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Abstract

In this paper, we enumerate k-noncrossing RNA pseudoknot structures with given minimum arc-

and stack-length. That is, we study the numbers of RNA pseudoknot structures with arc-length ≥ 3,

stack-length ≥ σ and in which there are at most k − 1 mutually crossing bonds, denoted by T
[3]
k,σ(n).

We prove that the numbers of k-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ 2

satisfy T
[3]
k,2(n) ∼ Ck n−(k−1)2− k−1

2 (γ
[3]
k,2)

−n. In the case k = 3, 4, 5, we derive T
[3]
3,2(n) ∼ C3 n−52.5721n ,

T
[3]
4,2(n) ∼ C4 n− 21

2 3.0306n, and T
[3]
5,2(n) ∼ C5 n−18 3.4092n , respectively, where C3, C4, C5 are constants.

Our results are of importance for prediction algorithms for RNA pseudoknot structures.
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1. Introduction

One central problem in structural biology is that of predicting the spatial configuration of a mol-

ecule. For RNA, this means to understand the configuration of the primary sequence composed

by the four nucleotides A, G, U and C. These nucleotides can form Watson-Crick (A-U, G-C)

and (U-G) base pairs, as well as hydrogen bonds. The formation of these bonds stabilizes the
1
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molecule by lowering its free energy. A well-studied class of RNA conformations is that of RNA

secondary structures, pioneered by M. Waterman [22, 21, 7, 23]. An RNA secondary structure

is a contact-structure, identified with a set of Watson-Crick (A-U, G-C) and (U-G) base pairs

without considering any notion of spatial embedding. The key property of secondary structures is,

that they, when represented as diagrams (see Section 2), only contain noncrossing arcs. In other

words, secondary structures are specific graphs over n nucleotides whose arcs are the base-pairs,

see Figure 1. The biological relevance of secondary structures lies in the fact that their bonds

make the main contribution to the free energy of the molecule [4]. Secondary structures can be

1

10

20

30

40

50

60

70

76

1 10 20 30 40 50 60 70 76

3

6

4

9

10

10

14

20 28 30 40 50 60 70 76

Figure 1. The phenylalanine tRNA secondary structure as folded by the ab initio

folding algorithm cross [8], represented as planar graph, diagram and Motzkin-path.

represented as planar graphs, diagrams and Motzkin-paths, see Figure 1. In all representations,

vertices and arcs correspond to nucleotides and Watson-Crick (A-U, G-C) and (U-G) base pairs,

respectively. In addition to having noncrossing bonds, RNA secondary structures satisfy particular

constraints common to all RNA structures. They satisfy specific minimum arc-length and stack-

length conditions. These stem from the fact that chemical bonds are subject to specific steric as
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well as biophysical constraints: the folded structure has to exhibit a low minimum free energy and

key energy contributions come from the “stacking” of base pairs.

RNA structures serve a variety of biochemical functions: RNA acts as a messenger linking DNA and

proteins. The discovery of catalytic RNAs, or ribosomes, in 1981 proved that RNA could catalyze

reactions just as proteins. RNA plays a central role within living cells and all its functions are

closely connected to the structure of the RNA molecules. An increasing number of experimental

findings imply that there exist additional types of interactions between RNA nucleotides [24].

These bonds are called pseudoknots and occur in functional RNA like for instance RNAseP [14] as

well as ribosomal RNA [13]. RNA pseudoknots are conserved also in the catalytic core of group I

introns. In plant viral RNAs, pseudoknots mimic tRNA structure and in in vitro RNA evolution

[20], experiments have produced families of RNA structures with pseudoknot motifs, when binding

HIV-1 reverse transcriptase. In addition, important mechanisms like ribosomal frame shifting [1]

also involve pseudoknot interactions. As a result, RNA pseudoknot structures have drawn over

the last years a lot of attention [16]. A recent categorization of RNA pseudoknot structures has

been obtained in [9, 10]. There the notion of k-noncrossing RNA structures has been introduced,

that are structures with at most k − 1 mutually crossing arcs. This concept naturally generalizes

that of 2-noncrossing, i.e. secondary structures and captures the complexity of pseudoknots, since

Watson-Crick base pairs are constrained in the way they cross [6, 24]. The number of mutually

crossing arcs, k − 1, the minimum arc-length and the minimum stack-length are key parameters

of the molecular structure, see Figure 2. As in the case RNA secondary structures, due to steric

and biophysical constraints, arcs in RNA pseudoknot structures are subject to minimal length

conditions and the main energy contributions stem from the stacking of arcs.

In this paper, we study RNA pseudoknot structures that are subject to such biophysical constraints.

We analyze k-noncrossing RNA structures having arc-length ≥ 3 and stack-length ≥ σ, where

σ ≥ 2, the number of which are denoted by T
[3]
k,σ(n). In order to construct this structure class, the

main idea is to consider a certain subset of k-noncrossing core-structures [11]. We recall that a

core-structure has no stacks of size > 1, i.e. there exists no two arcs of the form (i, j), (i + 1, j − 1)

and no arcs of the form (i, i + 1) (1-arcs). To be explicit, we consider the subset of core-structures

having minimum arc-length 2 and having no arcs of the form (i, i + 2), where i + 1 is isolated. We

prove a bijection between this subset of core-structures with multiplicities and k-noncrossing RNA

structures with arc-length ≥ 3 and stack-length ≥ σ, where σ ≥ 2. Subsequently, we derive several

functional equations between generating functions, based on which transfer theorems imply our

asymptotic formulas. In Figure 3, we show that the results derived here produce an approximation
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Figure 2. The Hepatitis Delta Virus (HDV)-pseudoknot structure and its diagram

representation: we display the structure as folded by ab initio algorithm cross with

minimum stack size three [8] (top) and its diagram representation (bottom).

Figure 3. Exact enumeration data versus asymptotic formula. We plot the num-

ber of 3-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ 2, de-

noted by T
[3]
3,2(n) and its asymptotic formula C3,2 n−52.5721n (lhs) and the number of

3-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ 3, denoted by

T
[3]
3,3(n) versus C3,3n

−52.0392n. For the purpose of representation we set C3,2 = C3,3 = 1.

that works well already for relatively small sequence length. Figure 3 compares the exact values

T
[3]
3,2(n), i.e., the number of 3-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ 2

and T
[3]
3,3(n), i.e., the number of 3-noncrossing RNA structures with arc-length ≥ 3 and stack-length
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≥ 3, with the asymptotic formulas given in Theorem 5:

T
[3]
3,2(n) ∼ C3,2 n−52.5721n and T

[3]
3,3(n) ∼ C3,3n

−52.0392n.

The paper is relevant for ab initio prediction algorithms of pseudoknot RNA, since it proves that the

numbers of k-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ σ exhibit small

exponential growth rates. The results suggest a novel strategy for RNA pseudoknot prediction and

have led to novel folding strategies [8].

2. Diagrams, matchings and structures

A diagram is labeled graph over the vertex set [n] = {1, . . . , n} with degree ≤ 1, represented by

drawing its vertices 1, . . . , n in a horizontal line and its arcs (i, j), where i < j, in the upper

half plane. Here the degree of i refers to the number of non-horizontal arcs incident to i, i.e. the

backbone of the primary sequence is not accounted for. The vertices and arcs correspond to

nucleotides and Watson-Crick (A-U, G-C) and (U-G) base pairs, respectively. We categorize

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4. k-noncrossing diagrams. Top: 3-noncrossing diagram (no red/purple cross)

with arc-length ≥ 3, (2, 5), (7, 10), the arc (7, 10) being isolated. Hence we have a 3-

noncrossing, λ = 3, σ = 1 diagram without isolated vertices. Bottom: 3-noncrossing,

λ = 4, σ = 2 diagram with isolated vertices 13.

diagrams according to the maximum number of mutually crossing arcs, k − 1, the minimum arc-

length, λ, and the minimum stack-length, σ. Here the length of an arc (i, j) is j − i and a stack of
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length σ is a sequence of “parallel” arcs of the form

((i, j), (i + 1, j − 1), . . . , (i + (σ − 1), j − (σ − 1))).

In the following, we call a k-noncrossing diagram with arc-length ≥ 2 and stack-length ≥ σ a

k-noncrossing RNA structure. We denote the set (number) of k-noncrossing RNA structures with

stack-size ≥ σ by Tk,σ(n) (Tk,σ(n)) and refer to k-noncrossing RNA structures for k ≥ 3 as

pseudoknot RNA structures. A k-noncrossing core-structure is a k-noncrossing RNA structures in

which there exists no two arcs of the form (i, j), (i+1, j−1). The set (number) of RNA structures

with arc-length ≥ 3, is denoted by T
[3]
k,σ(n) (T

[3]
k,σ(n)). For k = 2 and σ = 1 we have RNA

structures with no two crossing arcs, i.e. the well-known RNA secondary structures, as mentioned

above. RNA secondary structures are T2,1(n)-structures. We denote by fk(n, ℓ) the number of k-

noncrossing diagrams with arbitrary arc-length and ℓ isolated vertices over n vertices. In Figure 5

we display various types of diagrams involved. In light of the bijection between k-noncrossing

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 5. Basic diagram types: (a) (perfect) matching (f3(8, 0)), (b) partial matching

with 1-arc (5, 6) and isolated points 2, 7 (f3(8, 2)), (c) structure with arc-length ≥ 3 and

stack-length ≥ 2 and no isolated points (T
[3]
3,2(8)) and (d) structure with arc-length ≥ 3,

stack-length ≥ 3 and isolated points 4, 5 (T
[3]
2,3(8)).

matchings on [2n] and the oscillating tableaux of empty shape and length 2n due to Stanley [2]

and Sundaram [18], and the interpretation of an oscillating tableau as a path with elementary

moves ±ei inside a Weyl Chamber [2], we come to conclude that the number of k-noncrossing

matchings on [2n] equals the number of walks from η to itself that stay inside the Weyl Chamber

x1 > x2 > · · · > xk−1 > 0 with steps ±ei, 1 ≤ i ≤ k − 1, given by Grabiner et al. [5]. It is

exactly the situation η = λ = (k − 1, k − 2, · · · , 1) of equation (38) in [5]. As shown in detail in
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[9], Lemma 2, it follows

∑

n≥0

fk(n, 0) · xn

n!
= det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1(2.1)

∑

n≥0

{

n
∑

ℓ=0

fk(n, ℓ)

}

· xn

n!
= ex det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1,(2.2)

where Ir(2x) =
∑

j≥0
x2j+r

j!(r+j)! denotes the hyperbolic Bessel function of the first kind of order

r. Eq. (2.1) and (2.2) allow “in principle” for explicit computation of the numbers fk(n, ℓ). In

particular for k = 2 and k = 3 we have the formulas

(2.3) f2(n, ℓ) =

(

n

ℓ

)

C(n−ℓ)/2 and f3(n, ℓ) =

(

n

ℓ

)

[

Cn−ℓ
2

+2Cn−ℓ
2

− C2
n−ℓ
2

+1

]

,

where Cm denotes the m-th Catalan number. f3(n, ℓ) results from a determinant formula enu-

merating pairs of noncrossing Dyck-paths. In view of fk(n, ℓ) =
(

n
ℓ

)

fk(n − ℓ, 0) everything can be

reduced to (perfect) matchings, where we have the following situation: there exists an asymptotic

approximation of the determinant of hyperbolic Bessel function for general order k due to [12] and

employing the subtraction of singularities-principle [15] one can prove [12]

(2.4) ∀ k ∈ N; fk(2n, 0) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n, ck > 0.

Let Fk(z) =
∑

n≥0 fk(2n, 0)z2n, the generating function of k-noncrossing matchings. As for the

generating function and asymptotics of k-noncrossing RNA structures, we have the following results

from [9, 10]. First the number of k-noncrossing RNA structures with (n−ℓ
2 ) arcs, Tk,1(n, n−ℓ

2 ), and

the number of k-noncrossing RNA structures, Tk,1(n), is given by

Tk,1(n,
n − ℓ

2
) =

⌊n/2⌋
∑

b=0

(−1)b

(

n − b

b

)

fk(n − 2b, ℓ)(2.5)

Tk,1(n) =

⌊n/2⌋
∑

b=0

(−1)b

(

n − b

b

)

{

n−2b
∑

ℓ=0

fk(n − 2b, ℓ)

}

,(2.6)

where {
∑n−2b

ℓ=0 fk(n − 2b, ℓ)} is given via eq. (2.2). Secondly we have

T3,1(n) ∼ 1.9572 · 4!

n(n − 1) · · · (n − 4)

(

5 +
√

21

2

)n

(2.7)

T
[3]
3,1(n) ∼ 6.1117 · 4!

n(n − 1) · · · (n − 4)
4.54920n.(2.8)
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The particular class of k-noncrossing core-structures, i.e. structures in which there exists no two

arcs of the form (i, j), (i+1, j−1) with minimal arc-length 2, will play a central role in the following:

Theorem 1. (Core-structures) Suppose k ∈ N, k ≥ 2, x is an indeterminate, ρk is the dom-

inant, positive real singularity of Fk(x) and u1(x) = 1
1+x2 . Then for h ≥ 1, the number of

k-noncrossing core-structures, Ck(n, h) is given by

(2.9) Ck(n, h) =

h−1
∑

b=0

(−1)h−b−1

(

h − 1

b

)

Tk,1(n − 2h + 2b + 2, b + 1).

Furthermore we have the functional equation

∑

n≥0

Ck(n) xn =
1

u1(x)x2 − x + 1
Fk

(

√

u1(x)x

u1(x)x2 − x + 1

)

(2.10)

and the asymptotic formula

(2.11) Ck(n) ∼ n−((k−1)2+(k−1)/2)

(

1

κk

)n

, for k = 3, 4, . . . , 7

where κk is the dominant positive real singularity of
∑

n≥0 Ck(n)xn and the minimal positive real

solution of the equation
√

u1 x
u1x2−x+1 = ρk for k = 3, 4, . . . , 7.

Next we present a functional identity [10] which relates the bivariate generating function for

Tk,1(n, h), the number of k-noncrossing RNA pseudoknot structures with h arcs, and the gen-

erating function of k-noncrossing matchings.

Lemma 1. Let k ∈ N, k ≥ 2 and z, u be indeterminates. Then we have

(2.12)
∑

n≥0

∑

h≤n/2

Tk,1(n, h) u2hzn =
1

u2z2 − z + 1
Fk

(

uz

u2z2 − z + 1

)

.

In particular we have for u = 1,

(2.13)
∑

n≥0

Tk,1(n) zn =
1

z2 − z + 1
Fk

(

z

z2 − z + 1

)

.

In view of Lemma 1, it is of interest to deduce relations between the coefficients from the equality

of generating functions. The class of theorems that deal with this deduction are called transfer-

theorems [3]. One key ingredient in this framework is a specific domain, in which the functions

in question are analytic, which is “slightly” bigger than their respective radius of convergence. It
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is tailored for extracting the coefficients via Cauchy’s integral formula: given two numbers φ, R,

where R > 1 and 0 < φ < π
2 and ρ ∈ R, the open domain ∆ρ(φ, R) is defined as

(2.14) ∆ρ(φ, R) = {z | |z| < R, z 6= ρ, |Arg(z − ρ)| > φ}.

A domain is a ∆ρ-domain if it is of the form ∆ρ(φ, R) for some R and φ. A function is ∆ρ-analytic

if it is analytic in some ∆ρ-domain. We use the notation

(2.15) (f(z) = O (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) is bounded as z → ρ)

and if we write f(z) = O(g(z)), it is implicitly assumed that z tends to a (unique) singularity.

[zn] f(z) denotes the coefficient of zn in the power series expansion of f(z) around 0.

Theorem 2. [3] Let f(z), g(z) be D-finite, ∆ρ-analytic functions with unique dominant singularity

ρ and suppose

(2.16) f(z) = O(g(z)) for z → ρ.

Then we have

(2.17) [zn]f(z) = K

(

1 − O

(

1

n

))

[zn]g(z),

where K is some constant.

As a consequence of Theorem 2, eq. (2.4) and the so called supercritical case of singularity analysis

[3], VI.9., p. 411, we give the following result tailored for our functional equations [11]. Let ρk

denote the dominant positive real singularity of Fk(z).

Theorem 3. Suppose ϑσ(z) is algebraic over K(z), analytic for |z| < δ and satisfies ϑσ(0) = 0.

Suppose further γk,σ is the real unique solution with minimal modulus < δ of the two equations

ϑσ(z) = ρk and ϑσ(z) = −ρk. Then

(2.18) [zn]Fk(ϑσ(z)) ∼ ck n−((k−1)2+(k−1)/2)
(

γ−1
k,σ

)n

.

Since ϑσ(z) is algebraic over K(z) and satisfies ϑσ(0) = 0, we can conclude that the composition

Fk(ϑσ(z)) is D-finite [17]. In particular, Fk(ϑσ(z)) has a singular expansion. Since Fk(z) has the

two dominant singularities ±ρk and γk,σ is the unique solution with minimal modulus < δ of the

two equations ϑσ(z) = ρk and ϑσ(z) = −ρk, we can conclude that γk,σ is the unique dominant

singularity of Fk(ϑσ(z)). We proceed by studying the singular expansion in more details. According

to Theorem 2 in [12], we have

(2.19) fk(2n, 0) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n
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for some ck > 0. In combination with Theorem 2, this allows us to conclude

Fk(z) =







O((z − ρk)(k−1)2+(k−1)/2−1 ln(z − ρk)) for k odd, z → ρk

O((z − ρk)(k−1)2+(k−1)/2−1) for k even, z → ρk,

in accordance with basic structure theorems for singular expansions of D-finite functions [3]. Since

ϑσ(z) is regular at γk,σ, we are given the supercritical case of singularity analysis [3]. In the

supercritical case, the subexponential factors of the composition, Fk(ϑσ(z)) coincide with those of

the outer function, Fk(z). Consequently we have

[zn]Fk(ϑσ(z)) ∼ ck n−((k−1)2+(k−1)/2)
(

γ−1
k,σ

)n

,

whence the theorem 3.

3. Exact Enumeration

In Theorem 4 below, we enumerate k-noncrossing RNA structures with arc-length ≥ 3 and stack-

length ≥ σ. The structure of the formula is analogous to the Möbius inversion of eq. (2.9) proved in

[11], which relates the numbers of all structures and the numbers of core-structures: Tk,σ(n, h) =
∑h−1

b=σ−1

(

b+(2−σ)(h−b)−1
h−b−1

)

Ck(n − 2b, h − b). The latter cannot be used in order to enumerate k-

noncrossing structures with arc-length ≥ 3, see Figure 6. The sets of structures

i-1 i i+3 i+4 j i+3 i+4 ji

distance=4 distance=2

Figure 6. Core-structures will in general have 2-arcs: the structure δ ∈ T3,2(12) (lhs)

is mapped into its core c(δ) (rhs). Clearly δ has arc-length ≥ 4 and as a consequence of

the collapse of the stack ((i + 1, j + 2), (i + 2, j + 1), (i + 3, j)) (the purple arcs are being

removed) into the arc (i + 3, j), c(δ) contains the arc (i, i + 4), which is, after relabeling,

a 2-arc.
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C∗
k (n, h) = {δ | δ ∈ Ck(n, h); 6 ∃ (i, i + 2); i + 1 is an isolated vertex }(3.1)

T ∗
k,1(n, h) = {δ | δ ∈ Tk,1(n, h); 6 ∃ (i, i + 2); i + 1 is an isolated vertex }(3.2)

turn out to be the key. Here the cardinality of the sets C∗
k (n, h), T ∗

k,1(n, h) and T
[3]
k,σ(n, h) are

denoted by C∗
k(n, h), T∗

k,1(n, h) and T
[3]
k,σ(n, h), respectively. Note that C∗

k(n, 0) = 1, for n ≥ 0.

Theorem 4. Suppose we have k, h, σ ∈ N, k ≥ 2, h ≤ n/2 and σ ≥ 2. Then the following

assertions hold:

(a) The numbers of k-noncrossing RNA structures with arc-length ≥ 3 and stack-length ≥ σ having

h arcs are given by

(3.3) T
[3]
k,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

C
∗
k(n − 2b, h − b).

(b) The numbers C∗
k(n, h) and T∗

k,1(n, h) are given by

C
∗
k(n, h) =

h−1
∑

b=0

(−1)h−b−1

(

h − 1

b

)

T
∗
k,1(n − 2h + 2b + 2, b + 1) for h ≥ 1(3.4)

T
∗
k,1(n, h) =

∑

0≤j1+j2≤h

(−1)j1+j2λ(n, j1, j2) fk(n − 2j1 − 3j2, n − 2h − j2),(3.5)

where

λ(n, j1, j2) =

(

n − j1 − 2j2
j1, j2, n − 2j1 − 3j2

)

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
[3]
3,2(n) 1 1 1 1 1 2 4 9 19 40 82 166 334 678 1394 2905 6111 12961

T
[3]
3,3(n) 1 1 1 1 1 1 1 2 4 8 14 24 40 68 118 209 371 653

Proof. We observe that there exists a mapping from k-noncrossing structures with h arcs with

arc-length ≥ 3 and stack-length σ ≥ 2 over [n] into ˙⋃
σ−1≤b≤h−1C

∗
k (n − 2b, h − b):

(3.6) c : T
[3]
k,σ(n, h) → ˙⋃

σ−1≤b≤h−1
C∗

k(n − 2b, h− b), δ 7→ c(δ)

which is obtained in two steps: first induce c(δ) by mapping arcs and isolated vertices as follows:

(3.7) ∀ ℓ ≥ σ − 1; ((i − ℓ, j + ℓ), . . . , (i, j)) 7→ (i, j) and j 7→ j if j is an isolated vertex

and secondly relabel the resulting diagram from left to right in increasing order, see Figure 7.

Claim 1. c : T
[3]
k,σ(n, h) −→ ˙⋃

σ−1≤b≤h−1C
∗
k(n − 2b, h− b) is well-defined and surjective.



12

1 2 3 4 5 6 7 8 1 2 3 4 5 61 3 4 5 6 8

Figure 7. The mapping c : T
[3]
k,σ(n, h) −→ ˙S

σ−1≤b≤h−1C
∗
k(n− 2b, h − b) is obtained in

two steps: first contraction of the stacks and secondly relabeling of the resulting diagram.

By construction, c does not change the crossing number. Since T
[3]
k,σ(n) contains only arcs of length

≥ 3, we derive c(T
[3]
k,σ(n)) ⊂ C∗

k(n− 2b, h− b). Therefore c is well-defined. It remains to show that

c is surjective. For this purpose, let δ ∈ C∗
k(n − 2b, h − b) and set a = b − (σ − 1)(h − b). We

proceed by constructing a k-noncrossing structure δ̃ in three steps:

Step 1. replace each label i by ri, where ri ≤ rs if and only if i ≤ s.

Step 2. replace the leftmost arc (rp, rq) by the sequence of arcs

(3.8) ((τp − ([σ − 1] + a), τq + ([σ − 1] + a)), . . . , (τp, τq)) ,

replace any other arc (rp, rq) by the sequence

(3.9) ((τp − [σ − 1], τq + [σ − 1]), . . . , (τp, τq))

and each isolated vertex rs by τs.

Step 3. Set for x, y ∈ Z, τb +y ≤ τc +x if and only if (b < c) or (b = c and y ≤ x). By construction,

≤ is a linear order over

n − 2b + 2(h − b) (σ − 1) + 2a = n − 2b + 2(h − b) (σ − 1) + 2(b − (σ − 1)(h − b)) = n

elements, which we then label from 1 to n (left to right) in increasing order. It is straightforward

to verify that c(δ̃) = δ holds. It remains to show that δ̃ ∈ T
[3]
k,σ(n). Suppose a contrario δ̃ contains

an arc (i, i + 2). Since σ ≥ 2, we can then conclude that i + 1 is necessarily isolated. The arc

(i, i + 2) is mapped by c into (j, j + 2) with isolated point j + 1, which is impossible by definition

of C∗
k (n′, h′) and Claim 1 follows.

Labeling the h arcs of δ ∈ T
[3]
k,σ(n, h) from left to right and keeping track of multiplicities gives rise

to the map

(3.10)

fk,σ : T
[3]
k,σ(n, h) → ˙⋃

σ−1≤b≤h−1



C∗
k(n − 2b, h− b) ×







(aj)1≤j≤h−b |
h−b
∑

j=1

aj = b, aj ≥ σ − 1









 ,
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given by fk,σ(δ) = (c(δ), (aj)1≤j≤h−b). We can conclude that fk,σ is well-defined and a bijection.

We proceed by computing the multiplicities of the resulting core-structures [11]:

(3.11) |{(aj)1≤j≤h−b |
h−b
∑

j=1

aj = b; aj ≥ σ − 1}| =

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

.

Eq. (3.11) and eq. (3.10) imply

T
[3]
k,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

C
∗
k(n − 2b, h − b),

whence eq. (3.3). Next we consider the map

(3.12) c∗ : T ∗
k,1(n, h) → ˙⋃

0≤b≤h−1
C∗

k(n − 2b, h− b), δ 7→ c∗(δ)

In the following, we call the 2-arc (i, i + 2) with isolated i + 1 a bad-arc. In analogy to the above,

each diagram in T ∗
k,1(n, h) without 1-arcs and bad-arcs can be reduced into a core-structure without

1-arcs and bad arcs in C∗
k (n′, h′). That gives rise to

T
∗
k,1(n, h) =

h−1
∑

b=0

(

h − 1

b

)

C
∗
k(n − 2b, h− b).

Then, via Möbius-inversion, we obtain eq. (3.4). Recall that T
∗
k,1(n, h) counts the number of k-

noncrossing partial matchings without 1-arcs and bad-arcs. It is straightforward to show there

are λ(n, j1, j2) =
(

n−j1−2j2
j1,j2,n−2j1−3j2

)

ways to select j1 1-arc and j2 bad-arcs over [n]. Since removing

j1 1-arc and j2 bad-arcs by construction removes 2j1 + 3j2 vertices, we observe the number of

configurations of at least j1 1-arc and j2 bad-arcs is given by λ(n, j1, j2)fk(n−2j1−3j2, n−2h−j2).

Via inclusion-exclusion principle, we arrive at

T
∗
k,1(n, h) =

∑

0≤j1+j2≤h

(−1)j1+j2λ(n, j1, j2)fk(n − 2j1 − 3j2, n − 2h − j2),

whence Theorem 4. �

Remark 1. As for the case of minimal arc length four, the ideas in Theorem 4 work for the

enumeration of k-noncrossing RNA structures with minimal arc length 4 and stack size σ ≥ 3,

denoted by T
[4]
k,σ(n). However, in the case σ = 2, the above strategy fails: the subset of core-

structures for generating T
[4]
k,2-structures is readily identified to have no 1-arcs, 2-arcs and no

isolated 3-arcs, i.e., no arcs of form (i, i + 3) where i, i + 1 and i + 2 as isolated vertices. While the

elimination of 1-arcs, bad-arcs and isolated 3-arcs can be dealt with, the difficulty lies in considering

2-arcs of the form (i, i + 2) with non-isolated vertex i + 1. When these arcs are being considered,

the inclusion-exclusion principle no longer works.
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We proceed by proving a functional identity between the bivariate generating functions of T
[3]
k,σ(n, h)

and C∗
k(n, h). This identity is based on Theorem 4 and is crucial for proving Theorem 5 in Section 4.

Its proof is analogous to Lemma 3 in [11].

Lemma 2. Let k, σ ∈ N, k ≥ 2 and let u, x be indeterminates. Suppose we have

(3.13) ∀h ≥ 1; Ak,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

Bk(n − 2b, h − b)

and Ak,σ(n, 0) = 1, Bk(n, 0) = 1 for n ≥ 0. Then we have the functional relation

∑

n≥0

∑

h≤n
2

Ak,σ(n, h)uhxn =
∑

n≥0

∑

h≤n
2

Bk(n, h)

(

u · (ux2)σ−1

1 − ux2

)h

xn.(3.14)

Proof. We set
∑

n≥0

∑

h≤n
2

Bk(n, h)uhxn =
∑

h≥0 ϕh(x)uh and compute in view of eq. (3.13)

(3.15)
∑

n≥0

∑

h≤n
2

Ak,σ(n, h)uhxn =
∑

n≥2

∑

h≤n
2

h≥1

∑

b≤h−1

Bk(n − 2b, h− b)

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

uhxn +
∑

n≥0

xn

where the term
∑

n≥0 xn = 1
1−x comes from the fact that for h = 0 the binomial

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

is zero, while for any n ≥ 0 the (lhs) counts Ak,σ(n, 0) = 1. We proceed by computing

=
∑

h≥1

∑

b≤h−1

∑

n≥2h

Bk(n − 2b, h− b)xn−2b

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

uhx2b +
1

1 − x

=
∑

b≥0

∑

b<h

ϕh−b(x)

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

uhx2b +
1

1 − x
.
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Setting m = h − b and subsequently interchanging the summation indices, we arrive at

∑

n≥0

∑

h≤n
2

Ak,σ(n, h)uhxn =
∑

b≥0

∑

1≤m

ϕm(x)

(

b + (2 − σ)m − 1

m − 1

)

um(ux2)b +
1

1 − x

=
∑

m≥1

ϕm(x)

(

u · (ux2)σ−1

1 − ux2

)m

+
1

1 − x

=
∑

n≥2

∑

h≤n
2

h≥1

Bk(n, h)

(

u · (ux2)σ−1

1 − ux2

)h

xn +
1

1 − x

=
∑

n≥0

∑

h≤n
2

Bk(n, h)

(

u · (ux2)σ−1

1 − ux2

)h

xn,

whence Lemma 2. �

According to Lemma 2 and eq. (3.3) we have

Tk,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

Ck(n − 2b, h− b)(3.16)

T
[3]
k,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

C
∗
k(n − 2b, h− b)(3.17)

T
∗
k,1(n, h) =

h−1
∑

b=0

(

h − 1

b

)

C
∗
k(n − 2b, h− b)(3.18)

and Lemma 2 implies the following three functional identities, which are instrumental for the proof

of Theorem 5 in Section 4.

∑

n≥0

∑

h≤n
2

Tk,σ(n, h)uhxn =
∑

n≥0

∑

h≤n
2

Ck(n, h)

(

u · (ux2)σ−1

1 − ux2

)h

xn(3.19)

∑

n≥0

∑

h≤n
2

T
∗
k,1(n, h)uhxn =

∑

n≥0

∑

h≤n
2

C
∗
k(n, h)

(

u

1 − ux2

)h

xn(3.20)

∑

n≥0

T
[3]
k,σ(n)xn =

∑

n≥0

∑

h≤n
2

C
∗
k(n, h)

(

(x2)σ−1

1 − x2

)h

xn for σ ≥ 2.(3.21)
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4. Asymptotic Enumeration

In this Section, we study the asymptotics of k-noncrossing RNA pseudoknot structures with arc-

length ≥ 3 and minimum stack length σ. We are particularly interested in deriving simple formulas,

that can be used assessing the complexity of prediction algorithms for k-noncrossing RNA struc-

tures. In order to state Theorem 5, below we introduce the following rational function

w0(x) =
x2σ−2

1 − x2 + x2σ
.(4.1)

Theorem 5. Let k, σ ∈ N, k, σ ≥ 2, x be an indeterminate and ρk the dominant, positive real

singularity of Fk(z). Then T
[3]
k,σ(n), the number of RNA structures with arc-length ≥ 3 and stack-

length ≥ σ satisfies the following identity

(4.2)
∑

n≥0

T
[3]
k,σ(n)xn =

1

1 − x + w0(x)x2 + w0(x)x3
Fk

(

√

w0(x)x

1 − x + w0(x)x2 + w0(x)x3

)

,

where w0(x) is given by eq. (4.1). Furthermore

(4.3) T
[3]
k,σ(n) ∼ n−(k−1)2− k−1

2

(

1

γ
[3]
k,σ

)n

, for k = 3, 4, . . . , 7

holds, where γ
[3]
k,σ is the positive real dominant singularity of

∑

n≥0 T
[3]
k,σ(n)zn and minimal real

solution of the equation

(4.4)

√

w0(x)x

1 − x + w0(x)x2 + w0(x)x3
= ρk =

1

2(k − 1)

and fk(2n, 0) ∼ n−(k−1)2− k−1

2

(

1
ρk

)2n

, see eq. (2.4).

Theorem 5 implies the following growth rates for 3-, 4- and 5-noncrossing RNA structures with

arc-length ≥ 3 and stack-length ≥ 2, 3:

(γ
[3]
3,2)

−1 = 2.5721 (γ
[3]
4,2)

−1 = 3.0306 (γ
[3]
5,2)

−1 = 3.4092

(γ
[3]
3,3)

−1 = 2.0392 (γ
[3]
4,3)

−1 = 2.2663 (γ
[3]
5,3)

−1 = 2.4442.

Proof. In the following, we will use the notation w0(x), eq. (4.1), for short without specifying the

variable x. The first step consists in deriving a functional equation relating the bivariate generating

functions of T ∗
k (n, h) and fk(2h′, 0). For this purpose, we use eq. (3.5).
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Claim 1.

∑

n≥0

∑

h≤n
2

T
∗
k,1(n, h)whxn =

1

1 − x + wx2 + wx3
Fk

( √
wx

1 − x + wx2 + wx3

)

.(4.5)

Set ϕm(w) =
∑

h≤m
2

(

m
2h

)

fk(2h, 0)wh. In order to prove Claim 1, we compute

∑

n≥0

∑

h≤n
2

T
∗
k,1(n, h)whxn

=
∑

n≥0

∑

h≤n
2

∑

0≤j1+j2≤h

(−1)j1+j2λ(n, j1, j2)fk(n − 2j1 − 3j2, n − 2h − j2)w
hxn

=
∑

n≥0

∑

j1+j2≤n
2

(−1)j1+j2λ(n, j1, j2)x
n
∑

h≥j1+j2

fk(n − 2j1 − 3j2, n − 2h − j2)w
h

=
∑

n≥0

∑

j1+j2≤n
2

(−1)j1+j2λ(n, j1, j2)w
j1+j2ϕn−2j1−3j2(w)xn.

We interchange the summation over j1 + j2 and n and arrive at

∑

j1+j2≥0

∑

n≥2j1+2j2

(−1)j1+j2

(

n − j1 − 2j2
j1, j2, n − 2j1 − 3j2

)

wj1+j2ϕn−2j1−3j2(w)xn

=
∑

j1+j2≥0

(−w)j1+j2

j1!j2!

∑

n≥2j1+3j2

(n − j1 − 2j2)!

(n − 2j1 − 3j2)!
ϕn−2j1−3j2(w)xn.

Setting m = n − 2j1 − 3j2, this becomes

=
∑

j1+j2≥0

(−w)j1+j2

j1!j2!
x2j1+3j2

∑

m≥0

(m + j1 + j2)!

m!
ϕm(w)xm

=
∑

m≥0





∑

j1+j2≥0

(

m + j1 + j2
m, j1, j2

)

(−wx2)j1 (−wx3)j2



ϕm(w)xm

=
∑

m≥0

ϕm(w)xm

(

1

1 + wx2 + wx3

)m+1

=
1

1 + wx2 + wx3

∑

m≥0

ϕm(w)

(

x

1 + wx2 + wx3

)m

.



18

Next we compute

∑

m≥0

ϕm(w)ym =

∫ ∞

0

∑

m≥0

ϕm(w)
(xy)m

m!
e−xdx

=

∫ ∞

0

det(2
√

wyx)e−(1−y)xdx

=
∑

n≥0

fk(2n, 0)

∫ ∞

0

e−(1−y)x (
√

wyx)2n

(2n)!
d((1 − y)x)

=
∑

n≥0

fk(2n, 0)
(
√

wy)2n

(2n)!

∫∞
0 e−(1−y)x((1 − y)x)2nd((1 − y)x)

(1 − y)2n+1

=
1

1 − y
Fk

(√
wy

1 − y

)

.

Therefore the bivariate generating function can be written as

∑

n≥0

∑

h≤n
2

T
∗
k,1(n, h)whxn =

1

1 − x + wx2 + wx3
Fk

( √
wx

1 − x + wx2 + wx3

)

,

which is immediately identified as an identity of power series, whence Claim 1. In view of eq. (3.20)

we arrive at

∑

n≥0

∑

h≤n
2

C
∗
k(n, h)

(

w

1 − wx2

)h

xn(4.6)

=
1

1 − x + wx2 + wx3
Fk

( √
wx

1 − x + wx2 + wx3

)

.(4.7)

According to eq. (3.21), we have

∑

n≥0

T
[3]
k,σ(n)xn =

∑

n≥0

∑

h≤n
2

C
∗
k(n, h)

(

(x2)σ−1

1 − x2

)h

xn(4.8)

and Claim 1 provides, setting

(4.9) w0 =
(x2)σ−1

1 − x2 + x2σ
,

the following interpretation of the (rhs) of eq. (4.6):

∑

n≥0

∑

h≤n
2

C
∗
k(n, h)

(

(x2)σ−1

1 − x2

)h

xn

=
1

1 − x + w0x2 + w0x3
Fk

( √
w0x

1 − x + w0x2 + w0x3

)

.
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According to Lemma 1 and eq. (4.8), we have

∑

n≥0

T
[3]
k,σ(n)zn =

1

1 − z + w0z2 + w0z3
Fk

( √
w0z

1 − z + w0z2 + w0z3

)

.(4.10)

Let us denote Vk(z) =
∑

n≥0 fk(2n, 0)
( √

w0z
1−z+w0z2+w0z3

)2n

.

Claim 2. All dominant singularities of
∑

n≥0 T
[3]
k,σ(n)zn are singularities of Vk(z). Furthermore the

unique, minimal, positive, real solution of

(4.11) ϑσ(z) =

√
w0z

1 − z + w0z2 + w0z3
= ρk =

1

2(k − 1)
, for k = 3, 4, . . . , 7

denoted by γ
[3]
k,σ is a dominant singularity of

∑

n≥0 T
[3]
k,σ(n)zn.

Clearly, a dominant singularity of 1
1−z+w0z2+w0z3 Vk(z) is either a singularity of Vk(z) or 1

1−z+w0z2+w0z3 .

Suppose there exists some singularity ζ ∈ C which is a pole of 1
1−z+w0z2+w0z3 . By construction

ζ 6= 0 and ζ is necessarily a non-finite singularity of Vk(z). If |ζ| ≤ γ
[3]
k,σ , then we arrive at the con-

tradiction |Vk(ζ)| > |Vk(γ
[3]
k,σ)|, since Vk(ζ) is not finite and Vk(γ

[3]
k,σ) =

∑

n≥0 fk(2n, 0)ρ2n
k < ∞ .

Therefore all dominant singularities of
∑

n≥0 T
[3]
k,σ(n)zn are singularities of Vk(z). According to

Pringsheim’s Theorem [19],
∑

n≥0 T
[3]
k,σ(n)zn has a dominant positive real singularity, which by

construction equals γ
[3]
k,σ being the minimal positive real solution of eq. (4.11). To prove this, we

inspect that for 3 ≤ k ≤ 7 (see Remark 2), γ
[3]
k,σ, has strictly smaller modulus than all solutions of

ϑσ(z) = −ρk. Indeed, we observe that, independent of σ, any real positive root of ϑσ(z) = −ρk

must be larger than 1. Accordingly, Theorem 3 applies and we have

(4.12) T
[3]
k,σ(n) ∼ Kn−(k−1)2− k−1

2

(

1

γ
[3]
k,σ

)n

,

Hence Claim 2 follows. This completes the proof of Theorem 5. �

Remark 2. The power series Fk(z) is D-finite. Accordingly there exists some e ∈ N for which

Fk(z) satisfies an ODE of the form

(4.13) q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · · + qe,k(z)Fk(z) = 0,

where qj,k(z) are polynomials. The key point is that any dominant singularity of Fk(z) is contained

in the set of roots of q0,k(z), which we denote by Mk [17]. In Table 1 we present the polynomials

q0,k(z) and their nonzero roots for k = 3, . . . , 7. Table 1 validates the reduction to the singularities

±ρk. We then verify that for k = 3, . . . , 7, γ
[3]
k,σ is the unique solution with minimal modulus of

ϑσ(x) = ρk and is strictly smaller than the moduli of the solutions of ϑσ(x) = −ρk.
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k q0,k(z) Mk

3 (1/4 − 4z2) z2 {1/4,−1/4}
4 (144 z4 − 40 z2 + 1) z6 {1/2,−1/2, 1/6,−1/6}
5 (−80 z2 + 1024 z4 + 1) z8 {1/4,−1/4, 1/8,−1/8}
6 (−4144 z4 + 140 z2 + 14400 z6 + 1) z10 {1/2,−1/2, 1/6,−1/6, 1/10,−1/10}
7 (−1 − 12544 z4 + 224 z2 + 147456 z6) z12 {1/4,−1/4, 1/8,−1/8, 1/12,−1/12}

Table 1. The polynomials q0,k(z) and their nonzero roots.
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