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Abstract

In this paper, we concern with the corners of core partitions. We introduce
the concepts of stitches and anti-stitches, certain pairs of cells in a quotient space
which we call wrap-up space. We prove that the anti-stitches of a rational Dyck
path are in bijection with the segments of structure sets of the corresponding
core partition, therefore the number of corners of a core partition can be counted
by the number of stitches or anti-stitches. Based on these results, for coprime
positive integers a and b, we give two essentially different formulae for the number
of corners in all (a, b)-cores. This leads to an unexpected identity, expressing the
rational Catalan numbers as weighed sums of binomial numbers. Moreover, we
show that for an (n, n+1)-core partition λ determined by certain (n, n+1)-Dyck
path P , the corners of λ correspond to pairs of consecutive right steps in P . As
a consequence, we show that the number of (n, n + 1)-cores with k corners is
Narayana number N(n, k + 1). We also extend these results to multi-cores.
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1 Introduction

The objective of this paper is to investigate the number of corners of core partitions.
Recall that a partition of a positive integer n is a finite non-increasing sequence of
positive integers of sum n. The distinct parts of a partition, i.e., the number of corners
in its Ferrers diagram, attract many researchers. Goh and Schmutz [11] gave a central
limit theorem for the number of different parts in a random integer partition. Lovejoy
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[16] studied the arithmetic properties of partitions with distinct parts. Ono [21] gave
weighed recurrence relations for the number of partitions of n with distinct parts.

The corner statistic has been also touched upon in the well-developed theory of over-
partitions. Corteel and Lovejoy [17] introduced the overpartitions, which are partitions
where each corner has a label chosen from two possible labels. Lovejoy [18] related over-
partitions to Andrews’ combinatorial generalization of the Gollnitz-Gordon identities
and a theorem of Andrews and Santos on partitions with attached odd parts. Love-
joy and Bringmann [19] studied overpartition analogues of Ramanujan’s mock theta
function. They showed that these functions are related to the generating function of
certain Hurwitz class numbers.

In this paper, we will concern with the corners of core partitions. Recall that a
partition is a t-core partition (or a t-core for short) if none of its cells has hook length
divisible by t. The notion of t-core arise from the study of modular representation.
Nakayama [20] first conjectured that two characters of Sn are in the same p-block if
and only if they are labeled by partitions with the p-core (the p-core of a given partition
is obtained by repeatedly deleting border strips of length p). See James and Kerber’s
book [12] for a detailed and definitive account. Core partitions also play an important
role in the emerging theory of k-Schur functions [15].

When gcd(a, b) = r > 1, each r-core is both an a-core and a b-core. Since the set
of r-cores is infinite for any positive integer r, the set of (a, b)-cores is infinite. Thus,
in the remaining of this paper, we shall always assume that a, b are relatively prime
integers.

In 2002, Anderson [2] initiated the study on (a, b)-core partition, namely, partition
that are simultaneously an a-core and a b-core. By giving a bijection which maps (a, b)-
cores to a certain class of lattice paths, Anderson proved that the set of (a, b)-cores is
counted by the rational Catalan number

Cat(a, b) =
1

a + b

(

a+ b

a, b

)

. (1)

The size of a random (a, b)-core partition has been extensively studied. Armstrong,
Hanusa and Jones [4] conjectured explicit formulae for the average sizes of (a, b)-cores
and self-conjugate (a, b)-cores. Stanley [23], Chen, Huang and Wang [7], Johnson [13],
Fayers [10] and Wang [27] obtained many results along this line of research.

Motivated by the above work, we turn to investigate the number of corners of an
(a, b)-core partition. In Section 2, we first introduce some new concepts such as the
stitch, the anti-stitch and the wrap-up space. Then we prove that the anti-stitches of an
(a, b)-Dyck path are in bijection with the segments of structure sets of the corresponding
(a, b)-core partition, therefore the number of corners of an (a, b)-core partition can be
expressed by the number of stitches or anti-stitches of the corresponding (a, b)-Dyck
path. As a consequence, we give two different formulae for the sum of the number
of corners over all (a, b)-cores and new expressions for rational Catalan number. In
Section 3, we give a bijection between corners in (n, n+1)-cores and consecutive pairs
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of right steps in the corresponding (n, n+ 1)-Dyck paths. Consequentlyp, the number
of (n, n+ 1)-cores with k corners is the Narayana number N(n, k + 1) = 1

n

(

n

k+1

)(

n

k

)

.

2 Corners of (a, b)-cores

In this section, we shall enumerate the corners of all (a, b)-core partitions. First, let us
recall Anderson’s bijection which will be used in the remainder of this section.

2.1 Anderson’s bijection

Denote lattice paths in Z
2 from (0, 0) to (a, b), staying above the diagonal y = bx

a
by

(a, b)-Dyck paths. It was known to Bizley [5] that the (a, b)-Dyck paths are counted
by the rational Catalan number.

A set S is called n-flush if and only if for any element x ∈ S greater than n, x− n
is also in S, or equivalently (S − n)

⋂

N
+ ⊂ S. Denote h(λ) by the structure set of a

partition λ, which is the set of hooklengths of the cells in the first column of λ. It is
known that λ is an n-core partition if and only if h(λ) is an n-flush.

The conventional way to construct core partitions is to use the abacus model. Given
an integer n ≥ 2, list the positive integers in each residue class modulo n increasingly.
Then n-flushes are constructed by choose consecutive an arbitrary number of elements
from each residue class.

Anderson [2] introduced the following matrix, which is a two-way abacus. Let A be
a matrix of integers, the element on the i-th row and j-th column being

A(i, j) = ab− ib− ja.

Put an (a, b)-Dyck path P over A so that it runs from the lower-left corner to the
upper-right corner of A. Denote those positive elements of A under P by A(P ). It
has been shown that A(P ) are both a-flush and b-flush. Thus the partition λ with
structure set A(P ) is both an a-core and a b-core. This leads to the following theorem.

Theorem 2.1 (Anderson’s bijection) The (a, b)-cores are in bijection with (a, b)-
Dyck paths, and A(P ) is the structure set of the corresponding (a, b)-core.

See Figure 3.4 for an example in the case for a = 5 and b = 8.

2.2 The wrap-up equivalence and stitches

In this subsection, we introduce the new combinatorial objects of stitches and separa-
tors, tools we bring in to study the bilinearity of the (a, b)-table.
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Figure 2.1: The infinite (5, 8)-table and a (5, 8)-Dyck path. This path corresponds
to the (5, 8)-core λ = (2, 1, 1, 1, 1) with structure set {6, 5, 3, 2, 1} under Anderson’s
bijection. The region inside the blue rectangle is the finite (5, 8)-table.

Definition 2.2 An infinite (a, b)-table is an infinite array of cells on the plane that
extends infinitely in all directions, with the following labeling

A(i, j) = ab− ib− ja, (1)

where i and j run over all integers. We call the subset of cells with coordinates 1 ≤
i ≤ a, 1 ≤ j ≤ b the finite (a, b)-table.

Note that the above definition is a natural extension of the matrix due to Anderson.

Note that an infinite (a, b)-table processes the following anti-diagonal period

A(i, j) = A(i+ a, j − b). (2)

Given an infinite (a, b)-table, there are infinitely many subtables isomorphic to the
finite (a, b)-table, and it is impossible to distinguish one from another since one can
be obtained from another by sliding in (a, b)-direction. To deal with this phenomenon
rigorously, we define the following equivalent relation.

Definition 2.3 Two points p1, p2 on the plane R2 with coordinates (x1, y1), (x2, y2) are
wrap-up equivalent p1 ∼w p2 if and only if there is an integer z satisfying

(x1 − x2, y1 − y2) = (za,−zb).
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Two point sets P1, P2 are wrap-up equivalent if and only if there is an integer z such
that P1 can be obtained by moving P2 along the vector (za,−zb).

We call the quotient space R
2\ ∼w the wrap-up space, because it looks like a

carpet rolled up.

Lemma 2.4 Each integer labels exactly one cell in the wrap-up space.

Proof. By Bézout Theorem (see pp. 7-11 of [14] for example), for co-prime a and b,
each integer n can be represented as n = n1a + n2b for some integers n1 and n2, so n
appears in the infinite (a, b)-table, therefore in the wrap-up space.

Now we proceed to prove that only one cell in the wrap-up space is labeled n. If
not, asssume that two cells C1 = (x1, y1) and C2 = (x2, y2) are both labeled by n. Then

b(x1 − x2)− a(y1 − y2) = 0.

Thus the vector from C1 to C2 is an integral multiple of (a,−b), so C1 ∼w C2. Hence,
n appears exactly once in the wrap-up space. This completes the proof.

From the above theorem, one can get that 0 and 1 both exactly appear once in the
wrap-up space. Thus 0 and 1 both appear in infinite (a, b)-table. Now we study the
position of 1 relative to 0 in the infinite (a, b)-table.

In the infinite (a, b)-table, we focus on the cell labeled with 0 on the left of the lower
left corner of the finite (a, b)-table. Suppose the cell labeled 1 in the (a, b)-table is on
the x-th row (counting from bottom to top from the row 0 lies in) and the y-th column
(counting from left to right from the column 0 lies in), or, x and y satisfies

bx− ay = 1.

We may think of x and y as the multiplicative inverse of b and a in Za and Zb,
respectively (which are not necessarily fields, and elements are not always invertible).
Set x′ = a− x and y′ = b− y. We have

ay′ − bx′ = 1.

These numbers x, y, x′ and y′ will play an important role through out this section. See
Figure 2.2 for an illustration of x, y, x′ and y′.

Definition 2.5 Consider a lattice path P consisting of up steps and right steps extend-
ing infinitely on both ends. If it is periodical, and each period consists of a up-steps
and b right-steps, then we call it an infinite (a, b)-lattice path. If the part of P in
the finite (a, b)-table is a Dyck path, then P is called an infinite (a, b)-Dyck path.

The image of P under the canonical map from R
2 to the wrap-up space R

2\ ∼w is
denoted by Pw. When P is an infinite (a, b)-lattice (Dyck) path, Pw is said to be a
cyclic (a, b)-lattice (Dyck) path.
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1(x, y)

(x′, y′)

Figure 2.2: Definition of x, y, x′ and y′

Definition 2.6 Given a cyclic (a, b)-Dyck path P and a pair of cells C0 and C1 in the
wrap-up space, which are labeled l0 and l1 respectively. The cell C1 is above P , C0 is
below P . We call (C0, C1) a stitch if l1 = l0 + 1, an anti-stitch if l1 = l0 − 1.

Since Lemma 2.4 states that each integer appears in exactly one cell in the wrap-up
space, we may call a pair of integers (l0, l1) a stitch (or an anti-stitch) if they label two
cells that constitute a stitch (or an anti-stitch).

Example 2.7 In Figure 2.3 an infinite (5, 8)-Dyck path is drawn in the infinite (5, 8)-
table. For this (5,8)-Dyck path, the anti-stitches are

(0, 1) and (5, 6),

the stitches are
(−1, 0), (4, 5) and (6, 7).

A set of integers M can be uniquely decomposed into non-intersecting unions of sets
Mi,

M =
⋃

i∈I

Mi,

where I is the set of indices, each Mi is continuous, namely when j + 1 and j − 1 are
both in Mi, j is also in Mi, and for distinct integers i and i′. Mi and Mi′ are separated
by at least one integer. We call Mi a segment of M . Note that a segment Mi can be
an infinite set, and the set of segments can be an infinite set. The number of segments
of M is denoted by seg(M). The largest element (resp. smallest element) of a segment,
if existent, is called the end (resp. head) of this segment.

Given a cyclic (a, b)-Dyck path P , denote the set of labels of cells above (or below)
P by α(P ) (or β(P )). It is easily seen that α(P ) and β(P ) have the following property.

6



−14

−6

2

10

18

26

34

42

50

58

66

−19

−11

−3

5

13

21

29

37

45

53

61

−24

−16

−8

0

8

16

24

32

40

48

56

−29

−21

−13

−5

3

11

19

27

35

43

51

−34

−26

−18

−10

−2

6

14

22

30

38

46

−39

−31

−23

−15

−7

1

9

17

25

33

41

−44

−36

−28

−20

−12

−4

4

12

20

28

36

−49

−41

−33

−25

−17

−9

−1

7

15

23

31

−54

−46

−38

−30

−22

−14

−6

2

10

18

26

−59

−51

−43

−35

−27

−19

−11

−3

5

13

21

−64

−56

−48

−40

−32

−24

−16

−8

0

8

16

−69

−61

−53

−45

−37

−29

−21

−13

−5

3

11
P

anti-stitch

stitch

Figure 2.3: An (5, 8)-path P , (5, 6) is a stitch and (4, 3) is an anti-stitch.

Lemma 2.8 Let u and v be integers. If (u, v) is a stitch, then u is an end in β(P )
and v is a head in α(P ). If (u, v) is an anti-stitch, then u is an head in β(P ) and v is
an end in α(P ).

By Theorem 2.1 we have the following equivalent definition for α(P ) and β(P )

β(P ) = Z
− ∪ A(P ), (3)

α(P ) = Z
+ ∪ {0} − A(P ). (4)

Given a partition λ, we can partition the set of rows by their lengths. The hook-
lengths of the leftmost cells in rows with the same length correspond to consecutive
integers from a segment in the structure set of λ. This leads to the following lemma.

Lemma 2.9 For any partition λ, c(λ) = seg(h(λ)).

Using these properties, we establish the following connection between the number
of corners of (a, b)-core partitions and the number of stitches or anti-stitches.

Theorem 2.10 For a given path P , c(λ(P )) equals the number of anti-stitches, and
c(λ(P )) + 1 equals the number of stitches.
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Proof. Recall that A(P ) is the structure set of λ, that is, A(P ) = h(λ). Thus, by (3)
we have

h(λ) ∪ Z
− = β(P ).

On the other hand, Lemma 2.9 suggests that c(λ(P )) = seg(h(λ)). Thus the number
of corners of λ(P ) is one less than the number of segments of β(P ). Since the segment
Z
− has no head, we get that c(λ(P )) equals the number of heads of β(P ).

Given an anti-stitch (u, v), u is a head in β(P ), and v is an end in α(P ). The heads
of β(P ) are as many as the number of corners of λ(P ). So c(λ(P )) equals the number
of anti-stitches for P .

Similarly, for a stitch (u, v) which is not (-1,0), u is an end in β(P ) that is not -1,
and v is a head in α(P ) that is not 0. Either of these two objects is as many as the
number of corners of λ(P ). So c(λ(P )) + 1 equals the number of stitches.

2.3 Outer-Corners and Stitches

In this subsection we briefly explore the connection between the stitches of P and the
outer corners of the (a, b)-core λ(P ).

An outer-corner of a partition λ is a cell C outside λ’s Ferrers diagram such that
adding C to λ produces the Ferrers diagram of another partition. Outer-corners appear
in the theory of representation of symmetric group, especially the branching rule (see
[22]) and Jeu de Taquin (see [25]).

Suppose that there is at least one row of λ of length s. Then the lowest row of length
s contains a corner, and the highest row of length s is followed by an outer-corner to
the right. Since there is an extra outer-corner below the lowest row of λ, we obtain
that the number of outer-corners is always one more than the number of corners of λ.
Therefore, as a corollary of Theorem 2.10, we have the following result.

Theorem 2.11 the number of stitches of P equals the number of outer-corners of the
(a, b)-core λ(P ).

Here we also give a direct combinatorial proof of this property. Assume that a cell C
lies in the i-th row. The left-most cell of the i-th row has hooklength m = λi+(l−i). It
is easily seen that C is an outer-corner if and only if λi−1 > λi. Since the left-most cell
of the (i−1)-th row has hooklength m′ = λi−1+(l− i)+1, this inequality holds if and
only if m′ > m + 1, which is equivalent to m+ 1 /∈ H(λ). Thus, C is an outer-corner
if and only if m ∈ β(P ), and m+ 1 /∈ β(P ). Since α(P ) = Z− β(P ), we have C is an
outer-corner if and only if the pair (l, l + 1) labels a stitch.

2.4 Cyclic paths and Patterns

First we define a shifting action on lattice paths (see also [25], Section 5.3).
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Definition 2.12 The action of deleting the first step of an (a, b)-lattice path and at-
taching the step to the end of the path generates a cyclic group Ca+b. We call this
action rotation.

The cycle lemma is a powerful tool in enumerative combinatorics. Given a natural
number k > 0, a lattice path P is called k-dominating if in any prefix of P , the
number of up steps is more than k times the number of down steps. The conventional
cycle lemma states that in a sequence of steps p1, p2, . . . , pm+n, where there are m up
steps and n steps, there exists m−kn paths of the form pi, pi+1, . . . , pm+n, p1, . . . , pi−1

that are k-dominating. See [8] and [9] for more details.

In this paper we will use the following rational form of cycle lemma. It is also known
as Spitzer’s Lemma (Lemma 10.4.3 of [6]).

Lemma 2.13 (Rational cycle lemma) Let a and b be coprime positive integers.
Given a finite lattice paths L with steps x1x2 . . . xa+b, where xi ∈ {R,U}. Then the
orbit of L under the action of cyclic group Ca+b consists of a + b elements. In this
orbit, there is exactly one lattice that is a rational Dyck path.

By a pattern in a lattice path we mean a certain sequence of steps. Note that a
lattice path is always viewed as a cyclic lattice path, i.e., the last step is again followed
by the first step and a pattern can be a suffix of the path followed by a prefix of the
path. For example, the pattern Q = RRUUU appears once in the finite (3, 4)-Dyck
path UUURRRR. Now let us concern with the enumeration of any given pattern Q.

Theorem 2.14 For any given pattern Q, assume that Q contains m up steps and n
right steps, we have that Q appears

(a+ b)

(

a−m+ b− n

b− n

)

times in all (a, b)-lattice paths and

(

a−m+ b− n

b− n

)

times in all (a, b)-Dyck paths.

Proof. A cyclic (a, b)-lattice (or Dyck) paths with a high-lighted segment Q is an cyclic
(a, b)-lattice (or Dyck) paths with some steps drawn in a high-lighted color. These
steps are continous and form a pattern Q.

To enumerate the appearances of Q in all (a, b)-lattice (or Dyck) paths, we count
cyclic (a, b)-lattice (or Dyck) paths with exactly one high-lighted segment Q.

Consider (a, b)-lattice paths which starts with Q. By Definition 2.12 of Ca+b, ro-
tating these paths under the action of Ca+b produces all the high-lighted (a, b)-cyclic
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lattice paths. It implies that the number of the high-lighted (a, b)-cyclic lattice paths
can be counted by the product of the number of (a, b)-lattice paths which starts with
Q and the cardinality of the group Ca+b.

It is eaily seen that the number of (a, b)-lattice paths that begins withQ is
(

a−m+b−n

b−n

)

.
Since Ca+b is the cyclic group of order a + b, we have that the number of high-lighted
(a, b)-lattice paths is

(a+ b)

(

a−m+ b− n

b− n

)

.

By Lemma 2.13, each orbit of high-lighted (a, b)-lattice paths contains exactly one
high-lighted (a, b)-Dyck path. Since the size of an orbit is a + b, we get that the
number of high-lighted (a, b)-Dyck path is

(

a−m+b−n

b−n

)

, or equivalently, Q appears in all
(a, b)-Dyck paths

(

a−m+ b− n

b− n

)

times. This completes the proof.

2.5 The sum of corners of (a, b)-cores

To enumerate the corners of all (a, b)-cores, we introduce a special type of pattern.
Given a stitch(or an anti-stitch) with cells C0 and C1, there is a minimal lattice rect-
angle containing C0 and C1. Denote the height and width of the rectangle by h and w,
and call (h, w) the type of the stitch (or anti-stitch) (C0, C1), written as (h, w)-stitch
(or (h, w)-anti-stitch). Note that since the labels of C0 and C1 are two consecutive
integers, the type (h, w) is either (x, y) + n(a, b) or(x′, y′) + n(a, b).

A separator is a section of the finite (a, b)-path P that lies in the interior of the
minimal rectangle that contains the two cells C0 and C1 of a stitch (or an anti-stitch).
Note that any steps of P on the boundary of the rectangular area is excluded from the
separator. For an (x, y)-type stitch, the corresponding separator can be written as a
sequence of right steps R and up steps U

(s0, s1, . . . , sm−1, sm),

where y + 1 of the steps are R (including s0 and sm), and the rest of the steps are U .
Since the separator lies in the interior of a rectangle of size x by y, the number of up
steps is equal or lower than x− 1.

Now we are in a position to apply Theorem 2.14 to the enumeration of corners of
all (a, b)-cores.

Theorem 2.15 The sum of number of corners over all (a, b)-cores is represented by
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any of the following four formulae

∑

0≤t≤x

(x− t)

(

a− t+ b− y − 1

b− y − 1

)(

t+ y − 1

y − 1

)

− Cat(a, b) (5)

=
∑

x≤t≤a

(t− x)

(

a− t+ b− y − 1

b− y − 1

)(

t+ y − 1

y − 1

)

(6)

=
∑

0≤s≤y

(y − s)

(

b− s+ a− x− 1

a− x− 1

)(

s+ x− 1

x− 1

)

− Cat(a, b) (7)

=
∑

y≤s≤b

(s− y)

(

b− s+ a− x− 1

a− x− 1

)(

s+ x− 1

x− 1

)

(8)

where 0 ≤ x ≤ a and 0 ≤ y ≤ b satisfy that bx− ay = 1, x′ = a− x, y′ = b− y.

Proof. We count the corners of all (a, b)-cores by finding stitches for all paths P .
Given a stitch (C0, C1), consider the two columns in which the C0 and C1 lie. These
two columns cut out a segment of a given path P , which is an (x, y)-separator.

Assume this (x, y)-separator consists of x− t up steps and y + 1 right steps. Then
there are t stitches in total (associated with one particular path P ), each of which cut
out the same (x, y)-separator.

This separator may appear in
(

a−(x−t)+b−y−1
b−y−1

)

paths P . On the other hand, such
separators are as many as

(

x− t + y − 1

y − 1

)

.

So the total number of (x, y)-stitches is

∑

1≤t≤x

t

(

a− (x− t) + b− y − 1

b− y − 1

)(

x− t+ y − 1

y − 1

)

. (9)

Substituting t with x− t in the above formula, we get (8).

Similarly, the total number of (x′, y′)-stitches is

∑

0≤t≤x

(x− t)

(

a− t+ b− y − 1

b− y − 1

)(

t+ y − 1

y − 1

)

. (10)

Note that (the equivalence class of ) any segment-end of b(P ) corresponds to a stitch.
So we have (5). The other two formulae are similarly obtained.

Theorem 5 leads to some interesting identities involving the rational Catalan num-
bers. For instance, combining (5)-(8), we have the following identities.

Corollary 2.16 For coprime positive integers a and b, we have

Cat(a, b) =
∑

0≤t≤a

(x− t)

(

a− t+ b− y − 1

b− y − 1

)(

t+ y − 1

y − 1

)
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and

Cat(a, b) =
∑

0≤s≤b

(y − s)

(

b− s+ a− x− 1

a− x− 1

)(

s+ x− 1

x− 1

)

.

In the Catalan case, we have n ·n− (n−1) · (n+1) = 1, so x = n, y = n−1. Hence,
Corollary 2.16 reduces to the following result.

Corollary 2.17 For n ≥ 1,

Cat(n, n + 1) =
∑

0≤t≤n

(1− t)

(

n− t + n− 1

n− 1

)

.

When a = n, b = nk+1 for a fixed positive integer k, we have that x = 1 and y = k.
Thus Corollary 2.16 reduces to the following equality.

Corollary 2.18 For n ≥ 1 and k ≥ 1,

Cat(n, kn+1) =
1

nk + n+ 1

(

nk + n+ 1

n

)

=
∑

0≤t≤n

(1−t)

(

n− t + nk − k

nk − k

)(

t+ k − 1

k − 1

)

and

Cat(n, kn+ 1) =
∑

0≤s≤kn+1

(k − s)

(

kn− s+ n− 1

n− 2

)

3 (a, b)-cores with specified number of corners

3.1 Catalan case

In this subsection we focus on the Catalan case when a = n and b = n+1. Under this
assumption the separators are reduced to simpler forms. This allows us to enumerate
explicitly (n, n+ 1)-cores with specified number of corners.

Theorem 3.1 The set of (n, n+1)-cores with k corners is counted by Narayana number

N(n, k + 1) =
1

n

(

n

k + 1

)(

n

k

)

.

Proof. Given an (n, n + 1)-Dyck path L, each corner of λ(L) corresponds to two
consecutive up steps in L. Note that an (n, n + 1)-Dyck path L always ends with a
down step. So each up step is either followed by a right step and forming a peak, or
followed by another up step and forming a pair of consecutive up steps. Therefore, an
(n, n + 1)-Dyck path has k pairs of consecutive up steps if and only if it has n − k
peaks.
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Since an (n, n + 1)-Dyck path is essentially juxtaposition of a Dyck path with n
up steps and n right steps and a final right step, the number of (n, n+ 1)-Dyck paths
with n− k peaks is counted by Narayana number N(n, n− k). Note that the sequence
of Narayana number is palindromic, i.e., N(n, n − k) = N(n, k + 1). The result is
immediate.

Example 3.2 Here is a list of (n, n+ 1)-Dyck paths and (n, n+ 1)-cores for n = 3.

path URURUR UURRUR URUURR UURURR UUURRR
number of peaks 3 2 2 2 1

(n, n + 1)-core ∅ 1 2 1
2
1

5 2 1
2
1

number of corners 0 1 1 1 2

Since the number of (n, n + 1)-cores with a specified number of corners is counted
by Narayana number, we want to find out the number of (a, b)-cores with a specified
number of corners, which will be a generalization of Narayana number.

Problem 3.3 Enumerate (a, b)-cores with k corners.

3.2 Fuß-Catalan case

In combinatorics and statistics, the Fuß-Catalan numbers are numbers of the form

Cm(p, r) =
r

mp + r

(

mp+ r

m

)

.

They are named after N.I. Fuß and E.C. Catalan. This notion appeared in Fuß’s work
on dissection of a convex (kn + 2)-gon into (k + 2)-gons in the 18th century. See
Armstrong’s thesis [3] for more details.

It can be readily checked that

Cm(p, r) = r Cat(mp + r −m,m).

In this subsection we study corners in (n, kn + 1)-cores. These core partitions are in
bijection with (n, kn+ 1) rational Dyck paths.

Recall that in an infinite (n, kn + 1)-table, the cell (i, j) is labeled Ai,j = n(kn +
1)− i(kn + 1)− jn. So given cell (i, j) labeled m, cell (i− 1, j + k) is labeled m+ 1.

Example 3.4 In the case of n = k = 3, we have the following (3, 10)-table

17 14 11 8 5 2 -1 -4 -7 -10
7 4 1 -2 -5 -8 -11 -14 -17 -20
-3 -6 -9 -12 -15 -18 -21 -24 -27 -30

.
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Thus we get that in the (n, kn+1)-case, a corner corresponds to k consecutive right
steps, except the last k steps in the (n, kn + 1)-path, which corresponds to the stitch
(−1, 0). Similarly, in the (n, kn−1) case, each k+1 consecutive right steps corresponds
to an anti-stitch, therefore a corner.

Problem 3.5 Find an analog of Narayana number to enumerate (n, kn+1)-cores (or
(n, kn− 1)-cores) with specified number of corners.

3.3 Multi-Catalan Case

Fix positive integer n and k ≥ 2, Amdeberhan and Leven [1] gave a bijection between
(n, n+1, . . . , n+k)-cores and a certain family of paths called (n, k)-generalized Dyck
paths. Recall that an (n, k)-generalized Dyck path is a path staying above the line
y = x and consists of

• vertical steps of length k (which we call a k-up step),

• horizontal steps of length k (which we call a k-down step),

• diagonal steps (i, i) for 1 ≤ i ≤ k − 1 (which we call an (i, i)-diagonal step).

The above figure (which is excerpt from [1]) shows the correspondence between
(10, 3)-generalized Dyck paths and (10, 11, 12, 13)-cores. These numbers 10, 11, 12, 13
can be easily read off the figure as those numbers missing between the tail of the first
diagonal and the head of the second diagonal.

P

1

2

3

4

5

6

7

8

9

14

15

16

17

18

19

27

28

29

Figure 3.4: Fig.8 of [1]. The thick red path is a (10, 3)-generalized Dyck paths P , and
the dashed line (partly under P ) is its peaked form.
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Note that in the case k = 1, we can still generate (n, n + 1) cores from (n, 1)-Dyck
paths, which are the usual Dyck paths of length 2n, but the following arguments fall
apart.

Now we briefly describe how to obtain the corresponding (n, . . . , n + k)-core from
an (n, k)-generalized Dyck paths. Given an (n, k)-generalize Dyck path P , change each
of the (i, i) diagonal paths into i up steps followed by i right steps and obtain a new
path Q. Call Q a peaked (n, k)-generalize Dyck path, or the peaked form of P .

The numbers in cells below the peaked path Q are the structure numbers of the
corresponding core partition.

To reverse this process, find the the cells labeled with the structure numbers H(λ)
of the given core partition λ, and find the lattice path that covers most cells but not
the cells with labels outside H(λ). This lattice path is the peaked path of the desired
(n, k)-generalized Dyck path. Then flatten the peaks at height km+ j, where m is an
integer and 1 ≤ j ≤ k− 1, to a plateau at height km. (The height of a lattice point on
a Dyck paths is understood to be the number of up steps to the left of the point minus
the number of right steps to its right.) The resulting path is the (n, k)-generalized
Dyck path.

Note that if we add the (n, k)-generalized Dyck paths with the missing peaks, which
are shown as dotted lines in the above figure, then we obtain exactly those 2n-Dyck
paths whose valleys have height divisible by k. This can be verified by checking that
end points of k-right steps or i-diagonal paths of (n, k)-generalized Dyck paths end at
a height divisible by k.

We have the following partial result concerning the number of corners of (n, . . . , n+
k)-core partitions.

Theorem 3.6 Given an (n, k)-generalized Dyck paths and the corresponding (n, . . . , n+
k)-core partition, there is a bijection that sends each corner of the core partition to ei-
ther an (i, i) diagonal steps with i ≥ 2 or a k-down step.

Proof. Consider an (n, k)-generalized Dyck paths P and its peaked form Q. Let λ be
the partition that corresponds to P under Amdeberhan and Leven’s bijection. Recall
from Lemma 2.9 that the corners of λ are in bijection with the segments of the structure
numbers of λ. Note that the structure numbers of λ are the labels of the cells under
Q, and the segments can be divided into the following two categories.

Some segments consist of labels of cells under P (e.g., the diagonal 16,17,18 in the
figure). The head of such a segment labels a cell that contains the starting point of a
k-up step, and the end of the segment labels a cell that contains the ending point of a
k-down step. Therefore such a segment corresponds to a k-down step. Conversely, we
obtain a segment from a k-down step by taking the labels of the consecutive cells to
the south-west of the end point of the k-down step.

The other segments consists of labels of cells between P and Q (e.g. the single 14
in the left figure). Each of these segments lie in a triangular area between P and Q,
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and the edge that lies in P a vertical (i, i)-diagonal step with i ≥ 2. Conversely, given
an (i, i)-diagonal step, we may find the triangle bounded by this diagonal step and P ,
and the desired segment consists of the labels of the cells that lie in this triangle.

Thus we have proved that each corner of λ is in bijection with either a k-down step
or an (i, i)-diagonal step.

The above theorem is only a first step towards understanding the distribution of the
number of corners of multi-cores. Therefore we raise the following open problem.

Problem 3.7 Enumerate (n, . . . , n + k)-cores with j corners. Equivalently, count
(n, k)-generalized Dyck paths without (1, 1)-diagonals by the number of steps.

The following theorem gives the distribution of the number of corners for (n, n +
1, n+ 2)-cores.

Theorem 3.8 The number of (n, n + 1, n+ 2)-cores with j corners is

(

n

2j

)

Cj, (1)

where Cn = 1
n+1

(

2n
n

)

is the n-th Catalan number.

Proof. Suppose there are n − 2j (1, 1)-diagonal steps in the (n, 2)-generalized Dyck
paths. Each of these paths corresponds to a core partition with j corners. Then there
are j 2-up steps and j 2-down steps. So the number of such (n, 2)-generalized Dyck
paths is

(

n

2j

)

Cj.

Corollary 3.9 The total number of corners of all (n, n+ 1, n+ 2)-cores is

n
∑

j=0

j

(

n

2j

)

Cj. (2)
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