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Abstract. Recently, the first author has studied hook length formulas for
partitions in a systematic manner. In the present paper we show that most of
those hook length formulas can be generalized and include more variables via
the Littlewood decomposition, which maps each partition to its t-core and t-
quotient. In the case t = 2 we obtain new formulas by combining hook lengths
and BG-ranks introduced by Berkovich and Garvan. As applications, we list
several multivariable generalizations of classical and new hook length formulas,
including the Nekrasov-Okounkov, the Han-Carde-Loubert-Potechin-Sanborn,
the Bessenrodt-Bacher-Manivel, the Okada-Panova and the Stanley-Panova
formulas.
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1. Introduction

The hook lengths of partitions are widely studied in Partition Theory, Algebraic
Combinatorics and Group Representation Theory. Recently, the first author has
studied hook length formulas for partitions in a systematic manner. See [13] for the
motivation of this new study of hook length formulas. In the present paper the term
“hook length formula” means a formula involving the hook length of partitions in
the following form:

∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(h)
∑

h∈H(λ)

ρ2(h) = f(q),

where ρ1, ρ2 : N
∗ → K are two maps of the set of positive integers to some field

K and f(q) ∈ K[[q]] is a formal power series in q with coefficients in K such

2000 Mathematics Subject Classification. 05A15, 05A17, 05A19, 11P81, 11P83.
Key words and phrases. hook length formulas, BG-ranks, integer partitions, Littlewood

decomposition.
The second author was partly supported by the PCSIRT Project of the Ministry of Education

and the National Science Foundation of China under Grant No. 10901087.

1



2 GUO-NIU HAN AND KATHY Q. JI

that f(0) = 1. In the above formula P is the set of all integer partitions λ with
|λ| denoting the integer partitioned by λ and H(λ) the classical multiset of hook
lengths associated with λ [13]. See [2, p.1], [16, p.1], [22, p.287] for the basic
notions on partitions. Let us list several hook length formulas having the above
hook length form.

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2
= exp(q),(1.1)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h
= exp

(

q +
q2

2

)

,(1.2)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1 − qk
,(1.3)

∑

λ∈P

q|λ|
∑

h∈H(λ)

hβ =
∏

m≥1

1

1 − qm
×

∑

k≥1

kβ+1 qk

1 − qk
,(1.4)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h

1 + zh

1 − zh
= exp

(
1 + z

1 − z
q +

q2

2

)

,(1.5)

∑

λ∈P

q|λ|
∏

h∈H(λ)

(
1 − z

h2

)
=

∏

k≥1

(1 − qk)z−1,(1.6)

(1.7)
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)qr+1 exp(q),

where

C(r) =
1

2(r + 1)2

(
2r

r

)(
2r + 2

r + 1

)

,

(1.8)
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2k = exp(q)

k∑

i=0

T (k + 1, i+ 1)C(i)qi+1.

In (1.8) T (k, i) is the central factorial number defined in (9.2) and (9.3).

Formulas (1.1) and (1.2) are two well-known hook length formulas in Group Rep-
resentation Theory, which could be deduced directly from the Robinson-Schensted-
Knuth correspondence [13]. Formula (1.3) is the traditional generating function for
partitions that goes back to Euler. Formula (1.4) could be deduced from a result
due to Bessenrodt [3, 5, 10]. Formula (1.5) was conjectured by the first author [11]
and then proved by Carde et al. [6]. Formula (1.6) was obtained by Nekrasov and
Okounkov [20], and re-discovered by the first author using the hook length expan-
sion technique [10, 13]. Formula (1.7) was conjectured by Okada [23] and proved
by Panova [21]. Formula (1.8) was first stated by Stanley [23, 21] and generalizes
the marked hook formulas [12].

Recall that a partition λ is a t-core if it has no hook equal to t. For example,
the only 2-cores are the “staircase” partitions (k, k − 1, . . . , 1). The Littlewood
decomposition is a well-known bijection which maps each partition λ to its t-core
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µ and t partitions λ0, λ1, . . . , λt−1 such that |λ| = |µ| + t
∑t−1

i=0 |λi| . From this
bijection, it is immediate to obtain the well-known identity [9], [15, p.69, p.612],
[22, p.468] for t-cores:

(1.9)
∑

λ

q|λ| =
∏

k≥1

(1 − qtk)t

1 − qk
,

where the sum ranges over all t-cores. When t = 2 it yields Gauss’s identity:

(1.10)
∑

k≥0

q(
k+1

2 ) =
∏

k≥1

(1 − q2k)2

1 − qk
=

∏

k≥1

1 − q2k

1 − q2k−1
.

Recently, Chen, Ji and Wilf [7] found that the Littlewood decomposition for t = 2
implies the following enumerative result due to Berkovich and Garvan [4]

(1.11)
∑

λ∈P

q|λ|bBG(λ) =
∏

k≥1

1

(1 − q2k)2
×

+∞∑

j=−∞

bjqj(2j−1),

where BG(λ) denotes the BG-rank of the partition λ defined as follows. First,
fill each box in the Ferrers diagram of λ with alternating ±1’s, chessboard style,
beginning with a “+1” in the (1, 1) position (see Fig. 1.1). The sum of these entries
is the BG-rank of λ. For example, the BG-rank of λ = (6, 3, 3, 1) is −1.

−
+ − +
− + −
+ − + − + −

Fig. 1.1. BG-rank

1
4 2 1
5 3 2
9 7 6 3 2 1

Fig. 1.2. Hook lengths

In the present paper, we show that most of the hook length formulas (in partic-
ular examples (1.1–1.8)) can be further refined if the generating function for t-core
(1.9), or the BG-rank formula (1.11) are taken into account. Our main results are
the following theorems which will be proved in Section 2 by using the combinatorial
properties of the Littlewood decomposition.

Theorem 1.1. If the series fα(q), gα(q) and the functions ρ1(h), ρ2(h) satisfy the

relations

(1.12)
∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(αh) = fα(q),

and

(1.13)
∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(αh)
∑

h∈H(λ)

ρ2(αh) = gα(q),

then, for any positive integer t, the following identity holds:
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

= tft(xq
t)t−1gt(xq

t)
∏

k≥1

(1 − qtk)t

(1 − qk)
,(1.14)

where Ht(λ) = {h | h ∈ H(λ), h ≡ 0( mod t)}.
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For example, the hook lengths of all boxes for the partition λ= (6, 3, 3, 1) have
been written in each box in Fig. 1.2, so that H(λ) = {1, 4, 2, 1, 5, 3, 2, 9, 7, 6, 3, 2, 1}.
Consequently, H2(λ) = {4, 2, 2, 6, 2} and H3(λ) = {3, 9, 6, 3}.

Theorem 1.2. If the series fα(q), gα(q) and the functions ρ1(h), ρ2(h) satisfy

relations (1.12) and (1.13), then

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ1(h)
∑

h∈H2(λ)

ρ2(h)

= 2f2(xq
2)g2(xq

2)

+∞∑

j=−∞

bjqj(2j−1).(1.15)

Let ρ1(h) = 1 in Theorems 1.1 and 1.2, then fα(q) =
∏

k≥1 1/(1 − qk) using

the generating function for partitions (1.3). Thus, we obtain the following two
specializations.

Theorem 1.3 (Addition Theorem). If the series gα(q) and the function ρ(h) satisfy

the relation

(1.16)
∑

λ∈P

q|λ|
∑

h∈H(λ)

ρ(αh) = gα(q),

then, for any positive integer t,

(1.17)
∑

λ∈P

q|λ|x#Ht(λ)
∑

h∈Ht(λ)

ρ(h) = tgt(xq
t)

∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t−1(1 − qk)
.

Theorem 1.4 (Addition BG-Theorem). If the series gα(q) and the function ρ(h)
satisfy relation (1.16), then

(1.18)
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∑

h∈H2(λ)

ρ(h) = 2g2(xq
2)

∏

k≥1

1

1 − (xq2)k

+∞∑

j=−∞

bjqj(2j−1).

Let ρ2(h) = 1 in Theorems 1.1 and 1.2. Then

gt(xq
t) = x

d

dx
ft(xq

t).

Thus, we are led to the following two results obtained by integrating both sides of
(1.14) and (1.15) with respect to x.

Theorem 1.5 (Multiplication Theorem). If the series fα(q) and the function ρ(h)
satisfy the relation

(1.19)
∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ(αh) = fα(q),

then, for any positive integer t, the following identity holds:

(1.20)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ(h) =
(
ft(xq

t)
)t ∏

k≥1

(1 − qtk)t

(1 − qk)
.
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Theorem 1.6 (Multiplication BG-Theorem). If the series fα(q) and the function

ρ(h) satisfy relation (1.19), then

(1.21)
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ(h) =
(
f2(xq

2)
)2

+∞∑

j=−∞

bjqj(2j−1).

Take the weight function ρ(h) = (t − h)ρ̃(h) with the special value ρ(t) = 0 in
Theorems 1.5 and 1.6. Then the series ft(q) is equal to 1, since only the empty
partition has no hook equal to one (see (1.19)). We recover the generating function
(1.9) for t-cores from Theorem 1.5 and the following generating function for 2-cores
by the BG-rank from Theorem 1.6

∑

λ:2-core

q|λ|bBG(λ) =

+∞∑

j=−∞

bjqj(2j−1).

As applications of Theorems 1.1-1.6, we derive the generalizations of formulas
(1.1–1.8) in Sections 3–9, respectively. We should like to single out the following
specializations.

Corollary 1.7 (Set x = 1 in Theorem 3.5). We have

∑

λ∈P

q|λ|y#{h∈H(λ),h=2}bBG(λ)cWL(λ) =
∏

k≥1

(1 + (y − 1)cq2k)2

(1 − cq2k)2

+∞∑

j=−∞

bjqj(2j−1),

where WL(λ) is defined in (2.1).

Corollary 1.8 (Set x = 1 and t = 2 in Theorem 4.4). We have

∑

λ∈P

q|λ|
∏

h∈H2(λ)

1

h
= exp

(

q2 +
q4

4

)
∏

k≥1

(1 − q2k)2

1 − qk
.

Corollary 1.9 (Set x = 1 in Theorem 5.2). We have

∑

λ∈P

q|λ|bBG(λ)
∏

h∈H2(λ)

1

h

1 + zh

1 − zh
= exp

(
1 + z2

1 − z2
q2 +

q4

4

) +∞∑

j=−∞

bjqj(2j−1).

Corollary 1.10 (Set x = 1 and replace z by 2z in Theorem 6.2). We have

∑

λ∈P

q|λ|bBG(λ)
∏

h∈H2(λ)

(
1 − 2z

h2

)
=

∏

k≥1

1

(1 − q2k)2−z
×

+∞∑

j=−∞

bjqj(2j−1).

Corollary 1.11 (Set β = −1, t = 2, x = 1/q in Theorem 7.5). We have

∑

λ∈P

q#{h:odd}
∑

h∈H2(λ)

1

h
=

∏

k≥1

(1 + qk)2

1 − qk

∑

k≥1

qk

1 − qk
.

Note that the proof of Corollary 1.7 needs further combinatorial techniques de-
veloped in Theorem 2.1; it cannot be deduced from Theorem 1.6.
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2. Combinatorial properties of the Littlewood Decomposition

In this section we prove Theorems 1.1 and 1.2 by using some combinatorial
properties of a classical bijection which maps each partition to its t-core and t-
quotient. This bijection probably goes back to Littlewood [17] or Nakayama [19],
which will be referred to as the Littlewood decomposition. There are several ways
to describe it [18, p.12], [22, p.468], [14, p.75], [9]. Here we give a description in
terms of binary sequences [1], [22, p.468].

Let W be the set of bi-infinite binary sequences beginning with infinitely many
0’s and ending with infinitely many 1’s. Each element w of W can be represented
by (bi)i = · · · b−3b−2b−1b0b1b2b3 · · · . However, the representation is not unique,
since for any fixed integer k the sequence (bi+k)i also represents w. The canonical

representation of w is the unique sequence (ci)i = · · · c−3c−2c−1c0c1c2c3 · · · such
that

#{i ≤ −1, ci = 1} = #{i ≥ 0, ci = 0}.
It will be further denoted by · · · c−3c−2c−1.c0c1c2c3 · · · with a dot symbol inserted
between the letters c−1 and c0.

There is a natural one-to-one correspondence between P and W (see, e.g. [1], [22,
p.468]) for more detail). Let λ be a partition. We encode each horizontal edge of λ
by 1 and each vertical edge by 0. Reading these (0,1)-encodings from top to bottom
and from left to right yields a binary word u. By adding infinitely many 0’s to the
left and infinitely many 1’s to the right of u we get an element w = · · · 000u111 · · · ∈
W. Clearly, the map ψ : λ 7→ w is a one-to-one correspondence between P and

W. The canonical representation of ψ(λ) will be denoted by Cλ. For example, take
λ = (4, 3, 3, 1, 1, 1). Then u = 1000110010, so that w = · · · 0001000110010111 · · ·
and Cλ = (ci)i = · · · 000100011.0010111 · · · .

1

2

3

6 2 1

7 3 2

9 5 4 1

Fig. 2.1. Partition and (0, 1)-sequence

1

1 1

1

0

0

0

0

0

0

Theorem 2.1. Let t be a positive integer. The Littlewood decomposition Ωt maps

a partition λ to (µ;λ0, λ1, . . . , λt−1) such that

(P1) µ is a t-core and λ0, λ1, . . . , λt−1 are partitions;

(P2) |λ| = |µ| + t(|λ0| + |λ1| + · · · + |λt−1|);
(P3) {h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

The vector (λ0, λ1, . . . , λt−1) is usually called the t-quotient of the partition λ.

Proof. Let us briefly describe the bijection Ωt (see, e.g., [1], [22, p.468]). Split the
canonical representation Cλ = (ci)i of the partition λ into t sections. This means
that the subsequence wk = (cit+k)i is extracted for each k = 0, 1, . . . , t − 1. The
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k-th entry λk of the t-quotient of λ is defined to be the inverse image ψ−1(wk)
of the subsequence wk. With the above example w0 = · · · 00101011 · · · and w1 =
· · · 0000100111 · · · , so that λ0 = (2, 1) and λ1 = (1, 1). Property (P3) holds since

H(λ0) = {1, 3, 1}, H(λ1) = {1, 2} and H2(λ) = {2, 2, 6, 2, 4} (See Fig. 2.1–2.4).
Note that the subsequence wk defined by wk = (cit+k)i is not necessarily the
canonical representation. For that reason we do not reproduce the dot symbol “.”
in the corresponding rows in the following table.

Cλ · · · 0 0 0 1 0 0 0 1 1 . 0 0 1 0 1 1 1 1 1 · · ·
w0 · · · 0 1 0 1 0 1 1 1 1 · · ·
v0 · · · 0 0 0 1 1 1 1 1 1 · · ·
w1 · · · 0 0 0 0 1 0 0 1 1 · · ·
v1 · · · 0 0 0 0 0 0 1 1 1 · · ·
Cµ · · · 0 0 0 0 0 0 0 1 0 . 1 0 1 1 1 1 1 1 1 · · ·

1
3 1

Fig. 2.2. Partition λ0

1
2

Fig. 2.3. Partition λ1

1
3 1

Fig. 2.4. The 2-core µ

For each subsequence wk we continually replace the subword 10 by 01. The final
resulting sequence is of the form · · · 000111 · · · and is denoted by vk. The t-core
of the partition λ is defined to be the partition µ such that the t sections of the
canonical representation Cµ are exactly v0, v1, . . . , vt−1. With the above example
we have µ = (2, 1). Properties (P2) and (P3) can be derived from the following
basic fact: each box of λ is in one-to-one correspondence with the ordered pair of
integers (i, j) such that i < j and ci = 1, cj = 0 and the hook length of that box is
equal to j − i.

The process above is reversible. Given t+1 partitions (µ;λ0, λ1, . . . , λt−1) where
µ is a t-core, we first split the canonical representation Cµ = (di)i of the partition µ
into t sections, namely, we form the subsequence vk = (dit+k)i for k = 0, 1, . . . , t−1.
Clearly, every subsequence vk is of the form · · · 000111 · · · , since µ is t-core. Let
wk = ψ(λk). Note that the representation of wk is not unique. We choose the one
which can be obtained by continually replacing the subword 01 of vk by 10. We then
obtain the partition λ whose canonical representation Cλ = (ci)i consists of such
sequences w0, w1, . . . , wt−1. This means that (cit+k)i = wk for k = 0, 1, . . . , t− 1.

�

For the case t = 2, the Littlewood decomposition Ω2 has more combinatorial
properties in addition to (P1)–(P3). To describe our new properties, we need a
new statistic called the weak length WL(λ) defined by means of the multiplicity

notation

λ = 〈1m1 , 2m2 , . . . , rmr 〉
of the partition λ. Recall that this means that exactly mi of the parts of λ are
equal to i, so that ℓ(λ) =

∑r
j=1mj. Let k be the smallest part such that mk is

even. Then, the weak length WL(λ) of λ is defined to be

(2.1) WL(λ) =
k−1∑

j=1

(
mj − 1

2

)

+
mk

2
+

r∑

j=k+1

mj .
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For example, the weak length of λ = (4, 3, 3, 1, 1, 1) = 〈13, 20, 32, 41〉 is 4.

Theorem 2.2. When t = 2, the Littlewood decomposition Ω2 has the further two

properties.

(P4) BG(λ) =

{
ℓ(µ)+1

2 if BG(λ) > 0,

− ℓ(µ)
2 if BG(λ) ≤ 0.

(P5) WL(λ) = ℓ(λ0) + ℓ(λ1).

Proof. From the description of the Littlewood decomposition Ω2, it follows that the
2-core µ of the partition λ is obtained from the canonical representation Cλ = (ci)i

by continually choosing i with ci = 1 and ci+2 = 0, and then replacing ci by 0 and
ci+2 by 1. Such an operation is equivalent to removing a horizontal or vertical pair
of adjacent cells from the Young diagram of λ. The BG-rank of the partition λ and
of its 2-core µ are then equal. On the other hand, the BG-rank of a 2-core of length
k is (k+ 1)/2 if k is odd, and −k/2 if k is even [7]. This shows that Property (P4)
holds.

Given a partition λ = 〈1m1 , 2m2 , . . . , hmh〉 let u = (ui)i≥0 be the (0, 1)-encoding
of λ. Then u is the sequence of the form

(2.2) u = 1 00 · · ·
︸ ︷︷ ︸

m1

1 00 · · ·
︸ ︷︷ ︸

m2

1 00 · · ·
︸ ︷︷ ︸

m3

1 · · · · · ·
︸ ︷︷ ︸

···

1 00 · · ·0
︸ ︷︷ ︸

mh

Clearly, the number of 0’s in u is equal to the length ℓ(λ) of λ. Let m be the smallest
positive integer such that u2m+1 6= 0, so that u2j+1 = 0 for 0 ≤ j ≤ m−1. From the
description of the Littlewood decomposition Ω2 given in the proof of Theorem 2.1,
it follows that the sum of the lengths of λ0 and λ1 is equal to ℓ(λ)−m. On the other
hand, let k be the smallest part of λ such that its multiplicity mk is even. From

(2.2), it follows that m = (
∑k

j=1mj + k − 1)/2, where m is the smallest positive

integer such that u2m+1 6= 0. Thus, Property (P5) holds by an easy calculation. �

We are ready to prove Theorems 1.1 and 1.2 by using the above properties of
the Littlewood decomposition.

Proof of Theorem 1.1. By properties (P1)–(P3) of the Littlewood decomposition
Ωt in Theorem 2.1 we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

=
∏

k≥1

(1 − qtk)t

1 − qk

t−1∑

i=0




∑

λ∈P

qt|λ|x#H(λ)
∏

h∈H(λ)

ρ1(th)





t−1

×




∑

λi∈P

qt|λi|x#H(λi)
∏

h∈H(λi)

ρ1(th)
∑

h∈H(λi)

ρ2(th)





=
∏

k≥1

(1 − qtk)t

1 − qk

t−1∑

i=0

ft(xq
t)t−1gt(xq

t)

=tft(xq
t)t−1gt(xq

t)
∏

k≥1

(1 − qtk)t

1 − qk
,
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where the third equation follows from formulas (1.12) and (1.13) by replacing q by
xqt and setting α = t. �

Proof of Theorem 1.2. From properties (P1)–(P4) of the Littlewood decomposition
Ω2 in Theorems 2.1 and 2.2, we get

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ1(h)
∑

h∈H2(λ)

ρ2(h)

=

+∞∑

j=−∞

bjqj(2j−1) × 2




∑

λ∈P

q2|λ|x#H(λ)
∏

h∈H(λ)

ρ1(2h)



×




∑

λ∈P

q2|λ|x#H(λ)
∏

h∈H(λ)

ρ1(2h)
∑

h∈H(λ)

ρ2(2h)





=2f2(xq
2)g2(xq

2)

+∞∑

j=−∞

bjqj(2j−1),

where the last equation follows from formulas (1.12) and (1.13) by replacing q by
xq2 and setting α = 2. �

3. Generating function for partitions

In this section we give several generalizations of generating function for partitions
(1.3). First, we obtain the following two generalizations by applying Theorems 1.5
and 1.6 with the weight function ρ(h) = 1.

Theorem 3.1 ([12, Corollary 5.1]). We have

∑

λ∈P

q|λ|x#Ht(λ) =
∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t(1 − qk)
.

Theorem 3.2. We have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ) =
∏

k≥1

1

(1 − (xq2)k)2

+∞∑

j=−∞

bjqj(2j−1).

In fact, we can obtain more generalizations by means of the combinatorial prop-
erties of the Littlewood decomposition. Before doing this, we need the following
lemma.

Lemma 3.3. We have
∑

λ∈P

q|λ|y#{h∈H(λ),h=1}cℓ(λ) =
∏

k≥1

1 + (y − 1)cqk

1 − cqk
.

Proof.
∑

λ∈P

q|λ|y#{h∈H(λ),h=1}cℓ(λ) =
∏

k≥1

(1 + ycqk + yc2q2k + yc3q3k + · · · )

=
∏

k≥1

(1 +
ycqk

1 − cqk
) =

∏

k≥1

1 + (y − 1)cqk

1 − cqk
. �

The following theorem unifies Theorem 3.1 and another result of the first author
[12, Theorem 1.4].
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Theorem 3.4. We have
∑

λ∈P

q|λ|x#Ht(λ)y#{h∈H(λ),h=t} =
∏

k≥1

(1 − qtk)t(1 + (y − 1)(xqt)k)t

(1 − qk)(1 − (xqt)k)t
.

Proof. From properties (P1)–(P3) of the bijection Ωt in Theorem 2.1 we get
∑

λ∈P

q|λ|x#Ht(λ)y#{h∈H(λ),h=t}

=
∏

k≥1

(1 − qtk)t

1 − qk
×

(∑

λ∈P

qt|λ|x#H(λ)y#{h∈H(λ),h=1}
)t

=
∏

k≥1

(1 − qtk)t

1 − qk
×

(∑

λ∈P

(xqt)|λ|y#{h∈H(λ),h=1}
)t

=
∏

k≥1

(1 − qtk)t(1 + (y − 1)(xqt)k)t

(1 − qk)(1 − (xqt)k)t
,

where the last identity follows from Lemma 3.3 by replacing q by xq2 and setting
c = 1. �

The following theorem gives a generalization of Theorem 3.2.

Theorem 3.5. We have
∑

λ∈P

q|λ|x#H2(λ)y#{h∈H(λ),h=2}bBG(λ)cWL(λ)

=
∏

k≥1

(1 + (y − 1)c(xq2)k)2

(1 − c(xq2)k)2

+∞∑

j=−∞

bjqj(2j−1).

Proof. From properties (P1)–(P5) of the bijection Ω2 in Theorems 2.1 and 2.2 we
get

∑

λ∈P

q|λ|x#H2(λ)y#{h∈H(λ),h=2}bBG(λ)cWL(λ)

=
(∑

λ∈P

q2|λ|x#H(λ)y#{h∈H(λ),h=1}cℓ(λ)
)2

×
+∞∑

j=−∞

bjqj(2j−1)

=
(∑

λ∈P

(xq2)|λ|y#{h∈H(λ),h=1}cℓ(λ)
)2

×
+∞∑

j=−∞

bjqj(2j−1)

=
∏

k≥1

(1 + (y − 1)c(xq2)k)2

(1 − c(xq2)k)2

+∞∑

j=−∞

bjqj(2j−1),

where the last identity follows from Lemma 3.3 by replacing q by xq2. �

Setting x = y = b = 1 in Theorem 3.5 and using Gauss’ identity (1.10), we
obtain the following corollary.

Corollary 3.6. We have

(3.1)
∑

λ∈P

q|λ|cWL(λ) =
∏

k≥1

(1 − q2k)

(1 − q2k−1)(1 − cq2k)2
.
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By definition (2.1) of the weak length WL(λ) we also have

∑

λ∈P

q|λ|cWL(λ) =
∑

k≥1

k−1∏

j=1

(qj + cq3j + c2q5j + · · · )

× (1 + cq2k + c2q4k + · · · )

×
+∞∏

j=k+1

(1 + cqj + c2q2j + · · · )

=
∑

k≥1

q(
k

2)
k∏

j=1

1

1 − cq2j

+∞∏

j=k+1

1

1 − cqj

=

+∞∏

j=1

1

1 − cqj

∑

k≥1

q(
k

2)
k∏

j=1

1 − cqj

1 − cq2j
.(3.2)

Combining (3.1) and (3.2) we get the following identity which is a special case of
q-Gauss second identity [8, p.237, Eq.(II.11)] for a =

√
cq, b =

√
q.

(3.3)
∑

k≥0

q(
k+1

2 )
k+1∏

j=1

1 − cqj

1 − cq2j
=

∏

k≥1

(1 − cq2k−1)(1 − q2k)

(1 − q2k−1)(1 − cq2k)
.

4. Two classical hook length formulas

The two multiplication theorems are also applicable to the two classical hook
length formulas (1.1) and (1.2) [13], themselves obtainable from the Robinson-
Schensted-Knuth correspondence (see, for example, [15, p.49-59], [22, p.324]). When
applying Theorems 1.5 and 1.6 with the weight function ρ(h) = 1/h2, we get the
following generalizations of (1.1).

Theorem 4.1 ([12, Corollary 5.4]). We have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2
= exp

(
xqt

t

)
∏

k≥1

(1 − qtk)t

1 − qk
.

Theorem 4.2.

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2
= exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1).

The following result is immediate from Theorem 4.2 by setting x = 1 and com-
paring the coefficients of b0 on both sides.

Corollary 4.3. We have

∑

λ∈P,BG(λ)=0

q|λ|
∏

h∈H2(λ)

1

h2
= exp

(
q2

2

)

.

Corollary 4.3 could also be derived from formula (1.5) by setting z = −1. Note
that, for any partition λ, the number of odd hooks in λ is greater than or equal to
the number of even hooks in λ. Moreover, when the numbers of odd hooks and of
even hooks in λ are equal, the BG-rank of λ is equal to 0.

The following theorems are generalizations of (1.2). They are immediate conse-
quences of Theorems 1.5 and 1.6 with the weight function ρ(h) = 1/h:
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Theorem 4.4. We have

(4.1)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h
= exp

(

xqt +
x2q2t

2t

)
∏

k≥1

(1 − qtk)t

1 − qk
.

Theorem 4.5. We have

(4.2)
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h
= exp

(

xq2 +
x2q4

4

) +∞∑

j=−∞

bjqj(2j−1).

By comparing the coefficients of xnqtn on both sides of (4.1) we have the following
result.

Corollary 4.6. We have

∑

λ⊢tn,#Ht(λ)=n

∏

h∈Ht(λ)

1

h
=

⌊n

2
⌋

∑

j=0

1

j!(n− 2j)!(2t)j
.

Setting x = 1 and comparing the coefficients of b0 on both sides of (4.2) yields
the following result.

Corollary 4.7. We have

∑

λ∈P,BG(λ)=0

q|λ|
∏

h∈H2(λ)

1

h
= exp

(

q2 +
q4

4

)

.

5. The Han-Carde-Loubert-Potechin-Sanborn formula

In [11] the first author found the hook length formula (1.5), related to partitions
and permutations. Formula (1.5) has recently been proved by Carde et al. [6].
Formula (1.5) is an interpolation between the two classical hook length formulas.
It reduces to (1.2) when z = 0. When q is replaced by 1−z

1+z q and z is equal to 1,

formula (1.5) yields (1.1).

When ρ(h) = (1 + zh)/(h(1 − zh)), the series fα(q) defined in (1.19) has the
following explicit form:

fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

αh

1 + zαh

1 − zαh
= exp

(
1 + zα

1 − zα

q

α
+

q2

2α2

)

.

Hence, Theorems 1.5 and 1.6 imply the following generalizations of (1.5).

Theorem 5.1. Let t be a positive integer. Then

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h

1 + zh

1 − zh
= exp

(
1 + zt

1 − zt
xqt +

x2q2t

2t

)
∏

k≥1

(1 − qtk)t

(1 − qk)
.

Theorem 5.2. We have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h

1 + zh

1 − zh

= exp

(
1 + z2

1 − z2
xq2 +

x2q4

4

) +∞∑

j=−∞

bjqj(2j−1).
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When z = 0, Theorems 5.1 and 5.2 reduce to Theorems 4.4 and 4.5 respectively.
When x is replaced by 1−z

1+zx and z = 1, Theorems 5.1 and 5.2 give back Theorems
4.1 and 4.2, respectively.

6. The Nekrasov-Okounkov formula

Formula (1.6) can be seen as an explicit expansion formula for the powers of
the Euler Product in terms of partition hook lengths. It was first discovered by
Nekrasov and Okounkov in their study of the Seiberg-Witten theory and random
partitions [20] and re-discovered by the first author [10] by means of an appropri-
ate hook length expansion technique [13]. An elementary proof of the Nekrasov-
Okounkov formula is given in [12].

Theorems 1.5 and 1.6 with the weight function ρ(h) = 1−z/h2 yield the following
generalizations of (1.6).

Theorem 6.1 ([12, Theorem 1.2] ). We have

(6.1)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

(
1 − z

h2

)
=

∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t−z/t(1 − qk)
.

Theorem 6.2. We have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

(
1 − z

h2

)

=
∏

k≥1

1

(1 − (xq2)k)2−z/2
×

+∞∑

j=−∞

bjqj(2j−1).(6.2)

Corollary 6.3. We have

(6.3)
∑

λ⊢2n+j(2j−1), BG(λ)=j

∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

h2 =
3n+ 1

2n(n− 1)!
.

Proof. Clearly, the left-hand side of (6.3) is the coefficient of

q2n+j(2j−1)bjxn(−z)n−1

on the left-hand side of (6.2). Using the following identity

(6.4)
∏

m≥1

1

1 − qm
= exp




∑

k≥1

qk

k(1 − qk)



,

the right-hand side of (6.2) can be written:

R =
∏

k≥1

1

(1 − (xq2)k)2
exp




−z
2

∑

k≥1

(xq2)k

k(1 − (xq2)k)





+∞∑

j=−∞

bjqj(2j−1).



14 GUO-NIU HAN AND KATHY Q. JI

Thus,

[q2n+j(2j−1)bjxn(−z)n−1]R

=[q2nxn(−z)n−1]
∏

k≥1

1

(1 − (xq2)k)2
exp




−z
2

∑

k≥1

(xq2)k

k(1 − (xq2)k)





=[q2nxn]
1

2n−1(n− 1)!

∏

k≥1

1

(1 − (xq2)k)2




∑

k≥1

(xq2)k

k(1 − (xq2)k)





n−1

=[q2x]
1

2n−1(n− 1)!

1

(1 − (xq2))2

(
1

(1 − (xq2)
+

xq2

2(1 − (xq2)2)

)n−1

=
1

2n−1(n− 1)!
(2 + n− 1 +

n− 1

2
)

=
3n+ 1

2n(n− 1)!
. �

Corollary 6.3 could also be derived from Theorem 9.2 by setting x = 1, k = 1
and comparing the coefficients of bjq2n+j(2j−1) on both sides.

Setting x = 1 and comparing the coefficients of (−z)bj on both sides of (6.2)
leads to the following corollary.

Corollary 6.4. We have

∑

λ∈P, BG(λ)=j

q|λ|
∑

h∈H2(λ)

1

h2
=

qj(2j−1)

2
∏

k≥1(1 − q2k)2

∑

k≥1

q2k

k(1 − q2k)
.

Corollary 6.4 could also be deduced from Theorem 7.6 by setting β = −2, x = 1,
and comparing the coefficients of bj on both sides.

7. The Bessenrodt-Bacher-Manivel formula

Formula (1.4) deals with power sums of hook lengths. Its proof is based on an
elegant result about the multi-set of hook lengths and the multi-set of parts of all
partitions of n due to Bessenrodt, Bacher and Manivel [3, 5]. See also [10] for some
historical remarks. Each hook length h can be split into h = a+ l + 1, where a is
the arm length and l the leg length (see [22, p.457]). The ordered pair (a, l) is called
a hook type.

Theorem 7.1 (Bessenrodt-Bacher-Manivel). Let n ≥ k ≥ 1 be two integers. Then,

for every positive j < k, the total number of occurrences of the part k among all

partitions of n is equal to the number of boxes, whose hook type is (j, k − j − 1).

Theorem 7.1 implies in particular that the total number of hooks of given hook
type (j, k − j − 1) occuring in all partitions of n depends only on the length k and
not on the particular hook type itself. Since there are exactly k distinct hook types
for hooks of length k, the total number of hooks of length k in all partitions of n
is k times the total number of occurrences of the part k among all partitions of n.
For each partition λ let mk(λ) denote the number of parts in λ equal to k. Then

∑

λ⊢n

#{h ∈ H(λ), h = k} =
∑

λ⊢n

k ×mk(λ).
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In fact, the following more general result can be deduced from Theorem 7.1.

Corollary 7.2. For each positive integer n, t, and each complex number β we have

(7.1)
∑

λ⊢n

∑

h∈Ht(λ)

hβ =
∑

λ⊢n

∑

k≥1

(tk)β+1mtk(λ).

We next prove the following theorem that generalizes formula (1.4).

Theorem 7.3. For any positive integer t and complex number β we have

∑

λ∈P

q|λ|
∑

h∈Ht(λ)

hβ =
∏

m≥1

1

1 − qm
×

∑

k≥1

(tk)β+1 qtk

1 − qtk
.

By Corollary 7.2, we see that Theorem 7.3 is equivalent to the next Theorem.

Theorem 7.4. We have
∑

n≥1

qn
∑

λ⊢n

∑

k≥1

(tk)βmtk(λ) =
∏

m≥1

1

1 − qm
×

∑

k≥1

(tk)β qtk

1 − qtk
.

Proof. Given a fixed positive integer k divisible by t, it is known that
∑

λ∈P

kβmk(λ)q|λ| =
(
kβqk + 2kβq2k + 3kβq3k + · · ·

) ∏

m 6=k

1

1 − qm

=

(

kβ−1q
d

dq

qk

1 − qk

)
∏

m 6=k

1

1 − qm

=

(

kβ qk

(1 − qk)2

)
∏

m 6=k

1

1 − qm

= kβ qk

1 − qk

∏

m≥1

1

1 − qm
.

Hence, we have

∑

n≥1

qn
∑

λ⊢n

∑

k≥1

(tk)βmtk(λ) =
∏

m≥1

1

1 − qm

∑

k≥1

(tk)β qtk

1 − qtk
. �

We now give two generalizations of (1.4) by applying Theorems 1.3 and 1.4 with
the weight function ρ(h) = hβ . Notice that Theorem 7.5 reduces to Theorem 7.3
when x = 1. However, it cannot be proved directly using the Bessenrodt-Bacher-
Manivel theorem.

Theorem 7.5. For any complex number β and positive integer t we have

∑

λ∈P

q|λ|x#Ht(λ)
∑

h∈Ht(λ)

hβ =
∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t(1 − qk)

∑

k≥1

(tk)β+1 (xqt)k

1 − (xqt)k
.

Theorem 7.6. For any complex number β we have
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∑

h∈H2(λ)

hβ

=
∏

k≥1

1

(1 − (xq2)k)2

∑

k≥1

(2k)β+1 (xq2)k

1 − (xq2)k
×

+∞∑

j=−∞

bjqj(2j−1).
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The specializations β = 1 and β = −1 of Theorems 7.5 and 7.6 are worth
mentioning and are not reproduced. A further specialization with β = −1, t =
2, x = 1/q implies Corollary 1.11.

8. The Okada-Panova formula

Formula (1.7) is the generating function form of the Okada-Panova formula (8.1),
which was conjectured by Okada and proved by Panova [21, 23]:

(8.1)
1

n!

∑

λ⊢n

f2
λ

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)

r∏

j=0

(n− j),

where C(r) is defined in (1.7). By the hook length formula

(8.2) fλ =
n!

∏

h∈H(λ) h
,

formula (8.1) can be written as

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)
1

(n − r − 1)!
.

It is easy to see that formula (1.7) is the generating function version of the above
formula.

We now give a generalization of Okada-Panova formula (1.7) by using Theorems
1.1 and 1.2 with the weight functions ρ1(h) = 1

h2 and ρ2(h) =
∏r

i=1(h
2 − i2). By

the classical hook formula (1.1), it is known that

(8.3) fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q

α2

)

.

Recall that

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2).

To evaluate gα(q) we introduce a family of polynomials (Br,k(α))0≤k≤r defined by
the following relations:

Br,0(α) =
r∏

j=1

(α2 − j2),

Br,k(α) = [α2(k + 1)2 − r2]Br−1,k(α) + α2Br−1,k−1(α)

for 1 ≤ k ≤ r − 1,

Br,r(α) = α2r.

The first values of the polynomials Br,k(α) are:

B1,0(α) = α2 − 1, B1,1(α) = α2,

B2,0(α) = (α2 − 1)(α2 − 22), B2,1(α) = 5α2(α2 − 1), B2,2(α) = α4,

B3,0(α) = (α2 − 1)(α2 − 22)(α2 − 32), B3,1(α) = 7α2(α2 − 1)(3α2 − 7),

B3,2(α) = 14α4(α2 − 1), B3,3(α) = α6,
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Lemma 8.1. For any complex number α, we have

r∏

j=1

(α2x2 − j2) =

r∑

k=0

Br,k(α)

k∏

j=1

(x2 − j2).

Proof. Let pr(α) =
∏r

j=1(α
2x2 − j2) and write

pr(α) =

r∑

k=0

B′
r,k(α)pk(1).

We need to show that (B′
r,k(α)) satisfy the same relations as (Br,k(α)). From the

definition of pr(α) we have

pr(α) = (α2x2 − r2)

r−1∑

k=0

B′
r−1,k(α)pk(1)

=

r−1∑

k=0

B′
r−1,k(α)[α2(x2 − (k + 1)2) + α2(k + 1)2 − r2]pk(1)

= α2
r−1∑

k=0

B′
r−1,k(α)pk+1(1) +

r−1∑

k=0

[α2(k + 1)2 − r2]B′
r−1,k(α)pk(1)

= α2
r∑

k=1

B′
r−1,k−1(α)pk(1) +

r−1∑

k=0

[α2(k + 1)2 − r2]B′
r−1,k(α)pk(1).

Since the pk(1)’s are linearly independent, we obtain the following recurrences.

(8.4) B′
r,r(α) = α2B′

r−1,r−1(α), B′
r,0(α) = (α2 − r2)B′

r−1,0(α)

and for 0 < k < r

B′
r,k(α) = α2B′

r−1,k−1(α) + [α2(k + 1)2 − r2]B′
r−1,k(α).

Iterating recurrence (8.4) (r − 1) times and using the fact B′
0,0(α) = 1, we obtain

B′
r,r(α) = α2r, B′

r,0(α) =
∏r

j=1(α
2 − j2). �

Thus we can express the series gα(q) from Lemma 8.1 and Okada-Panova (1.7)
as follows.

Proposition 8.2. We have

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2)

= exp
( q

α2

) r∑

k=0

Br,k(α)C(k)
( q

α2

)k+1

.(8.5)
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Proof.

gα(q) =
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2)

=
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∑

k=0

Br,k(α)

k∏

j=1

(h2 − j2)

=
r∑

k=0

Br,k(α)
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

k∏

j=1

(h2 − j2)

=

r∑

k=0

Br,k(α)C(k)
( q

α2

)k+1

exp
( q

α2

)

,(8.6)

where the last equation follows from (1.7). �

From the definition of Br,k(α) in Lemma 8.1 it is known that for any positive
integer t, Br,k(t) = 0 for r ≥ t(k + 1). Combining (8.3) and (8.5), we see that
Theorems 1.1 and 1.2 give the following generalizations of Okada-Panova’s formula
(1.7).

Theorem 8.3. For any positive integer t and r we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

r∏

i=1

(h2 − i2)

= t exp

(
xqt

t

)
∏

k≥1

(1 − qtk)t

1 − qk

r∑

k=⌈ r−t+1

t
⌉

Br,k(t)C(k)

(
xqt

t2

)k+1

.

Theorem 8.4. For any positive integer r we have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

r∏

i=1

(h2 − i2)

= 2 exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1)
r∑

k=⌈ r−1

2
⌉

Br,k(2)C(k)

(
xq2

4

)k+1

.

9. The Stanley-Panova formula

In [13], the first author conjectured that

1

n!

∑

λ⊢n

f2
λ

∑

h∈H(λ)

h2k

is a polynomial function in n of degree k + 1. Stanley and Panova proved a gen-
eralization of this conjecture and deduced the following explicit formula of this
summation from Okada’s conjecture [21, 23]:

(9.1)
1

n!

∑

λ⊢n

f2
λ

∑

h∈H(λ)

h2k =

k∑

i=0

T (k + 1, i+ 1)C(i)

i∏

j=0

(n− j),
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where T (k, i) is a central factorial number [22, ex.5.8] defined for k ≥ 1 and i ≥ 1
by

T (k, 0) = T (0, i) = 0, T (1, 1) = 1,(9.2)

T (k, i) = i2T (k − 1, i) + T (k − 1, i− 1) for (k, i) 6= (1, 1).(9.3)

By hook length formula (8.2) one can easily see that formula (1.8) is the generating
function form of formula (9.1).

We now give two generalizations of Stanley-Panova’s formula (1.8) by using
Theorems 1.1 and 1.2 with the weight functions ρ1(h) = 1/h2 and ρ2(h) = h2k. By
the classical hook formula (1.1) we know that

fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q

α2

)

.

From the Stanley-Panova formula (1.8) it is known that

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

α2kh2k

= α2k exp
( q

α2

) k∑

i=0

T (k + 1, i+ 1)C(i)
( q

α2

)i+1

.

Thus, Theorems 1.1 and 1.2 imply the following generalizations of Stanley-Panova’s
formula (1.8).

Theorem 9.1. For any positive integer t and k we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

h2k

= t2k+1 exp

(
xqt

t

)
∏

j≥1

(1 − qtj)t

1 − qj

k∑

i=0

T (k + 1, i+ 1)C(i)

(
xqt

t2

)i+1

.

Theorem 9.2. For any positive integer k we have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

h2k

= 22k+1 exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1)
k∑

i=0

T (k + 1, i+ 1)C(i)

(
xq2

4

)i+1

.
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