A Note on Totally Free Matroids

Rong Chen • Kai-Nan Xiang

Received: 2 October 2008 / Revised: 27 August 2009 / Published online: 9 February 2010
© Springer 2010

Abstract

It is known matroids obtained from a totally free uniform matroid $U_{2, n}$ by a sequence of segment-cosegment and cosegment-segment exchanges are totally free (Geelen et al., in J Combin Theory Ser B 92:55-67, 2004). In this paper, we prove matroids obtained from any totally free matroid by a sequence of segment-cosegment and cosegment-segment exchanges are also totally free.

Keywords Totally free matroids • Segment-cosegment and cosegment-segment exchanges

1 Introduction

Unique representability is of great importance in matroid representation theory. In fact, it is no coincidence that finite fields $G F(q)$ for which the sets of excluded minors have been completely determined are those over which every 3-connected $G F(q)$-representable matroid is uniquely representable [2,8,9,12,13]. Recall binary matroids and ternary matroids over $G F(3)$ have a unique representation property, and 3-connected quaternary matroids are also uniquely representable over $G F(4)$. Hence, the presence of inequivalent representations of matroids over fields is the major barrier to progress in matroid representation theory; and more techniques are needed to develop the theory

[^0]$[5,6,14]$. The notion, totally free matroid, is defined to understand the behavior of inequivalent representation of 3-connected matroids. It turns out that the number of inequivalent representation of a 3-connected matroid is bounded above by the number of inequivalent representation of a totally free minor. Then we need to study the property of totally free matroids in a well-closed class (namely, a class of matroids closed under isomorphisms, minors, dualities). Surprisingly, all totally free matroids in a well-closed class can be found by an inductive search [5].

In [11], Oxley et al. defined generalized $\Delta-Y$ exchange or segment-cosegment exchange, and studied the class of matroids that can be obtained from an totally free uniform matroid $U_{2, n}$ by a sequence of segment-cosegment and cosegment-segment exchanges via a vertex-labeled tree, which is also called quasi-lines by [7]. Recall the following two key results from [7]:

Lemma 1.1 Quasi-lines are totally free.
Lemma 1.2 Totally free matroids without the uniform matroid $U_{3,6}$ as a minor are quasi-lines.

Then by Lemmas 1.1 and 1.2, and the fact that quasi-lines have no $U_{3,6}$-minor [11, Lemma 6.1], Geelen et al. [7] proved that Kahn's conjecture holds for all 3-connected matroids without $U_{3,6}$ as a minor.

Now our main result, which extends Lemma 1.1 and is of its own interests as a property of matroids, can be stated as follows.

Theorem 1.3 Matroids obtained from a totally free matroid M by a sequence of segment-cosegment and cosegment-segment exchanges are totally free.

For this paper, the matroid terminologies will follow Oxley [10] except that the simplification and cosimplification of a matroid M are denoted by $\operatorname{si}(M)$ and $\operatorname{co}(M)$ respectively. The orthogonal property that a circuit and a cocircuit of a matroid can not contain exactly one common element will be used repeatedly in our proofs. In Sects. 2 and 3, some necessary preliminaries on fixed elements and totally free matroids, and generalized $\Delta-Y$ exchange are presented respectively. In Sect. 4, proof of Theorem 1.3 is given.

2 Fixed Elements and Totally Free Matroids

Let M be a matroid with the ground set $E(M)$. Elements x and x^{\prime} of M are clones if the function exchanging x with x^{\prime} and fixing other points in $E(M)$ is an automorphism of M. A clonal class of M is a maximal subset $X \subseteq E(M)$ such that any two points of X are clones. Parallel class and series class, the set of loops and the set of coloops are called trivial clonal classes; and other clonal classes are called nontrivial ones. A clonal set of M is a subset of a nontrivial clonal class containing at least two elements. Clearly, the clone sets of M and its dual matroid M^{*} are coincide.

For any $x \in E(M)$, call the matroid M^{\prime} obtained from M by cloning x with x^{\prime} (a point not in $E(M)$) if M^{\prime} is a single element extension of M by x^{\prime} satisfying x and x^{\prime} clones in M^{\prime}. Note such a matroid M^{\prime} always exists because x^{\prime} can be parallel
with x in M^{\prime}. If $\left\{x, x^{\prime}\right\}$ is an independent set in M^{\prime}, then we call M^{\prime} is obtained from M by independently cloning x with x^{\prime}, and call x is not fixed in M. Otherwise, we call x is fixed in M. Dually, we call M^{\prime} is obtained from M by cocloning x with x^{\prime} if M^{\prime} is a single element coextension of M by x^{\prime} such that x and x^{\prime} are clones in M^{\prime}. Similarly, if x and x^{\prime} are coindependent in M^{\prime}, then we say M^{\prime} is obtained from M by coindependently cloning x with x^{\prime}, and say x is not cofixed in M. Otherwise, we say x is cofixed in M.

Let F_{1} and F_{2} be flats of M. Then $\left(F_{1}, F_{2}\right)$ is a modular pair of flats if

$$
r\left(F_{1}\right)+r\left(F_{2}\right)=r\left(F_{1} \cup F_{2}\right)+r\left(F_{1} \cap F_{2}\right),
$$

where $r(F)$ denotes the rank of flat F. A modular cut \mathcal{F} of a matroid M is a collection of flats of M with the following properties:
(i) If $F_{1}, F_{2} \in \mathcal{F}$ and $\left(F_{1}, F_{2}\right)$ is a modular pair, then $F_{1} \cap F_{2} \in \mathcal{F}$;
(ii) for any $F \in \mathcal{F}$, any flat of M containing F is also in \mathcal{F}.

A flat of a matroid is cyclic if it is a union of circuits. For a set \mathcal{F} of flats of a matroid, the unique minimal modular cut containing \mathcal{F} is called the modular cut generated by \mathcal{F} and is denoted by $\langle\mathcal{F}\rangle$.

Proposition 2.1 [4, Corollary 3.5] Let e be an element of a matroid M. Then e is fixed in M if and only if $\mathrm{cl}(e)$, the flat of M generated by e, is in the modular cut generated by the cyclic flats of M containing e.

Obviously, if x and x^{\prime} are independent clones in M, then x is not fixed in $M \backslash x^{\prime}$. The next proposition extends the observation.

Proposition 2.2 [6, Proposition 4.9] If x and x^{\prime} are independent clones in M, then x is fixed in neither M nor $M \backslash x^{\prime}$. Dually, if x and x^{\prime} are coindependent clones in M, then x is cofixed in neither M nor M / x^{\prime}.

By definitions, if x and x^{\prime} are both independent clones and coindependent clones, then x is neither fixed nor cofixed in M. However, it is possible for x to be fixed in M / x^{\prime} and for x to be cofixed in $M \backslash x^{\prime}$.

Proposition 2.3 [5, Proposition 4.9] Elements x and x^{\prime} are clones in a matroid M if and only if the set of cyclic flats of M containing x is equal to the set of cyclic flats containing x^{\prime}.

By Proposition 2.3, we obtain
Corollary 2.4 Let F be a cyclic flat of a matroid M, and A a clonal set of M. Then either $F \cap A=\emptyset$ or $F \cap A=A$.

A matroid M is totally free if the following conditions hold:
(i) M is 3 -connected with $|E(M)| \geq 4$; and
(ii) if e is fixed in M, then $\operatorname{co}(M \backslash e)$ is not 3-connected, and if e is cofixed in M, then $\operatorname{si}(M / e)$ is not 3-connected.

Note M is totally free if and only if M^{*} is totally free. A clonal triple or a clonal pair means a clonal set of size 3 or 2 , respectively.

Lemma 2.5 [5, Lemma 8.8] If $\{a, b, c\}$ is a triad or a triangle of a totally free matroid M, then $\{a, b, c\}$ is a clonal triple.

Lemma 2.6 [5, Lemma 8.7] If $\{a, b, c\}$ is a triangle of a totally free matroid M with at least 5 elements, then no triad of M meets $\{a, b, c\}$.

Lemma 2.7 [7, Corollary 2.10] Let M be a totally free matroid with at least 5 elements, and e an element of $E(M)$. Then $M \backslash e$ is totally free if e is an element of an triangle of M; and M / e is totally free provided e is an element of a triad of M.

Now we arrive at the following corollary which will be frequently used in the sequel.
Corollary 2.8 Let A be a coindependent set of a totally free matroid M with at least 3-element. If $M \mid A \cong U_{2,|A|}$, then
(i) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(ii) $M \backslash(A-a)$ is connected for any element a in A.

Proof Since M is totally free, M is 3-connected, that is, it has neither parallel classes nor series classes. Then (i) follows from Proposition 2.2 and Lemma 2.5. To prove (ii), let b be another element of A disjoint from a. Since A is a coindependent set of $M,|E(M)-A| \geq 2$. By repeatedly using Lemma $2.7, M \backslash(A-(a \cup b))$ is totally free. Hence, $M \backslash(A-(a \cup b))$ is 3-connected which implies $M \backslash(A-a)$ is connected, namely, (ii) holds.

By duality, the following corollary holds.
Corollary 2.9 Let A be an independent set of a totally free matroid M with at least 3-element. If $M^{*} \mid A \cong U_{2,|A|}$, then
(i) A is a clonal set of M, and every element in A is neither fixed nor cofixed; and
(ii) $M /(A-a)$ is connected for any element a in A.

3 Generalized $\boldsymbol{\Delta}$ - \boldsymbol{Y} Exchange

The generalized $\Delta-Y$ exchange was first studied by Oxley et al. [11]. The operation of $\Delta-Y$ and $Y-\Delta$ exchanges are of basic importance in graph theory. For matroids, these operations are defined in terms of the generalized parallel connection [3]. Let M_{1} and M_{2} be two matroids satisfying $M_{1}\left|T=M_{2}\right| T$, where $T=E\left(M_{1}\right) \cap E\left(M_{2}\right)$. Suppose T is a modular flat of M_{1}. Here a flat F of a matroid M is modular if

$$
r(F)+r\left(F^{\prime}\right)=r\left(F \cap F^{\prime}\right)+r\left(F \cup F^{\prime}\right) \text { for all flats } F^{\prime} \text { of } M
$$

Put $N=M_{1} \mid T$. The generalized parallel connection $P_{N}\left(M_{1}, M_{2}\right)$ of M_{1} and M_{2} across N is the matroid on $E\left(M_{1}\right) \cup E\left(M_{2}\right)$ whose flats are those subsets X of $E\left(M_{1}\right) \cup$ $E\left(M_{2}\right)$ such that $X \cap E\left(M_{i}\right)$ is a flat of $M_{i}, i=1,2$. When $M_{1} \cong M\left(K_{4}\right)$ and N
is a triangle of this matroid, [1] defined a $\Delta-Y$ exchange on M across T to be the matroid obtained by $P_{N}\left(M\left(K_{4}\right), M\right)$ by deleting T. Oxley et al. [11] generalized this operation as follows.

Firstly, a matroid Θ_{k} is introduced to generalize the role played by $M\left(K_{4}\right)$ in the $\Delta-Y$ exchange. On one hand, Θ_{k} can be obtained from a free matroid $U_{k, k}$ by adding a point to each hyperplane of the latter so that each of these hyperplanes becomes a circuit in the resulting matroid and so that the restriction of Θ_{k} to the added points is a k-point line. On the other hand, we can describe Θ_{k} as follows: The ground set of Θ_{k} consists of a k-element line and a k-element coline with the property that each ($k-1$)-element subset of the coline forms a circuit with an element of the line. Denote the line of Θ_{k} by A and the coline by B, where

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}
$$

Obviously, A is a modular flat of Θ_{k}. For $k>2$ the non-spanning circuits of Θ_{k} are
(i) all subsets $\left(B-\left\{b_{i}\right\}\right) \cup\left\{a_{i}\right\}$ for all $i \in\{1,2, \ldots, k\}$, and
(ii) all 3 -elements of A.

If X is a subset of $E(M)$ with $|X| \geq 2$ and $M \mid X=U_{2,|X|}$, then X is a segment of M. A cosegment of M is a segment of M^{*}. Since we would like an operation whose inverse is the dual of the original operation, in defining this operation we shall impose the additional condition A is coindependent in M. In this case, A is a strict segment of M. By duality, a strict cosegment of M is an independent cosegment of M. Let A be a strict segment of M and define $\Delta_{A}(M)$ as the matroid obtained from $P_{A}\left(\Theta_{k}, M\right) \backslash A$ by relabeling the element b_{i} by $a_{i}(1 \leq i \leq k)$. We call this operation a Δ_{A}-exchange or a segment-cosegment exchange on A.

Let M be a matroid for which M^{*} has a $U_{2, k}$-restriction on the set A. If A is independent in M, then $\nabla_{A}(M)$ is defined as $\left(\Delta_{A}\left(M^{*}\right)\right)^{*}$, that is, $\left[P_{A}\left(\Theta_{k}, M^{*}\right) \backslash A\right]^{*}$. This operation will also be referred to as a ∇_{A}-exchange or a cosegment-segment exchange on A. By Corollary 2.12 in [11], these operations are inverse mutually, i.e., $\Delta_{A}\left(\nabla_{A}(M)\right) \cong M$.

Notice Θ_{2} is isomorphic to the matroid obtained form $U_{2,2}$ by adding exactly one element in parallel with each element of the ground set, and Θ_{3} is isomorphic to $M\left(K_{4}\right)$. In addition, $\Delta_{A}(M) \cong M$ for any strict segment A with $|A|=2$, and by duality $\nabla_{A}(M) \cong M$ for any strict cosegment with $|A|=2$; and in both cases, the isomorphism is simply the function exchanging the two members of A and fixing other elements.

In the rest of the paper, fix

$$
\begin{equation*}
A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad k=|A| . \tag{3.1}
\end{equation*}
$$

Lemma 3.1 [11, Lemma 2.6] Let A be a coindependent set in a matroid M with $M \mid A \cong U_{2,|A|}$. Then

$$
r\left(\Delta_{A}(M)\right)=r(M)+k-2 .
$$

By the definition of $Y-\Delta$ exchange and Lemma 3.1, we have

Corollary 3.2 Assume $\nabla_{A}(M)$ is well defined. Then $r\left(\nabla_{A}(M)\right)=r(M)-k+2$.
Lemma 3.3 [11, Lemma 2.9] Let $\Delta_{A}(M)$ be the matroid with ground set $E(M)$ that is obtained from M by a Δ_{A}-exchange. Then a subset of $E(M)$ is a basis of $\Delta_{A}(M)$ if and only if it is a member of one of the following sets:
(i) $\left\{A \cup B^{\prime}: B^{\prime}\right.$ is a basis of $\left.M / A\right\}$;
(ii) $\left\{\left(A-a_{i}\right) \cup B^{\prime \prime}: 1 \leq i \leq k\right.$ and $B^{\prime \prime}$ is a basis of $\left.M / a_{i} \backslash\left(A-a_{i}\right)\right\}$; and
(iii) $\left\{\left(A-\left\{a_{i}, a_{j}\right\}\right) \cup B^{\prime \prime \prime}: 1 \leq i<j \leq k\right.$ and $B^{\prime \prime \prime}$ is a basis of $\left.M \backslash A\right\}$.

By Lemma 3.3, it is easy to obtain
Corollary 3.4 Suppose $\Delta_{A}(M)$ is well defined. Then

$$
r_{\Delta_{A}(M)}(X)= \begin{cases}|X \cap A|+r_{M}(X-A), & \text { if }|X \cap A|<k-1, \\ k-1+r_{M / a}(X-A), & \text { if } X \cap A=A-a, \text { where } a \in A, \\ k+r_{M / A}(X-A), & \text { if } X \cap A=A .\end{cases}
$$

By the dual of Corollary 3.4, we obtain
Corollary 3.5 Suppose $\nabla_{A}(M)$ is well defined. Then

$$
r_{\nabla_{A}(M)}(X)= \begin{cases}r_{M}(X), & \text { if } X \cap A=\emptyset \\ 1+r_{M /(A-a)}(X-a), & \text { if } X \cap A=a \\ 2+r_{M / A}(X-A), & \text { if }|X \cap A| \geq 2\end{cases}
$$

By Corollaries 3.4 and 3.5, if $C \cap A=\emptyset$, then C is a circuit of M if and only if C is a circuit of $\Delta_{A}(M)$ or $\nabla_{A}(M)$. In Sect. 4, this result will be used directly without explanation.

Lemma 3.6 [11, Corollary 2.16] Suppose that $\Delta_{A}(M)$ is well defined. Then
(i) If $x \in E(M)-A$ and A is a coindependent in $M \backslash x$, then $\Delta_{A}(M \backslash x)$ is defined and $\Delta_{A}(M) \backslash x=\Delta_{A}(M \backslash x)$.
(ii) If $x \in E(M)-c l(A)$, then $\Delta_{A}(M / x)$ is defined and $\Delta_{A}(M) / x=\Delta_{A}(M / x)$.

Lemma 3.7 [11, Corollary 2.17] Let M be a matroid and $A \subseteq E(M)$. Suppose

$$
x \in E(M)-A,|E(M)-A| \geq 3, \text { and } k \geq 3 .
$$

Then
(i) suppose $\Delta_{A}(M)$ is defined,
(a) if $M \backslash x$ is 3-connected, then $\Delta_{A}(M \backslash x)$ is defined and $\Delta_{A}(M) \backslash x=$ $\Delta_{A}(M \backslash x)$,
(b) if M / x is 3-connected, then $\Delta_{A}(M / x)$ is defined and $\Delta_{A}(M) / x=$ $\Delta_{A}(M / x) ;$
(ii) assume $\nabla_{A}(M)$ is defined,
(a) if $M \backslash x$ is 3-connected, then $\nabla_{A}(M \backslash x)$ is defined and $\nabla_{A}(M) \backslash x=$ $\nabla_{A}(M \backslash x)$,
(b) if M / x is 3-connected, then $\Delta_{A}(M / x)$ is defined and $\nabla_{A}(M) / x=$ $\nabla_{A}(M / x)$.

Lemma 3.8 [11, Lemma 2.20] Let x and x^{\prime} be clones in a matroid M. If $A \cap\left\{x, x^{\prime}\right\}$ is empty or $A \supseteq\left\{x, x^{\prime}\right\}$, then x and x^{\prime} are clones in $\Delta_{A}(M)$. Moreover, if $\left\{x, x^{\prime}\right\}$ is independent in M, it is independent in $\Delta_{A}(M)$, and if $\left\{x, x^{\prime}\right\}$ is coindependent in M, it is coindependent in $\Delta_{A}(M)$.

Lemma 3.9 [11, Corollary 2.21] Let x and x^{\prime} be clones in a matroid M. If $A \cap\left\{x, x^{\prime}\right\}$ is empty or $A \supseteq\left\{x, x^{\prime}\right\}$, then x and x^{\prime} are clones in $\nabla_{A}(M)$. Moreover, if $\left\{x, x^{\prime}\right\}$ is independent in M, it is independent in $\nabla_{A}(M)$, and if $\left\{x, x^{\prime}\right\}$ is coindependent in M, it is coindependent in $\nabla_{A}(M)$.

Lemma 3.10 [11, Lemma 2.10] Let A be a coindependent set in a matroid M with $M \mid A \cong U_{2,|A|}$.
(i) If X is a subset of $E(M)$ avoiding A, then e is in the closure of X in M if and only if e is in the closure of X in $\Delta_{A}(M)$.
(ii) If $\{e, f\}$ is a cocircuit of M, then $\{e, f\}$ is a cocircuit of $\Delta_{A}(M)$. Conversely, if $\{e, f\}$ is a cocircuit of $\Delta_{A}(M)$ avoiding A, then $\{e, f\}$ is a cocircuit of M.

4 Proof of Theorem 1.3

To prove Theorem 1.3, it suffices to prove that any matroid obtained from M by a single segment-cosegment exchange or cosegment-segment exchange is totally free. Further, by definitions of segment-cosegment exchange and cosegment-segment one, it suffices to verify that any matroid obtained from totally free matroid M by a single segment-cosegment exchange is totally free. This result is known when $|E(M)|=4$ by Lemma 1.1; we prove it is true by a series of lemmas and corollaries when $|E(M)| \geq 5$.

To begin, we introduce the well-known connectivity function. Let M be a matroid with ground set $E=E(M)$ and rank function r_{M}. The connectivity function λ_{M} of M is defined on all subsets X of E by

$$
\lambda_{M}(X)=r_{M}(X)+r_{M}(E-X)-r_{M}(E) .
$$

Clearly, $\lambda_{M}(X) \geq 0$. We also denote $\lambda_{M}(X)$ by $\lambda_{M}(X, Y)$, where (X, Y) is a partition of E. In the rest of the paper, since the matroids considered are totally free, for convenience, we assume M is totally free with at least 5 elements here and hereafter.

Note that, in general, 3-connectivity is not preserved under a Δ_{A}-exchange or dually under a ∇_{A}-exchange. For example, the matroid obtained from Q_{6} by performing a Δ_{3}-exchange on one of its triangle is not 3-connected [11]. Q_{6} is the matroid obtained by placing a point on the intersection of two lines of $U_{3,5}$.

Lemma 4.1 Let A be a coindependent set of a 3-connected matroid N with $N \mid A \cong$ $U_{2,|A|}$. If $N \backslash(A-a)$ does not contain any coloops for any $a \in A$, then $\Delta_{A}(N)$ is 3-connected.

Proof When $|A|=2, \Delta_{A}(N) \cong N$. So $\Delta_{A}(N)$ is 3-connected. Hence, we can assume $|A| \geq 3$.

It is an immediate consequence of the definition of generalized $\Delta-Y$ exchange that $\Delta_{A}(N)$ has neither loops nor nontrivial parallel classes. Suppose $\Delta_{A}(N)$ has a coloop $\{c\}$. Then, by Lemma 3.3, $\{c\} \cap A=\emptyset$ and $\{c\}$ is a coloop of N / A. Therefore, $\{c\}$ is a coloop of N. A contradiction, since N is 3-connected. Thus $\Delta_{A}(N)$ has no coloops. Since N has no nontrivial series classes, by Lemma 3.10(ii), $\Delta_{A}(N)$ has no nontrivial series classes avoiding A. It is a straightforward consequence of Lemma 3.3 that no nontrivial series class is contained in A. Hence, we can assume there exists some nontrivial series class $C^{*}=\{a, b\}$ satisfying $a \in A$ and $b \notin A$. Then by Lemma 3.3, b must be a coloop of $N / a \backslash(A-a)$, in particular, b is a coloop of $N \backslash(A-a)$, which is a contradiction. Thus, $\Delta_{A}(N)$ has no nontrivial series classes. Hence, to prove $\Delta_{A}(N)$ is 3-connected, it suffices to prove $\lambda_{\Delta_{A}(N)}(X, Y) \geq 2$ for any partition (X, Y) of E with $|X| \geq 3$ and $|Y| \geq 3$. Clearly $\lambda_{N}(X, Y) \geq 2$.

Case $1 A \subseteq X$ or $A \subseteq Y$.
Without loss of generality suppose $A \subseteq X$, then by Corollary 3.4,

$$
\begin{aligned}
\lambda_{\Delta_{A}(N)}(X, Y) & =r_{\Delta_{A}(N)}(X)+r_{\Delta_{A}(N)}(Y)-r_{\Delta_{A}(N)}(E) \\
& =|A|+r_{N / A}(X-A)+r_{N}(Y)-\left(|A|+r_{N}(E)-2\right) \\
& =r_{N}(X)+r_{N}(Y)-r_{N}(E)+2-r_{N}(A) \\
& =\lambda_{N}(X, Y) \\
& \geq 2 .
\end{aligned}
$$

Case $21<|A \cap X|<|A|-1$ and $1<|A \cap Y|<|A|-1$.
By Corollary 3.4, we have

$$
\begin{aligned}
\lambda_{\Delta_{A}(N)}(X, Y)= & r_{\Delta_{A}(N)}(X)+r_{\Delta_{A}(N)}(Y)-r_{\Delta_{A}(N)}(E) \\
= & |A \cap X|+r_{N}(X-A)+|A \cap Y|+r_{N}(Y-A) \\
& -\left(|A|+r_{N}(E)-2\right) \\
= & r_{N}(X-A)+r_{N}(Y-A)-r_{N}(E)+2 \\
= & \lambda_{N \backslash A}(X-A, Y-A)+2 \\
\geq & 2 .
\end{aligned}
$$

Case $3|A \cap X|=|A|-1$ or $|A \cap Y|=|A|-1$.
Assume $|A \cap X|=|A|-1$ and $A-X=\{a\}$. First, we show $N \backslash(A-a)$ is connected. Assume to the contrary that $N \backslash(A-a)$ is not connected. Then there exists a partition (S, T) of $E(N \backslash(A-a))$ such that $\lambda_{N \backslash(A-a)}(S, T)=0$, where $a \in S$. Obviously, $|S| \geq 2$ and $|T| \geq 2$ since N is 3-connected and $N \backslash(A-a)$ has no coloops. On
the other hand, note that, $\lambda_{N}(S \cup A, T) \leq 1$. A contradiction since N is 3-connected. So $N \backslash(A-a)$ is connected, and consequently, $\lambda_{N \backslash(A-a)}(X-A+a, Y-a) \geq 1$. Therefore, by Corollary 3.4,

$$
\begin{aligned}
\lambda_{\Delta_{A}(N)}(X, Y) & =r_{\Delta_{A}(N)}(X)+r_{\Delta_{A}(N)}(Y)-r_{\Delta_{A}(N)}(E) \\
& =|A|-1+r_{N / a}(X-A)+1+r_{N}(Y-a)-\left(|A|+r_{N}(E)-2\right) \\
& =r_{N}(X-A+a)+r_{N}(Y-a)-r_{N}(E)+2-1 \\
& =\lambda_{N \backslash(A-a)}(X-A+a, Y-a)+1 \\
& \geq 2 .
\end{aligned}
$$

So far we have proven $\lambda_{\Delta_{A}(N)}(X, Y) \geq 2$. Thus $\Delta_{A}(N)$ is 3-connected.
Note that, by the proof of Case 3 in Lemma 4.1, we know, in fact, if A is a coindependent set of a 3-connected matroid N satisfying $N \mid A \cong U_{2,|A|}$, then $N \backslash(A-a)$ without any coloops for any $a \in A$ is equal to $N \backslash(A-a)$ connected for any $a \in A$.

Lemma 4.2 Let A be a coindependent set of M with $M \mid A \cong U_{2,|A|}$. Then $\Delta_{A}(M)$ is 3-connected.

Proof When $|A|=2$, the result is trivial. Hence assume $|A| \geq 3$. By Corollary 2.8 (ii), $M \backslash(A-a)$ is connected for any element $a \in A$, in particular, $M \backslash(A-a)$ does not contain any coloops. Hence, the lemma holds according to Lemma 4.1.

The dual of Lemma 4.2 is as follows.
Corollary 4.3 Let A be an independent set of M with $M^{*} \mid A \cong U_{2,|A|}$. Then $\nabla_{A}(M)$ is 3-connected.

Lemma 4.4 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. Then A is a clonal set of $\Delta_{A}(M)$.

Proof It suffices to prove that for any two elements $a_{i}, a_{j} \in A, a_{i}$ and a_{j} are clones in $\Delta_{A}(M)$ (A is given by (3.1)). Thus we need to prove that for any $B \in \mathcal{B}\left(\Delta_{A}(M)\right.$) if $a_{i} \in B$ but $a_{j} \notin B$, then $B-a_{i}+a_{j} \in \mathcal{B}\left(\Delta_{A}(M)\right)$. By Corollary 2.8(i), $M / a_{i} \backslash a_{j} \cong$ $M / a_{j} \backslash a_{i}$. Then

$$
M / a_{i} \backslash\left(A-a_{i}\right) \cong M / a_{j} \backslash\left(A-a_{j}\right)
$$

From Lemma 3.3, we see that $B-a_{i}+a_{j} \in \mathcal{B}\left(\Delta_{A}(M)\right)$.
By duality, we have
Corollary 4.5 Let A be an independent set of M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$. Then A is a clonal set of $\nabla_{A}(M)$.

Combining Lemmas 4.2, 4.4 and Corollary 4.5 with Proposition 2.2, we obtain

Corollary 4.6 (i) If A is a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$, then every element in A is neither fixed nor cofixed in $\Delta_{A}(M)$.
(ii) If A is an independent set M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$, then every element in A is neither fixed nor cofixed in $\nabla_{A}(M)$.

Lemma 4.7 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. If $x \in E-A$ and C^{*} is a cocircuit of M satisfying $x \in C^{*} \subseteq A \cup x$, then $C^{*}=A \cup x$.

Proof By orthogonality, we obtain $|A|-1 \leq\left|C^{*} \cap A\right| \leq|A|$. Suppose $C^{*} \cap A=$ $A-a$, where $a \in A$. Then x is coloop of $M \backslash(A-a)$. However, by Corollary 2.8(ii), $M \backslash(A-a)$ is connected, which is a contradiction. Hence, $\left|C^{*} \cap A\right|=|A|$, and consequently, $C^{*}=A \cup x$.

Lemma 4.8 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if C^{*} is a triad of $\Delta_{A}(M)$ satisfying $x \in C^{*}$ and $C^{*} \cap A$ is nonempty, then $A \cup x \in \mathcal{C}^{*}(M)$.

Proof Suppose $a \in C^{*} \cap A$ and $C^{*}=\{a, x, y\}$.
Case $1 y$ is in A.
Since C^{*} is a triad of $\Delta_{A}(M), C^{*}$ must meet every basis of $\Delta_{A}(M)$. According to Lemma 3.3, x must be a coloop of $M \backslash A$. Thus there exists some cocircuit $C_{1}{ }^{*}$ of M satisfying $C_{1}{ }^{*} \subseteq A \cup x$ and $x \in C_{1}{ }^{*}$. It is a consequence of Lemma 4.7 that $A \cup x \in \mathcal{C}^{*}(M)$.

Case $2 y$ is not in A.
By Lemma 3.3, every basis of $M / a \backslash(A-a)$ must meet at least one of x and y. Using the fact that M is 3 -connected, $M \mid A \cong U_{2,|A|}$ and A is a clonal set of M, easily we can deduce that $M / a \backslash(A-a)$ is connected. Thus $\{x, y\}$ is a cocircuit of $M / a \backslash(A-a)$, that is, $(A-a) \cup x \cup y$ contains some cocircuit $C_{1}{ }^{*}$ of M. Obviously, both x and y are in $C_{1}{ }^{*}$. By orthogonality, $\left|C_{1}{ }^{*} \cap A\right| \geq|A|-1$. Therefore, $C_{1}{ }^{*}=(A-a) \cup x \cup y$. Let a^{\prime} be an arbitrary element in A disjoint from a. By Corollary 2.8(i), a and a^{\prime} are clones in M. Then $C_{2}{ }^{*}=\left(A-a^{\prime}\right) \cup x \cup y$ is also a cocircuit of M. Hence, $A \cup x=C_{1}{ }^{*} \cup C_{2}{ }^{*}-y$ contains a cocircuit $C_{3}{ }^{*}$ of M, that is to say, $A \cup x$ is codependent in M. Since A is coindependent in $M, x \in C_{3}{ }^{*}$. So by Lemma 4.7, $A \cup x \in \mathcal{C}^{*}(M)$.

Lemma 4.9 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if $\operatorname{co}(M \backslash x)$ is not 3-connected, then either x is not fixed in M or $\operatorname{co}\left(\Delta_{A}(M) \backslash x\right)$ is also not 3-connected.

Proof If x is in some triangle or triad of M, then by Proposition 2.2 and Lemma 2.5, x is not fixed in M. Hence assume x is neither in any triangle nor in any triad, and consequently, $\operatorname{co}(M \backslash x)=M \backslash x$. Depending on whether $A \cup x$ is a cocircuit of M, there are two cases to consider.

Case $1 A \cup x \notin \mathcal{C}^{*}(M)$.
Since $A \cup x \notin \mathcal{C}^{*}(M)$, by Lemma 4.8, $\Delta_{A}(M)$ contains no triad C^{*} such that $x \in C^{*}$ and $C^{*} \cap A \neq \emptyset$. Hence, if exist some $\operatorname{triad} C^{*}$ of $\Delta_{A}(M)$ with $x \in C^{*}$, then $C^{*} \cap A=\emptyset$. By Corollary 3.4, we have

$$
r_{\Delta_{A}(M)}\left(E-C^{*}\right)=|A|+r_{M / A}\left(E-C^{*}-A\right)=|A|+r_{M}\left(E-C^{*}\right)-2,
$$

Hence,

$$
r_{M}\left(E-C^{*}\right)=r_{\Delta_{A}(M)}\left(E-C^{*}\right)+2-|A| .
$$

So

$$
\begin{aligned}
r_{M^{*}}\left(C^{*}\right) & =\left|C^{*}\right|+r_{M}\left(E-C^{*}\right)-r_{M}(E) \\
& =\left|C^{*}\right|+r_{\Delta_{A}(M)}\left(E-C^{*}\right)-|A|-r_{M}(E)+2 \\
& =\left|C^{*}\right|+r_{\Delta_{A}(M)}\left(E-C^{*}\right)-r_{\Delta_{A}(M)}(E) \\
& =r_{\left(\Delta_{A}(M)\right)^{*}\left(C^{*}\right)} \\
& =2 .
\end{aligned}
$$

Since M is 3-connected, M has no nontrivial series classes. So C^{*} is also a triad of M containing x, which is a contradiction. Hence, if $A \cup x \notin \mathcal{C}^{*}(M)$, then x is not in any triad of $\Delta_{A}(M)$. Therefore, $\operatorname{co}\left(\Delta_{A}(M) \backslash x\right)=\Delta_{A}(M) \backslash x$.

Since $\operatorname{co}(M \backslash x)=M \backslash x$ is connected but not 3-connected, M is not a uniform matroid of rank-2. Furthermore, since A is coindependent in $M,|E(M \backslash x)-A| \geq 2$. If $E(M \backslash x)-A=\left\{x_{1}, x_{2}\right\}$, then $\left\{x_{1}, x_{2}\right\}$ is a cocircuit of $M \backslash x$. Hence $\left\{x, x_{1}, x_{2}\right\}$ is a triad of M, which is a contradiction. So $|E(M \backslash x)-A| \geq 3$.

Since x is not in any triad of M and M is 3-connected, there exists some 2-separation (X, Y) of $M \backslash x$ such that $|X| \geq 3$ and $|Y| \geq 3$. If A is a subset of X or Y, say $A \subseteq X$, then

$$
\lambda_{\Delta_{A}(M) \backslash x}(X, Y)=\lambda_{M \backslash x}(X, Y)=1
$$

Hence, $\Delta_{A}(M) \backslash x$ is not 3-connected. So assume both $X \cap A$ and $Y \cap A$ are nonempty and $|X \cap A| \geq|Y \cap A| \geq 1$. If there is some 2-separation (X^{\prime}, Y^{\prime}) of $M \backslash x$ corresponding to (X, Y) such that A is a subset of X^{\prime} or Y^{\prime}, then

$$
\lambda_{\Delta_{A}(M) \backslash x}\left(X^{\prime}, Y^{\prime}\right)=\lambda_{M \backslash x}\left(X^{\prime}, Y^{\prime}\right)=1,
$$

which implies $\Delta_{A}(M) \backslash x$ is not 3-connected. We are in the position to prove the existence of such 2-separation (X^{\prime}, Y^{\prime}) of $M \backslash x$.

If $X \subset A$ or $Y \subset A$, say $X \subset A$, then let $X^{\prime}=A, Y^{\prime}=Y-A$. Obviously, $(A, Y-A)$ is the needed 2-separation. Therefore, suppose neither X nor Y is a proper subset of A. We prove it by two subcases.

Subcase 1. $|Y \cap A| \geq 2$.
Since $|E(M \backslash x)-A| \geq 3$, at least one of $|X-A|$ and $|Y-A|$ is larger than one. Suppose $|X-A|>1$. Let $X^{\prime}=X-A, Y^{\prime}=Y \cup A$. Then $(X-A, Y \cup A)$ is the needed 2-separation of $M \backslash x$. The case $|Y-A|>1$ can be treated similarly to the case $|X-A|>1$.

Subcase 2. $|Y \cap A|=1$.
Since $|Y| \geq 3,|Y-A| \geq 2$. Let $X^{\prime}=X \cup A, Y^{\prime}=Y-A$. Then $\left(X^{\prime}, Y^{\prime}\right)$ is the needed 2-separation of $M \backslash x$.

Case $2 A \cup x \in \mathcal{C}^{*}(M)$.
Let F be an arbitrary cyclic flat of M containing x. Using orthogonality, $A \cap F \neq \emptyset$. Since A is a clonal set of M, by Corollary $2.4, A \subseteq F$. Let \mathcal{F} denote the collection of all cyclic flats of M containing x. Evidently, for every element F^{\prime} in $\langle\mathcal{F}\rangle$, we have $A \cup x \subseteq F^{\prime}$. Hence, $\mathrm{cl}_{M}(x)=\{x\}$ is not in $\langle\mathcal{F}\rangle$. By Proposition 2.1, x is not fixed in M.

The dual of Lemma 4.9 is as follows.
Corollary 4.10 Let A be an independent set of M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if si (M / x) is not 3-connected, then either x is not cofixed in M or $\operatorname{si}\left(\nabla_{A}(M) / x\right)$ is also not 3-connected.

Corollary 4.11 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if $\operatorname{co}\left(\triangle_{A}(M) \backslash x\right)$ is 3-connected, then x is not fixed in M.

Proof Suppose x is fixed in M. Then $\operatorname{co}(M \backslash x)$ is not 3-connected. Hence, by Lemma 4.9, $\operatorname{co}\left(\triangle_{A}(M) \backslash x\right)$ is also not 3-connected, which is a contradiction.

Lemma 4.12 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \notin c l_{M}(A)$, if si($\left.M / x\right)$ is not 3-connected, then either x is not cofixed in M or $\operatorname{si}\left(\triangle_{A}(M) / x\right)$ is also not 3-connected.

Proof If x is in some triangle or a triad of M, then by Proposition 2.2 and Lemma 2.5, x is not cofixed in M. Thus assume x is neither in any triangle nor in any triad of M. Then $\operatorname{si}(M / x)=M / x$. Assume x is in some triangle C of $\Delta_{A}(M)$. Since M is 3-connected and x is not in any triangle of $M, r_{M}(C)=3$. If $C \cap A=\emptyset$, then by Corollary 3.4, $r_{\Delta_{A}(M)}(C)=r_{M}(C)=3$; which contradicts to $C \in \mathcal{C}\left(\Delta_{A}(M)\right)$. Therefore $C \cap A \neq \emptyset$ and $|C \cap A|=1$, 2. Let $C=\{x, y, z\}$ and suppose $y \in A$. If $|C \cap A|=1$, then following from Lemma 3.3, there exists some basis B of $\Delta_{A}(M)$ such that $C \subseteq B$. This contradicts to C is a circuit of $\Delta_{A}(M)$. Thus $|C \cap A|=2$, that is, $\{y, z\} \subseteq A$. Similarly, if $|A| \geq 4$, then there is some basis B of $\Delta_{A}(M)$ such that $C \subseteq B$; which contradicts to C is a circuit of $\Delta_{A}(M)$. Hence $|A|=3$. Then by the definition of $\Delta_{A}(M)$, there exists some element a in A such that x is parallel with a in M. This contradicts to M is 3-connected. Hence, x is also not in any triangle of $\Delta_{A}(M)$. Therefore $\operatorname{si}\left(\Delta_{A}(M) / x\right)=\Delta_{A}(M) / x$. By Lemma 3.6(ii),

$$
\operatorname{si}\left(\Delta_{A}(M) / x\right)=\Delta_{A}(M) / x=\Delta_{A}(M / x)
$$

Since M / x is connected but not 3-connected, $|E(M / x)-A| \geq 2$. Assume

$$
E(M / x)-A=\left\{x_{1}, x_{2}\right\} .
$$

Then $r(M / x)=3$ and $\left\{x_{1}, x_{2}\right\}$ is a cocircuit of M / x. Hence $\left\{x_{1}, x_{2}\right\}$ is also a cocircuit of M. This contradicts to M is 3-connected. So $|E(M / x)-A| \geq 3$.

Let $M_{1}=M / x$. Since x is not in any triangle of M and M is 3-connected, there is some 2 -separation (X, Y) of M_{1} such that $|X| \geq 3$ and $|Y| \geq 3$. Similarly to proving Case 1 of Lemma 4.9, we can prove $\Delta_{A}(M) / x$ is not 3-connected.

The dual of Lemma 4.12 is as follows.
Corollary 4.13 Let A be an independent set of M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$. For any $x \notin c l_{M^{*}}(A)$, if $\operatorname{co}(M \backslash x)$ is not 3-connected, then either x is not fixed in M or $\operatorname{co}\left(\nabla_{A}(M) \backslash x\right)$ is not 3-connected.

With Lemma 4.12 in mind, following the same line as the proof of Corollary 4.11, we can obtain

Corollary 4.14 Let A be a coindependent set of M with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \notin c l_{M}(A)$, if $\operatorname{si}\left(\triangle_{A}(M) / x\right)$ is 3-connected, then x is not cofixed in M.

Lemma 4.15 Suppose $\nabla_{A}(M)$ is well defined. Let x be an element in $E-A$. If there exists some circuit C of $\nabla_{A}(M)$ satisfying $x \in C \in \mathcal{C}\left(\nabla_{A}(M)\right)$, then there is some circuit C_{1} of M such that $x \in C_{1} \subseteq A \cup C$.

Proof Since every three-element of A is a triangle of $\nabla_{A}(M),|C \cap A| \leq 2$. We prove the lemma in three cases: $|C \cap A|=0,1$, or 2 .

Case $1 C \cap A=\emptyset$.
Clearly, $C_{1}=C$ is a circuit of M.
Case $2 C \cap A=\{a\}$.
By Corollary 3.5, we have

$$
\begin{aligned}
r_{\nabla_{A}(M)}(C) & =2+r_{M}((C-a) \cup(A-a))-|A|=|C|-1, \\
r_{\nabla_{A}(M)}(C-x) & =2+r_{M}((C-\{x \cup a\}) \cup(A-a))-|A|=|C|-1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
r_{M}((C-a) \cup(A-a)) & =|A|+|C|-3, \\
r_{M}((C-\{x \cup a\}) \cup(A-a)) & =|A|+|C|-3 .
\end{aligned}
$$

Hence, $x \in \operatorname{cl}_{M}((C-\{x \cup a\}) \cup(A-a)) \subseteq \operatorname{cl}_{M}(A \cup C-x)$; which implies that there exists some circuit C_{1} of M such that $x \in C_{1} \subseteq A \cup C$.

Case $3|C \cap A|=2$.
Similarly to Case 2 , we can show that $x \in C_{1} \subseteq A \cup C$ for some circuit C_{1} of M.

Lemma 4.16 Let A be an independent set of M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$. For any element $x \in E-A$, if F is a cyclic flat of $\nabla_{A}(M)$ containing x, then F is also a cyclic flat of M containing x.

Proof By Corollary 2.4 and Corollary 4.5, $F \cap A=\emptyset$ or $F \cap A=A$. Note every subset C of E disjoint from A is a circuit of M if and only if C is a circuit of $\nabla_{A}(M)$. Hence, if we can prove F is a flat of M, then by Lemma 4.15, F is also a cyclic flat of M. Therefore, it suffices to prove F is a flat of M.

Assume F is not a flat of M. Then there exists some element e in $E-F$ such that $e \in \mathrm{cl}_{M}(F)$, namely, there is some circuit C of M satisfying $e \in C \subseteq F \cup e$. If $C \cap A$ is empty, then $C \in \mathcal{C}\left(\nabla_{A}(M)\right)$ and $e \in \operatorname{cl}_{\nabla_{A}(M)}(F)$. This contradicts to F is a flat of $\nabla_{A}(M)$. So $C \cap A$ is nonempty. According to whether $F \cap A=\emptyset$ or $F \cap A=A$, there are two cases to consider.

Case $1 F \cap A=\emptyset$.
Since $C \cap A \neq \emptyset$ and $F \cap A=\emptyset, C \cap A=e \in A$. By Corollary 2.9(i),

$$
r_{M}((C-e) \cup(A-e))=r_{M}(C)=r_{M}(C-e)=|C|-1
$$

By Corollary 3.5,

$$
\begin{aligned}
r_{\nabla_{A}(M)}(C-e) & =r_{M}(C-e)=|C|-1, \\
r_{\nabla_{A}(M)}(C) & =2+r_{M}((C-e) \cup(A-e))-|A| \\
& =|C|-|A|+1<|C|-1 .
\end{aligned}
$$

This contradicts to $r_{\nabla_{A}(M)}(C) \geq r_{\nabla_{A}(M)}(C-e)$. Hence F is a flat of M.
Case $2 F \cap A=A$.
Since $e \in E-F$ and $F \cap A=A, e \notin A$.
Subcase $1 .|A \cap C| \geq 2$.
Since A is a clonal set of M,

$$
r_{M}(C \cup A)=r_{M}((C-e) \cup A)=r_{M}(C-e)=|C|-1 .
$$

Then by Corollary 3.5, we have

$$
\begin{aligned}
r_{\nabla_{A}(M)}(C) & =2+r_{M}(C \cup A)-|A|=2+|C|-1-|A|=|C|+1-|A|, \\
r_{\nabla_{A}(M)}(C-e) & =2+r_{M}((C-e) \cup A)-|A|=2+|C|-1-|A|=|C|+1-|A| .
\end{aligned}
$$

Hence, $e \in \operatorname{cl}_{\nabla_{A}(M)}(C-e) \subseteq \operatorname{cl}_{\nabla_{A}(M)}(F)=F$. This is a contradiction.

Subcase 2. $|A \cap C|=1$.
Similarly to Subcase 1 , we can verify F is a flat of M.
Hence, F is a flat of M.
Lemma 4.17 Let A be an independent set of M with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$ and $x \in c l_{M^{*}}(A)-A$. Then x is not fixed in $\nabla_{A}(M)$.

Proof Let F be an arbitrary cyclic flat of $\nabla_{A}(M)$ containing x. By Lemma 4.16, F is also a cyclic flat of M. Since $x \in \operatorname{cl}_{M^{*}}(A)-A$ and M is 3-connected, $M^{*} \mid(A \cup x) \cong$ $U_{2,|A|+1}$. It follows from Corollary 2.9(i) that $A \cup x$ is a clonal set of M. By Corollary 2.4, $A \cup x \subseteq F$. Hence, $A \cup x$ is contained in every element of $\langle\mathcal{F}\rangle$, where \mathcal{F} is the collection of all cyclic flats of $\nabla_{A}(M)$ containing x. Therefore, $\mathrm{cl}_{\nabla_{A}(M)}(x)=\{x\}$ is not in $\langle\mathcal{F}\rangle$. By Proposition 2.1, x is not fixed in M.

Lemma 4.18 Let A be an independent subset of E with at least three elements and $M^{*} \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if x is not fixed in M, then x is not fixed in $\nabla_{A}(M)$.

Proof If $x \in \operatorname{cl}_{M^{*}}(A)-A$, then by Lemma 4.17, x is not fixed in $\nabla_{A}(M)$. Now we assume $x \notin \mathrm{cl}_{M^{*}}(A)-A$. Then x is not a coloop of $M \backslash A$. Let M^{\prime} be the matroid obtained from M by independently cloning x with x^{\prime}. Clearly, A is also independent in M^{\prime} and $r_{M^{\prime}}\left(E^{\prime}\right)=r_{M}(E)$. Let $E^{\prime}=E \cup x^{\prime}$. Since x is not a coloop of $M \backslash A$, $r_{M^{\prime}}\left(E^{\prime}-A\right)=r_{M}(E-A)$. Hence, by Corollary 3.5,

$$
\begin{aligned}
r_{\left(M^{\prime}\right)^{*}}(A) & =|A|+r_{M^{\prime}}\left(E^{\prime}-A\right)-r_{M^{\prime}}\left(E^{\prime}\right) \\
& =|A|+r_{M}(E-A)-r_{M}(E) \\
& =r_{M^{*}}(A)=2 .
\end{aligned}
$$

Since M has no nontrivial series classes, M^{\prime} contains no nontrivial series classes. Hence, $\left(M^{\prime}\right)^{*} \mid A \cong U_{2,|A|}$. Then $\nabla_{A}\left(M^{\prime}\right)$ is well defined. Since $M^{\prime} \backslash x^{\prime} \cong M$ is 3-connected, then by Lemma 3.7(ii), $\nabla_{A}\left(M^{\prime} \backslash x^{\prime}\right)$ is defined and $\nabla_{A}\left(M^{\prime}\right) \backslash x^{\prime} \cong \nabla_{A}\left(M^{\prime} \backslash x^{\prime}\right) \cong$ $\nabla_{A}(M)$. By Lemma 3.9, $\left\{x, x^{\prime}\right\}$ is an independent clone of $\nabla_{A}\left(M^{\prime}\right)$. Hence x is not fixed in $\nabla_{A}(M)$ due to Proposition 2.2.

By duality, we obtain the following corollary.
Corollary 4.19 Let A be a coindependent subset of E with at least three elements and $M \mid A \cong U_{2,|A|}$. For any $x \in E-A$, if x is not cofixed in M, then x is not cofixed in $\Delta_{A}(M)$.

Lemma 4.20 Let A be a coindependent subset of E with $M \mid A \cong U_{2,|A|}$. Then $\Delta_{A}(M)$ is a totally free matroid.

Proof Firstly, by Lemma 4.2, $\Delta_{A}(M)$ is 3-connected. If $|A|=2$, then clearly $\Delta_{A}(M) \cong M$. Hence $\Delta_{A}(M)$ is totally free. Thus assume $|A| \geq 3$.

Let x be an arbitrary element in E. First, assume $\operatorname{co}\left(\triangle_{A}(M) \backslash x\right)$ is 3-connected, we shall prove x is not fixed in $\Delta_{A}(M)$. If $x \in A$, then by Corollary 4.6(i), x is not fixed in $\triangle_{A}(M)$. Hence, assume $x \notin A$. Then by Corollary 4.11, x is not fixed
in M. Independently cloning x with x^{\prime} in M, we obtain a new matroid M^{\prime}. Note A is also a coindependent set of M^{\prime} and every three-element subset of A is a triangle of M^{\prime}. Therefore $\triangle_{A}\left(M^{\prime}\right)$ is well defined. Since $M^{\prime} \backslash x^{\prime} \cong M$ is 3-connected, by Lemma 3.7(i), $\Delta_{A}\left(M^{\prime}\right) \backslash x^{\prime}=\Delta_{A}\left(M^{\prime} \backslash x^{\prime}\right)=\Delta_{A}(M)$. By Lemma 3.8, $\left\{x, x^{\prime}\right\}$ is a clonal set of $\triangle_{A}\left(M^{\prime}\right)$. Hence x is not fixed in $\triangle_{A}(M)$ according to Proposition 2.2.

Secondly, suppose $\operatorname{si}\left(\triangle_{A}(M) / x\right)$ is 3-connected. If $x \in A$, then it follows from Corollary 4.6(i) that x is not cofixed in $\triangle_{A}(M)$. Now suppose $x \notin A$.

Case $1 \quad x \in \operatorname{cl}_{M}(A)-A$.
Note $x \in \operatorname{cl}_{M}(A)-A$ implies that x is in some triangle of M. Hence x is not cofixed in M according to Corollary 2.8(i). By Corollary 4.19, x is also not cofixed in $\triangle_{A}(M)$.

Case $2 x \notin \mathrm{cl}_{M}(A)$.
From Corollary 4.14, x is not cofixed in M. Then by Corollary 4.19, x is also not cofixed in $\triangle_{A}(M)$.

Hence, $\triangle_{A}(M)$ is a totally free matroid.
The duality of Lemma 4.20 is as follows:
Corollary 4.21 Let A be an independent set of M with $M^{*} \mid A \cong U_{2,|A|}$. Then $\nabla_{A}(M)$ is a totally free matroid.

Proof of Theorem 1.3 Note the only totally free matroid M with $|E(M)|<5$ is $U_{2,4}$. Following from Lemma 4.20, Corollary 4.21 and Lemma 1.1, we obtain Theorem 1.3 immediately.

Acknowledgements The authors thank the referees for carefully reading the manuscript and suggesting many improvements.

References

1. Akkari, S., Oxley, J.: Some local extremal connectivity results for matroids. Combin. Probab. Comput. 2, 367-384 (1993)
2. Bixby, R.E.: On Reid's characterization of the ternary matroids. J. Combin. Theory Ser. B 26, 174204 (1979)
3. Brylawski, T.H.: Modular constructions for combinatorial geometries. Trans. Am. Math. Soc. 203, 1-44 (1975)
4. Duke, R.: Freedom in matroids. Ars Combin. B 26, 191-216 (1988)
5. Geelen, J., Oxley, J., Vertigan, D., Whittle, G.: Totally free expansions of matroids. J. Combin. Theory Ser. B 84, 130-179 (2002)
6. Geelen, J., Oxley, J., Vertigan, D., Whittle, G.: Weak maps and Stabilizers of classes of matroids. Adv. Appl. Math. 21, 305-341 (1998)
7. Geelen, J., Mayhew, D., Whittle, G.: Inequivalent representations of matroids having no $U_{3,6}$-minors. J. Combin. Theory Ser. B 92, 55-67 (2004)
8. Geelen, J., Gerards, A.M.H., Kapoor, A.: The excluded minors for $G F(4)$-representable matroids. J. Combin. Theory Ser. B 79, 247-299 (2000)
9. Kahn, J.: On the uniqueness of matroids over $G F$ (4). Bull. Lond. Math. Soc. 20, 5-10 (1988)
10. Oxley, J.: Matroid theory. Oxford University Press, New York (1992)
11. Oxley, J., Semple, C., Vertigan, D.: Generalized $\Delta-Y$ exchange and k-regular matroids. J. Combin. Theory Ser. B 79, 1-65 (2000)
12. Seymour, P.D.: Matriods representation over GF (3). J. Combin. Theory Ser. B 26, 305-359 (1979)
13. Tutte, W.T.: A homotopy theorem for matroids, I, II. Trans. Am. Math. Soc. 88, 144-174 (1958)
14. Whittle, G.: Stabilizers of classes of representable matroids. J. Combin. Theory Ser. B 77, 39-72 (1999)

[^0]: The Project-sponsored by CNNSF (No. 10971106); by Fok Ying Tung Education Foundation (No. 101002); and by PCSIRT.
 R. Chen $(\boxtimes) \cdot$ K.-N. Xiang

 Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071,
 People's Republic of China
 e-mail: rongchen@mail.nankai.edu.cn
 K.-N. Xiang
 e-mail: xiangkn@cfc.nankai.edu.cn

