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Abstract.

The Turán inequalities and the higher order Turán inequalities arise
in the study of Maclaurin coefficients of the real entire functions in the
Laguerre-Pólya class. A sequence {an}n≥0 of real numbers is said to satisfy
the Turán inequalities or to be log-concave, if for n ≥ 1, a2n− an−1an+1 ≥ 0.
It is said to satisfy the higher order Turán inequalities if for n ≥ 1,
4(a2n − an−1an+1)(a

2
n+1 − anan+2) − (anan+1 − an−1an+2)

2 ≥ 0. For the
partition function p(n), DeSalvo and Pak showed that for n > 25, the se-
quence {p(n)}n>25 is log-concave, that is, p(n)2 − p(n − 1)p(n + 1) > 0 for
n > 25. It was conjectured by the first named author that p(n) satisfies
the higher order Turán inequalities for n ≥ 95. In this paper, we prove this
conjecture by using the Hardy-Ramanujan-Rademacher formula to derive an
upper bound and a lower bound for p(n+1)p(n−1)/p(n)2. Consequently, for
n ≥ 95, the Jensen polynomials p(n−1) + 3p(n)x+ 3p(n+ 1)x2 +p(n+ 2)x3

have only distinct real zeros. We conjecture that for any positive integer
m ≥ 4 there exists an integer N(m) such that for n ≥ N(m), the Jensen
polynomial associated with the sequence (p(n), p(n+ 1), · · · , p(n+m)) has
only real zeros. This conjecture was independently posed by Ono.
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1 Introduction

The objective of this paper is to prove the higher order Turán inequalities
for the partition function p(n) when n ≥ 95, as conjectured in [6]. The
Turán inequalities and the higher order Turán inequalities are related to
the Laguerre-Pólya class of real entire functions [14, 44]. In this paper, a
sequence {an}n≥0 always means a sequence of real numbers, and it is said
to satisfy the Turán inequalities or to be log-concave, if

a2n − an−1an+1 ≥ 0, (1.1)

for n ≥ 1. The inequalities (1.1) are also called the Newton inequalities
[8, 11, 35, 46]. We say that a sequence {an}n≥0 satisfies the higher order
Turán inequalities or cubic Newton inequalities if for n ≥ 1,

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 ≥ 0, (1.2)

see [14, 35, 41]. It is worth mentioning the double Turán inequalities and
the higher order iterated Turán inequalities introduced by Csordas [10], see
also [24]. Given a sequence {an}n≥0, for n ≥ 1, let

T1(n) = a2n − an−1an+1,

and for k ≥ 2 and n ≥ k, let

Tk(n) = Tk−1(n)2 − Tk−1(n− 1)Tk−1(n+ 1).

A sequence {an}n≥0 is said to satisfy the double Turán inequalities if T1(n) ≥
0 for n ≥ 1 and T2(n) ≥ 0 for n ≥ 2. In general, {an}n≥0 is said to satisfy
the l-th order iterated Turán inequalities if for 1 ≤ k ≤ l and n ≥ k, we
have Tk(n) ≥ 0. It should be noted that the above notion of higher order
iterated Turán inequalities coincides with the notion of the higher order log-
concavity introduced by Moll [34], see also [3, 4]. In the terminology of Moll,
a sequence {an}n≥0 satisfying the l-th order iterated Turán inequalities is
called l-log-concave. A sequence {an}n≥0 is said to be infinitely log-concave
if it is l-log-concave for any l ≥ 1.

It was conjectured by Boros and Moll [3] that for each n ≥ 0, the se-
quence of binomial coefficients {

(
n
k

)
}nk=0 is infinitely log-concave. A stronger

conjecture was proposed independently by Stanley (see [4]), Fisk [17] and
McNamara and Sagan [32], which states that if a0+a1x+· · ·+anxn is a real-
rooted polynomial with nonnegative coefficients, then so is the polynomial
b0 + b1x+ · · ·+ bnx

n, where b0 = a0, bk = a2k − ak+1ak−1 for 1 ≤ k ≤ n− 1,
and bn = an. This conjecture has been proved by Brändén [4].

A real entire function

ψ(x) =
∞∑
k=0

γk
xk

k!
(1.3)
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is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈ LP, if it can be
represented in the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(1 + x/xk) e
−x/xk ,

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and∑
x−2k < ∞. These functions are the only ones which are uniform lim-

its of polynomials whose zeros are real. We refer to [29] and [42] for the
background on the theory of the LP class.

Jensen [22] proved that a real entire function ψ(x) belongs to the LP
class if and only if for any positive integer m, the m-th associated Jensen
polynomial

gm(x) =

m∑
k=0

(
m

k

)
γkx

k (1.4)

has only real zeros. More properties of the Jensen polynomials can be found
in [8, 11, 12].

Pólya and Schur [39] also obtained the above result based on multiplier
sequences of the second kind. A real sequence {γk}k≥0 is called a multiplier
sequence of the second kind if for any nonnegative integer m and every real
polynomial

∑m
k=0 akx

k with only real zeros of the same sign, the polyno-
mial

∑m
k=0 akγkx

k has only real zeros. Pólya and Schur [39] proved that
each multiplier sequence of the second kind satisfies the Turán inequalities.
Moreover, they showed that a real entire function ψ(x) belongs to the LP
class if and only if its Maclaurin coefficient sequence is a multiplier sequence
of the second kind. This implies that the Maclaurin coefficients of ψ(x) in
the LP class satisfy the Turán inequalities

γ2k − γk−1γk+1 ≥ 0 (1.5)

for k ≥ 1. In fact, (1.5) is a consequence of another property of the LP class
due to Pólya and Schur [39]: Let ψ(x) be a real entire function in the LP
class. For any nonnegative integer n, the n-th derivative ψ(n)(x)of ψ(x) also
belongs to the LP class. It is readily seen that the m-th Jensen polynomial
associated with ψ(n)(x) is

gm,n(x) =

m∑
k=0

(
m

k

)
γk+nx

k, (1.6)

and hence it has only real zeros for any nonnegative integers m and n. In
particular, taking m = 2, for any nonnegative integer n, the real-rootedness
of g2,n(x) implies the inequality (1.5), that is, the discriminant 4(γ2n+1 −
γnγn+2) is nonnegative.

Dimitrov [14] observed that for a real entire function ψ(x) in the LP
class, the Maclaurin coefficients satisfy the higher order Turán inequalities

4(γ2k − γk−1γk+1)(γ
2
k+1 − γkγk+2)− (γkγk+1 − γk−1γk+2)

2 ≥ 0 (1.7)
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for k ≥ 1. This fact follows from a theorem of Mař́ık [31] stating that if a
real polynomial

m∑
k=0

(
m

k

)
akx

k (1.8)

of degree m ≥ 3 has only real zeros, then a0, a1, . . . , am satisfy the higher
order Turán inequalities.

As noted in [6], for k = 1, the polynomial in (1.7) coincides with an
invariant

I(a0, a1, a2, a3) = 3a21a
2
2 − 4a31a3 − 4a0a

3
2 − a20a23 + 6a0a1a2a3

of the cubic binary form

a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3. (1.9)

In other words, the above invariant I(a0, a1, a2, a3) can be rewritten as

I(a0, a1, a2, a3) = 4(a21 − a0a2)(a22 − a1a3)− (a1a2 − a0a3)2. (1.10)

We refer to Hilbert [20], Kung and Rota [25] and Sturmfels [43] for
the background on the invariant theory of binary forms. Notice that
27I(a0, a1, a2, a3) is the discriminant of the cubic polynomial a3x

3 +3a2x
2 +

3a1x + a0 [33]. For a real cubic polynomial, the discriminant is positive if
and only if the three zeros are real and distinct. In general, for a real poly-
nomial of degree greater than or equal to four, the discriminant is positive if
and only if the number of non-real roots is multiple of four. More properties
about discriminant can be found in [21] and [33].

Recall that for a real entire function ψ(x) in the LP class, its n-th
derivative ψ(n)(x) is also a real entire function in the LP class. Thus the real-
rootedness of the cubic Jensen polynomial g3,n(x) associated with ψ(n)(x)
implies the higher order Turán inequalities (1.7) of Dimitrov, that is, the
discriminant 27I(γn, γn+1, γn+2, γn+3) is nonnegative.

Let f(x) be a real polynomial with degree m. If x1, x2, . . . , xm are the
roots of f(x), let Sk =

∑m
i=1 x

k
i denote the k-th Newton sums of f(x) for

k ≥ 1 and S0 = m. Explicit expressions for these power sums via the
coefficients of f(x) are given by the Waring formulas [30]. The Hermite
matrix of f(x) is a symmetric m×m matrix, defined as

Hm(f(x)) = (Si+j−2)i,j=1,2,···,m.

It is a Hankel matrix whose entries are polynomials in the coefficients of
f(x). We write Dk(f(x)) for the leading principal minor of Hm(f(x)) of
order k. A theorem of Hermite [37] says that all the zeros of f(x) are real
if and only if all the leading principal minors of Hm(f(x)) are nonnegative.
By this theorem, one can state that much more (higher Turán) inequalities
would need to be true in order for higher degree Jensen polynomials to have
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only real zeros. Considering m = 4, for example, the Jensen polynomials
g4,k(x), that is, for k ≥ 0,

g4,k(x) = γk + 4γk+1x+ 6γk+2x
2 + 4γk+3x

3 + γk+4x
4.

It can be calculated that for k ≥ 0,

D1(g4,k(x)) = 4, D2(g4,k(x)) =
48
(
γ2k+3 − γk+2γk+4

)
γ2k+4

,

D3(g4,k(x)) =
192A

γ4k+4

, det(H4(g4,k(x))) =
256(B3 − 27C2)

γ6k+4

,

where

A = 6γ2k+2γ
2
k+3 + γkγk+2γ

2
k+4 + 14γk+1γk+2γk+3γk+4 − 9γk+4γ

3
k+2

−8γk+1γ
3
k+3 − 3γ2k+1γ

2
k+4 − γkγk+4γ

2
k+3,

B = 3γ2k+2 − 4γk+1γk+3 + γkγk+4,

C = γ3k+2 − 2γk+1γk+2γk+3 − γkγk+2γk+4 + γkγ
2
k+3 + γ2k+1γk+4.

Notice that B,C and B3 − 27C2 are actually the invariants of the quartic
binary form with the same coefficients as g4,k(x) [16, 20] and 256(B3−27C2)
is the discriminant of g4,k(x). By Hermite’s theorem, one of the necessary
and sufficient conditions for g4,k(x) to eventually have only real zeros is that
all the leading principal minors of H4(g4,k(x)) are nonnegative, that is, for
k ≥ 0,

γ2k+3 − γk+2γk+4 ≥ 0, A ≥ 0, B3 − 27C2 ≥ 0. (1.11)

Real entire functions in the LP class with nonnegative Maclaurin coef-
ficients also received much attention. Aissen, Schoenberg and Whitney [1]
proved that if ψ(x) is a real entire function in the LP class with nonnega-
tive Maclaurin coefficients, then the sequence {γk/k! } associated with ψ(x)
forms a Pólya frequency sequence. An infinite sequence {an}n≥0 of nonnega-
tive numbers is called a Pólya frequency sequence (or a PF -sequence) if the
matrix (ai−j)i,j≥0 is a totally positive matrix, where an = 0 if n < 0, that
is, all minors of (ai−j)i,j≥0 have nonnegative determinants. More properties
of totally positive matrices and PF -sequences can be found in [9, 23].

The LP class is closely related to the Riemann hypothesis. Let ζ denote
the Riemann zeta-function and Γ be the gamma-function. The Riemann
ξ-function is defined by

ξ(iz) =
1

2

(
z2 − 1

4

)
π−z/2−1/4Γ

(
z

2
+

1

4

)
ζ

(
z +

1

2

)
, (1.12)
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see, for example, Boas [2]. It is well known that the Riemann ξ-function
is an entire function of order one and can be represented in the following
form[38]:

1

8
ξ
(x

2

)
=
∞∑
k=0

(−1)k b̂k
x2k

(2k)!
, k = 0, 1, 2, · · · (1.13)

where

b̂k =

∫ ∞
0

t2tΦ(t)dt and Φ(t) =

∞∑
n=0

(2n4π2e9t − 3n2πe5t)exp(−n2πe4t).

Setting z = −x2 in (1.13), we are led to an entire function of order 1/2,
denoted ξ1(z), that is,

ξ1(z) =
∞∑
k=0

γ̂k
zk

k!
, (1.14)

where

γ̂k =
k!

(2k)!
b̂k, k = 0, 1, 2, · · · .

Thus, the Riemann hypothesis holds if and only if ξ1(z) belongs to the LP
class. We note that ξ1(z) has no positive zeros since γ̂k is positive for k ≥ 0.
For a real entire function ψ(x) as defined in (1.3), it is well known that ψ(x)
belongs to LP if and only if the Jensen polynomials gm,n(x) (1.6) have only
real zeros [12, 37]. Let ĝm,n(x) denote the Jensen polynomials associated
with ξ1(z), that is,

ĝm,n(x) =
m∑
k=0

(
m

k

)
γ̂k+nx

k, m, n = 0, 1, 2, · · · ,

then Riemann hypothesis is equivalent to the statement that ĝm,n(x) has
only real zeros for m ≥ 1 and n ≥ 0. For m = 2 and n ≥ 0, ĝ2,n(x) has only
real zeros if and only if the discriminant of ĝ2,n(x) is nonnegative, that is,
for k ≥ 1,

γ̂2k − γ̂k−1γ̂k+1 ≥ 0. (1.15)

The above inequalities (1.15) were proved by Csordas, Norfolk and Varga
[11]. This shows that for each n ≥ 0, ĝ2,n(x) has only real zeros. For m = 3
and n ≥ 0, the real-rootness of ĝ3,n(x) can be deduced from the higher order
Turán inequalities (1.7), that is, for k ≥ 1,

4(γ̂2k − γ̂k−1γ̂k+1)(γ̂
2
k+1 − γ̂kγ̂k+2)− (γ̂kγ̂k+1 − γ̂k−1γ̂k+2)

2 ≥ 0,

as proved by Dimitrov and Lucas [15]. Recently, Griffin, Ono, Rolen, and
Zagier [18] proved that for each m ≥ 1, ĝm,n(x) has only real zeros with at
most finitely many exceptions n.

Let us now turn to the partition function. A partition of a positive
integer n is a nonincreasing sequence (λ1, λ2, . . . , λr) of positive integers such
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that λ1+λ2+ · · ·+λr = n. Let p(n) denote the number of partitions of n. A
sequence {ak}k≥0 satisfying the Turán inequalities, that is, a2k−ak−1ak+1 ≥ 0
for k ≥ 1, is also called log-concave. DeSalvo and Pak [13] proved the
log-concavity of the partition function for n > 25 as well as the following
inequality as conjectured in [5]: For n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
. (1.16)

DaSalvo and Pak also conjectured that for n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
. (1.17)

Chen, Wang and Xie [7] gave an affirmative answer to this conjecture.

It was conjectured in [6] that for large n, the partition function p(n)
satisfies many inequalities pertaining to invariants of a binary form. Here
we mention two of them.

Conjecture 1.1. For n ≥ 95, the higher order Turán inequalities

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 ≥ 0 (1.18)

hold for an = p(n).

The following conjecture is a higher order analogue of (1.17).

Conjecture 1.2. Let

un =
p(n+ 1)p(n− 1)

p(n)2
. (1.19)

For n ≥ 2,

4 (1− un) (1− un+1) <

(
1 +

π√
24n3/2

)
(1− unun+1)

2 .

The objective of this paper is to prove Conjecture 1.1. In fact, we shall
prove the following equivalent form.

Theorem 1.3. Let un be defined as in (1.19). For n ≥ 95,

4(1− un)(1− un+1)− (1− unun+1)
2 > 0. (1.20)

The above theorem can be restated as follows.

Theorem 1.4. For any n ≥ 95, the cubic polynomial

p(n− 1) + 3p(n)x+ 3p(n+ 1)x2 + p(n+ 2)x3

has three distinct real zeros.
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In general, we propose the following conjecture.

Conjecture 1.5. For any positive integer m ≥ 4, there exists a positive
integer N(m) such that for any n ≥ N(m), the Jensen polynomial

m∑
k=0

(
m

k

)
p(k + n)xk

has only real zeros.

The above conjecture was independently proposed by Ono [36]. For
fixed degree m and large n, recently, Griffin, Ono, Rolen, and Zagier [18]
proved that this conjecture is true. In fact, they showed that for suitable
entire functions and certain sequences, the associated Jensen polynomials
have only real and distinct zeros with at most finite exceptions. To be more
precisely, they defined the normalized Jensen polynomials by changing the
variable of Jensen polynomials and proved that for large n, the normalized
Jensen polynomials were small perturbations of Hermite polynomialsHm(x).
Since all the roots of Hm(x) are real and distinct [45], the real parts of the
roots of the normalized Jensen polynomials are distinct for large n, which
implies that all the roots are real and distinct. According to the definition
of normalized Jensen polynomials, it is easy to see that for large n, all the
roots of such Jensen polynomials are also real and distinct.

Assume that N(m) is the minimum value in Conjecture 1.5. Larson and
Wagner [26] showed that N(3) = 94, N(4) = 206, and N(5) = 381, and
that N(m) ≤ (3m)24m(50m)3m

2
. They also gave a proof of Conjecture 1.2.

2 Bounding un

In this section, we give an upper bound and a lower bound for

un =
p(n+ 1)p(n− 1)

p(n)2
,

as defined in (1.19). DeSalvo and Pak [13] proved that for n > 25,

1− 1

n+ 1
< un < 1.

On the other hand, Chen, Wang and Xie [7] showed that for n ≥ 45,

1− π√
24n3/2 + π

< un.

Nevertheless, the above bounds for un are not sharp enough for the purpose
of proving Theorem 1.3. To state our bounds for un, we adopt the following
notation as used in [28]:

µ(n) =
π

6

√
24n− 1. (2.1)
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For convenience, let

x = µ(n− 1), y = µ(n), z = µ(n+ 1), w = µ(n+ 2). (2.2)

Define

f(n) = ex−2y+z
(
x10 − x9 − 1

)
y24
(
z10 − z9 − 1

)
x12 (y10 − y9 + 1)2 z12

, (2.3)

g(n) = ex−2y+z
(
x10 − x9 + 1

)
y24
(
z10 − z9 + 1

)
x12 (y10 − y9 − 1)2 z12

. (2.4)

Then we have the following bounds for un.

Theorem 2.1. For n ≥ 1207,

f(n) < un < g(n). (2.5)

In order to give a proof of Theorem 2.1, we need the following upper
bound and lower bound for p(n).

Lemma 2.2. Let

B1(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
,

B2(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
,

then for n ≥ 1206,
B1(n) < p(n) < B2(n). (2.6)

The proof of Lemma 2.2 relies on the Hardy-Ramanujan-Rademacher
formula [19, 40] for p(n) as well as Lehmer’s error bound for the remainder
of this formula. The Hardy-Ramanujan-Rademacher formula reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]

+R2(n,N), (2.7)

where Ak(n) is an arithmetic function and R2(n,N) is the remainder term,
see, for example, Rademacher [40]. Lehmer [27, 28] gave the following error
bound:

|R2(n,N)|< π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−
(

N

µ(n)

)2
]
, (2.8)
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which is valid for all positive integers n and N .

Proof of Lemma 2.2. Consider the Hardy-Ramanujan-Rademacher formula
(2.7) for N = 2, and note that A1(n) = 1 and A2(n) = (−1)n for any positive
integer n. Hence (2.7) can be rewritten as

p(n) =

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+ T (n)

)
, (2.9)

where

T (n) =
(−1)n√

2

((
1− 2

µ(n)

)
e−µ(n)/2 +

(
1 +

2

µ(n)

)
e−3µ(n)/2

)

+

(
1 +

1

µ(n)

)
e−2µ(n) + (24n− 1)R2(n, 2)/

√
12eµ(n). (2.10)

In order to prove (2.6), we proceed to use Lehmer’s error bound in (2.8) to
show that for n > 1520,

|T (n)|< 1

µ(n)10
. (2.11)

Let us begin with the first three terms in (2.10). Evidently, for n ≥ 1,

0 <
1

µ(n)
<

1

2
,

so that (
1− 2

µ(n)

)
e−µ(n)/2 < e−µ(n)/2, (2.12)

(
1 +

2

µ(n)

)
e−3µ(n)/2 < 2e−3µ(n)/2, (2.13)

(
1 +

1

µ(n)

)
e−2µ(n) < 2e−2µ(n). (2.14)

As for the last term in (2.10), we claim that for n > 350,∣∣∣∣(24n− 1)R2(n, 2)√
12eµ(n)

∣∣∣∣ < e−µ(n)/2. (2.15)

Applying (2.8) with N = 2, we obtain that∣∣∣∣(24n− 1)R2(n, 2)√
12eµ(n)

∣∣∣∣ =

∣∣∣∣36µ(n)2R2(n, 2)√
12π2eµ(n)

∣∣∣∣
<
µ(n)2e−µ(n)

22/3
+

12
3
√

2e−µ(n)/2

µ(n)
− 12

3
√

2e−3µ(n)/2

µ(n)
− 12

3
√

2e−µ(n)
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<
µ(n)2e−µ(n)

22/3
+

12
3
√

2e−µ(n)/2

µ(n)

<
24e−µ(n)/2

µ(n)
+ µ(n)2e−µ(n). (2.16)

To bound the first term in (2.16), we find that for n > 350,

24e−µ(n)/2

µ(n)
<
e−µ(n)/2

2
, (2.17)

which simplifies to

µ(n) =
π

6

√
24n− 1 > 48, (2.18)

which is true for n > 350. Concerning the second term in (2.16), it will be
shown that for n > 22,

µ(n)2e−µ(n) <
e−µ(n)/2

2
, (2.19)

which can be rewritten as

eµ(n)/4

µ(n)/4
> 4
√

2. (2.20)

Let

F (t) =
et

t
. (2.21)

Since F ′(t) = et(t− 1)/t2 > 0 for t > 1, F (t) is increasing for t > 1. Thus,

F

(
µ(n)

4

)
=
eµ(n)/4

µ(n)/4
> F (3) =

e3

3
> 4
√

2.

Here we have used the fact that for n > 22, µ(n)/4 > 3. This proves (2.20).
Applying the estimates (2.17) and (2.19) to (2.16), we reach (2.15).

Taking all the above estimates into account, we deduce that for n > 350,

|T (n)|< 6e−µ(n)/2. (2.22)

To obtain (2.11), we have only to show that for n > 1520,

6e−µ(n)/2 <
1

µ(n)10
, (2.23)

which can be recast as
eµ(n)/20

µ(n)/20
> 20

10
√

6. (2.24)
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Since µ(n)/20 > 5 for n > 1520, by the monotone property of F (t), we have
that for n > 1520,

F

(
µ(n)

20

)
=
eµ(n)/20

µ(n)/20
> F (5) =

e5

5
> 20

10
√

6,

as asserted by (2.24). Thus (2.11) follows from (2.22) and (2.23). In other
words, for n > 1520,

− 1

µ(n)10
< T (n) <

1

µ(n)10
. (2.25)

Substituting (2.9) into (2.25), we see that (2.6) holds for n > 1520. It is
routine to check that (2.6) is true for 1206 ≤ n ≤ 1520, and hence the proof
is complete.

We are now ready to prove Theorem 2.1 by Lemma 2.2.

Proof of Theorem 2.1. Since B1(n) and B2(n) are all positive for n ≥ 1,
using the bounds for p(n) in (2.6), we find that for n ≥ 1207,

B1(n− 1)B1(n+ 1)

B2(n)2
<
p(n− 1)p(n+ 1)

p(n)2
<
B2(n− 1)B2(n+ 1)

B1(n)2
.

This proves (2.5).

3 An inequality on f(n) and g(n)

In this section, we establish an inequality between f(n) and g(n+ 1) which
will be used in the proof of Theorem 1.3.

Theorem 3.1. For n ≥ 2,

g(n+ 1) < f(n) +
110

µ(n− 1)5
. (3.1)

Proof. Let µ(n) be defined as in (2.1), that is,

µ(n) =
π
√

24n− 1

6
,

and let

x = µ(n− 1), y = µ(n), z = µ(n+ 1), w = µ(n+ 2),

as defined in (2.2).

Since x ≥ 0 for n ≥ 2, we proceed to show that for n ≥ 2,

f(n)x5 − g(n+ 1)x5 + 110 > 0.

12



Let

α(t) = t10 − t9 + 1, β(t) = t10 − t9 − 1. (3.2)

By the definitions of f(n) and g(n) as given in (2.3) and (2.4), we obtain
that

f(n)x5 − g(n+ 1)x5 + 110 =
−ew+y−2zt1 + ez+x−2yt2 + 110t3

t3
, (3.3)

where

t1 = x12z36α(y)3α(w), (3.4)

t2 = y36w12β(x)β(z)3, (3.5)

t3 = x7y12z12w12α(y)2β(z)2. (3.6)

Since t3 > 0 for n ≥ 2, (3.1) is equivalent to

− ew+y−2zt1 + ez+x−2yt2 + 110t3 > 0, (3.7)

for n ≥ 2. To verify (3.7), we shall estimate t1, t2, t3, e
w+y−2z and ex−2y+z

in terms of x. Noting that for n ≥ 2,

y =

√
x2 +

2π2

3
, z =

√
x2 +

4π2

3
, w =

√
x2 + 2π2, (3.8)

we have

y = x+
π2

3x
− π4

18x3
+

π6

54x5
− 5π8

648x7
+

7π10

1944x9
− 7π12

3888x11
+ o

(
1

x12

)
,

z = x+
2π2

3x
− 2π4

9x3
+

4π6

27x5
− 10π8

81x7
+

28π10

243x9
− 28π12

243x11
+ o

(
1

x12

)
,

w = x+
π2

x
− π4

2x3
+

π6

2x5
− 5π8

8x7
+

7π10

8x9
− 21π12

16x11
+ o

(
1

x12

)
.

It is readily checked that for x ≥ 4,

y1 < y < y2, (3.9)

z1 < z < z2, (3.10)

w1 < w < w2, (3.11)

where

y1 = x+
π2

3x
− π4

18x3
+

π6

54x5
− 5π8

648x7
+

7π10

1944x9
− 7π12

3888x11
, (3.12)
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y2 = x+
π2

3x
− π4

18x3
+

π6

54x5
− 5π8

648x7
+

7π10

1944x9
, (3.13)

z1 = x+
2π2

3x
− 2π4

9x3
+

4π6

27x5
− 10π8

81x7
+

28π10

243x9
− 28π12

243x11
, (3.14)

z2 = x+
2π2

3x
− 2π4

9x3
+

4π6

27x5
− 10π8

81x7
+

28π10

243x9
, (3.15)

w1 = x+
π2

x
− π4

2x3
+

π6

2x5
− 5π8

8x7
+

7π10

8x9
− 21π12

16x11
, (3.16)

w2 = x+
π2

x
− π4

2x3
+

π6

2x5
− 5π8

8x7
+

7π10

8x9
. (3.17)

With these bounds of y, z and w in (3.9), (3.10) and (3.11), we are now
in a position to estimate t1, t2, t3, e

w+y−2z and ex−2y+z in terms of x.

First, we consider t1, t2, and t3. By the definition of α(t),

α(w) = w10 − w9 + 1.

Noting that w9 = (x2 + 2π2)4
√
x2 + 2π2, which involves a radical, to give

a feasible estimate for w9 without a radical, we may make use of (3.11) to
deduce that for x ≥ 4,

w1w
8 < w9 < w2w

8.

Let
η1 = w10 − w1w

8 + 1,

so that for x ≥ 4,
α(w) < η1. (3.18)

Similarly, set

η2 =y30 − 3y1y
28 + 3y28 − y1y26 + 3y20 − 6y1y

18 + 3y18 + 3y10 − 3y1y
8 + 1,

η3 =z30 − 3z2z
28 + 3z28 − z2z26 − 3z20 + 6z1z

18 − 3z18 + 3z10 − 3z2z
8 − 1,

η4 =y20 − 2y2y
18 + y18 + 2y10 − 2y2y

8 + 1,

η5 =z20 − 2z2z
18 + z18 − 2z10 + 2z1z

8 + 1.

Then we have for x ≥ 4,

α(y)3 < η2, β(z)3 > η3, α(y)2 > η4, β(z)2 > η5. (3.19)

Employing the relations in (3.18) and (3.19), we deduce that for x ≥ 4,

t1 = x12z36α(y)3α(w) < x12z36η1η2, (3.20)
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t2 = (x10 − x9 − 1)y36w12β(z)3 > (x10 − x9 − 1)y36w12η3, (3.21)

t3 = x7y12z12w12α(y)2β(z)2 > x7y12z12w12η4η5. (3.22)

We continue to estimate ew+y−2z and ez+x−2y. Applying (3.9), (3.10)
and (3.11) to w + y − 2z, we see that for x ≥ 4,

w + y − 2z < w2 + y2 − 2z1, (3.23)

which implies that
ew+y−2z < ew2+y2−2z1 . (3.24)

In order to give a feasible upper bound for ew+y−2z, we define

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
, (3.25)

and it can be proved that for t < 0,

et < Φ(t). (3.26)

Note that

w2 + y2 − 2z1 = −π
4(108x8 − 216π2x6 + 375π4x4 − 630π6x2 − 224π8)

972x11
< 0

holds for x ≥ 5, since
108x8 − 216π2x6 > 0

for x >
√

2π ≈ 4.443, and

375π4x4 − 630π6x2 − 224π8 > 0

for x > π
5

√√
2443/3 + 21 ≈ 4.422. Thus, by (3.26), we obtain that for

x ≥ 5,

ew2+y2−2z1 < Φ(w2 + y2 − 2z1). (3.27)

Combining (3.24) and (3.27) yields that for x ≥ 5,

ew+y−2z < Φ(w2 + y2 − 2z1). (3.28)

Similarly, applying (3.9), (3.10) and (3.11) to z + x − 2y, we find that
for x ≥ 4,

z1 + x− 2y2 < z + x− 2y, (3.29)

so that
ez+x−2y > ez1+x−2y2 . (3.30)

Define

φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
+

t7

5040
. (3.31)
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It is true that for t < 0,
φ(t) < et. (3.32)

We now give a lower bound for ez1+x−2y2 . Since

z + x− 2y =

√
x2 +

4π2

3
+ x− 2

√
x2 +

2π2

3

=
−
(√

x2 + 4π2/3− x
)2

√
x2 + 4π2/3 + x+ 2

√
x2 + 2π2/3

,

which is negative for n ≥ 2, by (3.29), we deduce that for x ≥ 4,

z1 + x− 2y2 < 0. (3.33)

Thus, applying (3.32) to (3.33) gives us that for x ≥ 4,

ez1+x−2y2 > φ(z1 + x− 2y2). (3.34)

Combining (3.30) and (3.34), we find that for x ≥ 4,

ez+x−2y > φ(z1 + x− 2y2). (3.35)

Using the above bounds for t1, t2, t3, e
w+z−2y and ez+x−2y, we obtain

that for x ≥ 5,

− ew+y−2zt1 + ez+x−2yt2 + 110t3

> −Φ(w2 + y2 − 2z1)x
12z36η1η2 + φ(z1 + x− 2y2)(x

10 − x9 − 1)y36w12η3

+ 110x7y12z12w12η4η5. (3.36)

To verify (3.7), we show that for x ≥ 358,

− Φ(w2 + y2 − 2z1)x
12z36η1η2 + φ(z1 + x− 2y2)(x

10 − x9 − 1)y36w12η3

+ 110x7y12z12w12η4η5 > 0. (3.37)

Substituting y, z and w with
√
x2 + 2π2/3,

√
x2 + 4π2/3 and

√
x2 + 2π2 re-

spectively, the left hand side of the inequality (3.37) can be expressed as
H(x)/G(x), where

H(x) =

171∑
k=0

akx
k

and

G(x) = 39686201656473354776757087428535162639482880x88.
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Here we just list the values of a169, a170 and a171:

a169 = 734929660305062125495501619046947456286720

×
(
35640 + 261360π2 − 194π6 − 249π8

)
,

a170 = 5879437282440497003964012952375579650293760
(
7π6 − 2970

)
,

a171 = 4409577961830372752973009714281684737720320
(
990− π6

)
,

which are all positive.

Given that G(x) is always positive, we aim to prove that H(x) > 0.
Apparently, x ≥ 2 for n ≥ 2 and hence

H(x) ≥
170∑
k=0

−|ak|xk + a171x
171. (3.38)

Moreover, numerical evidence indicates that for any 0 ≤ k ≤ 168,

− |ak|xk > −a169x169 (3.39)

holds for x ≥ 181. It follows that for x ≥ 181,

170∑
k=0

−|ak|xk + a171x
171 > (−170a169 − a170x+ a171x

2)x169. (3.40)

Combining (3.38) and (3.40), we obtain that for x ≥ 181,

H(x) > (−170a169 − a170x+ a171x
2)x169. (3.41)

Thus, H(x) is positive provided

− 170a169 − a170x+ a171x
2 > 0, (3.42)

which is true if

x >

√
a2170 + 680a169a171 + a170

2a171
≈ 357.867.

Hence we conclude that H(x) is positive when x ≥ 358. This proves (3.37).

Combining (3.36) and (3.37), we find that for x ≥ 358, or equivalently,
for n ≥ 19480, (3.7) holds, that is,

− ew+y−2zt1 + ez+x−2yt2 + 110t3 > 0. (3.43)

For 2 ≤ n ≤ 19480, (3.43) can be directly verified. This completes the proof.
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4 An inequality on un and f(n)

In this section, we present an inequality on un and f(n) that is also needed
in the proof of Theorem 1.3.

Theorem 4.1. Let un be defined as (1.19), that is,

un =
p(n+ 1)p(n− 1)

p(n)2
.

For 0 < t < 1, let

Q(t) =
3t+ 2

√
(1− t)3 − 2

t2
. (4.1)

Then for n ≥ 85,

f(n) +
110

µ(n− 1)5
< Q(un). (4.2)

The proof of this theorem is based on the following Lemma, which gives
an upper bound of f(n). Recall that

f(n) = ex−2y+z
(
x10 − x9 − 1

)
y24
(
z10 − z9 − 1

)
x12 (y10 − y9 + 1)2 z12

,

where x, y, z, w are defined in (2.2).

Lemma 4.2. Let Φ(t) be defined as in (3.25), that is,

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
,

and let y1, y2, z1 and z2 be defined as in (3.12), (3.13), (3.14), and (3.15).
For n ≥ 4, we have

f(n) <
Φ(x− 2y1 + z2)y

24(x10 − x9 − 1)
(
z10 − z8z1 − 1

)
x12z12(y20 − 2y18y2 + y18 + 2y10 − 2y8y2 + 1)

< 1. (4.3)

Proof. To prove (4.3), we proceed to give estimates of the factors(
y10 − y9 + 1

)2
, z10 − z9 − 1 and ex−2y+z that appear in f(n). The third

inequality in (3.19) gives an estimate of
(
y10 − y9 + 1

)2
, that is, for x ≥ 4,(

y10 − y9 + 1
)2
> y20 − 2y2y

18 + y18 + 2y10 − 2y2y
8 + 1. (4.4)

Using the bounds for y and z as given in (3.9) and (3.10), we are led to the
following estimates for z10 − z9 − 1 and ex−2y+z when x ≥ 4,

z10 − z9 − 1 < z10 − z8z1 − 1, (4.5)

ex−2y+z < ex−2y1+z2 . (4.6)
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To give an upper bound for ex−2y1+z2 , write

x− 2y1 + z2 = −
π4
(
216x8 − 216π2x6 + 210π4x4 − 210π6x2 − 7π8

)
1944x11

. (4.7)

For x > π, we have
216x8 − 216π2x6 > 0,

and for x > π
√

(
√

17/15 + 1)/2 ≈ 3.192, we have

210π4x4 − 210π6x2 − 7π8 > 0.

Therefore, it follows from (4.7) that for x ≥ 4,

x− 2y1 + z2 < 0,

which, together with (3.26), yields that for x ≥ 4,

ex−2y1+z2 < Φ(x− 2y1 + z2). (4.8)

Combining (4.6) and (4.8), we find that for x ≥ 4,

ex−2y+z < Φ(x− 2y1 + z2). (4.9)

By means of the estimates in (4.4), (4.5) and (4.9), we arrive at the first
inequality in (4.3).

To prove the second inequality in (4.3), recall the expressions of y and z
in (3.8), namely,

y =

√
x2 +

2π2

3
, z =

√
x2 +

4π2

3
.

It can be checked that

Φ(x− 2y1 + z2)y
24(x10 − x9 − 1)

(
z10 − z8z1 − 1

)
=
I(x)

x77
,

and
x12z12(y20 − 2y18y2 + y18 + 2y10 − 2y8y2 + 1) = N(x),

where I(x) is a polynomial in x of degree 121 and N(x) is a polynomial in
x of degree 44. Thus we may assume that

Φ(x− 2y1 + z2)y
24(x10 − x9 − 1)

(
z10 − z8z1 − 1

)
x12z12(y20 − 2y18y2 + y18 + 2y10 − 2y8y2 + 1)

=
K(x)

J(x)
,

where K(x) and J(x) are both polynomials of degree 121. Write

K(x) =
121∑
k=0

bkx
k, J(x) =

121∑
k=0

ckx
k. (4.10)
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Here are the values of bk and ck for 116 ≤ k ≤ 121:

b116 = −1398983398232765780459520π4
(
5181 + 41π2

)
,

b117 = 25181701168189784048271360π2
(
21 + 151π2

)
,

b118 = −4196950194698297341378560π2
(
258 + π2

)
,

c116 = −7197769583907579940464230400π4,

c117 = 75545103504569352144814080π2
(
7 + 50π2

)
,

c118 = −1082813150232160714075668480π2,

b119 = c119 = 12590850584094892024135680
(
3 + 44π2

)
,

b120 = c120 = −75545103504569352144814080,

b121 = c121 = 37772551752284676072407040.

We claim that for x ≥ 135,
J(x) > 0, (4.11)

and
J(x)−K(x) > 0. (4.12)

It can be shown that for 0 ≤ k ≤ 118,

− |ck|xk > −c119x119, (4.13)

when

x > π

√
6 (7 + 50π2)

3 + 44π2
≈ 8.232.

It follows that for x ≥ 9,

J(x) > (−120c119 + c120x+ c121x
2)x119. (4.14)

Since
− 120c119 + c120x+ c121x

2 > 0 (4.15)

when
x > 1 +

√
11 (11 + 160π2) ≈ 133.255,

we find that J(x) > 0 for x ≥ 134.

Similarly, to prove (4.12), we observe that for 0 ≤ k ≤ 115,

− |ck − bk|xk > −(c116 − b116)x116 (4.16)

when

x >
1

2
π

√
5616 + 3127π2

108 + 123π2
≈ 8.232.
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Let
C(x) = −117(c116 − b116) + (c117 − b117)x+ (c118 − b118)x2.

Then (4.16) implies that for x ≥ 9,

J(x)−K(x) =
118∑
k=0

(ck − bk)x118 > C(x)x116. (4.17)

Given that C(x) is positive when x ≥ 135, we arrive at (4.12).

Combining (4.11) and (4.12), we deduce that the second inequality (4.3)
is valid for x ≥ 135, or equivalently, for n ≥ 2771. The case for 4 ≤ n ≤ 2771
can be directly verified, and hence the proof is complete.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that the theorem states that for n ≥ 85,

f(n) +
110

µ(n− 1)5
< Q(un). (4.18)

It can be checked that (4.18) is true for 85 ≤ n ≤ 35456. We now show that
(4.18) is true for n ≥ 35457. Recall that

Q(t) =
3t+ 2

√
(1− t)3 − 2

t2
,

and so

Q′(t) =
t
(√

1− t− 3
)
− 4
√

1− t+ 4

t3
. (4.19)

Setting t = 1− τ , we get

Q′(t) =
1

(
√
τ + 1)

3 ,

thus (4.19) can be rewritten as

Q′(t) =
1(√

1− t+ 1
)3 . (4.20)

As Q′(t) is positive for 0 < t < 1, Q(t) is increasing for 0 < t < 1. By
Theorem 2.1, we know that f(n) < un for n ≥ 1207, so that for n ≥ 1207,

Q(f(n)) < Q(un). (4.21)

Thus (4.18) is justified if we can prove that for n ≥ 35457,

f(n) +
110

µ(n− 1)5
< Q(f(n)). (4.22)

Let

ψ(t) = Q(t)− t =
3t+ 2

√
(1− t)3 − t3 − 2

t2
. (4.23)
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In this notation, (4.22) says that for n ≥ 35457,

ψ(f(n)) >
110

µ(n− 1)5
. (4.24)

To prove the above inequality, we shall use the polynomials J(x) and
K(x) as given by (4.10). More specifically,

K(x) =
121∑
k=0

bkx
k, J(x) =

121∑
k=0

ckx
k.

Note that

ψ′(t) = − t
3 + 4(1− t)3/2 + 3t+ 3t

√
1− t− 4

t3
. (4.25)

Setting t = 1− τ , (4.25) becomes

ψ′(t) = −
√
τ (τ + 3

√
τ + 3)

(
√
τ + 1)

3 ,

leading to the expression

ψ′(t) = −
√

1− t
(
3
√

1− t+ 4− t
)(√

1− t+ 1
)3 ,

which is negative for 0 < t < 1. Thus, ψ(t) is decreasing for 0 < t < 1.

It can be seen from Lemma 4.2 that 0 < f(n) < K(x)/J(x) < 1 for
n ≥ 4, so that for n ≥ 35457,

ψ(f(n)) > ψ

(
K(x)

J(x)

)
. (4.26)

Because of (4.26), to verify (4.24), it is sufficient to show that for n ≥ 35457,

ψ

(
K(x)

J(x)

)
>

110

µ(n− 1)5
. (4.27)

This goal can be achieved by finding an estimate for ψ (K(x)/J(x)). We
first derive the following range of K(x)/J(x) for x ≥ 134,

√
5− 1

2
<
K(x)

J(x)
< 1. (4.28)

By Lemma (4.2), we know that K(x)/J(x) < 1 for x ≥ 4 and J(x) > 0 for
x ≥ 134. To justify (4.28), we only need to show that for x ≥ 134,

2K(x)− (
√

5− 1)J(x) > 0. (4.29)

Note that
b119 = c119, b120 = c120, b121 = c121,
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and it can be shown that for 0 ≤ k ≤ 118,

− |2bk − (
√

5− 1)ck|xk > −(3−
√

5)c119x
119 (4.30)

when

x > π

√
π2
(√

5 + 303
)

+ 42

3 + 44π2
≈ 8.303.

It follows that for x ≥ 9,

2K(x)− (
√

5− 1)J(x) > (3−
√

5)(−120c119 + c120x+ c121x
2)x119. (4.31)

Since
−120c119 + c120x+ c121x

2 > 0

for x >
√

11 (11 + 160π2) + 1 ≈ 133.255, we arrive at (4.29), and so (4.28)
is proved.

The above range of K(x)/J(x) enables us to bound ψ (K(x)/J(x)). Re-
calling that

ψ(t) =
3t+ 2

√
(1− t)3 − t3 − 2

t2
,

we obtain that

ψ(t)− (1− t)
3
2 = − t

3 + t2(1− t)
3
2 − 2(1− t)

3
2 − 3t+ 2

t2
. (4.32)

Set t = 1− τ to get

ψ(t)− (1− t)
3
2 = −τ

3
2 (τ +

√
τ − 1)

(
√
τ + 1)

2 ,

Thus

ψ(t)− (1− t)
3
2 =

(1− t)
3
2

(
t−
√

1− t
)(√

1− t+ 1
)2

=
(1− t)

3
2

(
t+

√
5+1
2

)(
t−

√
5−1
2

)
(√

1− t+ 1
)2

(
√

1− t+ t)
,

which is positive for
√
5−1
2 < t < 1, and hence, for

√
5−1
2 < t < 1 we have

ψ(t) > (1− t)
3
2 . (4.33)

In view of (4.28) and (4.33), we infer that for x ≥ 134,

ψ

(
K(x)

J(x)

)
>

(
1− K(x)

J(x)

) 3
2

. (4.34)
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We continue to show that for x ≥ 483,(
1− K(x)

J(x)

) 3
2

>
110

x5
. (4.35)

Since J(x) > 0 for x ≥ 134, the above inequality can be reformulated as
follows. For x ≥ 483,

x10(J(x)−K(x))3 − 1102J(x)3 > 0. (4.36)

The left hand side of (4.36) is a polynomial of degree 364, so that we may
write

x10(J(x)−K(x))3 − 1102J(x)3 =
364∑
k=0

γkx
k. (4.37)

The values of γ364, γ363 and γ362 are given below:

γ364 = 272310553π12,

γ363 = −273310753
(
490050 + π12

)
,

γ362 = 272310553
(
52925400 + 144π12 + 41π14

)
.

For 0 ≤ k ≤ 361, we find that

− |γk|xk > −γ362x362, (4.38)

provided that

x >
793881000 + 2328717600π2 + 3996π12 + 4392π14 + π16

317552400 + 864π12 + 246π14
≈ 20.126.

Thus, for x ≥ 21,

x10(J(x)−K(x))3 − 1102J(x)3 > (−363γ362 + γ363x+ γ364x
2)x362,

which is positive, since

−363γ362 + γ363x+ γ364x
2 > 0

as long as

x >

√
1452γ362γ364 + γ2363 − γ363

2γ364
≈ 482.959.

Hence (4.35) is confirmed. Combining (4.34) and (4.35), we are led to (4.27).
The proof is therefore complete.
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5 Proof of Theorem 1.3

In this section, we present a proof of Theorem 1.3 based on the intermediate
inequalities in the previous sections. The theorem states that for n ≥ 95.

4(1− un)(1− un+1)− (1− unun+1)
2 > 0, (5.1)

where

un =
p(n+ 1)p(n− 1)

p(n)2
.

Proof of Theorem 1.3. We shall make use of the fact that un < 1 for n ≥ 26,
as proved by DeSalvo and Pak [13]. In order to prove (5.1), we define F (t)
to be a function in t:

F (t) = 4(1− un)(1− t)− (1− unt)2. (5.2)

Then (5.1) says that for n ≥ 95,

F (un+1) > 0. (5.3)

For 95 ≤ n ≤ 1206, (5.3) can be directly checked. We proceed to prove that
(5.3) holds for n ≥ 1207. Let Q(t) be as defined in (4.1), that is,

Q(t) =
3t+ 2

√
(1− t)3 − 2

t2
.

We claim that F (t) > 0 for un < t < Q(un). Rewrite F (t) as

F (t) = −u2nt2 + (6un − 4)t− 4un + 3.

The equation F (t) = 0 has two solutions:

P (un) =
3un − 2

√
(1− un)3 − 2

u2n
, Q(un) =

3un + 2
√

(1− un)3 − 2

u2n
,

so that F (t) > 0 for P (un) < t < Q(un). Furthermore, we see that

F (un) = (1− un)3(un + 3) > 0,

which implies P (un) < un < Q(un). Therefore, F (t) > 0 for un < t <
Q(un), as claimed.

To verify (5.3), it remains to show that for n ≥ 1207,

un < un+1 < Q(un). (5.4)

Recall that un < un+1 holds for n ≥ 116, as proved by Chen, Wang and
Xie [7]. By Theorem 2.1, we know that un+1 < g(n+ 1) for n ≥ 1207. But
Theorem 3.1 asserts that for n ≥ 2,

g(n+ 1) < f(n) +
110

µ(n− 1)5
.
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Furthermore, Theorem 4.1 states that for n ≥ 2,

f(n) +
110

µ(n− 1)5
< Q(un).

Thus we conclude that un+1 < Q(un) for n ≥ 1207, as claimed.

Acknowledgments. We wish to thank Ken Ono and the referee for in-
sightful comments and suggestions.
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