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Abstract It is known matroids obtained from a totally free uniform matroid U2,n

by a sequence of segment–cosegment and cosegment–segment exchanges are totally
free (Geelen et al., in J Combin Theory Ser B 92:55–67, 2004). In this paper, we prove
matroids obtained from any totally free matroid by a sequence of segment–cosegment
and cosegment–segment exchanges are also totally free.

Keywords Totally free matroids · Segment–cosegment and cosegment–segment
exchanges

1 Introduction

Unique representability is of great importance in matroid representation theory. In fact,
it is no coincidence that finite fields G F(q) for which the sets of excluded minors have
been completely determined are those over which every 3-connected G F(q)-repre-
sentable matroid is uniquely representable [2,8,9,12,13]. Recall binary matroids and
ternary matroids over G F(3) have a unique representation property, and 3-connected
quaternary matroids are also uniquely representable over G F(4). Hence, the presence
of inequivalent representations of matroids over fields is the major barrier to progress in
matroid representation theory; and more techniques are needed to develop the theory
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[5,6,14]. The notion, totally free matroid, is defined to understand the behavior of
inequivalent representation of 3-connected matroids. It turns out that the number of
inequivalent representation of a 3-connected matroid is bounded above by the num-
ber of inequivalent representation of a totally free minor. Then we need to study the
property of totally free matroids in a well-closed class (namely, a class of matroids
closed under isomorphisms, minors, dualities). Surprisingly, all totally free matroids
in a well-closed class can be found by an inductive search [5].

In [11], Oxley et al. defined generalized ∆ − Y exchange or segment–cosegment
exchange, and studied the class of matroids that can be obtained from an totally free
uniform matroid U2,n by a sequence of segment–cosegment and cosegment–segment
exchanges via a vertex-labeled tree, which is also called quasi-lines by [7]. Recall the
following two key results from [7]:

Lemma 1.1 Quasi-lines are totally free.

Lemma 1.2 Totally free matroids without the uniform matroid U3,6 as a minor are
quasi-lines.

Then by Lemmas 1.1 and 1.2, and the fact that quasi-lines have no U3,6-minor [11,
Lemma 6.1], Geelen et al. [7] proved that Kahn’s conjecture holds for all 3-connected
matroids without U3,6 as a minor.

Now our main result, which extends Lemma 1.1 and is of its own interests as a
property of matroids, can be stated as follows.

Theorem 1.3 Matroids obtained from a totally free matroid M by a sequence of
segment–cosegment and cosegment–segment exchanges are totally free.

For this paper, the matroid terminologies will follow Oxley [10] except that the
simplification and cosimplification of a matroid M are denoted by si(M) and co(M)

respectively. The orthogonal property that a circuit and a cocircuit of a matroid can
not contain exactly one common element will be used repeatedly in our proofs. In
Sects. 2 and 3, some necessary preliminaries on fixed elements and totally free mat-
roids, and generalized ∆− Y exchange are presented respectively. In Sect. 4, proof of
Theorem 1.3 is given.

2 Fixed Elements and Totally Free Matroids

Let M be a matroid with the ground set E(M). Elements x and x ′ of M are clones if
the function exchanging x with x ′ and fixing other points in E(M) is an automorphism
of M. A clonal class of M is a maximal subset X ⊆ E(M) such that any two points
of X are clones. Parallel class and series class, the set of loops and the set of coloops
are called trivial clonal classes; and other clonal classes are called nontrivial ones.
A clonal set of M is a subset of a nontrivial clonal class containing at least two elements.
Clearly, the clone sets of M and its dual matroid M∗ are coincide.

For any x ∈ E(M), call the matroid M ′ obtained from M by cloning x with x ′
(a point not in E(M)) if M ′ is a single element extension of M by x ′ satisfying x
and x ′ clones in M ′. Note such a matroid M ′ always exists because x ′ can be parallel

123



Graphs and Combinatorics (2009) 25:657–673 659

with x in M ′. If {x, x ′} is an independent set in M ′, then we call M ′ is obtained from
M by independently cloning x with x ′, and call x is not fixed in M. Otherwise, we
call x is fixed in M. Dually, we call M ′ is obtained from M by cocloning x with x ′ if
M ′ is a single element coextension of M by x ′ such that x and x ′ are clones in M ′.
Similarly, if x and x ′ are coindependent in M ′, then we say M ′ is obtained from M
by coindependently cloning x with x ′, and say x is not cofixed in M. Otherwise, we
say x is cofixed in M.

Let F1 and F2 be flats of M . Then (F1, F2) is a modular pair of flats if

r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2),

where r(F) denotes the rank of flat F. A modular cut F of a matroid M is a collection
of flats of M with the following properties:

(i) I f F1, F2 ∈ F and (F1, F2) is a modular pair, then F1 ∩ F2 ∈ F;
(ii) f or any F ∈ F , any f lat o f M containing F is also in F .

A flat of a matroid is cyclic if it is a union of circuits. For a set F of flats of a matroid,
the unique minimal modular cut containing F is called the modular cut generated by
F and is denoted by 〈F〉.
Proposition 2.1 [4, Corollary 3.5] Let e be an element of a matroid M. Then e is fixed
in M if and only if cl(e), the flat of M generated by e, is in the modular cut generated
by the cyclic flats of M containing e.

Obviously, if x and x ′ are independent clones in M, then x is not fixed in M\x ′.
The next proposition extends the observation.

Proposition 2.2 [6, Proposition 4.9] If x and x ′ are independent clones in M, then x
is fixed in neither M nor M\x ′. Dually, if x and x ′ are coindependent clones in M,

then x is cofixed in neither M nor M/x ′.

By definitions, if x and x ′ are both independent clones and coindependent clones,
then x is neither fixed nor cofixed in M. However, it is possible for x to be fixed in
M/x ′ and for x to be cofixed in M\x ′.

Proposition 2.3 [5, Proposition 4.9] Elements x and x ′ are clones in a matroid M if
and only if the set of cyclic flats of M containing x is equal to the set of cyclic flats
containing x ′.

By Proposition 2.3, we obtain

Corollary 2.4 Let F be a cyclic flat of a matroid M, and A a clonal set of M. Then
either F ∩ A = ∅ or F ∩ A = A.

A matroid M is totally free if the following conditions hold:

(i) M is 3-connected with |E(M)| ≥ 4; and
(ii) if e is fixed in M , then co(M\e) is not 3-connected, and if e is cofixed in M , then

si(M/e) is not 3-connected.
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Note M is totally free if and only if M∗ is totally free. A clonal triple or a clonal
pair means a clonal set of size 3 or 2, respectively.

Lemma 2.5 [5, Lemma 8.8] If {a, b, c} is a triad or a triangle of a totally free matroid
M, then {a, b, c} is a clonal triple.

Lemma 2.6 [5, Lemma 8.7] If {a, b, c} is a triangle of a totally free matroid M with
at least 5 elements, then no triad of M meets {a, b, c}.
Lemma 2.7 [7, Corollary 2.10] Let M be a totally free matroid with at least 5 ele-
ments, and e an element of E(M). Then M\e is totally free if e is an element of an
triangle of M; and M/e is totally free provided e is an element of a triad of M.

Now we arrive at the following corollary which will be frequently used in the sequel.

Corollary 2.8 Let A be a coindependent set of a totally free matroid M with at least
3-element. If M |A ∼= U2,|A|, then

(i) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(ii) M\(A − a) is connected for any element a in A.

Proof Since M is totally free, M is 3-connected, that is, it has neither parallel classes
nor series classes. Then (i) follows from Proposition 2.2 and Lemma 2.5. To prove
(i i), let b be another element of A disjoint from a. Since A is a coindependent set of
M , |E(M) − A| ≥ 2. By repeatedly using Lemma 2.7, M\(A − (a ∪ b)) is totally
free. Hence, M\(A − (a ∪ b)) is 3-connected which implies M\(A − a) is connected,
namely, (i i) holds.

By duality, the following corollary holds.

Corollary 2.9 Let A be an independent set of a totally free matroid M with at least
3-element. If M∗|A ∼= U2,|A|, then

(i) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(ii) M/(A − a) is connected for any element a in A.

3 Generalized ∆ − Y Exchange

The generalized ∆ − Y exchange was first studied by Oxley et al. [11]. The operation
of ∆− Y and Y −∆ exchanges are of basic importance in graph theory. For matroids,
these operations are defined in terms of the generalized parallel connection [3]. Let
M1 and M2 be two matroids satisfying M1|T = M2|T, where T = E(M1) ∩ E(M2).

Suppose T is a modular flat of M1. Here a flat F of a matroid M is modular if

r(F) + r(F ′) = r(F ∩ F ′) + r(F ∪ F ′) for all flats F ′ of M.

Put N = M1|T . The generalized parallel connection PN (M1, M2) of M1 and M2
across N is the matroid on E(M1)∪E(M2) whose flats are those subsets X of E(M1)∪
E(M2) such that X ∩ E(Mi ) is a flat of Mi , i = 1, 2. When M1 ∼= M(K4) and N
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is a triangle of this matroid, [1] defined a ∆ − Y exchange on M across T to be the
matroid obtained by PN (M(K4), M) by deleting T . Oxley et al. [11] generalized this
operation as follows.

Firstly, a matroid Θk is introduced to generalize the role played by M(K4) in the
∆−Y exchange. On one hand, Θk can be obtained from a free matroid Uk,k by adding
a point to each hyperplane of the latter so that each of these hyperplanes becomes a
circuit in the resulting matroid and so that the restriction of Θk to the added points
is a k-point line. On the other hand, we can describe Θk as follows: The ground set
of Θk consists of a k-element line and a k-element coline with the property that each
(k −1)-element subset of the coline forms a circuit with an element of the line. Denote
the line of Θk by A and the coline by B, where

A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}.
Obviously, A is a modular flat of Θk . For k > 2 the non-spanning circuits of Θk are

(i) all subsets (B − {bi }) ∪ {ai } f or all i ∈ {1, 2, . . . , k}, and
(ii) all 3 -elements o f A.

If X is a subset of E(M) with |X | ≥ 2 and M |X = U2,|X |, then X is a segment
of M. A cosegment of M is a segment of M∗. Since we would like an operation whose
inverse is the dual of the original operation, in defining this operation we shall impose
the additional condition A is coindependent in M. In this case, A is a strict segment
of M. By duality, a strict cosegment of M is an independent cosegment of M. Let A be
a strict segment of M and define ∆A(M) as the matroid obtained from PA(Θk, M)\A
by relabeling the element bi by ai (1 ≤ i ≤ k). We call this operation a ∆A-exchange
or a segment–cosegment exchange on A.

Let M be a matroid for which M∗ has a U2,k-restriction on the set A. If A is
independent in M, then ∇A(M) is defined as (∆A(M∗))∗, that is, [PA(Θk, M∗)\A]∗.
This operation will also be referred to as a ∇A-exchange or a cosegment–segment
exchange on A. By Corollary 2.12 in [11], these operations are inverse mutually, i.e.,
∆A(∇A(M)) ∼= M.

Notice Θ2 is isomorphic to the matroid obtained form U2,2 by adding exactly one
element in parallel with each element of the ground set, and Θ3 is isomorphic to
M(K4). In addition, ∆A(M) ∼= M for any strict segment A with |A| = 2, and by
duality ∇A(M) ∼= M for any strict cosegment with |A| = 2; and in both cases, the
isomorphism is simply the function exchanging the two members of A and fixing other
elements.

In the rest of the paper, fix

A = {a1, a2, . . . , ak}, k = |A|. (3.1)

Lemma 3.1 [11, Lemma 2.6] Let A be a coindependent set in a matroid M with
M |A ∼= U2,|A|. Then

r(∆A(M)) = r(M) + k − 2.

By the definition of Y − ∆ exchange and Lemma 3.1, we have
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Corollary 3.2 Assume ∇A(M) is well defined. Then r(∇A(M)) = r(M) − k + 2.

Lemma 3.3 [11, Lemma 2.9] Let ∆A(M) be the matroid with ground set E(M) that
is obtained from M by a ∆A-exchange. Then a subset of E(M) is a basis of ∆A(M)

if and only if it is a member of one of the following sets:

(i) {A ∪ B ′ : B ′ is a basis o f M/A};
(ii) {(A − ai ) ∪ B ′′ : 1 ≤ i ≤ k and B ′′ is a basis o f M/ai\(A − ai )}; and

(iii) {(A − {ai , a j }) ∪ B ′′′ : 1 ≤ i < j ≤ k and B ′′′ is a basis o f M\A}.
By Lemma 3.3, it is easy to obtain

Corollary 3.4 Suppose ∆A(M) is well defined. Then

r∆A(M)(X) =
⎧
⎨

⎩

|X ∩ A| + rM (X − A), i f |X ∩ A| < k − 1,

k − 1 + rM/a(X − A), i f X ∩ A = A − a, where a ∈ A,

k + rM/A(X − A), i f X ∩ A = A.

By the dual of Corollary 3.4, we obtain

Corollary 3.5 Suppose ∇A(M) is well defined. Then

r∇A(M)(X) =
⎧
⎨

⎩

rM (X), i f X ∩ A = ∅,

1 + rM/(A−a)(X − a), i f X ∩ A = a,

2 + rM/A(X − A), i f |X ∩ A| ≥ 2.

By Corollaries 3.4 and 3.5, if C ∩ A = ∅, then C is a circuit of M if and only if C
is a circuit of ∆A(M) or ∇A(M). In Sect. 4, this result will be used directly without
explanation.

Lemma 3.6 [11, Corollary 2.16] Suppose that ∆A(M) is well defined. Then

(i) If x ∈ E(M) − A and A is a coindependent in M\x, then ∆A(M\x) is defined
and ∆A(M)\x = ∆A(M\x).

(ii) If x ∈ E(M) − cl(A), then ∆A(M/x) is defined and ∆A(M)/x = ∆A(M/x).

Lemma 3.7 [11, Corollary 2.17] Let M be a matroid and A ⊆ E(M). Suppose

x ∈ E(M) − A, |E(M) − A| ≥ 3, and k ≥ 3.

Then

(i) suppose ∆A(M) is de f ined,

(a) i f M\x is 3-connected, then ∆A(M\x) is de f ined and ∆A(M)\x =
∆A(M\x),

(b) i f M/x is 3-connected, then ∆A(M/x) is de f ined and ∆A(M)/x =
∆A(M/x);

(ii) assume ∇A(M) is de f ined,
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(a) i f M\x is 3-connected, then ∇A(M\x) is de f ined and ∇A(M)\x =
∇A(M\x),

(b) i f M/x is 3-connected, then ∆A(M/x) is de f ined and ∇A(M)/x =
∇A(M/x).

Lemma 3.8 [11, Lemma 2.20] Let x and x ′ be clones in a matroid M. If A ∩ {x, x ′}
is empty or A ⊇ {x, x ′}, then x and x ′ are clones in ∆A(M). Moreover, if {x, x ′} is
independent in M, it is independent in ∆A(M), and if {x, x ′} is coindependent in M,

it is coindependent in ∆A(M).

Lemma 3.9 [11, Corollary 2.21] Let x and x ′ be clones in a matroid M. If A ∩{x, x ′}
is empty or A ⊇ {x, x ′}, then x and x ′ are clones in ∇A(M). Moreover, if {x, x ′} is
independent in M, it is independent in ∇A(M), and if {x, x ′} is coindependent in M,

it is coindependent in ∇A(M).

Lemma 3.10 [11, Lemma 2.10] Let A be a coindependent set in a matroid M with
M |A ∼= U2,|A|.
(i) If X is a subset of E(M) avoiding A, then e is in the closure of X in M if and

only if e is in the closure of X in ∆A(M).
(ii) If {e, f } is a cocircuit of M, then {e, f } is a cocircuit of ∆A(M). Conversely, if

{e, f } is a cocircuit of ∆A(M) avoiding A, then {e, f } is a cocircuit of M.

4 Proof of Theorem 1.3

To prove Theorem 1.3, it suffices to prove that any matroid obtained from M by a
single segment–cosegment exchange or cosegment–segment exchange is totally free.
Further, by definitions of segment–cosegment exchange and cosegment–segment one,
it suffices to verify that any matroid obtained from totally free matroid M by a single
segment–cosegment exchange is totally free. This result is known when |E(M)| = 4 by
Lemma 1.1; we prove it is true by a series of lemmas and corollaries when |E(M)| ≥ 5.

To begin, we introduce the well-known connectivity function. Let M be a matroid
with ground set E = E(M) and rank function rM . The connectivity function λM of
M is defined on all subsets X of E by

λM (X) = rM (X) + rM (E − X) − rM (E).

Clearly, λM (X) ≥ 0. We also denote λM (X) by λM (X, Y ), where (X, Y ) is a parti-
tion of E . In the rest of the paper, since the matroids considered are totally free, for
convenience, we assume M is totally free with at least 5 elements here and hereafter.

Note that, in general, 3-connectivity is not preserved under a ∆A-exchange or dually
under a ∇A-exchange. For example, the matroid obtained from Q6 by performing a
∆3-exchange on one of its triangle is not 3-connected [11]. Q6 is the matroid obtained
by placing a point on the intersection of two lines of U3,5.

Lemma 4.1 Let A be a coindependent set of a 3-connected matroid N with N |A ∼=
U2,|A|. If N\(A − a) does not contain any coloops for any a ∈ A, then ∆A(N ) is
3-connected.
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Proof When |A| = 2, ∆A(N ) ∼= N . So ∆A(N ) is 3-connected. Hence, we can assume
|A| ≥ 3.

It is an immediate consequence of the definition of generalized ∆−Y exchange that
∆A(N ) has neither loops nor nontrivial parallel classes. Suppose ∆A(N ) has a coloop
{c}. Then, by Lemma 3.3, {c} ∩ A = ∅ and {c} is a coloop of N/A. Therefore, {c} is a
coloop of N . A contradiction, since N is 3-connected. Thus ∆A(N ) has no coloops.
Since N has no nontrivial series classes, by Lemma 3.10(ii), ∆A(N ) has no nontrivial
series classes avoiding A. It is a straightforward consequence of Lemma 3.3 that no
nontrivial series class is contained in A. Hence, we can assume there exists some non-
trivial series class C∗ = {a, b} satisfying a ∈ A and b /∈ A. Then by Lemma 3.3, b
must be a coloop of N/a\(A − a), in particular, b is a coloop of N\(A − a), which is
a contradiction. Thus, ∆A(N ) has no nontrivial series classes. Hence, to prove ∆A(N )

is 3-connected, it suffices to prove λ∆A(N )(X, Y ) ≥ 2 for any partition (X, Y ) of E
with |X | ≥ 3 and |Y | ≥ 3. Clearly λN (X, Y ) ≥ 2.

Case 1 A ⊆ X or A ⊆ Y.

Without loss of generality suppose A ⊆ X, then by Corollary 3.4,

λ∆A(N )(X, Y ) = r∆A(N )(X) + r∆A(N )(Y ) − r∆A(N )(E)

= |A| + rN/A(X − A) + rN (Y ) − (|A| + rN (E) − 2)

= rN (X) + rN (Y ) − rN (E) + 2 − rN (A)

= λN (X, Y )

≥ 2.

Case 2 1 < |A ∩ X | < |A| − 1 and 1 < |A ∩ Y | < |A| − 1.

By Corollary 3.4, we have

λ∆A(N )(X, Y ) = r∆A(N )(X) + r∆A(N )(Y ) − r∆A(N )(E)

= |A ∩ X | + rN (X − A) + |A ∩ Y | + rN (Y − A)

−(|A| + rN (E) − 2)

= rN (X − A) + rN (Y − A) − rN (E) + 2

= λN\A(X − A, Y − A) + 2

≥ 2.

Case 3 |A ∩ X | = |A| − 1 or |A ∩ Y | = |A| − 1.

Assume |A ∩ X | = |A| − 1 and A − X = {a}. First, we show N\(A − a) is con-
nected. Assume to the contrary that N\(A − a) is not connected. Then there exists a
partition (S, T ) of E(N\(A − a)) such that λN\(A−a)(S, T ) = 0, where a ∈ S. Obvi-
ously, |S| ≥ 2 and |T | ≥ 2 since N is 3-connected and N\(A − a) has no coloops. On
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the other hand, note that, λN (S ∪ A, T ) ≤ 1. A contradiction since N is 3-connected.
So N\(A − a) is connected, and consequently, λN\(A−a)(X − A + a, Y − a) ≥ 1.

Therefore, by Corollary 3.4,

λ∆A(N )(X, Y ) = r∆A(N )(X) + r∆A(N )(Y ) − r∆A(N )(E)

= |A| − 1 + rN/a(X − A) + 1 + rN (Y − a) − (|A| + rN (E) − 2)

= rN (X − A + a) + rN (Y − a) − rN (E) + 2 − 1

= λN\(A−a)(X − A + a, Y − a) + 1

≥ 2.

So far we have proven λ∆A(N )(X, Y ) ≥ 2. Thus ∆A(N ) is 3-connected. ��
Note that, by the proof of Case 3 in Lemma 4.1, we know, in fact, if A is a coin-

dependent set of a 3-connected matroid N satisfying N |A ∼= U2,|A|, then N\(A − a)

without any coloops for any a ∈ A is equal to N\(A − a) connected for any a ∈ A.

Lemma 4.2 Let A be a coindependent set of M with M |A ∼= U2,|A|. Then ∆A(M) is
3-connected.

Proof When |A| = 2, the result is trivial. Hence assume |A| ≥ 3. By Corollary 2.8
(ii), M\(A − a) is connected for any element a ∈ A, in particular, M\(A − a) does
not contain any coloops. Hence, the lemma holds according to Lemma 4.1. ��

The dual of Lemma 4.2 is as follows.

Corollary 4.3 Let A be an independent set of M with M∗|A ∼= U2,|A|. Then ∇A(M)

is 3-connected.

Lemma 4.4 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. Then A is a clonal set of ∆A(M).

Proof It suffices to prove that for any two elements ai , a j ∈ A, ai and a j are clones
in ∆A(M) (A is given by (3.1)). Thus we need to prove that for any B ∈ B(∆A(M)) if
ai ∈ B but a j /∈ B, then B − ai + a j ∈ B(∆A(M)). By Corollary 2.8(i), M/ai\a j ∼=
M/a j\ai . Then

M/ai\(A − ai ) ∼= M/a j\(A − a j ).

From Lemma 3.3, we see that B − ai + a j ∈ B(∆A(M)). ��
By duality, we have

Corollary 4.5 Let A be an independent set of M with at least three elements and
M∗|A ∼= U2,|A|. Then A is a clonal set of ∇A(M).

Combining Lemmas 4.2, 4.4 and Corollary 4.5 with Proposition 2.2, we obtain
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Corollary 4.6 (i) If A is a coindependent set of M with at least three elements and
M |A ∼= U2,|A|, then every element in A is neither fixed nor cofixed in ∆A(M).

(ii) If A is an independent set M with at least three elements and M∗|A ∼= U2,|A|,
then every element in A is neither fixed nor cofixed in ∇A(M).

Lemma 4.7 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. If x ∈ E − A and C∗ is a cocircuit of M satisfying x ∈ C∗ ⊆ A ∪ x,

then C∗ = A ∪ x .

Proof By orthogonality, we obtain |A| − 1 ≤ |C∗ ∩ A| ≤ |A|. Suppose C∗ ∩ A =
A − a, where a ∈ A. Then x is coloop of M\(A − a). However, by Corollary 2.8(ii),
M\(A − a) is connected, which is a contradiction. Hence, |C∗ ∩ A| = |A|, and
consequently, C∗ = A ∪ x . ��
Lemma 4.8 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. For any x ∈ E − A, if C∗ is a triad of ∆A(M) satisfying x ∈ C∗ and
C∗ ∩ A is nonempty, then A ∪ x ∈ C∗(M).

Proof Suppose a ∈ C∗ ∩ A and C∗ = {a, x, y}.
Case 1 y is in A.

Since C∗ is a triad of ∆A(M), C∗ must meet every basis of ∆A(M). According
to Lemma 3.3, x must be a coloop of M\A. Thus there exists some cocircuit C1

∗
of M satisfying C1

∗ ⊆ A ∪ x and x ∈ C1
∗. It is a consequence of Lemma 4.7 that

A ∪ x ∈ C∗(M).

Case 2 y is not in A.

By Lemma 3.3, every basis of M/a\(A − a) must meet at least one of x and y.

Using the fact that M is 3-connected, M |A ∼= U2,|A| and A is a clonal set of M ,
easily we can deduce that M/a\(A − a) is connected. Thus {x, y} is a cocircuit of
M/a\(A − a), that is, (A − a) ∪ x ∪ y contains some cocircuit C1

∗ of M. Obvi-
ously, both x and y are in C1

∗. By orthogonality, |C1
∗ ∩ A| ≥ |A| − 1. Therefore,

C1
∗ = (A − a) ∪ x ∪ y. Let a′ be an arbitrary element in A disjoint from a. By

Corollary 2.8(i), a and a′ are clones in M. Then C2
∗ = (A − a′) ∪ x ∪ y is also a

cocircuit of M. Hence, A ∪ x = C1
∗ ∪ C2

∗ − y contains a cocircuit C3
∗ of M, that is

to say, A ∪ x is codependent in M. Since A is coindependent in M, x ∈ C3
∗. So by

Lemma 4.7, A ∪ x ∈ C∗(M). ��
Lemma 4.9 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. For any x ∈ E − A, if co(M\x) is not 3-connected, then either x is
not fixed in M or co(∆A(M)\x) is also not 3-connected.

Proof If x is in some triangle or triad of M, then by Proposition 2.2 and Lemma 2.5,
x is not fixed in M. Hence assume x is neither in any triangle nor in any triad, and
consequently, co(M\x) = M\x . Depending on whether A ∪ x is a cocircuit of M ,
there are two cases to consider.
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Case 1 A ∪ x /∈ C∗(M).

Since A ∪ x /∈ C∗(M), by Lemma 4.8, ∆A(M) contains no triad C∗ such that
x ∈ C∗ and C∗ ∩ A �= ∅. Hence, if exist some triad C∗ of ∆A(M) with x ∈ C∗, then
C∗ ∩ A = ∅. By Corollary 3.4, we have

r∆A(M)(E − C∗) = |A| + rM/A(E − C∗ − A) = |A| + rM (E − C∗) − 2,

Hence,

rM (E − C∗) = r∆A(M)(E − C∗) + 2 − |A|.

So

rM∗(C∗) = |C∗| + rM (E − C∗) − rM (E)

= |C∗| + r∆A(M)(E − C∗) − |A| − rM (E) + 2

= |C∗| + r∆A(M)(E − C∗) − r∆A(M)(E)

= r(∆A(M))∗(C
∗)

= 2.

Since M is 3-connected, M has no nontrivial series classes. So C∗ is also a triad of
M containing x, which is a contradiction. Hence, if A ∪ x /∈ C∗(M), then x is not in
any triad of ∆A(M). Therefore, co(∆A(M)\x) = ∆A(M)\x .

Since co(M\x) = M\x is connected but not 3-connected, M is not a uniform
matroid of rank-2. Furthermore, since A is coindependent in M , |E(M\x) − A| ≥ 2.

If E(M\x) − A = {x1, x2}, then {x1, x2} is a cocircuit of M\x . Hence {x, x1, x2} is
a triad of M , which is a contradiction. So |E(M\x) − A| ≥ 3.

Since x is not in any triad of M and M is 3-connected, there exists some 2-sepa-
ration (X, Y ) of M\x such that |X | ≥ 3 and |Y | ≥ 3. If A is a subset of X or Y, say
A ⊆ X , then

λ∆A(M)\x (X, Y ) = λM\x (X, Y ) = 1.

Hence, ∆A(M)\x is not 3-connected. So assume both X ∩ A and Y ∩ A are non-
empty and |X ∩ A| ≥ |Y ∩ A| ≥ 1. If there is some 2-separation (X ′, Y ′) of M\x
corresponding to (X, Y ) such that A is a subset of X ′ or Y ′, then

λ∆A(M)\x (X ′, Y ′) = λM\x (X ′, Y ′) = 1,

which implies ∆A(M)\x is not 3-connected. We are in the position to prove the exis-
tence of such 2-separation (X ′, Y ′) of M\x .

If X ⊂ A or Y ⊂ A, say X ⊂ A, then let X ′ = A, Y ′ = Y − A. Obviously,
(A, Y − A) is the needed 2-separation. Therefore, suppose neither X nor Y is a proper
subset of A. We prove it by two subcases.
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Subcase 1. |Y ∩ A| ≥ 2.

Since |E(M\x) − A| ≥ 3, at least one of |X − A| and |Y − A| is larger than one.
Suppose |X − A| > 1. Let X ′ = X − A, Y ′ = Y ∪ A. Then (X − A, Y ∪ A) is the
needed 2-separation of M\x . The case |Y − A| > 1 can be treated similarly to the
case |X − A| > 1.

Subcase 2. |Y ∩ A| = 1.

Since |Y | ≥ 3, |Y − A| ≥ 2. Let X ′ = X ∪ A, Y ′ = Y − A. Then (X ′, Y ′) is the
needed 2-separation of M\x .

Case 2 A ∪ x ∈ C∗(M).

Let F be an arbitrary cyclic flat of M containing x . Using orthogonality, A∩F �= ∅.

Since A is a clonal set of M, by Corollary 2.4, A ⊆ F. Let F denote the collection
of all cyclic flats of M containing x . Evidently, for every element F ′ in 〈F〉, we have
A ∪ x ⊆ F ′. Hence, clM (x) = {x} is not in 〈F〉. By Proposition 2.1, x is not fixed in
M. ��

The dual of Lemma 4.9 is as follows.

Corollary 4.10 Let A be an independent set of M with at least three elements and
M∗|A ∼= U2,|A|. For any x ∈ E − A, if si(M/x) is not 3-connected, then either x is
not cofixed in M or si(∇A(M)/x) is also not 3-connected.

Corollary 4.11 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. For any x ∈ E − A, if co(�A(M)\x) is 3-connected, then x is not
fixed in M.

Proof Suppose x is fixed in M. Then co(M\x) is not 3-connected. Hence, by
Lemma 4.9, co(�A(M)\x) is also not 3-connected, which is a contradiction. ��
Lemma 4.12 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. For any x /∈ clM (A), if si(M/x) is not 3-connected, then either x is
not cofixed in M or si(�A(M)/x) is also not 3-connected.

Proof If x is in some triangle or a triad of M, then by Proposition 2.2 and Lemma 2.5,
x is not cofixed in M. Thus assume x is neither in any triangle nor in any triad of
M. Then si(M/x) = M/x . Assume x is in some triangle C of ∆A(M). Since M
is 3-connected and x is not in any triangle of M, rM (C) = 3. If C ∩ A = ∅, then
by Corollary 3.4, r∆A(M)(C) = rM (C) = 3; which contradicts to C ∈ C(∆A(M)).

Therefore C ∩ A �= ∅ and |C ∩ A| = 1, 2. Let C = {x, y, z} and suppose y ∈ A. If
|C ∩ A| = 1, then following from Lemma 3.3, there exists some basis B of ∆A(M)

such that C ⊆ B. This contradicts to C is a circuit of ∆A(M). Thus |C ∩ A| = 2,

that is, {y, z} ⊆ A. Similarly, if |A| ≥ 4, then there is some basis B of ∆A(M) such
that C ⊆ B; which contradicts to C is a circuit of ∆A(M). Hence |A| = 3. Then by
the definition of ∆A(M), there exists some element a in A such that x is parallel with
a in M. This contradicts to M is 3-connected. Hence, x is also not in any triangle of
∆A(M). Therefore si(∆A(M)/x) = ∆A(M)/x . By Lemma 3.6(ii),

si(∆A(M)/x) = ∆A(M)/x = ∆A(M/x).

123



Graphs and Combinatorics (2009) 25:657–673 669

Since M/x is connected but not 3-connected, |E(M/x) − A| ≥ 2. Assume

E(M/x) − A = {x1, x2}.

Then r(M/x) = 3 and {x1, x2} is a cocircuit of M/x . Hence {x1, x2} is also a cocircuit
of M. This contradicts to M is 3-connected. So |E(M/x) − A| ≥ 3.

Let M1 = M/x . Since x is not in any triangle of M and M is 3-connected, there is
some 2-separation (X, Y ) of M1 such that |X | ≥ 3 and |Y | ≥ 3. Similarly to proving
Case 1 of Lemma 4.9, we can prove ∆A(M)/x is not 3-connected. ��

The dual of Lemma 4.12 is as follows.

Corollary 4.13 Let A be an independent set of M with at least three elements and
M∗|A ∼= U2,|A|. For any x /∈ clM∗(A), if co(M\x) is not 3-connected, then either x
is not fixed in M or co(∇A(M)\x) is not 3-connected.

With Lemma 4.12 in mind, following the same line as the proof of Corollary 4.11,
we can obtain

Corollary 4.14 Let A be a coindependent set of M with at least three elements and
M |A ∼= U2,|A|. For any x /∈ clM (A), if si(�A(M)/x) is 3-connected, then x is not
cofixed in M.

Lemma 4.15 Suppose ∇A(M) is well defined. Let x be an element in E − A. If there
exists some circuit C of ∇A(M) satisfying x ∈ C ∈ C(∇A(M)), then there is some
circuit C1 of M such that x ∈ C1 ⊆ A ∪ C .

Proof Since every three-element of A is a triangle of ∇A(M), |C ∩ A| ≤ 2. We prove
the lemma in three cases: |C ∩ A| = 0, 1, or 2.

Case 1 C ∩ A = ∅.

Clearly, C1 = C is a circuit of M.

Case 2 C ∩ A = {a}.
By Corollary 3.5, we have

r∇A(M)(C) = 2 + rM ((C − a) ∪ (A − a)) − |A| = |C | − 1,

r∇A(M)(C − x) = 2 + rM ((C − {x ∪ a}) ∪ (A − a)) − |A| = |C | − 1.

Then

rM ((C − a) ∪ (A − a)) = |A| + |C | − 3,

rM ((C − {x ∪ a}) ∪ (A − a)) = |A| + |C | − 3.

Hence, x ∈ clM ((C − {x ∪ a}) ∪ (A − a)) ⊆ clM (A ∪ C − x); which implies that
there exists some circuit C1 of M such that x ∈ C1 ⊆ A ∪ C .
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Case 3 |C ∩ A| = 2.

Similarly to Case 2, we can show that x ∈ C1 ⊆ A ∪ C for some circuit C1 of M.

��
Lemma 4.16 Let A be an independent set of M with at least three elements and
M∗|A ∼= U2,|A|. For any element x ∈ E − A, if F is a cyclic flat of ∇A(M) containing
x, then F is also a cyclic flat of M containing x .

Proof By Corollary 2.4 and Corollary 4.5, F ∩ A = ∅ or F ∩ A = A. Note every
subset C of E disjoint from A is a circuit of M if and only if C is a circuit of ∇A(M).

Hence, if we can prove F is a flat of M, then by Lemma 4.15, F is also a cyclic flat
of M. Therefore, it suffices to prove F is a flat of M.

Assume F is not a flat of M. Then there exists some element e in E − F such that
e ∈ clM (F), namely, there is some circuit C of M satisfying e ∈ C ⊆ F ∪ e. If C ∩ A
is empty, then C ∈ C(∇A(M)) and e ∈ cl∇A(M)(F). This contradicts to F is a flat of
∇A(M). So C ∩ A is nonempty. According to whether F ∩ A = ∅ or F ∩ A = A,
there are two cases to consider.

Case 1 F ∩ A = ∅.

Since C ∩ A �= ∅ and F ∩ A = ∅, C ∩ A = e ∈ A. By Corollary 2.9(i),

rM ((C − e) ∪ (A − e)) = rM (C) = rM (C − e) = |C | − 1.

By Corollary 3.5,

r∇A(M)(C − e) = rM (C − e) = |C | − 1,

r∇A(M)(C) = 2 + rM ((C − e) ∪ (A − e)) − |A|
= |C | − |A| + 1 < |C | − 1.

This contradicts to r∇A(M)(C) ≥ r∇A(M)(C − e). Hence F is a flat of M.

Case 2 F ∩ A = A.

Since e ∈ E − F and F ∩ A = A, e /∈ A.
Subcase 1. |A ∩ C | ≥ 2.

Since A is a clonal set of M,

rM (C ∪ A) = rM ((C − e) ∪ A) = rM (C − e) = |C | − 1.

Then by Corollary 3.5, we have

r∇A(M)(C) = 2 + rM (C ∪ A) − |A| = 2 + |C | − 1 − |A| = |C | + 1 − |A|,
r∇A(M)(C−e)=2+rM ((C−e) ∪ A)−|A|=2+|C |−1−|A|=|C |+1−|A|.

Hence, e ∈ cl∇A(M)(C − e) ⊆ cl∇A(M)(F) = F. This is a contradiction.
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Subcase 2. |A ∩ C | = 1.

Similarly to Subcase 1, we can verify F is a flat of M.

Hence, F is a flat of M. ��
Lemma 4.17 Let A be an independent set of M with at least three elements and
M∗|A ∼= U2,|A| and x ∈ clM∗(A) − A. Then x is not fixed in ∇A(M).

Proof Let F be an arbitrary cyclic flat of ∇A(M) containing x . By Lemma 4.16, F is
also a cyclic flat of M. Since x ∈ clM∗(A) − A and M is 3-connected, M∗|(A ∪ x) ∼=
U2,|A|+1. It follows from Corollary 2.9(i) that A ∪ x is a clonal set of M. By Corol-
lary 2.4, A ∪ x ⊆ F. Hence, A ∪ x is contained in every element of 〈F〉, where F is
the collection of all cyclic flats of ∇A(M) containing x . Therefore, cl∇A(M)(x) = {x}
is not in 〈F〉. By Proposition 2.1, x is not fixed in M. ��
Lemma 4.18 Let A be an independent subset of E with at least three elements and
M∗|A ∼= U2,|A|. For any x ∈ E − A, if x is not fixed in M, then x is not fixed in
∇A(M).

Proof If x ∈ clM∗(A) − A, then by Lemma 4.17, x is not fixed in ∇A(M). Now we
assume x /∈ clM∗(A) − A. Then x is not a coloop of M\A. Let M ′ be the matroid
obtained from M by independently cloning x with x ′. Clearly, A is also independent
in M ′ and rM ′(E ′) = rM (E). Let E ′ = E ∪ x ′. Since x is not a coloop of M\A,

rM ′(E ′ − A) = rM (E − A). Hence, by Corollary 3.5,

r(M ′)∗(A) = |A| + rM ′(E ′ − A) − rM ′(E ′)
= |A| + rM (E − A) − rM (E)

= rM∗(A) = 2.

Since M has no nontrivial series classes, M ′ contains no nontrivial series classes.
Hence, (M ′)∗|A ∼= U2,|A|. Then ∇A(M ′) is well defined. Since M ′\x ′ ∼= M is 3-con-
nected, then by Lemma 3.7(ii),∇A(M ′\x ′) is defined and∇A(M ′)\x ′ ∼= ∇A(M ′\x ′) ∼=
∇A(M). By Lemma 3.9, {x, x ′} is an independent clone of ∇A(M ′). Hence x is not
fixed in ∇A(M) due to Proposition 2.2. ��

By duality, we obtain the following corollary.

Corollary 4.19 Let A be a coindependent subset of E with at least three elements
and M |A ∼= U2,|A|. For any x ∈ E − A, if x is not cofixed in M, then x is not cofixed
in ∆A(M).

Lemma 4.20 Let A be a coindependent subset of E with M |A ∼= U2,|A|. Then ∆A(M)

is a totally free matroid.

Proof Firstly, by Lemma 4.2, ∆A(M) is 3-connected. If |A| = 2, then clearly
∆A(M) ∼= M. Hence ∆A(M) is totally free. Thus assume |A| ≥ 3.

Let x be an arbitrary element in E . First, assume co(�A(M)\x) is 3-connected,
we shall prove x is not fixed in ∆A(M). If x ∈ A, then by Corollary 4.6(i), x is
not fixed in �A(M). Hence, assume x /∈ A. Then by Corollary 4.11, x is not fixed
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in M. Independently cloning x with x ′ in M, we obtain a new matroid M ′. Note
A is also a coindependent set of M ′ and every three-element subset of A is a trian-
gle of M ′. Therefore �A(M ′) is well defined. Since M ′\x ′ ∼= M is 3-connected, by
Lemma 3.7(i), �A(M ′)\x ′ = �A(M ′\x ′) = �A(M). By Lemma 3.8, {x, x ′} is a
clonal set of �A(M ′). Hence x is not fixed in �A(M) according to Proposition 2.2.

Secondly, suppose si(�A(M)/x) is 3-connected. If x ∈ A, then it follows from
Corollary 4.6(i) that x is not cofixed in �A(M). Now suppose x /∈ A.

Case 1 x ∈ clM (A) − A.

Note x ∈ clM (A) − A implies that x is in some triangle of M. Hence x is not
cofixed in M according to Corollary 2.8(i). By Corollary 4.19, x is also not cofixed in
�A(M).

Case 2 x /∈ clM (A).

From Corollary 4.14, x is not cofixed in M. Then by Corollary 4.19, x is also not
cofixed in �A(M).

Hence, �A(M) is a totally free matroid. ��
The duality of Lemma 4.20 is as follows:

Corollary 4.21 Let A be an independent set of M with M∗|A ∼= U2,|A|. Then ∇A(M)

is a totally free matroid.

Proof of Theorem 1.3 Note the only totally free matroid M with |E(M)| < 5 is U2,4.

Following from Lemma 4.20, Corollary 4.21 and Lemma 1.1, we obtain Theorem 1.3
immediately. ��
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many improvements.
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