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Abstract

Given two graphs H1 and H2, a graph is (H1, H2)-free if it contains
no induced subgraph isomorphic to H1 or H2. Let Pt and Ct be the
path and the cycle on t vertices, respectively. A banner is the graph
obtained from a C4 by adding a new vertex and making it adjacent to
exactly one vertex of the C4. In this paper, we show that there are
finitely many k-critical (P6, banner)-free graphs for k = 4 and k = 5.
For k = 4, we characterize all such graphs. Our results generalize
previous results on k-critical (P6, C4)-free graphs for k = 4 and k = 5.

1 Introduction

All graphs in this paper are finite and simple. A k-coloring of a graph G
is a function φ : V (G) −→ {1, . . . , k} such that φ(u) 6= φ(v) whenever u
and v are adjacent in G. Equivalently, a k-coloring of G can be viewed as
a partition of V (G) into k stable sets. We say that G is k-colorable if it
admits a k-coloring. The chromatic number of G, denoted by χ(G), is the
minimum number k such that G is k-colorable.

A graph G is k-chromatic if χ(G) = k. We say that G is k-critical if it
is k-chromatic and χ(G − e) < χ(G) for any edge e ∈ E(G). For instance,
K2 is the only 2-critical graph and odd cycles are the only 3-critical graphs.
A graph is critical if it is k-critical for some integer k ≥ 1. Critical graphs
were first defined and studied by Dirac [8, 9, 10] in the early 1950s, and then
by Gallai and Ore [11, 12, 20] among many others, and more recently by
Kostochka and Yancey [18].

∗College of Computer Science, Nankai University, Tianjin 300071, China.
†College of Computer Science, Nankai University, Tianjin 300071, China.
‡Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China.

1



A natural question about critical graphs is that can we characterize all
k-critical graphs? We refer to this question as the characterization problem.
The answer is yes for k = 1, 2, 3. For k ≥ 4 the answer is unknown and the
problem seems intractable even for k = 4 since there are many different ways
one can construct 4-critical graphs. Therefore, researchers have investigated
the characterization problem when graphs belong to some special graph
class. To properly present known results in this respect, we first state the
definition of critical graphs with respect to a graph class given in [3]. Let H
be a set of graphs. A graph G is H-free if it does not contain any member
in H as an induced subgraph. In case that H consists of a single graph H
or two graphs H1 and H2, we simply write H-free and (H1, H2)-free instead
of {H}-free and {H1, H2}-free, respectively. A graph G is called k-critical
H-free if G is H-free and k-chromatic, and any proper H-free subgraph G′ of
G has χ(G′) < k. Note that when H = ∅ this definition coincides with that
of the usual k-critical graphs. A graph G is k-vertex-critical if χ(G) = k and
χ(G−v) < k for any v ∈ V (G). For a set H of graphs and a graph G, we say
that G is k-vertex-critical H-free if it is k-vertex-critical andH-free. Observe
that a k-critical H-free graph is k-vertex-critical H-free. The importance of
k-critical H-free graphs is manifested in the following theorem.

Theorem 1 (Folklore). Let G be H-free and k ≥ 3 be an integer. Then G
is (k − 1)-colorable if and only if it contains no k-critical H-free graphs as
a subgraph.

Let Kn be the complete graph on n vertices. Let Pt and Ct denote the
path and the cycle on t vertices, respectively. The answer to the charac-
terization problem with respect to graph classes is known for many graph
classes. For example, the only k-critical perfect graph (see the definition in
section 2) is the complete graph Kk, and there are no 5-critical planar graphs
by the Four Color Theorem. Another class of graph that has been exten-
sively studied recently is the class of Pt-free graphs. In [3], it was shown that
there are exactly six 4-critical P5-free graphs. This result was later general-
ized to P6-free graphs [5]: there are 24 4-critical P6-free graphs. In the same
paper, an infinite family of 4-critical P7-free graphs was constructed. Ran-
derath and Schiermeyer [21] have shown that the only 4-critical (P6, C3)-free
graph is the well-known Grötzsch graph. Hell and Huang [14] proved that
there are four 4-critical (P6, C4)-free graphs (and they are (a)-(d) in Fig-
ure 1). The result in [14] was generalized by Goedgebeur and Schaudt [13]
to (Pt, C4)-free graphs for t = 7 and t = 8 in which they proved that there
are 17 4-critical (P7, C4)-free graphs and there are 94 4-critical (P8, C4)-free
graphs. In the same paper, Goedgebeur and Schaudt [13] also determined
all 6 4-critical (P7, C5)-free graphs. It was also known [15] that there are
eight 5-critical (P5, C5)-free graphs.
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Another line of research is to determine whether the set of all k-critical
H-free graphs is finite. We refer to this question as the finiteness problem. It
is not hard to see that the set of k-critical H-free graphs is finite if and only
if the set of k-vertex-critical H-free graphs is finite (see [15] for a proof).
The finiteness problem is meaningful because the finiteness of the set has a
fundamental algorithmic implication.

Theorem 2 (Folklore). If the set of all k-critical H-free graphs is finite,
then there is a polynomial-time algorithm to determine whether an H-free
graph is (k − 1)-colorable.

For two graphs G and H, we use G+H to denote the disjoint union of
G and H. For a positive integer r, we use rG to denote the disjoint union
of r copies of G. For s, r ≥ 1, let Kr,s be the complete bipartite graph
with one part of size r and the other part of size s. For the class of H-free
graphs, it was shown in [4, 5] that the set of 4-critical H-free graphs is finite
if and only if H is a subgraph of P6, 2P3 or P4 + rP1 for some r ≥ 1. The
finiteness was also shown for many other classes, e.g., for (P5, P5)-free graphs
[7], (P6, C4)-free graphs [14], (Pt,Ks,r)-free graphs [17] for any t, s, r ≥ 1.

Our Contributions. A banner is the graph obtained from a C4 by adding
a new vertex and making it adjacent to exactly one vertex of the C4. In
this paper, we show that there are finitely many k-critical (P6, banner)-free
graphs for k = 4 and k = 5. For k = 4, we characterize all such graphs.
The results generalize the previous results on k-critical (P6, C4)-free graphs
[14, 16] for k = 4, 5. We remark that the result for k = 4 (Theorem 4)
is in fact implied by the main result of [5]. In [5], a complete list of 80
4-vertex-critical P6-free graphs is given with the aid of a computer program.
One can filter all graphs in the list that are not banner-free and thus obtain
a complete list of all 4-vertex-critical (P6, banner)-free graphs. By testing
whether each of these graphs is 4-critical (P6, banner)-free, one can deter-
mine all 4-critical (P6, banner)-free graphs. Here we give an independent
proof that is computer-free.

The remainder of the paper is organized as follows. We present some
preliminaries in section 2 and give structural properties around an induced
C5 in a (P6, banner)-free graph in section 3. We then show that there are
finitely many 4-critical and 5-critical (P6, banner)-free graphs in section 4
and section 5, respectively. We conclude our paper in section 6.
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2 Preliminaries

For general graph theory notation we follow [1]. The complement of a graph
G is denoted by G. For k ≥ 4, an induced cycle of length k is also called a k-
hole. A k-hole is an odd hole (respectively even hole ) if k is odd (respectively
even). A k-antihole is the complement of a k-hole. Odd and even antiholes
are defined analogously.

Let G = (V,E) be a graph. The neighborhood of a vertex v, denoted
by NG(v), is the set of neighbors of v. For a set X ⊆ V (G), let NG(X) =⋃

v∈X NG(v) \ X and NG[X] = N(X) ∪ X. The degree of v, denoted by
dG(v), is equal to |NG(v)|. We shall omit the subscript G when the context
is clear. The minimum degree of G over all vertices in G is denoted by
δ(G). For x ∈ V and S ⊆ V , we denote by NS(x) the set of neighbors of
x that are in S, i.e., NS(x) = NG(x) ∩ S. For X,Y ⊆ V , we say that X is
complete (resp. anticomplete) to Y if every vertex in X is adjacent (resp.
nonadjacent) to every vertex in Y . A vertex subset S ⊆ V is stable if no
two vertices in S are adjacent. A clique is the complement of a stable set.
A vertex subset K ⊆ V is a clique cutset if G − K has more connected
components than G and K is a clique. A vertex is universal in G if it is
adjacent to all other vertices in G. For S ⊆ V , the subgraph induced by S
is denoted by G[S]. We say that a vertex w distinguishes two vertices u and
v if w is adjacent to exactly one of u and v. Two nonadjacent vertices u and
v are said to be comparable if N(u) ⊆ N(v) or N(v) ⊆ N(u).

The following lemma is well-known in the study of k-critical graphs.

Lemma 1 (Folklore). Let G be a k-critical graph. Then the following holds:
(i) δ(G) ≥ k − 1; (ii) G contains no clique cutsets; (iii) G contains no pair
of comparable vertices.

The clique number of G, denoted by ω(G), is the size of a largest clique
in G. A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of
G. Another result we use is the well-known Strong Perfect Graph Theorem.

Theorem 3 (The Strong Perfect Graph Theorem [6]). A graph is perfect if
and only if it does not contain any odd hole or odd antihole as an induced
subgraph.
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3 Structure Around a 5-Hole

Let G = (V,E) be a graph and H be an induced subgraph of G. We partition
V \ V (H) into subsets with respect to H as follows: for any X ⊆ V (H),
we denote by S(X) the set of vertices in V \ V (H) that have X as their
neighborhood among V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.
For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that
have exactly j neighbors in V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X).

We say that a vertex in Sj is a j-vertex.

Let G be a (P6, banner)-free graph and C = 1, 2, 3, 4, 5 be an induced
C5 in G. We partition V \ C with respect to C as above. All indices below
are modulo five. Clearly, S({i, i + 2}) = S({i − 2, i, i + 2}) = ∅ since G
is banner-free. In the following, we shall write S(i, i + 2) for S({i, i + 2}),
S(i− 2, i, i+ 2) for S({i− 2, i, i+ 2}), etc. We now prove a number of useful
properties of S(X) using the fact that G is (P6, banner)-free. All properties
are proved for i = 1 due to symmetry.

(1) S(i− 1, i, i+ 1) and S(i− 1, i− 2, i+ 2, i+ 1) are cliques.

If S(5, 1, 2) contains two nonadjacent vertices x and y, then {x, y, 5, 2, 3}
induces a banner. Similarly, if S(2, 3, 4, 5) contains two nonadjacent
vertices x and y, then {x, y, 5, 1, 3} induces a banner.

(2) S(i) is complete to S(i + 2) and anticomplete to S(i + 1). Moreover,
if neither S(i) nor S(i+ 2) is empty then both sets are cliques.

Let x ∈ S(1), y ∈ S(2) and z ∈ S(3). If xz /∈ E, then x, 1, 5, 4, 3, z
induces a P6. If xy ∈ E, then {x, y, 1, 2, 3} induces a banner. This
proves the first part of the claim. If z, z′ ∈ S(3) are not adjacent, then
{x, z, z′, 1, 3} induces a banner.

(3) S(i, i+ 1) is complete to S(i+ 1, i+ 2). Moreover, if neither S(i, i+ 1)
nor S(i+ 1, i+ 2) is empty then both sets are cliques.

Let x ∈ S(1, 2) and y ∈ S(2, 3). If xy /∈ E, then x, 1, 5, 4, 3, y induces
a P6. If y, y′ ∈ S(2, 3) are not adjacent, then {y, y′, x, 1, 3} induces a
banner.

(4) If x ∈ S(i− 2, i− 1) and y ∈ S(i+ 1, i+ 2) are adjacent, then x and y
are universal vertices in S(i− 2, i− 1) and S(i+ 1, i+ 2), respectively.

If z ∈ S(4, 5) is not adjacent to x, then either {z, x, y, 5, 3} induces a
banner or z, 4, x, y, 2, 1 induces a P6 depending on whether zy ∈ E.
This shows that x is universal in S(4, 5). By symmetry, y is universal
in S(2, 3).
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(5) S(i) is anticomplete to S2 \ S(i − 2, i + 2). Moreover, if a vertex in
S(i−2, i+2) has a neighbor in S(i) then it is universal in S(i−2, i+2).

Let x ∈ S(1). If x is adjacent to y ∈ S(1, 2), then x, y, 2, 3, 4, 5 induces
a P6. If x is adjacent to y ∈ S(2, 3), then {x, y, 5, 1, 2} induces a
banner. This proves the first part of the claim. The proof of the
second part is similar to (4).

(6) S(i) is anticomplete to S(i+ 1, i+ 2, i+ 3).

If x ∈ S(1) and y ∈ S(2, 3, 4) are adjacent, then {x, y, 5, 1, 2} induces
a banner.

(7) S(i− 2, i+ 2) is anticomplete to S(i− 1, i, i+ 1).

If x ∈ S(5, 1, 2) and y ∈ S(3, 4) are adjacent, then {x, y, 5, 2, 3} induces
a banner.

(8) Either S(i) or S(i + 1, i + 2) is empty. By symmetry, either S(i) or
S(i− 1, i− 2) is empty.

If x ∈ S(1) and y ∈ S(2, 3), then xy /∈ E by (5). So, x, 1, 5, 4, 3, y
induces a P6.

(9) If none of S(i− 1, i), S(i, i+ 1) or S(i+ 2, i− 2) is empty, then S(i−
2, i+ 2) is complete to S(i− 1, i) ∪ S(i, i+ 1).

Let x ∈ S(5, 1), y ∈ S(1, 2) and z ∈ S(3, 4). Note that xy ∈ E by (3).
If xz /∈ E, then either z, 4, 5, x, y, 2 induces a P6 or {x, y, z, 2, 3} induces
a banner depending on whether zy ∈ E. By symmetry, zy ∈ E. Since
the argument works for every edge xy between S(5, 1) and S(1, 2), the
claim follows.

(10) If both S(i− 1) and S(i+ 1) are nonempty, then S2 = ∅, and if both
S(i) and S(i+ 1) are nonempty, then S2 = S(i, i+ 1).

Let x ∈ S(5) and y ∈ S(2). By (9), S(5, 1) = S(1, 2) = S(3, 4) = ∅.
If S(2, 3) contains a vertex z, then z is not adjacent to y but adjacent
to x by (5) and (2). This implies that z, 2, y, x, 5, 4 induces a P6. So,
S(2, 3) = ∅ and by symmetry S(4, 5) = ∅. This proves the first part of
the claim. The second part follows directly from (9).

(11) Let x ∈ S(i− 1, i, i+ 1). If both S(i+ 1, i+ 2) and S(i− 2, i− 1) are
nonempty, then x is either complete or anticomplete to S(i−2, i−1)∪
S(i+ 1, i+ 2). If x is complete to S(i− 2, i− 1)∪ S(i+ 1, i+ 2), both
S(i+ 1, i+ 2) and S(i− 2, i− 1) are cliques.
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Suppose that y ∈ S(2, 3) and z ∈ S(4, 5). Assume that xy ∈ E. If
xz /∈ E, then either 1, x, y, 3, 4, z induces a P6 or {x, y, z, 3, 4} induces
a banner depending on whether yz ∈ E. This shows that x is either
complete or anticomplete to each pair {y, z} of vertices where y ∈
S(2, 3) and z ∈ S(4, 5). This proves the first part of the claim. The
second part of the claim follows from the fact that G is banner-free.

(12) If S(i) is not anticomplete to S(i− 2, i+ 2), then S1 = S(i).

Let x ∈ S(1) have a neighbor in y ∈ S(3, 4). By (9), S(2) = S(5) = ∅.
If S(3) contains a vertex z, then z is adjacent to x but not to y by
(2) and (5). Then {x, y, z, 1, 3} induces a banner. This shows that
S(3) = ∅. By symmetry, S(4) = ∅.

(13) S(C \ {i}) is complete to S(i− 1) ∪ S(i) ∪ S(i+ 1) and anticomplete
to S(i− 2) ∪ S(i+ 2).

Let x ∈ S(C \ {1}). If x is not adjacent to a vertex y ∈ S(5) ∪ S(1) ∪
S(2), then {x, y, 5, 1, 2} induces a banner. Similarly, if x is adjacent
to a vertex y ∈ S(3) ∪ S(4), then {x, y, 5, 1, 2} induces a banner.

(14) S(C \{i}) is complete to S(i−2, i−1)∪S(i+1, i+2) and anticomplete
to S2 \ (S(i− 2, i− 1) ∪ S(i+ 1, i+ 2)).

Let x ∈ S(C\{1}). If x is not adjacent to a vertex y ∈ S(2, 3)∪S(4, 5),
then {x, y, 5, 1, 2} induces a banner. This proves that S(C \ {1}) is
complete to S(2, 3)∪S(4, 5). Suppose that x is adjacent to y ∈ (3, 4)∪
S(1, 2)∪S(5, 1). By symmetry, we may assume that y ∈ (3, 4)∪S(1, 2).
If y ∈ S(3, 4), then {x, y, 5, 1, 2} induces a banner, and if y ∈ S(1, 2),
then {x, y, 5, 1, 3} induces a banner. This proves that S(C \ {1}) is
anticomplete to (3, 4) ∪ S(1, 2) ∪ S(5, 1).

(15) S(C \ {i}) is complete to S(i+ 1, i+ 2, i+ 3).

If x ∈ S(C \{1}) and y ∈ S(2, 3, 4) are not adjacent, then {x, y, 5, 1, 2}
induces a banner.

(16) Let x, y ∈ S5 with xy /∈ E. Then any vertex in S0 is either complete
or anticomplete to {x, y}, any vertex in S1 ∪ S2 is complete to {x, y},
and any vertex in S3 ∪ S4 is adjacent to at least one of x and y.

Let t ∈ S0 ∪ S1 ∪ S2 ∪ S3 ∪ S4. If t ∈ S0 and t is adjacent to exactly
one of x and y, then {t, x, y, 1, 3} induces a banner. This proves the
first claim.

Assume that t ∈ S1 ∪ S2 ∪ S3 ∪ S4. Since t is adjacent to at least one
but not all vertices on C, there exists a vertex i ∈ C such that t is
adjacent to i but not to i+ 2. If t is adjacent to neither x nor y, then
{t, i, i+ 2, x, y} induces a banner. This proves the third claim.
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If t ∈ S1 ∪ S2, there exists a vertex j ∈ C such that t is adjacent to
neither j nor j + 2. If t is adjacent to exactly one of x and y, then
{t, j, j + 2, x, y} induces a banner. This proves the second claim.

4 4-Critical Graphs

In this section we determine all 4-critical (P6, banner)-free graphs. Let F4

be the set of graphs shown in Figure 1.

(a) K4. (b) W5. (c) The Hajós graph. (d) F .

Figure 1: All 4-critical (P6, banner)-free graphs.

Theorem 4. A graph is 4-critical (P6, banner)-free if and only if it belongs
to F4.

Proof. It is straightforward to verify that all graphs in F4 are 4-critical
(P6, banner)-free. Let G be a 4-critical (P6, banner)-free graph. We show
that G ∈ F4. If G contains any member in F4 as a subgraph, then G is
isomorphic to this subgraph by the definition of k-critical graphs and we
are done. Hence, we assume in the following that G contains no subgraph
isomorphic to a member in F4. We show that this is impossible.

Note first that C7 contains the Hajós graph as a subgraph, and so G
is C7-free. Since G is (C7,K4)-free, it contains an induced C = C5 =
1, 2, 3, 4, 5. For otherwise G is perfect by Theorem 3 and hence 3-colorable.
This contradicts that G is 4-chromatic. We partition V (G) with respect to
C. Since G contains no W5, it follows that S5 = ∅. Since G contains no
subgraph isomorphic to the Hajós graph, there are at most two nonempty
S(i − 1, i, i + 1) and S(j − 1, j, j + 1) with |i − j| = 1. Moreover, |S(i −
1, i, i+ 1)| ≤ 1 since G is K4-free, and so |S3| ≤ 2.

Claim 1. S0 = ∅.
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Proof of Claim 1. Suppose that S0 6= ∅. Let A be an arbitrary connected
component of S0. Since G is (P6, banner)-free, A is anticomplete to S1 ∪
S2 ∪S4. Moreover, since G is P6-free, any vertex in S3 is either complete or
anticomplete to A. Since G has no clique cutset by Lemma 1, it follows that
S3 contains two vertices and are complete to A. Without loss of generality,
assume that S(5, 1, 2) = {x} and S(1, 2, 3) = {y}. Note that xy /∈ E since G
is K4-free. If A contains two nonadjacent vertices a and b, then {a, b, x, y, 3}
induces a banner. So, A is a clique.

If S0 has a second connected component B, then the above argument
shows that {x, y} is complete to B. Then {a, b, x, y, 3} induces a banner
where a ∈ A and b ∈ B. This shows that S0 = A. Since G is K4-free,
|S0| ≤ 2. Let a ∈ A and b be a possible neighbor of a in A. Note that N(a) ⊆
{b, x, y}. Since G is 4-critical (P6, banner)-free, G−a admits a 3-coloring φ.
Observe that x and y are colored alike under φ because {x, y, 1, 2} induces
a diamond. Hence, φ can be extended to a 3-coloring of G by assigning a
color from {1, 2, 3} that does not appear on N(a). This contradicts that G
is 4-chromatic.

Claim 2. S4 = ∅.

Proof of Claim 2. Suppose that S4 6= ∅. Let x ∈ S(C \ {1}). Since G
contains no subgraph isomorphic to the Hajós graph, S(C \ {i}) = ∅ for
i 6= 1. By the fact that G is K4-free and (1), S4 = {x}. By (15) and
K4-freeness of G, S(2, 3, 4) ∪ S(3, 4, 5) = ∅. If S3 contains a vertex y, then
C ∪ {x, y} contains the Hajós graph as a subgraph, a contradiction. So,
S3 = ∅.

By (14) and K4-freeness of G, S(2, 3) ∪ S(4, 5) = ∅. If S(1) contains a
vertex y, then xy ∈ E by (13). But then {x, y, 1, 3, 5} induces a banner. So,
S(1) = ∅. Since G is 4-critical, d(1) ≥ δ(G) ≥ 3 by Lemma 1. By symmetry,
we may assume that S(5, 1) 6= ∅. By (8), S(2) = S(4) = ∅.

Case 1. S(1, 2) 6= ∅. By (8), S(3) = S(5) = ∅ and so S1 = ∅. By (3) and
K4-freeness of G, S(5, 1) = {y} and S(1, 2) = {z} and yz ∈ E. If S(3, 4) 6=
∅, then S(3, 4) is complete to S(5, 1) ∪ S(1, 2) by (9). If S(3, 4) contains
two nonadjacent vertices u and v, then {y, u, v, 1, 3} induces a banner, a
contradiction. So, S(3, 4) is a clique and hence contains at most one vertex
since G is K4-free. It follows that 8 ≤ |G| ≤ 9 and G is 3-colorable. This
contradicts that G is 4-chromatic.

Case 2. S(1, 2) = ∅. Note that S1 = S(3)∪S(5) and S2 = S(5, 1)∪S(3, 4).
Moreover, S(5, 1) and S(3, 4) are stable sets since G is K4-free. Since S2 6= ∅,
either S(3) = ∅ or S(5) = ∅ by (10). Suppose first that S(3) = ∅. By
(13), x is complete to S(5) and so S(5) is a stable set since G is K4-free.
Furthermore, S(5) is anticomplete to S2 by (5) and x ia anticomplete to
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S(3, 4) by (14). Then G can be partitioned into three stable sets {1, x} ∪
S(3, 4), {2, 4} ∪ S(5, 1) ∪ S(5) and {3, 5}. This contradicts that G is 4-
chromatic. Assume now that S(5) = ∅. Let X ⊆ S(3) be the set of vertices
that have a neighbor in S(5, 1) and Y = S(3) \X. We show that X and Y
are stable sets. Suppose that X contains two adjacent vertices x1 and x2.
By definition, x1 has a neighbor y ∈ S(5, 1). By (5) and K4-freeness of G,
S(5, 1) = {y} and so y is also adjacent to x2. But now {x, y, x1, x2, 3, 4, 5}
induces the Hajós graph, a contradiction. This proves that X is stable.
Let A be an arbitrary connected component of Y . Note that since G is
P6-free, any vertex in X is either complete or anticomplete to A. If A has
no neighbor in X, {3} is a clique cutset separating A from the rest of the
graph. This contradicts Lemma 1. So, A has a neighbor x′ ∈ X. Since G
is K4-free, A is a singleton. This proves that Y is stable. Now G can be
partitioned into three stable sets {1, x} ∪ S(3, 4) ∪ X, {2, 4} ∪ S(5, 1) ∪ Y
and {3, 5}. This contradicts that G is 4-chromatic.

In either case we get a contradiction. This completes the proof of the
claim.

Claim 3. S3 = ∅.

Proof of Claim 3. Recall that |S3| ≤ 2. Suppose first that |S3| = 2. Without
loss of generality, assume that S(5, 1, 2) = {x} and S(1, 2, 3) = {y}. Note
that xy /∈ E since G is K4-free. Furthermore, S(4) = ∅ for otherwise any
vertex z ∈ S(4) starts an induced P6 = z, 4, 3, y, 1, x since zx, zy /∈ E by
(6). If x is not adjacent to a vertex z ∈ S(4, 5), then z, 5, x, 1, y, 3 induces a
P6. So, x is complete to S(4, 5). If S(4, 5) contains two nonadjacent vertices
z, z′, then {x, z, z′, 4, 2} induces a banner, a contradiction. So, S(4, 5) is a
clique and so contains at most one vertex since G is K4-free. By symmetry,
y is complete to S(3, 4) and S(3, 4) contains at most one vertex.

By Lemma 1, d(4) ≥ δ(G) ≥ 3. So, either S(3, 4) 6= ∅ or S(4, 5) 6= ∅.
By symmetry, we assume that S(3, 4) 6= ∅ and let S(3, 4) = {z}. Note that
yz ∈ E. Suppose first that S(4, 5) = ∅. Then N(4) = {3, 5, z}. Since G is
4-critical, G− 4 admits a 3-coloring φ. Observe that vertices 2, 5 and z are
colored alike under φ. So, we can extend φ to G by assigning to the vertex
4 a color from {1, 2, 3} that does not appear on N(4). This contradicts that
G is 4-chromatic. Therefore, S(4, 5) 6= ∅ and let S(4, 5) = {w}. Recall that
xw ∈ E. Moreover, yw /∈ E by (7). By the fact that S(4) = ∅ and (8),
S1 = ∅. We claim that S2 = {w, z}. Suppose not. Let u ∈ S2 \ {w, z}.
By symmetry, we may assume that u ∈ S(1, 2) ∪ S(2, 3). If u ∈ S(1, 2),
then u is adjacent to z but not to y by (9) and K4-freeness of G. But now
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{u, y, z, 2, 4} induces a banner. If u ∈ S(2, 3), then u is adjacent to z and x
but not to y by (3), (11) and K4-freeness of G. Then either {x, y, w, z, u}
or {y, w, u, 3, 4} induces a banner depending on whether wu ∈ E. We have
shown that S2 = {w, z}. Now G can be partitioned into three stable sets
{4, x, y}, {1, 3, w} and {2, 5, z}. This contradicts that G is 4-chromatic.

Therefore, |S3| = 1 and we assume that S(5, 1, 2) = {x}. If y ∈ S(3, 4)
is adjacent to z ∈ S(5, 1), then either {x, y, z, 4, 5} induces a banner or
{x, z, 5, 1} induces a K4 depending on whether xz ∈ E. This shows that
S(3, 4) is anticomplete to S(5, 1) and to S(1, 2) by symmetry.

Case 1. S(1) 6= ∅. Applying the argument in Claim 1 to C ′ = C \{1}∪{x}
shows that x is complete to S(1). By (8), S(2, 3) = S(4, 5) = ∅. Since
G is F -free, S(1) is anticomplete to S(3, 4). By (5) and (7), {3, 4} would
be a clique cutset if S(3, 4) 6= ∅. So, S(3, 4) = ∅. Since d(3), d(4) ≥ 3,
S(3) and S(4) are nonempty and so S2 = ∅ by (8). Since G is K4-free,
S(1) is a singleton and let S(1) = {y}. If S(3) contains two vertices z, z′,
then {x, y, z, z′, 1, 2, 3} induces the Hajós graph, a contradiction. So, S(3)
is a singleton and let S(3) = {z}. Similarly, S(4) is a singleton and let
S(4) = {w}. By (2) and K4-freeness of G, |S(i)| ≤ 2 for i = 2, 5. If S(5)
contains two vertices u, u′, then {x, y, u, u′, z, 1, 5} induces the Hajós graph.
So, S(5) contains at most one vertex. Similarly, S(2) contains at most one
vertex. If x is adjacent to a vertex t ∈ S(2), then {x, y, w, t, 4} induces a
banner. So, x is anticomplete to S(2) and to S(5) by symmetry. It can be
easily seen that G is now 3-colorable. This contradicts that G is 4-chromatic.

Case 2. S(1) = ∅. We first show that S(3, 4) = ∅. Suppose not. Let
y ∈ S(3, 4). By (7) and K4-freeness of G, S(3, 4) is stable and anticomplete
to x. By (5) and Lemma 1, either S(2, 3) 6= ∅ or S(4, 5) 6= ∅. By symmetry,
we may assume that S(4, 5) contains a vertex z. By (8), S1 = S(4). If x is
adjacent to a vertex in S(2, 3)∪S(4, 5), then this vertex and 1 are 3-vertices
with respect to C ′ = C \ {1} ∪ {x}. This reduces to the previous case that
|S3| = 2. So, x is anticomplete to S(2, 3) ∪ S(4, 5). If S(5, 1) contains a
vertex t, then either {t, x, 1, 5} induces a K4 or x, 1, t, z, y, 3 induces a P6

depending on whether tx ∈ E. So, S(5, 1) = ∅. Since G is K4-free, x is
anticomplete to S(1, 2). We have shown that N(x) = {1, 2, 5}. If S(2, 3)
contains a vertex t, then G − x admits a 3-coloring φ with φ(2) = φ(5),
and thus we can extend φ to G by assigning to x a color from {1, 2, 3} that
does not appear on N(x). This contradicts that G is 4-chromatic. Hence,
S(2, 3) = ∅ and so N(3) = {2, 4, y}. Since G is 4-critical, G − 3 admits a
3-coloring φ. Observe that the vertex 2 and y are colored alike under φ. So,
we can extend φ to G by assigning to 3 a color from {1, 2, 3} that does not
appear on N(3). This contradicts that G is 4-chromatic. This proves that
S(3, 4) = ∅.
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By (8) and δ(G) ≥ 3, it follows that either S(2, 3) and S(4, 5) are
nonempty or S(3) and S(4) are nonempty. Suppose first that S(3) and
S(4) are nonempty. Then S2 = ∅ by (8). Since {3} does not separate S(3),
S(5) 6= ∅. Similarly, S(2) 6= ∅. Let ui ∈ S(i) for i 6=1. By (2) and K4-
freeness of G, each S(i) is a clique of size at most two for i 6= 1. Moreover,
|S(2)| + |S(4)| = 3 and |S(3)| + |S(5)| = 3 since δ(G) ≥ 3. Suppose that
|S(2)| = 2. Then |S(4)| = 1. If |S(3)| = 2, then {u5, 2, 3} ∪ S(3) ∪ S(2)
induces the Hajós graph. So, |S(3)| = 1 and thus |S(5)| = 2. But now
S(2) ∪ S(5) induces a K4. This shows that |S(2)| = 1. By symmetry,
|S(5)| = 1 and hence |S(3)| = |S(4)| = 2. Note that x is anticomplete to
S(2) ∪ S(5) since G is (W5, banner)-free. Now G can be partitioned into
three stable sets {2, 5, u3, u4}, {1, 4, u2, u′3}, {3, x, u′4, u5} where u′j ∈ S(j)
for j = 3, 4.

Now assume that S(2, 3) and S(4, 5) are nonempty and S(3) and S(4)
are empty. Let y ∈ S(2, 3) and z ∈ S(4, 5). Recall that x is anticomplete to
S(2, 3) ∪ S(4, 5). We show that S(1, 2) = ∅. If S(1, 2) contains a vertex w,
then w, y, z induces a triangle by (3) and (9). Moreover, xw /∈ E since G
is K4-free. Now {w, x, y, z, 5, 1, 2} contains the Hajós graph as a subgraph,
a contradiction. So, S(1, 2) = ∅ and by symmetry S(5, 1) = ∅. Since {4, 5}
is not a clique cutset, S(4, 5) has a neighbor in S(2). Similarly, S(2, 3) has
a neighbor in S(5). But this contradicts (10).

In either case we get a contradiction. This completes the proof of the
claim.

By Claim 1-Claim 3, V (G) = C ∪S1 ∪S2. Note that S(i, i+ 1) is stable
since G is K4-free. Suppose first that S1 = ∅. If there are at most two
nonempty S(i, i + 1), one can easily see that G is 3-colorable, a contradic-
tion. On the other hand, it follows from (3) and (9) that if there are four
nonempty S(i, i + 1),then G contains a K4, a contradiction. So, there are
exactly three nonempty S(i, i+1). By (3) and (9), each nonempty S(i, i+1)
is a singleton. It can be easily seen that G is 3-colorable, a contradiction.

Therefore, S1 6= ∅ and assume that x ∈ S(1). By (8), S(2, 3) = S(4, 5) =
∅. Moreover, it follows from (8) and Lemma 1 that either S(4) and S(5)
are nonempty or S(5, 1) and S(3, 4) are nonempty. Suppose that S(5, 1) and
S(3, 4) are nonempty. By (8), S(2) = ∅. So, S(1, 2) 6= ∅ since d(2) ≥ 3. This
implies that S1 = S(1) and S2 = S(5, 1)∪S(1, 2)∪S(3, 4). By (3) and (9),
each nonempty S(i, i+1) is a singleton and S2 induces a triangle uvw where
u ∈ S(5, 1), v ∈ S(1, 2) and w ∈ S(3, 4). By (5), xu, xv /∈ E. If xw ∈ E,
then {x, u, w, 4, 5} induces a banner. So, xw /∈ E. We have shown that
S(1) is anticomplete to S2. But then {1} is a clique cutset, contradicting
Lemma 1. So, S(4) and S(5) are nonempty. By symmetry, S(2) and S(3)
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are nonempty. So, S(i) is nonempty for each i and S2 = ∅. By K4-freeness
of G and (2), |S(i)| ≤ 2 for each i and 5 ≤ |S1| ≤ 7. It can be seen that
G is 3-colorable if |S1| ≤ 6. If |S1| = 7, we may assume that ui ∈ S(i) for
each i and u′1 ∈ S(1) and u′2 ∈ S(2). Then {1, 2, u1, u′1, u2, u′2, u4} induces
the Hajós graph, a contradiction.

5 5-Critical Graphs

In this section, we show that there are finitely many 5-critical (P6, banner)-
free graphs.

Theorem 5. There are finitely many 5-critical (P6, banner)-free graphs.

We denote by G+u the graph obtained from a 4-critical (P6, banner)-free
graph G by adding a new vertex u and making u adjacent to each vertex
in G. Observe that each G ∈ F4 is 4-critical. Thus, G + u is 5-critical
(P6, banner)-free graphs for any G ∈ F4. Therefore, it suffices to prove
Theorem 5 for 5-critical (P6, banner)-free graphs that are not isomorphic to
G + u for any G ∈ F4. We divide the proof of the theorem into Lemma 2
and Lemma 3 below. It follows from Lemma 2 and Lemma 3 that if a 5-
critical (P6, banner)-free graph contains an induced C7 or C5, then G has
finite order. The remaining case is that G is perfect and so G is isomorphic
to K5. Therefore, the theorem follows.

5.1 7-Antihole

Lemma 2. Let G be a 5-critical (P6, banner)-free graph. If G contains an
induced C7, then G has finite order.

Proof. Let C = 1, 2, 3, 4, 5, 6, 7 be an induced C7 such that ij ∈ E if and
only if |i − j| > 1. All indices are modulo seven. Since G is C7 + u-free,
S7 = ∅. Let x ∈ S(X) for some X ⊆ C with |X| = 3. By symmetry,
X = {i, i + 1, i + 2}, or X = {i, i + 1, i + 3}, or X = {i − 2, i, i + 2} or
X = {i − 3, i, i + 3} for some i. We show that there is an induced C4 ⊆ C
containing exactly one neighbor of x and this C4 together with x gives an
induced banner in G. Specifically, if X = {i, i+1, i+2} or X = {i−2, i, i+2},
then {i − 1, i, i + 3, i − 3, x} induces a banner. If X = {i, i + 1, i + 3} or
X = {i− 3, i, i+ 3}, then {i+ 2, i+ 3, i− 2, i− 1, x} induces a banner. This
shows that S3 = ∅. Similarly, S1 = S2 = ∅.
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We now show that S0 = ∅. Suppose not. By the connectivity of G, some
vertex a ∈ A has a neighbor n ∈ Si for some 4 ≤ i ≤ 6. It can be readily
seen that there exists an index i such that n is adjacent to i − 3 and i + 3
but not to some j where j ∈ {i−1, i, i+1}. Now {i−3, i+3, j, n, a} induces
a banner, a contradiction. This proves that S0 = ∅.

Let X ⊆ C be an arbitrary set with 4 ≤ |X| ≤ 6. Since 4 ≤ |X| ≤ 6,
there exists an index i ∈ C such that i, i+1 ∈ X but i+2 /∈ X. If X contains
two nonadjacent vertices x and y, then {i, i+1, i+2, x, y} induces a banner.
So, X is a clique. Since G is K5-free, |S(X)| ≤ 2. Since G = C∪S4∪S5∪S6,
|G| ≤ 7 + 2(

(
7
4

)
+
(
7
5

)
+
(
7
6

)
) = 133.

5.2 5-Hole

Lemma 3. Let G be a 5-critical (P6, banner)-free graph. If G contains an
induced C5, then G has finite order.

Proof. Let C = 1, 2, 3, 4, 5 is an induced C5. We partition V \C with respect
to C. By (1), S(i−1, i, i+1) and S(C \{i}) are cliques. Since G is K5-free,
each such set has size at most two. So, |Si| ≤ 10 for i = 3, 4. since G
contains no W5 + u, it follows that S5 is stable.

Claim 4. |S5| ≤ 20.

Proof of Claim 4. If |S5| ≤ 1, then the claim holds. So, assume that |S5| ≥
2. By (16), each vertex in S0 is either complete or anticomplete to S5,
S1 ∪S2 is complete to S5, and any vertex in S3 ∪S4 is adjacent to all but at
most one vertex in S5. If |S5| > |S3 ∪ S4|, then there exists a vertex w ∈ S5
that is complete to S3 ∪ S4. Let u ∈ S5 with u 6= w. Then N(u) ⊆ N(w),
contradicting Lemma 1. So, |S5| ≤ |S3 ∪ S4| ≤ 20.

Claim 5. |S0| ≤ 120.

Proof of Claim 5. LetA be a connected component of S0. SinceG is (P6, banner)-
free, A is anticomplete to S1 ∪ S2 ∪ S4. Moreover, any vertex in S3 is either
complete or anticomplete to A. Let X = N(A) ∩ S3 and Y = N(A) ∩ S5.
Suppose that x ∈ X and y ∈ Y are not adjacent. By definition, y has a
neighbor a ∈ A. Note that ax ∈ E. Since x ∈ S3, there exists i ∈ C such
that ix ∈ E but (i + 2)x /∈ E. But then {a, i, i + 2, x, y} induces a banner.
This shows that X and Y are complete.
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Since G has no clique cutsets, N(A) = X ∪ Y contains two nonadjacent
vertices s and t. Then either s and t are in S3 or s and t are in S5. We say
that A is of first type if one can choose s and t such that both of them are
in S3 and of second type if the choice is not possible. Let n1 and n2 be the
number of connected components of first and second type, respectively.

Suppose first that A is of first type. By (1), no S(i− 1, i, i+ 1) contains
both s and t. So, there exists an index i ∈ C such that i is adjacent
to exactly one of s and t. If A contains two nonadjacent vertices a and
b, then {a, b, s, t, i} induces a banner. So, A is a clique and so has size
at most three. Moreover, the pigeonhole principle shows that if n1 > 40 ≥(
5
2

)
|S(i−1, i, i+1)||S(j−1, j, j+1)|, there are two such connected components

A1 and A2 that correspond to the same pair of vertices s and t. Then
{a1, a2, s, t, i} induces a banner where ai ∈ Ai for i = 1, 2. So, n1 ≤ 40.

Now assume that A is of second type. Then X is a clique. Since s, t ∈ S5,
|S5| ≥ 2. We first show that A is complete to S5. Let S ⊆ A be the set of
vertices that are complete to A and T = A\S. By (16), T is anticomplete to
S5. There is nothing to prove if T is empty. So, assume that T is nonempty.
By the connectivity of A, there is an edge xy ∈ E such that x ∈ S and y ∈ T .
But now {x, y, s, t, 1} induces a banner. This proves that A is complete to
S5. Since G is 5-critical, G−A and N [A] admit a 4-coloring. Clearly, S5 is
monochromatic in any 4-coloring of G−A. Moreover, since any two vertices
in S5 have the same neighbors in N [A] there exists a 4-coloring of N [A] such
that S5 is monochromatic. Therefore, we can combine the two 4-colorings
of G − A and G − N [A] by permuting colors. This contradicts that G is
5-chromatic. This shows that n2 = 0, i.e., there is no connected component
of second type.

Therefore, |S0| ≤ 3 · n1 ≤ 120.

Claim 6. For each i, |S(i)| ≤ 771.

Proof of Claim 6. We prove the claim for i = 1. If S(3)∪S(4) 6= ∅, then the
claim follows from (2) and K5-freeness of G. So, S(3) ∪ S(4) = ∅. Suppose
that S(C\{1}) contains a vertex q. If S(1) contains two nonadjacent vertices
x and y, then {1, x, y, q, 3} induces a banner. So, S(1) is a clique and thus
has size at most three.
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In the following, we assume that S(C \ {1}) = ∅. Let X ⊆ S(1) be
the set of vertices that have a neighbor in S(3, 4) and Y = S(3, 4) \ X.
By (5), each vertex x ∈ N(X) ∩ S(3, 4) is universal in S(3, 4). Since G
is K5-free, |N(X) ∩ S(3, 4)| ≤ 2. Let x and y be the possible vertices in
N(X) ∩ S(3, 4). Then X ⊆ N({x, y}) ∩ S(1). If N(x) ∩ S(1) contains
two nonadjacent vertices z and w, then {x, z, w, 1, 4} induces a banner. So,
N(x) ∩ S(1) is a clique. Similarly, N(y) ∩ S(1) is a clique. Therefore,
|X| ≤ |N(x) ∩ S(1)|+ |N(y) ∩ S(1)| ≤ 6.

We next bound Y by showing that the number of connected components
of Y is bounded and the size of each connected component is also bounded.
Let A be an arbitrary connected component of Y . Note first that since G is
P6-free, any vertex in X ∪ S3 is either complete or anticomplete to A. By
(13), each vertex in S4 is either complete or anticomplete to A. Moreover,
N(A) ⊆ {1} ∪ X ∪ S3 ∪ S4 ∪ S5. Let N1 = N(A) ∩ ({1} ∪ X ∪ S3 ∪ S4)
and N2 = N(A) ∩ S5. Since G has no clique cutset, N(A) contains two
nonadjacent vertices s and t. We say that A is of first type if it is possible
to choose s and t such that s, t ∈ {1} ∪X ∪ S3 ∪ S4, of second type if it is
possible to choose s and t such that one of s and t belongs to S5 and the
other does not, and of third type if the previous two choices are not possible.
Let n1, n2 and n3 be the number of connected components of first, second
or third type, respectively.

Suppose first A is of first type. By (1), s and t do not belong to the
same S(i − 1, i, i + 1) or S(C \ {i}). It can be readily verified that there
exists an index i ∈ C \ {1} such that i is adjacent to exactly one of s and
t. If A contains two nonadjacent vertices a and b, then {a, b, s, t, i} induces
a banner. So, any connected component of first type is a clique and so has
size at most two. If n1 > 272 ≥ |{1} ∪ X ∪ S3 ∪ S4|2, then the pigeonhole
principle implies that there are two such connected components A1 and A2

that correspond to the same pair of vertices s and t. Then {a1, a2, s, t, i}
induces a banner where ai ∈ Ai for i = 1, 2. So, n1 ≤ 272.

Suppose now that A is of second type. We may assume that s ∈ S5 and
t /∈ S5. Let a ∈ A be a neighbor of s. Then ta ∈ E. Clearly, t ∈ X ∪S3∪S4.
We first show that t must be in X. Suppose not. Then t ∈ S3 ∪ S4. Since
S(C \ {1}) = ∅, there exists i ∈ C \ {1} such that i + 2 6= 1 and it ∈ E,
(i + 2)t /∈ E. Then {a, i, s, t, i + 2} induces a banner. This proves that
t ∈ X. By (16) and st /∈ E, S5 = {s}. If n2 > |X|, then the pigeonhole
principle implies that there are two such connected components A1 and A2

that correspond to the same pair of vertices s and t. Then {a1, a2, s, t, 2}
induces a banner where ai ∈ Ai is a neighbor of s for i = 1, 2. So, n2 ≤ |X| ≤
6. It remains to bound the size of A. Let A1 = N(s) ∩A and A2 = A \A1.
If A1 contains two nonadjacent vertices a and b, then {s, t, a, b, 2} induces
a banner. So, A1 is a clique and thus has at most two vertices. Recall that
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t has a neighbor in S(3, 4), say x. Then sx /∈ E for otherwise {t, a, s, x, 2}
induces a banner. Let K be an arbitrary connected component of A2. By
connectivity, K has a neighbor k ∈ A1. If k distinguishes an edge bc in K,
then b, c, k, s, 3, x induces a P6. So, k is complete to K. Since {k, t, 1} is
complete to K, it follows that K is a singleton. We have proved that A2 is a
stable set. Note that only vertices in A1 can distinguish two vertices in A2.
So, |A2| ≤ 2|A1| = 4 for otherwise G would contains a pair of comparable
vertices. So, |A| = |A1|+ |A2| ≤ 6.

Finally, assume that A is of third type. Then s and t are in S5, and so
|S5| ≥ 2. Moreover, N1 is a clique and is complete to N2. By (16), S5 is
complete to A and so N2 = S5. A similar argument in Claim 5 shows that
n3 = 0, i.e., there is no connected component of third type.

Therefore, |S(1)| = |X|+ |Y | ≤ 6 + 2 · 272 + 6 · 6 = 771.

Claim 7. For each i, |S(i, i+ 1)| ≤ 213 + 8.

Proof of Claim 7. We prove the claim for i = 3. By (3) the K5-freeness of
G, the claim follows if S(2, 3) ∪ S(4, 5) 6= ∅. Let X ⊆ S(3, 4) be the set of
vertices that have a neighbor in S1 ∪ (S2 \ S(3, 4)) and Y = S(3, 4) \X. By
(4) and (5), each vertex in X is a universal vertex in S(3, 4). So, |X| ≤ 2.
If X 6= ∅, Y is stable since G is K5-free. By (14), no vertex in S4 can
distinguish two vertices in Y . By (16), if a vertex in S5 distinguishes two
vertices in Y , S5 contains at most one vertex. The pigeonhole principle
implies that if |S(3, 4)| > 211 then G contains a pair of comparable vertices.
This contradicts Lemma 1. So, |Y | ≤ 211 and thus |S(3, 4)| ≤ 2+211. In the
following, we assume that X = ∅. In other words, S(3, 4) is anticomplete
to S1 ∪ (S2 \ S(3, 4)). Similarly, if S(C \ {i}) for i = 2, 5 is nonempty, then
S(3, 4) is a stable set by (14). Then the pigeonhole principle shows that
|S(3, 4)| ≤ 2|S3|+1 ≤ 211. So, S(C \ {2}) = S(C \ {5}) = ∅ and thus S(3, 4)
is anticomplete to S4.

Suppose first that |S5| ≥ 2. By (16), S5 is complete to S(3, 4) and thus
S(3, 4) is stable. Then the pigeonhole principle shows that |S(3, 4)| ≤ 2|S3| ≤
210. Now assume that |S5| ≤ 1. Let X ⊆ S(3, 4) be the set of vertices that
have a neighbor in S(1, 2, 3) ∪ S(4, 5, 1) and Y = S(3, 4) \ X. Since G is
banner-free, the set of vertices in S(3, 4) that are neighbors of a vertex in
S(1, 2, 3) ∪ S(4, 5, 1) is a clique. So, |X| ≤ |S(1, 2, 3) ∪ S(4, 5, 1)| · 2 = 8.
We next bound Y . Let A be an arbitrary connected component of Y . Note
that N(A) ⊆ {3, 4} ∪X ∪ S(2, 3, 4) ∪ S(3, 4, 5) ∪ S5. Since G has no clique
cutset, N(A) contains two nonadjacent vertices s and t. Since |S5| ≤ 1, one
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of s and t is in X ∪ S(2, 3, 4) ∪ S(3, 4, 5). It can be seen that s is complete
to A since G is P6-free. Since G is K5-free, A is a singleton. This shows
that Y is stable. Note that only vertices in X ∪ S(2, 3, 4) ∪ S(3, 4, 5) ∪ S5
can distinguish two vertices in Y . So, |Y | ≤ 2|X∪S(2,3,4)∪S(3,4,5)∪S5| ≤ 213.
Therefore, |S(3, 4)| = |X|+ |Y | ≤ 8 + 213.

The lemma follows from Claim 4-Claim 7.

6 Conclusion

We have determined all 4-critical (P6, banner)-free graphs and proved that
there are finitely many 5-critical (P6, banner)-free graphs. Our results gener-
alize previous results on 4-critical (P6, C4)-free graphs and on the polynomial-
time algorithm for 4-coloring (P6, banner)-free graphs [14, 16]. It is still open
whether there are finitely many k-critical (P6, banner)-free graphs for fixed
k ≥ 6. In our proof for the case k = 5 we heavily rely on the fact that S5
is stable which allows us to find comparable vertices in many cases of the
proof. This fact simply does not hold anymore when k ≥ 6. Therefore, to
prove finiteness for k ≥ 6 requires new techniques to handle S5. In fact, it is
not even known whether k-coloring (P6, banner)-free graphs can be solved
in polynomial time for any k ≥ 5. Determining the complexity of k-coloring
(P6, banner)-free graphs could be a good first step to attack the problem.
On the other hand, polynomial time algorithms for 4-coloring are also known
for other subclasses of P6-free graphs, for instance (P6, chair)-free graphs
[2] and (P6, bull)-free graphs [19]. It would be interesting to see if there are
finitely many 5-critical graphs with respect to the class of (P6, chair)-free
graphs or of (P6, bull)-free graphs.
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