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Abstract

Barely set-valued tableaux were introduced by Reiner, Tenner and Yong in

their study of the probability distribution of edges in the Young lattice of parti-

tions. We prove a generalization of a conjecture of Reiner, Tenner and Yong on

the number of barely set-valued tableaux. To do this we apply results of Chan,

Haddadan, Hopkins and Moci on jaggedness of shapes.

1 Introduction

Set-valued semistandard Young tableaux were introduced by Buch [1] in his study

of the Littlewood-Richardson rule for stable Grothendieck polynomials. Let λ =

(λ1, λ2, . . . , λ`) be an integer partition, that is, λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 0. The Y-

oung diagram of λ is a left-justified array of squares with λi squares in row i. If no

confusion arises, we do not distinguish a partition and its Young diagram. A Young

diagram is also called a shape. A set-valued semistandard Young tableau of shape λ is

an assignment of finite sets of positive integers into the squares of λ such that the sets

in each row (respectively, column) are weakly (respectively, strictly) increasing. Here,

for two sets A and B of positive integers, write A ≤ B if maxA ≤ minB and A < B

if maxA < minB. When the set in each square contains a single integer, a set-valued

semistandard Young tableau becomes an ordinary semistandard Young tableau.

A barely set-valued semistandard Young tableau is a set-valued semistandard Young

tableau such that exactly one square is assigned two integers and each of the remaining

squares is occupied by a single integer, see Figure 1.1 for an example. Barely set-

valued tableaux arose in the work of Reiner, Tenner and Yong [5] on the probability

distribution of the edges in the Young lattice of partitions.

A flagged set-valued semistandard Young tableau, defined by Knutson, Miller and

Yong [4], is a set-valued semistandard Young tableau such that each value in row i
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1 2 2 3

24 4 4

5 6

7 7

Figure 1.1: A barely set-valued semistandard Young tableau.

does not exceed a positive integer φi. We use BSSYT(λ, k) (respectively, SYT(λ, k))

to represent the set of barely set-valued semistandard Young tableaux (respectively,

ordinary semistandard Young tableaux) such that each value in row i does not exceed

φi = k + i.

When λ is a rectangular staircase shape δd(b
a), namely, the Young diagram obtained

from the staircase shape δd = (d− 1, d− 2, . . . , 1) by replacing each square by an a× b
rectangle, Reiner, Tenner and Yong [5] posed the following conjecture.

Conjecture 1.1 ( Reiner, Tenner and Yong [5, Conjecture 6.4′]). For any positive

integers a, b, d and k,

|BSSYT(δd(b
a), k)| = kab(d− 1)

(a+ b)
|SYT(δd(b

a), k)|. (1.1)

For d = 2, Reiner, Tenner and Yong showed that the above conjecture is true by em-

ploying the RSK algorithm as well as Stanley’s hook content formula for semistandard

Young tableaux.

The objective of this paper is to prove Conjecture 1.1. In fact, we prove a gener-

alization of this conjecture in Theorem 3.1 by applying results of Chan, Haddadan,

Hopkins and Moci [2] on jaggedness of shapes.

Reiner, Tenner and Yong [5] showed that Conjecture 1.1 can be reformulated in

terms of polynomials defined on 0-Hecke words of permutations. As usual, we use si
(1 ≤ i ≤ n−1) to denote the simple transposition that swaps i and i+1. An expression

of w as a product of simple transpositions is called reduced if it consists of a minimum

number of simple transpositions. The length of w, denoted `(w), is the number of

simple transpositions in a reduced expression of w. If we write w = w1w2 · · ·wn in

one-line notation, then the length `(w) equals the number of inversions of w, that is,

`(w) = |{(i, j) | 1 ≤ i < j ≤ n,wi > wj}|.

For a permutation w and a simple transposition si, define a product w ∗ si to be w

if `(wsi) < `(w) and wsi otherwise. Given a sequence S = (si1 , si2 , . . . , si`) of simple

transpositions, let H(S) = si1 ∗ si2 ∗ · · · ∗ si` . If H(S) = w, then S is called a 0-Hecke

word of w of length `. It is easily seen that a 0-Hecke word of w of length `(w) is a
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reduced expression of w. Reiner, Tenner and Yong [5] defined the polynomial FK(w, `)

by

FK(w, `) =
∑

(si1 ,si2 ,...,si` )

(x+ i1)(x+ i2) · · · (x+ i`),

where the sum ranges over 0-Hecke words of w of length `. When w is the longest

permutation w0 = n(n − 1) · · · 1, the polynomial FK(w0, `(w0)) was considered by

Fomin and Kirilov [3].

A permutation w is called a dominant permutation if it is 132-avoiding, that is,

if there are no indices i1 < i2 < i3 such that wi1 < wi3 < wi2 . Equivalently, w is

dominant if and only if the Lehmer code (c1(w), c2(w), . . . , cn(w)) of w is a weakly

decreasing sequence, where, for 1 ≤ i ≤ n, ci(w) is the number of inversions of w at

position i, namely,

ci(w) = |{j | i < j, wi > wj}|.

Reiner, Tenner and Yong [5] found that Conjecture 1.1 is equivalent to the following

conjecture.

Conjecture 1.2 (Reiner, Tenner and Yong [5, Conjecture 6.4]). Let w be a dominant

permutation whose Lehmer code is a rectangular staircase shape λ = δd(b
a). Then

FK(w, `(w) + 1)

FK(w, `(w))
=

(
`(w) + 1

2

)(
4x

d(a+ b)
+ 1

)
. (1.2)

2 The formula of Chan-Haddadan-Hopkins-Moci

In this section, we shall give an overview of a formula of Chan, Haddadan, Hopkins

and Moci [2] for the expected jaggedness of a subshape in a Young diagram under a

toggle-symmetric distribution. For the purpose of this paper, we only need the case

when the Young diagram is a balanced shape and the toggle-symmetric distribution is

the weak distribution on the subshapes of a balanced shape.

Let us begin with the necessary terminology. Given a finite poset (P,≤), an order

ideal I of P is a subset of P such that if p ∈ I and q ∈ P with q ≤ p, then q ∈ I. Let

J(P ) denote the set of order ideals of P . We say that an element p ∈ P can be toggled

into I if p is a minimal element not in I, and that p can be toggled out of I if p is

a maximal element in I. For each p ∈ P , the indicator random variables T +
p and T −p

on J(P ) are defined as follows. For an order ideal I of P , set T +
p (I) = 1 if p can be

toggled into I, and T +
p (I) = 0 otherwise. Similarly, set T −p (I) = 1 if p can be toggled

out of I, and T −p (I) = 0 otherwise. The jaggedness of I, denoted jag(I), is defined to

be the total number of elements in P which can be toggled into I or toggled out of I.

We say that a distribution on J(P ) is toggle-symmetric if for every p ∈ P , the

expected value E(T +
p ) of the random variable T +

p equals the expected value E(T −p ) of
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the random variable T −p , that is, for each p ∈ P ,∑
I∈J(P )

Prob(I) · T +
p (I) =

∑
I∈J(P )

Prob(I) · T −p (I).

To a Young diagram λ, one can associate a poset structure on the squares of λ. For

two squares B and B′ of λ, we say that B ≤ B′ if B occurs weakly northwest of B′.

It is readily seen that a subset of squares of λ forms an order ideal with respect to the

above poset structure if and only if it is a subshape of λ.

A corner of a shape µ is a square in µ such that the squares immediately below and

to the right are not in µ. While an outside corner of µ is a square out of µ such that

the squares immediately above and to the left are in µ. We assume that the square

just to the right of the first row and the square just below the first column are also

outside corners. Suppose that µ is a subshape of λ. By a proper outside corner of µ

we mean an outside corner of µ contained in λ. Clearly, a square of λ can be toggled

out of µ if and only if it is a corner of µ, while a square of λ can be toggled into µ if

and only if it is a proper outside corner of µ. Thus the jaggedness jag(µ) of µ equals

the total number of corners and proper outside corners of µ.

For example, the jaggedness of the subshape (3, 3, 2, 1) of the diagram (4, 4, 3, 1) in

Figure 2.2 equals 5, since it has three corners and two proper outside corners, which

are depicted by solid squares and open squares respectively.

�
�

�

�

�

Figure 2.2: Corners and proper outside corners.

Chan, Haddadan, Hopkins and Moci [2] found a formula for the expected jaggedness

of a subshape for a general skew Young diagram, which turns out to have a closed form

when it is a balanced Young diagram. A Young diagram λ is called a balanced shape if

the northwest turning point of each outside corner of λ lies on the main anti-diagonal

of λ. For example, Figure 2.3 illustrates two balanced shapes, where the dashed lines

represent the main anti-diagonals.

Theorem 2.1 (Chan, Haddadan, Hopkins and Moci [2, Corollary 3.8]). For a balanced

Young diagram λ with r rows and c columns and for any toggle-symmetric distribution,

the expected jaggedness of a subshape of λ equals

2rc

r + c
.
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Figure 2.3: Balanced Young diagrams.

We conclude this section with a description of a specific toggle-symmetric distribu-

tion, called the weak distribution, see [2, Definition 2.2]. A reverse plane partition of

shape λ is an assignment of nonnegative integers into the squares of λ such that the

integers in each row and each column are weakly increasing, see Stanley [6, Chapter

7]. Given a positive integer k, let RPP(λ, k) denote the set of reverse plane partitions

of shape λ with every entry not exceeding k.

To define the weak distribution, consider the pairs (P, i) with P ∈ RPP(λ, k) and

i ∈ {1, 2, . . . , k}. A pair (P, i) determines a subshape of λ, denoted α(P, i), which

consists of squares of P occupied by the entries strictly less than i. The subshape

α(P, i) is also called an induced subshape. Let

Q(λ, k) = {(P, i) |P ∈ RPP(λ, k), 1 ≤ i ≤ k}. (2.1)

Assume that the pairs (P, i) in Q(λ, k) are generated uniformly. Then we are led to

the weak distribution of subshapes of λ, that is, a subshape µ occurs with probability

|{(P, i) ∈ Q(λ, k) |α(P, i) = µ}|
|Q(λ, k)|

. (2.2)

Chan, Haddadan, Hopkins and Moci [2, Lemma 2.8] showed that the weak distribu-

tion is indeed a toggle-symmetric distribution. Hence, in the case when λ is a balanced

shape, the expected jaggedness under the weak distribution can be computed by the

formula in Theorem 2.1, and so the following relation holds.

Theorem 2.2. For a balanced shape λ with r rows and c columns, we have∑
µ |{(P, i) ∈ Q(λ, k) |α(P, i) = µ}| · jag(µ)

|Q(λ, k)|
=

2rc

r + c
,

where µ ranges over the subshapes of λ.

3 Proof of the conjecture

In this section, we present a proof of Conjecture 1.1. In fact, we establish the following

relation on |BSSYT(λ, k)| and |SYT(λ, k)| for a balanced shape λ.
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Theorem 3.1. For any positive integer k and a balanced shape λ with r rows and c

columns, we have

|BSSYT(λ, k)| = krc

(r + c)
|SYT(λ, k)|. (3.1)

As observed by Chan, Haddadan, Hopkins and Moci [2], a rectangular staircase

shape is a balanced shape. Moreover, a rectangular staircase shape δd(b
a) has a(d− 1)

rows and b(d− 1) columns. Thus Theorem 3.1 specializes to Conjecture 1.1.

To prove Theorem 3.1, we find the following representation of a barely set-valued

tableau.

Theorem 3.2. There is a bijection between the set BSSYT(λ, k) and the set of triples

(P, i, C), where 1 ≤ i ≤ k, P is a reverse plane partition in RPP(λ, k), and C is a

corner of the induced subshape α(P, i).

Proof. Let T be a barely set-valued tableau in BSSYT(λ, k). We construct a reverse

plane partition P ∈ RPP(λ, k), an integer i (1 ≤ i ≤ k) and a corner C in the induced

subshape α(P, i). For each entry in T , if it is in the t-th row, then subtract it by t.

This results in a tableau T ′ with every entry not exceeding k in which each row and

each column are weakly increasing. Assume that B is the square of T containing two

entries, say, a and b with a < b, and assume that B is in the r-th row of T . Then the

entries of T ′ in the square B are a − r and b − r. Define P to be the reverse plane

partition in RPP(λ, k) obtained from T ′ by deleting the entry b− r in B.

We next determine the integer i and the corner C in the induced subshape α(P, i).

Notice that r ≤ a < b. So we have 1 ≤ b− r ≤ k. Set i = b− r. We choose the corner

C of α(P, b− r) to be the square B. This is feasible because it can be verified that the

square B is a corner of α(P, b−r). Keep in mind that the subshape α(P, b−r) consists

of the squares of P occupied by the entries smaller than b− r. Note that the entry in

the square B of P is a− r. Since a− r < b− r, the square B must be a square of the

subshape α(P, b− r). To verify that B is a corner of α(P, b− r), we need to check that

if B′ is a square of λ just to the right of B or just below B, then B′ does not belong

to α(P, b − r), or, equivalently, the entry of P in B′ is bigger than or equal to b − r.
This is obvious owing to the construction of P .

To show that the above construction is reversible, we give a brief description of the

reverse procedure. Given a reverse plane partition P in RPP(λ, k) together with an

integer 1 ≤ i ≤ k and a corner C of α(P, i), we shall recover a barely set-valued tableau

T in BSSYT(λ, k) as follows. Let T ′ be the tableau obtained from P by joining the

entry i into the square C so that the square C has two entries. Increase each entry in T ′

by t if it is in the t-th row of T ′. Let T denote the resulting tableau. It is easily verified

that T is a barely set-valued tableau in BSSYT(λ, k). This completes the proof.

Figure 3.4 illustrates the construction of the bijection in Theorem 3.2 applying to a

barely set-valued tableau T in BSSYT(λ, k) with λ = (4, 4, 2, 1) and k = 2, where the

subshape α(P, 2) is determined by the lattice path in λ drawn with thick line.
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1 1 2 2

24 4 4 4

5 5

6

←−−→

0 0 1 1

02 2 2 2

2 2

2

←−−→

0 0 1 1

0 2 2 2

2 2

2

C,

T T ′ (P, α(P, 2), C)

Figure 3.4: An illustration of the bijection in Theorem 3.2.

In the spirit of Theorem 3.2, we have an alternative representation of a barely set-

valued tableau involving a designated proper outside corner.

Theorem 3.3. There is a bijection between the set BSSYT(λ, k) and the set of triples

(Q, j, C ′), where 1 ≤ j ≤ k, Q is a reverse plane partition in RPP(λ, k), and C ′ is a

proper outside corner of the induced subshape α(Q, j).

Proof. The proof is similar to that of Theorem 3.2, and so we only give a description

of the construction of the bijection. For a barely set-valued tableau T in BSSYT(λ, k),

let T ′ be the tableau as constructed in the proof of Theorem 3.2. Define Q to be the

reverse plane partition in RPP(λ, k) obtained from T ′ by deleting the entry a− r in B.

Set j = a−r+1. It can be verified that B is a proper outside corner of α(Q, a−r+1).

Then choose C ′ to be the proper outside corner B.

Figure 3.5 is an illustration of the bijection in Theorem 3.3, where T is a barely

set-valued tableau in BSSYT(λ, k) with λ = (4, 4, 2, 1) and k = 2.

1 1 2 2

24 4 4 4

5 5

6

←−−→

0 0 1 1

02 2 2 2

2 2

2

←−−→

0 0 1 1

2 2 2 2

2 2

2

C ′
,

T T ′ (Q,α(Q, 1), C ′)

Figure 3.5: An alternative representation.

Proof of Theorem 3.1. As introduced in Section 2, the expected jaggedness of a sub-

shape of λ under the weak distribution equals∑
µ |{(P, i) ∈ Q(λ, k) |α(P, i) = µ}| · jag(µ)

|Q(λ, k)|
, (3.2)
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where µ ranges over subshapes of λ. To compute the numerator of (3.2), note that∑
µ

|{(P, i) ∈ Q(λ, k) |α(P, i) = µ}| · jag(µ) =
∑

(P,i)∈Q(λ,k)

jag(α(P, i)).

Let C(P, i) denote the number of corners in the subshape α(P, i), and let C ′(P, i)

denote the number of proper outside corners of α(P, i). Then we have

jag(α(P, i)) = C(P, i) + C ′(P, i).

By the definition of the set Q(λ, k) in (2.1), we obtain that

∑
(P,i)∈Q(λ,k)

jag(α(P, i)) =
∑

P∈RPP(λ,k)

k∑
i=1

jag(α(P, i))

=
∑

P∈RPP(λ,k)

k∑
i=1

C(P, i) +
∑

P∈RPP(λ,k)

k∑
i=1

C ′(P, i). (3.3)

By Theorem 3.2 and Theorem 3.3, both the first double sum and the second double

sum in (3.3) are equal to |BSSYT(λ, k)|. It follows that∑
µ

|{(P, i) ∈ Q(λ, k) |α(P, i) = µ}| · jag(µ) = 2|BSSYT(λ, k)|. (3.4)

As to the denominator of (3.2), we notice that |Q(λ, k)| = k|RPP(λ, k)|. On the oth-

er hand, there is an obvious bijection between the set RPP(λ, k) and the set SYT(λ, k).

Given P ∈ RPP(λ, k), one can construct a semistandard Young tableau in SYT(λ, k)

from P by increasing each entry in the t-th row of P by t. Therefore,

|Q(λ, k)| = k|SYT(λ, k)|. (3.5)

Substituting (3.4) and (3.5) into (3.2), the expected jaggedness in (3.2) can be rewritten

as
2|BSSYT(λ, k)|
k|SYT(λ, k)|

,

which, together with Theorem 2.2, yields

2|BSSYT(λ, k)|
k|SYT(λ, k)|

=
2rc

r + c
.

This confirms (3.1), and hence the proof is complete.

We conclude this paper with a formula on the polynomial FK(w, `) with respect

to a dominant permutation w corresponding to a balanced shape. Restricting to a

dominant permutation corresponding to a rectangular staircase shape, this formula

reduces to Conjecture 1.2.
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Theorem 3.4. Let w be a dominant permutation whose Lehmer code is a balanced

shape λ with r rows and c columns, and let ` = `(w). Then we have

FK(w, `+ 1)

FK(w, `)
=

(
`+ 1

2

)(
2xrc

`(r + c)
+ 1

)
. (3.6)

Proof. It is sufficient to verify (3.6) for any positive integer x. In the proof of [5,

Corollary 6.11], Reiner, Tenner and Yong eatablished the following relation

FK(w, `+ 1)

FK(w, `)
=

(
`+ 1

2

)
+ (`+ 1)

|BSSYT(λ, x)|
|SYT(λ, x)|

. (3.7)

Substituting (3.1) into (3.7), we obtain that

FK(w, `+ 1)

FK(w, `)
=

(
`+ 1

2

)(
2xrc

`(r + c)
+ 1

)
,

and hence the proof is complete.

Notice that by (3.7), it is clear that Theorem 3.4 is equivalent to Theorem 3.1.
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