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Abstract It is known matroids obtained from a totally free uniform matroid U; ,
by a sequence of segment—cosegment and cosegment—segment exchanges are totally
free (Geelen et al., in J Combin Theory Ser B 92:55-67, 2004). In this paper, we prove
matroids obtained from any totally free matroid by a sequence of segment—cosegment
and cosegment—segment exchanges are also totally free.

Keywords Totally free matroids - Segment—cosegment and cosegment—segment
exchanges

1 Introduction

Unique representability is of great importance in matroid representation theory. In fact,
it is no coincidence that finite fields G F (¢ ) for which the sets of excluded minors have
been completely determined are those over which every 3-connected G F (g)-repre-
sentable matroid is uniquely representable [2,8,9,12,13]. Recall binary matroids and
ternary matroids over G F'(3) have a unique representation property, and 3-connected
quaternary matroids are also uniquely representable over G F (4). Hence, the presence
of inequivalent representations of matroids over fields is the major barrier to progress in
matroid representation theory; and more techniques are needed to develop the theory
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[5,6,14]. The notion, totally free matroid, is defined to understand the behavior of
inequivalent representation of 3-connected matroids. It turns out that the number of
inequivalent representation of a 3-connected matroid is bounded above by the num-
ber of inequivalent representation of a totally free minor. Then we need to study the
property of totally free matroids in a well-closed class (namely, a class of matroids
closed under isomorphisms, minors, dualities). Surprisingly, all totally free matroids
in a well-closed class can be found by an inductive search [5].

In [11], Oxley et al. defined generalized A — Y exchange or segment—cosegment
exchange, and studied the class of matroids that can be obtained from an totally free
uniform matroid Uj , by a sequence of segment—cosegment and cosegment—segment
exchanges via a vertex-labeled tree, which is also called quasi-lines by [7]. Recall the
following two key results from [7]:

Lemma 1.1 Quasi-lines are totally free.

Lemma 1.2 Totally free matroids without the uniform matroid U3 ¢ as a minor are
quasi-lines.

Then by Lemmas 1.1 and 1.2, and the fact that quasi-lines have no U3 g-minor [11,
Lemma 6.1], Geelen et al. [7] proved that Kahn’s conjecture holds for all 3-connected
matroids without U3 ¢ as a minor.

Now our main result, which extends Lemma 1.1 and is of its own interests as a
property of matroids, can be stated as follows.

Theorem 1.3 Matroids obtained from a totally free matroid M by a sequence of
segment—cosegment and cosegment—segment exchanges are totally free.

For this paper, the matroid terminologies will follow Oxley [10] except that the
simplification and cosimplification of a matroid M are denoted by si(M) and co(M)
respectively. The orthogonal property that a circuit and a cocircuit of a matroid can
not contain exactly one common element will be used repeatedly in our proofs. In
Sects. 2 and 3, some necessary preliminaries on fixed elements and totally free mat-
roids, and generalized A — Y exchange are presented respectively. In Sect. 4, proof of
Theorem 1.3 is given.

2 Fixed Elements and Totally Free Matroids

Let M be a matroid with the ground set E(M). Elements x and x” of M are clones if
the function exchanging x with x” and fixing other points in £ (M) is an automorphism
of M. A clonal class of M is a maximal subset X C E(M) such that any two points
of X are clones. Parallel class and series class, the set of loops and the set of coloops
are called frivial clonal classes; and other clonal classes are called nontrivial ones.
A clonal set of M is a subset of a nontrivial clonal class containing at least two elements.
Clearly, the clone sets of M and its dual matroid M™* are coincide.

For any x € E(M), call the matroid M’ obtained from M by cloning x with x’
(a point not in E(M)) if M’ is a single element extension of M by x’ satisfying x
and x’ clones in M’. Note such a matroid M’ always exists because x’ can be parallel
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with x in M’. If {x, x'} is an independent set in M’, then we call M’ is obtained from
M by independently cloning x with x’, and call x is not fixed in M. Otherwise, we
call x is fixed in M. Dually, we call M’ is obtained from M by cocloning x with x’ if
M’ is a single element coextension of M by x’ such that x and x’ are clones in M.
Similarly, if x and x’ are coindependent in M’, then we say M’ is obtained from M
by coindependently cloning x with x’, and say x is not cofixed in M. Otherwise, we
say x is cofixed in M.
Let F| and F; be flats of M. Then (F1, F>) is a modular pair of flats if

r(F) +r(F) =r(F1 U ) +r(F N F),

where r (F) denotes the rank of flat F. A modular cut F of a matroid M is a collection
of flats of M with the following properties:

1) If F1, F» € Fand (F1, F») is a modular pair, then F1 N F, € F;
(i) forany F € F, any flat of M containing F is alsoin F.

A flat of a matroid is cyclic if it is a union of circuits. For a set F of flats of a matroid,
the unique minimal modular cut containing J is called the modular cut generated by
F and is denoted by (F).

Proposition 2.1 [4, Corollary 3.5] Let e be an element of a matroid M. Then e is fixed
in M if and only if cl(e), the flat of M generated by e, is in the modular cut generated
by the cyclic flats of M containing e.

Obviously, if x and x’ are independent clones in M, then x is not fixed in M\x'.
The next proposition extends the observation.

Proposition 2.2 [6, Proposition 4.9] If x and x’ are independent clones in M, then x
is fixed in neither M nor M\x'. Dually, if x and x" are coindependent clones in M,
then x is cofixed in neither M nor M /x’.

By definitions, if x and x’ are both independent clones and coindependent clones,
then x is neither fixed nor cofixed in M. However, it is possible for x to be fixed in
M /x’ and for x to be cofixed in M\x'.

Proposition 2.3 [5, Proposition 4.9] Elements x and x’ are clones in a matroid M if
and only if the set of cyclic flats of M containing x is equal to the set of cyclic flats
containing x'.

By Proposition 2.3, we obtain

Corollary 2.4 Let F be a cyclic flat of a matroid M, and A a clonal set of M. Then
either FNA=0or FNA=A.

A matroid M is totally free if the following conditions hold:

(i) M is 3-connected with |E(M)| > 4; and
(i) ifeisfixedin M, then co(M\e) is not 3-connected, and if e is cofixed in M, then
si(M/e) is not 3-connected.
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Note M is totally free if and only if M™ is totally free. A clonal triple or a clonal
pair means a clonal set of size 3 or 2, respectively.

Lemma 2.5 [5,Lemma 8.8] If{a, b, ¢} is a triad or a triangle of a totally free matroid
M, then {a, b, c} is a clonal triple.

Lemma 2.6 [5, Lemma 8.7] If {a, b, c} is a triangle of a totally free matroid M with
at least 5 elements, then no triad of M meets {a, b, c}.

Lemma 2.7 [7, Corollary 2.10] Let M be a totally free matroid with at least 5 ele-
ments, and e an element of E(M). Then M\e is totally free if e is an element of an
triangle of M; and M /e is totally free provided e is an element of a triad of M.

Now we arrive at the following corollary which will be frequently used in the sequel.

Corollary 2.8 Let A be a coindependent set of a totally free matroid M with at least
3-element. If M|A = Uy | 4|, then

(i) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(i) M\(A — a) is connected for any element a in A.

Proof Since M is totally free, M is 3-connected, that is, it has neither parallel classes
nor series classes. Then (i) follows from Proposition 2.2 and Lemma 2.5. To prove
(ii), let b be another element of A disjoint from a. Since A is a coindependent set of
M, |E(M) — A| > 2. By repeatedly using Lemma 2.7, M\ (A — (a U b)) is totally
free. Hence, M\ (A — (a U b)) is 3-connected which implies M\ (A — a) is connected,
namely, (ii) holds.

By duality, the following corollary holds.

Corollary 2.9 Let A be an independent set of a totally free matroid M with at least
3-element. If M*|A = U |4, then

(1) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(i) M/(A — a) is connected for any element a in A.

3 Generalized A — Y Exchange

The generalized A — Y exchange was first studied by Oxley et al. [11]. The operation
of A —Y and Y — A exchanges are of basic importance in graph theory. For matroids,
these operations are defined in terms of the generalized parallel connection [3]. Let
M7 and M> be two matroids satisfying M1|T = M>|T, where T = E(M) N E(M>).
Suppose T is a modular flat of M. Here a flat F of a matroid M is modular if

r(F)+r(Fy=r(FNF')4+r(FUF') for all flats F/ of M.
Put N = M/|T. The generalized parallel connection Py(M7, M) of My and M»

across N is the matroid on E(M;)U E (M;) whose flats are those subsets X of E(M{)U
E(M>) such that X N E(M;) is a flat of M;, i = 1,2. When M| = M(K4) and N
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is a triangle of this matroid, [1] defined a A — Y exchange on M across T to be the
matroid obtained by Py (M (K4), M) by deleting T. Oxley et al. [11] generalized this
operation as follows.

Firstly, a matroid @y is introduced to generalize the role played by M (K4) in the
A —Y exchange. On one hand, ®; can be obtained from a free matroid Uy x by adding
a point to each hyperplane of the latter so that each of these hyperplanes becomes a
circuit in the resulting matroid and so that the restriction of & to the added points
is a k-point line. On the other hand, we can describe & as follows: The ground set
of ®y consists of a k-element line and a k-element coline with the property that each
(k — 1)-element subset of the coline forms a circuit with an element of the line. Denote
the line of @ by A and the coline by B, where

A:{a17a2""7ak}7 Bz{bl’bzi"',bk}'

Obviously, A is a modular flat of ®. For k > 2 the non-spanning circuits of & are
(1) all subsets (B — {b;j}) U{a;} foralli € {1,2,...,k}, and
(ii) all 3 -elements of A.

If X is a subset of E(M) with |[X| > 2 and M|X = U, x|, then X is a segment
of M. A cosegment of M is a segment of M*. Since we would like an operation whose
inverse is the dual of the original operation, in defining this operation we shall impose
the additional condition A is coindependent in M. In this case, A is a strict segment
of M. By duality, a strict cosegment of M is an independent cosegment of M. Let A be
a strict segment of M and define A4 (M) as the matroid obtained from P4 (@), M)\ A
by relabeling the element b; by a;(1 < i < k). We call this operation a A 4-exchange
or a segment—cosegment exchange on A.

Let M be a matroid for which M* has a U y-restriction on the set A. If A is
independent in M, then V4 (M) is defined as (A4 (M™))*, thatis, [ P4 (O, M*)\ A]*.
This operation will also be referred to as a V4-exchange or a cosegment—segment
exchange on A. By Corollary 2.12 in [11], these operations are inverse mutually, i.e.,
Aa(Va(M)) =M.

Notice @, is isomorphic to the matroid obtained form U » by adding exactly one
element in parallel with each element of the ground set, and @3 is isomorphic to
M (K4). In addition, A4 (M) = M for any strict segment A with |[A| = 2, and by
duality V4 (M) = M for any strict cosegment with |A| = 2; and in both cases, the
isomorphism is simply the function exchanging the two members of A and fixing other
elements.

In the rest of the paper, fix

A=la,a,....a), k=]Al 3.1)

Lemma 3.1 [11, Lemma 2.6] Let A be a coindependent set in a matroid M with
M|A = U2,|A|. Then

r(As(M)) =r(M) +k —2.

By the definition of Y — A exchange and Lemma 3.1, we have
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Corollary 3.2 Assume V4 (M) is well defined. Then r(Va(M)) =r(M) — k + 2.

Lemma 3.3 [11, Lemma 2.9] Let A 4(M) be the matroid with ground set E(M) that
is obtained from M by a A p-exchange. Then a subset of E(M) is a basis of A (M)
if and only if it is a member of one of the following sets:

(1) {AUB : B'isabasisof M/A};
(i) {(A—a))UB": 1<i<kand B"isabasisof M/a;\(A — a;)}; and
(i) {(A—{ai,a;})) UB" : 1<i < j<kand B" is abasis of M\A}.

By Lemma 3.3, it is easy to obtain

Corollary 3.4 Suppose A (M) is well defined. Then

IXNA+ry(X —A),if | XNA| <k—-1,
ra,m(X)=1k—=1+rypX—A), if XNA=A—a,wherea € A,
k+rya(X —A), if XNA=A.

By the dual of Corollary 3.4, we obtain

Corollary 3.5 Suppose V(M) is well defined. Then

ry(X), if XNA=40,
rvaon(X) =1 1+ryja—a(X —a), if XNA=a,
2+rya(X —A), if I XNA|>2.

By Corollaries 3.4 and 3.5, if C N A = @, then C is a circuit of M if and only if C
is a circuit of Aga(M) or V4(M). In Sect. 4, this result will be used directly without
explanation.

Lemma 3.6 [11, Corollary 2.16] Suppose that As(M) is well defined. Then

(1) If x € E(IM) — A and A is a coindependent in M\x, then A (M \x) is defined
and Ap(M)\x = Ap(M\x).
(i) If x € E(M) — cl(A), then As(M/x) is defined and Ap(M)/x = Aa(M/x).

Lemma 3.7 [11, Corollary 2.17] Let M be a matroid and A € E(M). Suppose
xe E(M)— A, |[E(M)— A| >3, and k > 3.

Then

(1) suppose Ag(M)is defined,
(@) if M\x is 3-connected, then Ag(M\x) is defined and As(M)\x =
Ap(M\x),
(b) if M/xis 3-connected, then Ay(M/x)is defined and Ay(M)/x =
Aa(M/x);
(i) assume V4 (M) is defined,
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(@) if M\x is 3-connected, then Vo(M\x) is defined and V4(M)\x =
Va(M\x),

(b) if M/xis 3-connected, then Ay(M/x) is defined and Vo(M)/x =
Va(M/x).

Lemma 3.8 [11, Lemma 2.20] Let x and x’ be clones in a matroid M. If A N {x, x'}
is empty or A D {x, x'}, then x and x’ are clones in Ag(M). Moreover, if {x, x'} is
independent in M, it is independent in A s (M), and if {x, x'} is coindependent in M,
it is coindependent in Ax(M).

Lemma 3.9 [11, Corollary 2.21] Let x and x’ be clones in a matroid M. If AN {x, x'}
is empty or A 2 {x, x'}, then x and x" are clones in Vo (M). Moreover; if {x, x'} is
independent in M, it is independent in Vo (M), and if {x, x'} is coindependent in M,
it is coindependent in V4 (M).

Lemma 3.10 [11, Lemma 2.10] Let A be a coindependent set in a matroid M with
M|A = Uy a).

(1) If X is a subset of E(M) avoiding A, then e is in the closure of X in M if and
only if e is in the closure of X in Ax(M).

@ii) If{e, f} is a cocircuit of M, then {e, f} is a cocircuit of Ax(M). Conversely, if
{e, f}is a cocircuit of Ay (M) avoiding A, then {e, f} is a cocircuit of M.

4 Proof of Theorem 1.3

To prove Theorem 1.3, it suffices to prove that any matroid obtained from M by a
single segment—cosegment exchange or cosegment—segment exchange is totally free.
Further, by definitions of segment—cosegment exchange and cosegment—segment one,
it suffices to verify that any matroid obtained from totally free matroid M by a single
segment—cosegment exchange is totally free. This resultis known when | E(M)| = 4 by
Lemma 1.1; we prove it is true by a series of lemmas and corollaries when |E (M)| > 5.

To begin, we introduce the well-known connectivity function. Let M be a matroid
with ground set £ = E (M) and rank function ry;. The connectivity function A, of
M is defined on all subsets X of E by

An(X) =ry(X) +ru(E — X) —ru(E).

Clearly, Ap(X) > 0. We also denote Ay (X) by Ay (X, Y), where (X, Y) is a parti-
tion of E. In the rest of the paper, since the matroids considered are totally free, for
convenience, we assume M is totally free with at least 5 elements here and hereafter.

Note that, in general, 3-connectivity is not preserved under a A 4-exchange or dually
under a V4-exchange. For example, the matroid obtained from Q¢ by performing a
Asz-exchange on one of its triangle is not 3-connected [11]. Qg is the matroid obtained
by placing a point on the intersection of two lines of Us 5.

Lemma 4.1 Let A be a coindependent set of a 3-connected matroid N with N|A =
Uj,jal- If N\(A — a) does not contain any coloops for any a € A, then Ap(N) is
3-connected.
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Proof When |A| =2, Ag(N) = N.So A4(N)is3-connected. Hence, we can assume
|[Al > 3.

Itis an immediate consequence of the definition of generalized A — Y exchange that
A4 (N) has neither loops nor nontrivial parallel classes. Suppose A 4 (N) has a coloop
{c}. Then, by Lemma 3.3, {c} N A = ¢} and {c} is a coloop of N/A. Therefore, {c} is a
coloop of N. A contradiction, since N is 3-connected. Thus A 4(N) has no coloops.
Since N has no nontrivial series classes, by Lemma 3.10(ii), A 4 (V) has no nontrivial
series classes avoiding A. It is a straightforward consequence of Lemma 3.3 that no
nontrivial series class is contained in A. Hence, we can assume there exists some non-
trivial series class C* = {a, b} satisfyinga € A and b ¢ A. Then by Lemma 3.3, b
must be a coloop of N/a\(A — a), in particular, b is a coloop of N\ (A — a), which is
a contradiction. Thus, A 4 (N) has no nontrivial series classes. Hence, to prove A 4 (N)
is 3-connected, it suffices to prove Aa,(n)(X,Y) > 2 for any partition (X, Y) of E
with |X| > 3 and |Y| > 3. Clearly Axy (X, Y) > 2.

Casel ACXorACY.

Without loss of generality suppose A C X, then by Corollary 3.4,

Aas) (X, Y) =ra,ny(X) +ra,n) —rayw)(E)
= |Al+ryaX —A) +ry¥) — (Al +rn(E) = 2)
=rn(X) +rn(Y) —rn(E) +2 —ry(A)
=Av(X,Y)
> 2.

Case2 1 <|ANX|<|Al—land1 < |ANY]| < |A] — 1.

By Corollary 3.4, we have

2aan) (X, Y) = ra,vy(X) +ragn ) —ragmn (E)
—ANX|+rv(X —A)+[ANY|+ry(Y — A)
—(|Al+rn(E) —2)
=ryn( X —A)+ry¥ —A) —ry(E)+2
—ANAX — A Y — A)+2
> 2.

Case3 |[ANX|=|A]—1lor|ANY|=]|A| - 1.

Assume |[AN X| =|A| — 1 and A — X = {a}. First, we show N\(A — a) is con-
nected. Assume to the contrary that N\ (A — a) is not connected. Then there exists a
partition (S, T') of E(N\(A — a)) such that Ax\(4—q)(S, T) = 0, where a € §. Obvi-
ously, | S| > 2and |T'| > 2 since N is 3-connected and N\ (A — a) has no coloops. On
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the other hand, note that, .y (SU A, T) < 1. A contradiction since N is 3-connected.
So N\(A — a) is connected, and consequently, Ax\(a—a)(X — A +a,Y —a) > 1.
Therefore, by Corollary 3.4,
A X Y) =ra, X)) +ra, @) —ra,n(E)
=|Al=1+rnpX —A)+1+ry¥ —a) — (Al +ry(E) —2)
=rnX—A+a)+ry¥ —a)—ry(E)+2-1
=iv@a-oX —A+a, Y —a)+1
> 2.

So far we have proven Aa,nv)(X, Y) > 2. Thus A4 (N) is 3-connected. O

Note that, by the proof of Case 3 in Lemma 4.1, we know, in fact, if A is a coin-
dependent set of a 3-connected matroid N satisfying N|A = U |4, then N\(A — a)
without any coloops for any a € A is equal to N\(A — a) connected for any a € A.

Lemma 4.2 Let A be a coindependent set of M with M|A = U |4|. Then Ay(M) is
3-connected.

Proof When |A| = 2, the result is trivial. Hence assume |A| > 3. By Corollary 2.8
(i), M\ (A — a) is connected for any element a € A, in particular, M\ (A — a) does
not contain any coloops. Hence, the lemma holds according to Lemma 4.1. O

The dual of Lemma 4.2 is as follows.

Corollary 4.3 Let A be an independent set of M with M*|A = Uy ). Then V (M)
is 3-connected.

Lemma 4.4 Let A be a coindependent set of M with at least three elements and
M|A = Uy, a|. Then A is a clonal set of Ax(M).

Proof It suffices to prove that for any two elements a;, a; € A, a; and a; are clones
in Ag(M) (A is given by (3.1)). Thus we need to prove that for any B € B(A4(M)) if
a; € Bbuta; ¢ B, then B —a; +a; € B(As(M)). By Corollary 2.8(i), M /a;\a; =
M /aj\a;. Then
M/ai\(A —a;) = M/a;\(A —a;).
From Lemma 3.3, we see that B — a; +a; € B(As(M)). O
By duality, we have

Corollary 4.5 Let A be an independent set of M with at least three elements and
M*|A = U, a|. Then A is a clonal set of V4 (M).

Combining Lemmas 4.2, 4.4 and Corollary 4.5 with Proposition 2.2, we obtain
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Corollary 4.6 (i) If A is a coindependent set of M with at least three elements and

M|A = Uy ||, then every element in A is neither fixed nor cofixed in A, (M).

(i) If A is an independent set M with at least three elements and M*|A = Uy |a),
then every element in A is neither fixed nor cofixed in Vo (M).

Lemma 4.7 Let A be a coindependent set of M with at least three elements and
M|A Z Uy ). If x € E — A and C* is a cocircuit of M satisfying x € C* € AU x,
then C* = AU x.

Proof By orthogonality, we obtain [A| — 1 < |C* N A| < |A|. Suppose C* N A =
A —a, where a € A. Then x is coloop of M\ (A — a). However, by Corollary 2.8(ii),
M\ (A — a) is connected, which is a contradiction. Hence, |C* N A| = |A|, and
consequently, C* = A U x. O

Lemma 4.8 Let A be a coindependent set of M with at least three elements and
MI|A = Uy a). Forany x € E — A, if C* is a triad of As(M) satisfying x € C* and
C* N A is nonempty, then AU x € C*(M).

Proof Supposea € C*N A and C* = {a, x, y}.
Casel yisin A.

Since C* is a triad of A4 (M), C* must meet every basis of A4 (M). According
to Lemma 3.3, x must be a coloop of M\ A. Thus there exists some cocircuit C*
of M satisfying C1* € AUx and x € C;*. It is a consequence of Lemma 4.7 that
AUx e C*(M).

Case2 yisnotin A.

By Lemma 3.3, every basis of M/a\(A — a) must meet at least one of x and y.
Using the fact that M is 3-connected, M|A = U 4| and A is a clonal set of M,
easily we can deduce that M/a\(A — a) is connected. Thus {x, y} is a cocircuit of
M/a\(A — a), that is, (A — a) U x U y contains some cocircuit C;* of M. Obvi-
ously, both x and y are in C1*. By orthogonality, |C1* N A| > |A| — 1. Therefore,
Ci" = (A —a)Ux Uy. Let d’ be an arbitrary element in A disjoint from a. By
Corollary 2.8(i), a and a’ are clones in M. Then C;* = (A —a’) U x U y is also a
cocircuit of M. Hence, AUx = C1* U Cy* — y contains a cocircuit C3* of M, that is
to say, A U x is codependent in M. Since A is coindependent in M, x € C3*. So by
Lemma4.7, AUx € C*(M). O

Lemma 4.9 Let A be a coindependent set of M with at least three elements and
M|A = Uy |a|. Forany x € E — A, if co(M\x) is not 3-connected, then either x is
not fixed in M or co(A 4 (M)\x) is also not 3-connected.

Proof If x is in some triangle or triad of M, then by Proposition 2.2 and Lemma 2.5,
x is not fixed in M. Hence assume x is neither in any triangle nor in any triad, and
consequently, co(M\x) = M\x. Depending on whether A U x is a cocircuit of M,
there are two cases to consider.
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Casel AUx ¢ C*(M).

Since A U x ¢ C*(M), by Lemma 4.8, A4(M) contains no triad C* such that
x € C* and C* N A # (. Hence, if exist some triad C* of A4 (M) with x € C*, then
C*N A = (. By Corollary 3.4, we have

rayom(E —C*) = |Al +ryja(E — C* — A) = |A| + ru(E — C*) =2,
Hence,
rm(E —C*) =ra,an(E —C*) +2—|A]|
So

ru=(C*) = |C*| +ryu(E — C*) — ru(E)
= |C*| +rason(E = C*) — |Al = ry(E) +2
= |C*| +rason(E = C*) = ra ) (E)
= r(aaon*(CY)
=2.

Since M is 3-connected, M has no nontrivial series classes. So C* is also a triad of
M containing x, which is a contradiction. Hence, if A U x ¢ C*(M), then x is not in
any triad of A4 (M). Therefore, co(As(M)\x) = Apa(M)\x.

Since co(M\x) = M\x is connected but not 3-connected, M is not a uniform
matroid of rank-2. Furthermore, since A is coindependent in M, |E(M\x) — A| > 2.
If E(M\x) — A = {x1, x2}, then {x1, x»} is a cocircuit of M\x. Hence {x, x1, x3} is
a triad of M, which is a contradiction. So |E(M\x) — A| > 3.

Since x is not in any triad of M and M is 3-connected, there exists some 2-sepa-
ration (X, Y) of M\x such that |X| > 3 and |Y| > 3. If A is a subset of X or Y, say
A C X, then

Adamnx (X, Y) = Ay (X, Y) = 1.

Hence, A4 (M)\x is not 3-connected. So assume both X N A and ¥ N A are non-
empty and | X N A| > |Y N A| > 1. If there is some 2-separation (X', Y') of M\x
corresponding to (X, Y) such that A is a subset of X’ or Y’, then

rasomna (X YD) = (X, Y =1,

which implies A 4 (M)\x is not 3-connected. We are in the position to prove the exis-
tence of such 2-separation (X', Y’) of M\x.

If X CAorY C A,say X C A, thenlet X’ = A, Y/ =Y — A. Obviously,
(A, Y — A) is the needed 2-separation. Therefore, suppose neither X nor Y is a proper
subset of A. We prove it by two subcases.
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Subcase 1. |[Y N A| > 2.

Since |E(M\x) — A| > 3, atleast one of | X — A| and |Y — A| is larger than one.
Suppose |[X —A] > 1.Let X' =X — A, Y =Y UA. Then (X — A,Y U A) is the
needed 2-separation of M\x. The case |Y — A| > 1 can be treated similarly to the
case | X — A| > 1.

Subcase 2. |[Y N A| = 1.

Since |Y| > 3,|Y —A| >2. Let X' =XUA,Y =Y — A. Then (X', Y’) is the
needed 2-separation of M\x.

Case2 AUx € C*(M).

Let F be an arbitrary cyclic flat of M containing x. Using orthogonality, AN F # .
Since A is a clonal set of M, by Corollary 2.4, A C F. Let F denote the collection
of all cyclic flats of M containing x. Evidently, for every element F’ in (F), we have
AUx C F’'. Hence, cly (x) = {x} is not in (F). By Proposition 2.1, x is not fixed in
M. O

The dual of Lemma 4.9 is as follows.

Corollary 4.10 Let A be an independent set of M with at least three elements and
M*|A = Uy 4. Forany x € E — A, if si(M/x) is not 3-connected, then either x is
not cofixed in M or si(Vao(M)/x) is also not 3-connected.

Corollary 4.11 Let A be a coindependent set of M with at least three elements and
M|A = Uy . Forany x € E — A, if co(Aa(M)\x) is 3-connected, then x is not
fixed in M.

Proof Suppose x is fixed in M. Then co(M\x) is not 3-connected. Hence, by
Lemma 4.9, co(A 4 (M)\x) is also not 3-connected, which is a contradiction. O

Lemma 4.12 Let A be a coindependent set of M with at least three elements and
M|A = Uy 4. For any x ¢ cly(A), if si(M /x) is not 3-connected, then either x is
not cofixed in M or si(A o (M) /x) is also not 3-connected.

Proof If x is in some triangle or a triad of M, then by Proposition 2.2 and Lemma 2.5,
x is not cofixed in M. Thus assume x is neither in any triangle nor in any triad of
M. Then si(M/x) = M/x. Assume x is in some triangle C of A4 (M). Since M
is 3-connected and x is not in any triangle of M, ry(C) = 3. If C N A = @, then
by Corollary 3.4, ra,m)(C) = ry(C) = 3; which contradicts to C € C(As(M)).
Therefore CN A # Jand |CNA| =1,2.Let C = {x, y, z} and suppose y € A. If
|C N A| = 1, then following from Lemma 3.3, there exists some basis B of A4 (M)
such that C € B. This contradicts to C is a circuit of Aq(M). Thus |[C N A| = 2,
that is, {y, z} € A. Similarly, if |A| > 4, then there is some basis B of A4 (M) such
that C € B; which contradicts to C is a circuit of A4 (M). Hence |A| = 3. Then by
the definition of A4 (M), there exists some element a in A such that x is parallel with
a in M. This contradicts to M is 3-connected. Hence, x is also not in any triangle of
Ap(M). Therefore si(Ag(M)/x) = Ag(M)/x. By Lemma 3.6(ii),

si(Aa(M)/x) = Aa(M)/x = Ap(M/x).
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Since M /x is connected but not 3-connected, |E(M/x) — A| > 2. Assume
EM/x) — A = {x1, x2}.

Thenr(M/x) = 3 and {x, x2} is a cocircuit of M /x. Hence {x1, x2} is also a cocircuit
of M. This contradicts to M is 3-connected. So |[E(M/x) — A| > 3.

Let M1 = M /x. Since x is not in any triangle of M and M is 3-connected, there is
some 2-separation (X, Y) of M such that | X| > 3 and |Y| > 3. Similarly to proving
Case 1 of Lemma 4.9, we can prove A4 (M)/x is not 3-connected. O

The dual of Lemma 4.12 is as follows.

Corollary 4.13 Let A be an independent set of M with at least three elements and
M*|A = U 4. For any x ¢ cly+(A), if co(M\x) is not 3-connected, then either x
is not fixed in M or co(V 4(M)\x) is not 3-connected.

With Lemma 4.12 in mind, following the same line as the proof of Corollary 4.11,
we can obtain

Corollary 4.14 Let A be a coindependent set of M with at least three elements and
M|A = Uy . For any x ¢ cly(A), if si(tAa(M)/x) is 3-connected, then x is not
cofixed in M.

Lemma 4.15 Suppose V(M) is well defined. Let x be an elementin E — A. If there
exists some circuit C of V(M) satisfying x € C € C(Vo(M)), then there is some
circuit C1 of M such thatx € C1 C AUC.

Proof Since every three-element of A is a triangle of V4 (M), |C N A| < 2. We prove
the lemma in three cases: |[C N A| =0, 1, or 2.

Casel CNA=0.
Clearly, C1 = C is a circuit of M.
Case2 CNA={a}.

By Corollary 3.5, we have

vu(€) =24+ry(C —a)U (A —a)) —|Al=|C] -1,
(€ —x) =2+ry((C—{xUa}) U(A —a)) —|Al=|C| - L

Then

rm((C —a)U (A —a)) = |A|+]|C| =3,
ru((C —{xUa}) U(A —a)) =[A]+|C| - 3.

Hence, x € cly((C —{xUa}) U(A —a)) C cly(AUC — x); which implies that
there exists some circuit C; of M suchthatx € C; C AUC.
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Case3 |[CNA|l=2.

Similarly to Case 2, we can show that x € C; € A U C for some circuit C| of M.
O

Lemma 4.16 Let A be an independent set of M with at least three elements and
M*|A = Ua, 4. For any element x € E — A, if F is a cyclic flat of V s(M) containing
x, then F is also a cyclic flat of M containing x.

Proof By Corollary 2.4 and Corollary 4.5, FN A = Jor FN A = A. Note every
subset C of E disjoint from A is a circuit of M if and only if C is a circuit of V4 (M).
Hence, if we can prove F is a flat of M, then by Lemma 4.15, F is also a cyclic flat
of M. Therefore, it suffices to prove F is a flat of M.

Assume F' is not a flat of M. Then there exists some element ¢ in E — F such that
e € cly (F), namely, there is some circuit C of M satisfyinge €e C C FUe. IfCNA
is empty, then C € C(V4(M)) and e € cly, ) (F). This contradicts to F is a flat of
Va(M). So C N A is nonempty. According to whether FNA =@ or FNA = A,
there are two cases to consider.

Casel FNA=.
SinceCNA#@Pand FNA=0,CNA=ee€ A. By Corollary 2.9(i),
rM((C—e)U(A—e) =ru(C) =ry(C—e)=|C|—1.
By Corollary 3.5,

rvam(C —e) =ry(C—e)=|C| -1,
rvam(C) =2+ry((C—e)U (A —e)) — |A]
=|C|—|Al+1<|C|—1.

This contradicts to rv,am)(C) = rv,m)(C — e). Hence F is a flat of M.
Case2 FNA=A.

Sinccee E—Fand FNA=A,e ¢ A.
Subcase 1. |ANC| > 2.
Since A is a clonal set of M,
rm(CUA) =ry((C—e)UA) =ry(C—e)=|C|—1.
Then by Corollary 3.5, we have

rv,mn(C)=2+ry(CUA) —[A| =2+ |C|—-1—|A]|=|C|+1—]|A],
v, (C—e)=24ry((C—e) U A)—|A|=2+|C|-1—|A|=|C|+1—]|A].

Hence, e € cly, ) (C —e) C cly, ) (F) = F. This is a contradiction.
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Subcase 2. |ANC| = 1.
Similarly to Subcase 1, we can verify F is a flat of M.
Hence, F is a flat of M. O

Lemma 4.17 Let A be an independent set of M with at least three elements and
M*|A = Uz 4| and x € cly+(A) — A. Then x is not fixed in V 4 (M).

Proof Let F be an arbitrary cyclic flat of V4 (M) containing x. By Lemma 4.16, F is
also a cyclic flat of M. Since x € cly«(A) — A and M is 3-connected, M*|(AU x) =
Uz, 14141 It follows from Corollary 2.9(i) that A U x is a clonal set of M. By Corol-
lary 2.4, AUx C F. Hence, A U x is contained in every element of (F), where F is
the collection of all cyclic flats of V4 (M) containing x. Therefore, clv, i) (x) = {x}
is not in (F). By Proposition 2.1, x is not fixed in M. O

Lemma 4.18 Let A be an independent subset of E with at least three elements and
M*|A = Uy |a|. For any x € E — A, if x is not fixed in M, then x is not fixed in
Va(M).

Proof If x € cly+(A) — A, then by Lemma 4.17, x is not fixed in V4 (M). Now we
assume x ¢ cly+(A) — A. Then x is not a coloop of M\ A. Let M’ be the matroid
obtained from M by independently cloning x with x’. Clearly, A is also independent
in M’ and ry(E') = ry(E). Let E' = E U x'. Since x is not a coloop of M\A,
ry(E' — A) = ry(E — A). Hence, by Corollary 3.5,

rany(A) = |A| + ry (E' — A) — rypr (E')
=|Al+ru(E—A) —ru(E)

Since M has no nontrivial series classes, M’ contains no nontrivial series classes.
Hence, (M')*|A = U, a|. Then V4 (M’) is well defined. Since M'\x" = M is 3-con-
nected, then by Lemma 3.7(ii), V4 (M'\x") isdefinedand V4 (M")\x' = V(M \x") =
Va(M). By Lemma 3.9, {x, x’} is an independent clone of V4(M’). Hence x is not
fixed in V4 (M) due to Proposition 2.2. m]

By duality, we obtain the following corollary.

Corollary 4.19 Let A be a coindependent subset of E with at least three elements
and M|A = Uy |a|. Forany x € E — A, if x is not cofixed in M, then x is not cofixed
in Ag(M).

Lemma 4.20 Let A be a coindependent subset of E with M|A = Uy |a|. Then Ay (M)
is a totally free matroid.

Proof Firstly, by Lemma 4.2, Aq(M) is 3-connected. If |A| = 2, then clearly
Ap(M) = M. Hence A4 (M) is totally free. Thus assume |A| > 3.

Let x be an arbitrary element in E. First, assume co(A 4 (M)\x) is 3-connected,
we shall prove x is not fixed in A4 (M). If x € A, then by Corollary 4.6(i), x is
not fixed in A4 (M). Hence, assume x ¢ A. Then by Corollary 4.11, x is not fixed
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in M. Independently cloning x with x” in M, we obtain a new matroid M’. Note
A is also a coindependent set of M’ and every three-element subset of A is a trian-
gle of M’. Therefore A4 (M’) is well defined. Since M'\x" = M is 3-connected, by
Lemma 3.7(i), Aa(M")\x" = Aa(M'\x") = As(M). By Lemma 3.8, {x,x'} is a
clonal set of A4(M"). Hence x is not fixed in A 4 (M) according to Proposition 2.2.

Secondly, suppose si(A4(M)/x) is 3-connected. If x € A, then it follows from
Corollary 4.6(i) that x is not cofixed in A4 (M). Now suppose x ¢ A.

Casel x ecly(A) — A.

Note x € cly(A) — A implies that x is in some triangle of M. Hence x is not
cofixed in M according to Corollary 2.8(i). By Corollary 4.19, x is also not cofixed in
Aa(M).

Case2 x ¢ cly(A).

From Corollary 4.14, x is not cofixed in M. Then by Corollary 4.19, x is also not
cofixed in Ay (M).
Hence, A4 (M) is a totally free matroid. m]

The duality of Lemma 4.20 is as follows:

Corollary 4.21 Let A be an independent set of M with M*|A = U | 4|. Then V 4(M)
is a totally free matroid.

Proof of Theorem 1.3 Note the only totally free matroid M with |[E(M)| < 5is Uz 4.
Following from Lemma 4.20, Corollary 4.21 and Lemma 1.1, we obtain Theorem 1.3
immediately. O
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