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Abstract

We prove the total positivity of the Narayana triangles of type A and type
B, and thus affirmatively confirm a conjecture of Chen, Liang and Wang
and a conjecture of Pan and Zeng. We also prove the strict total positivity
of the Narayana squares of type A and type B.
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1. Introduction

Let M be a (finite or infinite) matrix of real numbers. We say that M is
totally positive (TP) if all its minors are nonnegative, and we say that it is
strictly totally positive (STP) if all its minors are positive. Total positivity
is an important and powerful concept and arises often in analysis, algebra,
statistics and probability, as well as in combinatorics. See [1, 6, 7, 9, 10, 14,
15, 19] for instance.

Let C(n, k) =
(
n
k

)
. It is well known [15, P. 137] that the Pascal triangle

P = [C(n, k)]n,k≥0 =



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

. . .
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is totally positive. Let

P p = [C(n+ k, k)]n,k≥0 =


1 1 1 1 · · ·
1 2 3 4
1 3 6 10
1 4 10 20
...

. . .


be the Pascal square. Then P p = PP T by the Vandermonde convolution
formula (

n+ k

k

)
=
∑
i

(
n

i

)(
k

i

)
.

Note that the transpose and the product of matrices preserve total positivity,
see [19, Propositions 1.2 and 1.4]. Hence P p is also TP.

The main objective of this note is to prove the following two conjec-
tures on the total positivity of the Narayana triangles. Let NA(n, k) =
1

k+1

(
n+1
k

)(
n
k

)
, which are commonly known as the Narayana numbers. Let

NA = [NA(n, k)]n,k≥0 =



1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
...

. . .


.

The Narayana numbers NA(n, k) have many combinatorial interpretations.
An interesting one is that they appear as the rank numbers of the poset of
noncrossing partitions associated to a Coxeter group of type A, see Arm-
strong [2, Chapter 4]. For this reason, we call NA the Narayana triangle of
type A. Chen, Liang and Wang [10] proposed the following conjecture.

Conjecture 1.1 ([10, Conjecture 3.3]). The Narayana triangle NA is TP.

Let NB(n, k) =
(
n
k

)2
, and let

NB = [NB(n, k)]n,k≥0 =



1
1 1
1 4 1
1 9 9 1
1 16 36 16 1
...

. . .


.
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We call NB the Narayana triangle of type B since the numbers NB(n, k) can
be interpreted as the rank numbers of the poset of noncrossing partitions
associated to a Coxeter group of type B, see also Armstrong [2, Chapter 4]
and references therein. Pan and Zeng [17] proposed the following conjecture.

Conjecture 1.2 ([17, Conjecture 4.1]). The Narayana triangle NB is TP.

In this note, we will prove that the Narayana triangles NA and NB are
TP just like the Pascal triangle in a unified approach. We also prove that
the corresponding Narayana squares

Np
A = [NA(n+ k, k)]n,k≥0 =


1 1 1 1 · · ·
1 3 6 10
1 6 20 50
1 10 50 175
...

. . .


and

Np
B = [NB(n+ k, k)]n,k≥0 =


1 1 1 1 · · ·
1 4 9 16
1 9 36 100
1 16 100 400
...

. . .


are STP, as well as the Pascal square.

2. The Narayana triangles

The main aim of this section is to prove the total positivity of the
Narayana triangles NA and NB.

Before proceeding to the proof, let us first note a simple property of
totally positive matrices. Let X = [xn,k]n,k≥0 and Y = [yn,k]n,k≥0 be two
matrices. If there exist positive numbers an and bk such that yn,k = anbkxn,k
for all n and k, then we denote xn,k ∼ yn,k and X ∼ Y . The following result
is direct by definition.

Proposition 2.1. Suppose that X ∼ Y . Then the matrix X is TP (resp.
STP) if and only if the matrix Y is TP (resp. STP).

Our proof of Conjectures 1.1 and 1.2 is based on the Pólya frequency
property of certain sequences. Let (an)n≥0 be an infinite sequence of real
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numbers, and define its Toeplitz matrix as

[an−k]n,k≥0 =


a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
...

. . .

 .

Recall that (an)n≥0 is said to be a Pólya frequency (PF) sequence if it-
s Toeplitz matrix is TP. The following is the fundamental representation
theorem for PF sequences, see Karlin [15, p. 412] for instance.

Schoenberg-Edrei Theorem. A nonnegative sequence (a0 = 1, a1, a2, . . .)
is a PF sequence if and only if its generating function has the form

∑
n≥0

anx
n =

∏
j(1 + αjx)∏
j(1− βjx)

eγx,

where αj , βj , γ ≥ 0 and
∑

j(αj + βj) < +∞.

Clearly, the sequence (1/n!)n≥0 is a PF sequence by Schoenberg-Edrei
Theorem, which implies that the corresponding Toeplitz matrix [an−k]n,k≥0 =
[1/(n− k)!]n,k≥0 is TP. Also, note that(

n

k

)
=

n!

k!(n− k)!
∼ 1

(n− k)!
.

Hence the Pascal triangle P is TP by Proposition 2.1.
Based on a classic result of Laguerre on multiplier sequences, Chen, Ren

and Yang [8, Proof of Conjecture 1.1] proved that the sequence (1/((t)nn!))n≥0
is a PF sequence for any t > 0, where (t)n = t(t + 1) · · · (t + n − 1). As an
immediate corollary, we have the following result.

Lemma 2.2. For any m ≥ 0, the Toeplitz matrix [1/((n − k + m)!(n −
k)!)]n,k≥0 is TP.

Proof. Note that

1

(n− k +m)!(n− k)!
∼ 1

(m+ 1)n−k(n− k)!

and the sequence (1/((m+ 1)nn!))n≥0 is a PF sequence.
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We are now in a position to prove Conjectures 1.1 and 1.2. In fact,
we will prove the total positivity of some general triangles composed of m-
Narayana numbers, which we will recall below. Fix an integer m ≥ 0. For
any n ≥ m and 0 ≤ k ≤ n − m, the m-Narayana number NA〈m〉(n, k) is
given by

NA〈m〉(n, k) =
m+ 1

n+ 2

(
n+ 2

k + 1

)(
n−m
k

)
. (2.1)

When m = 0 we get the usual Narayana numbers NA(n, k). For more
information on the numbers NA〈m〉(n, k), see [22]. It is easy to show that
each row of the Narayana triangle NA is symmetric: NA(n, k) = NA(n, n−
k), but

NA,〈m〉 =
[
NA〈m〉(n, k)

]
n≥m;0≤k≤n−m

and ←−
NA,〈m〉 =

[
NA〈m〉(n, n−m− k)

]
n≥m;0≤k≤n−m

are two different triangles for m ≥ 1. We obtain the following result.

Theorem 2.3. For any m ≥ 0, both NA,〈m〉 and
←−
NA,〈m〉 are TP. In partic-

ular, the Narayana triangles NA and NB are TP.

Proof. Note that for n ≥ m and 0 ≤ k ≤ n−m we have

NA,〈m〉(n, k) =
m+ 1

n+ 2

(
n+ 2

k + 1

)(
n−m
k

)
∼ 1

(n− k −m)!(n− k + 1)!
.

Replacing n by n+m, we see that the total positivity of NA,〈m〉 is equivalent
to that of the Toeplitz matrix [1/((n−k+m+1)!(n−k)!)]n,k≥0. By Lemma

2.2, the triangleNA,〈m〉 is TP. The total positivity of
←−
NA,〈m〉 will follow in the

same manner as NA,〈m〉. In particular, the Narayana triangle NA = NA,〈0〉
is TP. Since

NB(n, k) =
n!2

k!2(n− k)!2
∼ 1

(n− k)!2
,

the total positivity of NB immediately follows from Lemma 2.2.

3. The Narayana squares

The object of this section is to prove the total positivity of the Narayana
squares Np

A and Np
B. Our proof is based on the theory of Stieltjes moment

sequences.
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Given an infinite sequence (an)n≥0 of real numbers, define its Hankel
matrix as

[an+k]n,k≥0 =


a0 a1 a2 a3 · · ·
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6
...

. . .

 .
We say that (an)n≥0 is a Stieltjes moment (SM) sequence if it has the form

an =

∫ +∞

0
xndµ(x),

where µ is a non-negative measure on [0,+∞). The following is a classic re-
sult on the Stieltjes moment problem, see [21, Theorem 1] and [19, Theorem
4.4].

Lemma 3.1. A sequence (an)n≥0 is an SM sequence of some measure on
[0,+∞) with infinite support if and only if one of the following conditions
holds:

(i) for any n ≥ 0 both [ai+j ]0≤i,j≤n and [ai+j+1]0≤i,j≤n are strictly positive
definite; or

(ii) the Hankel matrix [ai+j ]i,j≥0 is STP.

Many well-known counting coefficients are Stieltjes moment sequences,
see [16]. For example, the sequence (n!)n≥0 is a Stieltjes moment sequence
since

n! =

∫ +∞

0
xne−xdx =

∫ +∞

0
xnd

(
1− e−x

)
.

Thus the corresponding Hankel matrix [(n + k)!]n,k≥0 is STP. It is known
that

det[(i+ j)!]0≤i,j≤n =
n∏
i=0

i!2, det[(i+ j + 1)!]0≤i,j≤n = (n+ 1)!

n∏
i=0

i!2,

see [13, Theorem 4] and the sequence A059332 in [22]. Note that(
n+ k

k

)
=

(n+ k)!

n!k!
∼ (n+ k)!.

Hence the Pascal square P p is also STP.
To prove that the Narayana squares are STP, we need the following

result.
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Lemma 3.2. For any s, t ≥ 0, the Hankel matrix [(n+k+s)!(n+k+t)!]n,k≥0
is STP.

Proof. Note that the submatrix of an STP matrix is still STP. Hence if the
sequence (an)n≥0 is an SM sequence of some measure with infinite support,
then so is its shifted sequence (an+m)n≥0 for any m ≥ 0 by (i) of Lemma
3.1. Now the sequence (n!)n≥0 is an SM sequence of some measure with
infinite support, so are ((n+ s)!)n≥0 and ((n+ t)!)n≥0 for any s, t ≥ 0. On
the other hand, the famous Schur product theorem states that if [ai,j ]

n
i,j=0

and [bi,j ]
n
i,j=0 are two strictly positive definite matrices, then so is their

Hadmard product [ai,jbi,j ]
n
i,j=0, see §4.10.4 of [19, p. 123]. As a result, if

both (an)n≥0 and (bn)n≥0 are SM sequences of some measures with infinite
support, then so is (anbn)n≥0 by (ii) of Lemma 3.1. Thus we conclude that
((n+s)!(n+t)!)n≥0 is an SM sequence of some measure with infinite support,
and hence the Hankel matrix [(n+ k + s)!(n+ k + t)!]n,k≥0 is STP.

Define the m-th Narayana square as

Np
A,〈m〉 =

[
NA〈m〉(n+ k, k)

]
n≥m;k≥0 ,

where NA〈m〉(n, k) is given by (2.1). The main result of this section is as
follows.

Theorem 3.3. For any m ≥ 0, the square Np
A,〈m〉 is STP. In particular,

the Narayana squares Np
A and Np

B are STP.

Proof. We have

NA〈m〉(n+ k, k) =
m+ 1

n+ k + 2

(
n+ k + 2

k + 1

)(
n+ k −m

k

)
∼ (n−m+ k)!(n+ k + 1)!.

Replacing n by n + m, we see that the strict total positivity of Np
A,〈m〉 is

equivalent to that of the Hankel matrix [(n+ k)!(n+ k +m+ 1)!]n,k≥0. By
Lemma 3.2, the square Np

A,〈m〉 is STP. In particular, the Narayana square

Np
A is STP. The strict total positivity of Np

B will follow in the same manner
as Np

A,〈m〉 in view of that

NB(n+ k, k) =
(n+ k)!2

n!2k!2
∼ (n+ k)!2,

so the proof is complete.

7



4. Remarks

There are various generalizations of classical Narayana numbers, see for
instance [2, 5, 11, 12, 18]. As we mentioned before, the numbers NA(n, k)
(resp. NB(n, k)) appear as the rank numbers of the poset of generalized
noncrossing partitions associated to a Coxeter group of type A (resp. B).
These posets are further generalized by Armstrong [2] by introducing the
notion of m-divisible noncrossing partitions for any positive integer m and
any finite Coxeter group. Armstrong also showed that these generalized
posets are not lattices but are still graded.

Fixing an integer m ≥ 1, for n ≥ k ≥ 0 set

FNA〈m〉(n, k) =
1

n+ 1

(
n+ 1

k

)(
m(n+ 1)

n− k

)
FNB〈m〉(n, k) =

(
n

k

)(
mn

n− k

)
.

These numbers are called the Fuss-Narayana numbers by Armstrong [2],
who proved that FNA〈m〉(n, k) (resp. FNB〈m〉(n, k)) are the rank numbers
of the poset of m-divisible noncrossing partitions associated to a Coxeter
group of type A (resp. B). For m = 1, the Fuss-Narayana numbers are just
the ordinary Narayana numbers.

Note that, for any m ≥ 2, we have

FNA〈m〉(n, k) 6= FNA〈m〉(n, n− k), FNB〈m〉(n, k) 6= FNB〈m〉(n, n− k).

Now define the Fuss-Narayana triangles

FNA,〈m〉 =
[
FNA〈m〉(n, k)

]
n,k≥0 ,

←−−
FNA,〈m〉 =

[
FNA〈m〉(n, n− k)

]
n,k≥0 ,

FNB,〈m〉 =
[
FNB〈m〉(n, k)

]
n,k≥0 ,

←−−
FNB,〈m〉 =

[
FNB〈m〉(n, n− k)

]
n,k≥0

and the Fuss-Narayana squares

FNp
A,〈m〉 =

[
FNA〈m〉(n+ k, k)

]
n,k≥0 ,

FNp
B,〈m〉 =

[
FNB〈m〉(n+ k, k)

]
n,k≥0 .

For 2 ≤ m ≤ 10, we have verified the total positivity of the submatrices
composed of the first ten rows and columns of the Fuss-Narayana triangles,
as well as the strict total positivity the submatrices composed of the first ten
rows and columns of the Fuss-Narayana squares. We propose the following
conjecture.
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Conjecture 4.1. For any m ≥ 2, the Fuss-Narayana triangles are TP and
the Fuss-Narayana squares are STP.

There are other symmetric combinatorial triangles, which are TP and
the corresponding squares are STP. The Delannoy number D(n, k) is the
number of lattice paths from (0, 0) to (n, k) using steps (1, 0), (0, 1) and
(1, 1). Clearly,

D(n, k) = D(n− 1, k) +D(n− 1, k − 1) +D(n, k − 1),

with D(0, k) = D(k, 0) = 1. It is well known that the Narayana number
NA(n, k) counts the number of Dyck paths (using steps (1, 1) and (1,−1))
from (0, 0) to (2n, 0) with k peaks. It is also known that NA〈m〉(n, k) counts
the number of Dyck paths of semilength n whose last m steps are (1,−1)
with k peaks, see Callan’s note in [22]. Brenti [6, Corollar 5.15] showed that
the Delannoy triangle D = [D(n− k, k)]n,k≥0 and the Delannoy square Dp =
[D(n, k)]n,k≥0 are TP by means of lattice path techniques. The following
problem naturally arises.

Question 4.2. Whether the total positivity of Narayana matrices can also
be obtained by a similar combinatorial approach?

We have seen that the Pascal square has the decomposition P p = PP T .
We also have Dp = Pdiag(1, 2, 22, . . .)P T since

D(n, k) =
∑
j

2j
(
k

j

)(
n

j

)
(see [4] for instance). A natural problem is to find out the explicit (modified)
Choleski decomposition of the Narayana squares Np

A and Np
B.

Another well-known symmetric triangle is the Eulerian triangle A =
[A(n, k)]n,k≥1 where A(n, k) is the Eulerian number, which counts the num-
ber of n-permutations with exactly k − 1 excedances. Brenti [7, Conjecture
6.10] conjectured that the Eulerian triangle A is TP. Motivated by the strict
total positivity of the Narayana squares, we pose the following conjecture.
We have verified the stirct total positivity of the submatrix of Ap composed
of its first 13 rows and columns.

Conjecture 4.3. The Eulerian square Ap = [A(n+ k, k)]n,k≥1 is STP.
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