that M admits the following natural decomposition:

$$
M=M_{1} \uplus M_{2} \uplus \cdots \uplus M_{h} \text {, where } M_{r} \in \mathscr{M}\left(C_{r}\right) \text {. }
$$

It follows from Theorem 2 that both $\operatorname{Des}\left(M_{r}\right)$ and $\overline{\operatorname{Des}}\left(M_{r}\right)$ are well-defined, and hence

$$
\begin{align*}
& \operatorname{Des}(M)=\operatorname{Des}\left(M_{1}\right) \uplus \operatorname{Des}\left(M_{2}\right) \uplus \cdots \uplus \operatorname{Des}\left(M_{h}\right), \tag{27}\\
& \overline{\operatorname{Des}}(M)=\overline{\operatorname{Des}}\left(M_{1}\right) \uplus \overline{\operatorname{Des}}\left(M_{2}\right) \uplus \cdots \uplus \overline{\operatorname{Des}}\left(M_{h}\right) . \tag{28}
\end{align*}
$$

Thus, by (6), Theorem 1 and Lemma 7, we get that

$$
F_{P}(\mathbf{x})=\sum_{M \in \mathscr{M}\left(G_{P}\right)} \frac{\prod_{J \in \overline{\operatorname{Des}}(M)} \Pi_{k \in J} x_{k}}{\prod_{J \in M}\left(1-\prod_{\ell \in J} x_{\ell}\right)} .
$$

By (28), we then have

$$
\begin{aligned}
F_{P}(\mathbf{x}) & =\sum_{M_{1} \in \mathscr{M}\left(C_{1}\right)} \sum_{M_{2} \in \mathscr{M}\left(C_{2}\right)} \ldots \sum_{M_{h} \in M_{\left(C_{h}\right)}} \frac{\prod_{r=1}^{h} \prod_{J \in \overline{\operatorname{Des}}\left(M_{r}\right)} \prod_{k \in J} x_{k}}{\prod_{r=1}^{h} \prod_{J \in M_{r}}\left(1-\prod_{\ell \in J} x_{\ell}\right)} \\
& =\prod_{r=1}^{h} \sum_{M_{r} \in \mathscr{M}\left(C_{r}\right)} \frac{\prod_{J \in \overline{\operatorname{Des}}\left(M_{r}\right)} \prod_{k \in J} x_{k}}{\prod_{J \in M_{r}}\left(1-\prod_{\ell \in J} x_{\ell}\right)} .
\end{aligned}
$$

We would like to point out that Theorem 3 enables us to give an alternative proof to Féray and Reiner's formula (4). To this end, let P be a naturally labeled forest with duplications as defined by Féray and Reiner [4], namely, for any connected order ideal J_{a} of P, there exists at most one other connected order ideal J_{b} such that J_{a} and J_{b} intersect nontrivially. Assume that G_{P} has h connected components $C_{1}, C_{2}, \ldots, C_{h}$. Then each C_{r} has at most two vertices, and hence each connected component of H_{P} has also at most two vertices.

We claim that when a connected component C of G_{P} has two vertices, say J_{a} and J_{b}, then both J_{a} and J_{b} are principal order ideals of P. Otherwise, suppose that J_{a} is not a principal order ideal of P. Then the graph $\chi_{J_{a}}$ has more than one vertices. Recall that $\chi_{J_{a}}$ is a subgraph of H_{P}. By Lemma 9 and the fact that each connected component of the graph H_{P} has at most two vertices, the graph $\chi_{J_{a}}$ is a connected component of H_{P}.

It then follows from (24) and the first assertion of Lemma 12 that J_{a} is an isolated vertex of G_{P}, a contradiction. Similarly, J_{b} is also a principal order ideal of P.

Therefore, we may assume that for $1 \leqslant r \leqslant d$ the component C_{r} has two vertices (both of them are principal order ideals of P), say $\Lambda_{i_{r}}^{P}$ and $\Lambda_{j_{r}}^{P}$, and for $d<r \leqslant h$ the component C_{r} has only one vertex. Thus, for $1 \leqslant r \leqslant d$, there are two choices for M_{r}, namely, $M_{r}=\left\{\Lambda_{i_{r}}^{P}\right\}$ or $M_{r}=\left\{\Lambda_{j_{r}}^{P}\right\}$. We assume that $i_{r}>j_{r}$. Then

$$
\overline{\operatorname{Des}}\left(\left\{\Lambda_{i_{r}}^{P}\right\}\right)=\Lambda_{i_{r}}^{P}, \quad \overline{\operatorname{Des}}\left(\left\{\Lambda_{j_{r}}^{P}\right\}\right)=\varnothing
$$

For $d<r \leqslant h$, let J_{r} be the only vertex of C_{r}, and then $\overline{\operatorname{Des}}\left(\left\{J_{r}\right\}\right)=\varnothing$. By Theorem 3, we obtain that

$$
\begin{aligned}
F_{P}(\mathbf{x}) & =\prod_{1 \leqslant r \leqslant d}\left[\frac{\mathbf{x}^{\Lambda_{i_{r}}^{P}}}{\left(1-\mathbf{x}^{\Lambda_{i_{r}}^{P}}\right)}+\frac{1}{\left(1-\mathbf{x}^{\Lambda_{j_{r}}^{P}}\right)}\right] \prod_{d<r \leqslant h} \frac{1}{\left(1-\mathbf{x}^{J_{r}}\right)} \\
& =\prod_{1 \leqslant r \leqslant d}\left[\frac{1-\mathbf{x}^{\Lambda_{i i_{r}}^{P}} \mathbf{x}_{j_{j_{r}}^{P}}}{\left(1-\mathbf{x}_{i_{i_{r}}^{P}}\right)\left(1-\mathbf{x}^{\Lambda_{j_{r}}^{P}}\right)}\right] \prod_{d<r \leqslant h} \frac{1}{\left(1-\mathbf{x}^{J_{r}}\right)},
\end{aligned}
$$

where $\mathbf{x}^{A}=\prod_{i \in A} x_{i}$ for a subset $A \subseteq\{1,2, \ldots, n\}$. It is straightforward to verify that the above formula is equivalent to (4).

4 Counting linear extensions

In this section, we take an example to show that formula (11) can be used to derive the generating function of major index of linear extensions of P, as well as to count the number $|\mathcal{L}(P)|$ of linear extensions of P.

The generating function $F_{P}(q)$ of major index of linear extensions of P is denoted by $F_{P}(q)=\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}$, where $\operatorname{maj}(w)=\sum_{i \in \operatorname{Des}(w)} i$ is called the major index of w. By letting $x_{1}=\cdots=x_{n}=q$ respectively in (1) and (11), we are led to the following identity

$$
\begin{equation*}
F_{P}(q)=[n]!_{q} \prod_{r=1}^{h} \sum_{M_{r} \in \mathscr{M}\left(C_{r}\right)} \frac{q^{\sum_{J \in \overline{\operatorname{Des}(}\left(M_{r}\right)}|J|}}{\prod_{J \in M_{r}}[|J|]_{q}}, \tag{29}
\end{equation*}
$$

where $[i]_{q}=1-q^{i}$ for any i and $[m]!_{q}=\prod_{i=1}^{m}[i]_{q}$.
Moreover, when q tends to 1 on both sides of (29), we arrive at the following formula for the number of linear extensions of P :

$$
\begin{equation*}
|\mathcal{L}(P)|=n!\prod_{r=1}^{h} \sum_{M_{r} \in \mathscr{M}\left(C_{r}\right)} \frac{1}{\prod_{J \in M_{r}}|J|} . \tag{30}
\end{equation*}
$$

Note that the number of linear extensions of P is independent of the labelling of P. Thus formula (30) is also valid in the cases when P is not naturally labeled.

We would like to mention that calculating the number of linear extensions for general posets has been proved to be a $\sharp P$-hard problem by Brightwell and Winkler [3]. However, in the case when P is a poset such that each connected component C_{r} of G_{P} has small size of vertex set, we shall illustrate that formula (30) provides an efficient way to count the number of linear extensions of P. For example, take the naturally labeled poset P in Figure 4. From the graph of G_{P} as illustrated in Figure 5, we obtain that

1. For the connected component C_{1}, there are 6 choices for M_{1} :

M_{1}	$\left\{\Lambda_{4}^{P}, \Lambda_{4,5}^{P}\right\}$	$\left\{\Lambda_{4}^{P}, \Lambda_{4,6}^{P}\right\}$	$\left\{\Lambda_{5}^{P}, \Lambda_{4,5}^{P}\right\}$	$\left\{\Lambda_{5}^{P}, \Lambda_{5,6}^{P}\right\}$
$\overline{\operatorname{Des}\left(M_{1}\right)}$	\varnothing	$\{6\}$	$\{5\}$	$\{6\}$
$\overline{\operatorname{Des}}\left(M_{1}\right)$	\varnothing	$\left\{\Lambda_{4,6}^{P}\right\}$	$\left\{\Lambda_{5}^{P}\right\}$	$\left\{\Lambda_{5,6}^{P}\right\}$

M_{1}	$\left\{\Lambda_{6}^{P}, \Lambda_{4,6}^{P}\right\}$	$\left\{\Lambda_{6}^{P}, \Lambda_{5,6}^{P}\right\}$
$\operatorname{Des}\left(M_{1}\right)$	$\{6\}$	$\{5,6\}$
$\overline{\operatorname{Des}}\left(M_{1}\right)$	$\left\{\Lambda_{6}^{P}\right\}$	$\left\{\Lambda_{6}^{P}, \Lambda_{5,6}^{P}\right\}$

2. For the connected component C_{2}, there are 5 choices for M_{2} :

M_{2}	$\left\{\Lambda_{10}^{P}, \Lambda_{15}^{P}, \Lambda_{13,15}^{P}\right\}$	$\left\{\Lambda_{10}^{P}, \Lambda_{10,13}^{P}, \Lambda_{14}^{P}\right\}$	$\left\{\Lambda_{10}^{P}, \Lambda_{10,13}^{P}, \Lambda_{13,15}^{P}\right\}$
$\operatorname{Des}\left(M_{2}\right)$	$\{15\}$	\varnothing	$\{15\}$
$\overline{\operatorname{Des}}\left(M_{2}\right)$	$\left\{\Lambda_{15}^{P}\right\}$	\varnothing	$\left\{\Lambda_{13,15}^{P}\right\}$

M_{2}	$\left\{\Lambda_{13}^{P}, \Lambda_{10,13}^{P}, \Lambda_{14}^{P}\right\}$	$\left\{\Lambda_{13}^{P}, \Lambda_{10,13}^{P}, \Lambda_{13,15}^{P}\right\}$
$\operatorname{Des}\left(M_{2}\right)$	$\{13\}$	$\{13,15\}$
$\overline{\operatorname{Des}}\left(M_{2}\right)$	$\left\{\Lambda_{13}^{P}\right\}$	$\left\{\Lambda_{13}^{P}, \Lambda_{13,15}^{P}\right\}$

3. For the connected component C_{3}, there are 3 choices for M_{3} :

M_{3}	$\left\{\Lambda_{11}^{P}, \Lambda_{11,9}^{P}\right\}$	$\left\{\Lambda_{9}^{P}, \Lambda_{11,9}^{P}\right\}$	$\left\{\Lambda_{9}^{P}, \Lambda_{12}^{P}\right\}$
$\operatorname{Des}\left(M_{3}\right)$	$\{11\}$	\varnothing	$\{12\}$
$\overline{\operatorname{Des}}\left(M_{3}\right)$	$\left\{\Lambda_{11}^{P}\right\}$	\varnothing	$\left\{\Lambda_{12}^{P}\right\}$

4. For the connected component C_{4}, there are 2 choices for M_{4} :

M_{4}	$\left\{\Lambda_{16}^{P}\right\}$	$\left\{\Lambda_{17}^{P}\right\}$
$\operatorname{Des}\left(M_{4}\right)$	\varnothing	$\{17\}$
$\overline{\operatorname{Des}\left(M_{4}\right)}$	\varnothing	$\left\{\Lambda_{17}^{P}\right\}$

5. For connected components which have only one vertex, each of them has only one choice for each M_{r}, and $\operatorname{Des}\left(M_{r}\right)=\varnothing$ as well as $\overline{\operatorname{Des}}\left(M_{r}\right)=\varnothing$.

Therefore, invoking formula (29), we see that $F_{P}(q)=\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}$ equals

$$
\begin{aligned}
& {[17]]_{q}\left[\frac{1}{[6]_{q}}\left(\frac{1+2 q^{3}+2 q^{5}+q^{8}}{[3]_{q}[5]_{q}}\right)\right]\left[\frac{1}{[15]_{q}}\left(\frac{q^{13}+1+q^{14}}{[7]_{q}(13]_{q}[14]_{q}}+\frac{q^{12}+q^{26}}{[12]_{q}[13]_{q}[14]_{q}}\right)\right] } \\
& \times\left[\frac{1}{[5]_{q}}\left(\frac{q^{3}}{[3]_{q}[4]_{q}}+\frac{1}{[2]_{q}[4]_{q}}+\frac{q^{3}}{[2]_{q}[3]_{q}}\right)\right]\left[\frac{1}{[17]_{q}} \frac{\left(1+q^{16}\right)}{[16]_{q}}\right] \times 1^{5} .
\end{aligned}
$$

Letting $q \rightarrow 1$ in the above formula, we arrive at

$$
\begin{aligned}
|\mathcal{L}(P)|= & 17!\times\left(\frac{1}{6} \times \frac{6}{3 \times 5}\right) \times\left[\frac{1}{15} \times\left(\frac{3}{7 \times 13 \times 14}+\frac{2}{13 \times 12 \times 14}\right)\right] \\
& \times\left[\frac{1}{5} \times\left(\frac{1}{3 \times 4}+\frac{1}{3 \times 2}+\frac{1}{4 \times 2}\right)\right] \times\left(\frac{1}{17} \times \frac{2}{16}\right) \times 1^{5} \\
= & 2851200
\end{aligned}
$$

This coincides with the result by listing all linear extensions by using Sage [10].

Acknowledgements

Our deepest gratitude goes to the anonymous reviewer for his/her careful work and thoughtful suggestions that have helped improve this paper substantially.

References

[1] A. Björner and M. L. Wachs, q-Hook length formulas for forests, J. Combin. Theory Ser. A, 52 (1989), 165-187.
[2] A. Boussicault, V. Féray, A. Lascoux, and V. Reiner, Linear extension sums as valuations on cones, J. Algebraic Combin., 35 (2012), 573-610.
[3] G. Brightwell and P. Winkler, Counting linear extensions, Order, 8 (1991), 225-242.
[4] V. Féray and V. Reiner, P-partitions revisited, J. Commut. Algebra, 4 (2012), 101152.
[5] I. M. Gessel, A historical survey of P-partitions, Amer. Math. Soc., Providence, RI, 2016, 169-188.
[6] A. Postnikov, Permutahedra, associahedra, and beyond, Int. Math. Res. Not., 2009(6) (2009), 1026-1106.
[7] A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, Doc. Math., 13 (2008), 207-273.
[8] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119, 1972.
[9] R. Stanley, Enumerative Combinatorics, Vol. 1, 2nd edition, Cambridge University Press, 2012.
[10] W. A. Stein et al., Sage Mathematics Software (Version 8.1), The Sage Development Team, 2017, http://www.sagemath.org.

[^0]: *This work was supported by the PCSIRT Project of the Ministry of Education and the National Science Foundation of China.

