Algorithms and Extremal Problem on Wiener Polarity Index *

Wenxue Du, Xueliang Li and Yongtang Shi
Center for Combinatorics and LPMC-TJKLC, Nankai University
Tianjin 300071, P.R. China. E-mail: lxl@nankai.edu.cn

(Received October 6, 2008)

Abstract

The Wiener polarity index $W_{P}(G)$ of a graph $G=(V, E)$ is the number of unordered pairs of vertices $\{u, v\}$ of G such that $d_{G}(u, v)=3$. In this paper, we consider the index for connected graphs. In the first part, we describe a linear time algorithm APT for computing the index of trees, and then characterize the trees maximizing the index among all trees of given order. In the second part, we present an algorithm APG which computes the index $W_{P}(G)$ for any given connected graph G on n vertices in time $O(M(n))$, where $M(n)$ denotes the time necessary to multiply two $n \times n$ matrices of small integers (which is currently known to be $O\left(n^{2.376}\right)$). Keywords: distance, Wiener polarity index; Wiener index, algorithm; extremal graph.

1 Introduction

We use Trinajstić [14] for terminology and notations. Let G be a connected (molecular) graph. The distance between two vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest path between u and v in G. A tree is a connected acyclic graph. It is well known that for any two vertices u and v in a tree T, there exists exactly one path between u and v in T. Thus, the distance between two vertices u and v in T is the length of the path between u and v in T. The Wiener polarity index of a graph $G=(V, E)$, denoted by $W_{P}(G)$, is defined by

$$
\begin{equation*}
W_{P}(G):=\#\left\{\{u, v\} \mid d_{G}(u, v)=3, u, v \in V\right\} \tag{1}
\end{equation*}
$$

which is the number of unordered pairs of vertices $\{u, v\}$ of G such that $d_{G}(u, v)=3$. In organic compounds, say paraffin, this number is the number of pairs of carbon atoms which are separated by three carbon-carbon bonds. The name "Wiener polarity index" for the quantity defined in Equation

[^0](1) is introduced by Harold Wiener [15] in 1947. Wiener himself conceived the index only for acyclic molecules and defined it in a slightly different - yet equivalent - manner. In the same paper, Wiener also introduced another index for acyclic molecules, called Wiener index or Wiener distance index and defined by
$$
W(G):=\sum_{\{u, v\} \subseteq V} d_{G}(u, v) .
$$

Wiener [15] used a liner formula of W and W_{P} to calculate the boiling points t_{B} of the paraffins, i.e.,

$$
t_{B}=a W+b W_{P}+c
$$

where a, b and c are constants for a given isomeric group.
The Wiener index $W(G)$ is popular in chemical literatures. In the mathematical literature, it seems to be studied firstly by Entringer et al.[8] in 1976. From then on, many researchers studied the Wiener index in different ways. For instance, one can see [1], [2], [3] [6], [8], [9], [11], [12] and [15] for theoretical aspects, and [4], [10] and [13] for algorithmic and computational aspects. Recently, Dobrynin et al. wrote a comprehensive survey [7] for the Wiener index. The reader is referred to the paper for further details.

However, it seems that less attention has been paid for the Wiener polarity index $W_{P}(G)$ up to now. In the present paper, we consider the index for connected graphs. By the definition of Wiener polarity index, one can readily check that $W_{P}\left(K_{1, n-1}\right)=0$. Moreover, $W_{P}(T)>0$ for any tree T of order $n \geq 4$. Thus, a star $K_{1, n-1}$ minimize the Wiener polarity index among all trees of given order. In Section 2, we first give a linear time algorithm APT for computing the index of trees, and then characterize the trees maximizing the index among all trees of given order. In Section 3, we present an algorithm APG which computes the index $W_{P}(G)$ for any given connected graph G on n vertices in time $O(M(n))$, where $M(n)$ denotes the time necessary to multiply two $n \times n$ matrices of small integers (which is currently known to be $O\left(n^{2.376}\right)$ [5]).

2 Wiener Polarity Index for Trees

In this section, we consider the Wiener polarity index W_{P} for trees. We first introduce a linear time algorithm APT for computing the index of trees, and then consider the problem of determining which trees maximize the index among all trees of given order.

2.1 A Linear Time Algorithm

According to the definition of Wiener polarity index, Equation (1), one can readily design an algorithm in $O\left(|V(T)|(\Delta(T)-1)^{2}\right)$ time for computing the index $W_{P}(T)$ of a tree T by exhausted searching. The algorithm, however, might be not linear time if the maximum degree $\Delta(T)$ of T is large. In fact, we can get a linear time algorithm APT for computing the index of a tree T due to a good property that for any two vertices u and v in a tree T, there exists exactly one path between u and v in T. Furthermore, we have the following result.

Lemma 1. Let $T=(V, E)$ be a tree. Then

$$
\begin{equation*}
W_{P}(T)=\sum_{u v \in E}\left(d_{T}(u)-1\right)\left(d_{T}(v)-1\right) \tag{1}
\end{equation*}
$$

Proof. We first define a set $D_{3}(T)$ as follows:

$$
D_{3}(T):=\left\{\{u, v\} \mid d_{T}(u, v)=3, u, v \in V\right\} .
$$

Clearly, $W_{P}(T)=\left|D_{3}(T)\right|$ by the definition of Wiener polarity index. Next, we introduce another set $S_{E}(T)$ as follows:

$$
S_{E}(T):=\{\{u, v\} \mid \exists x y \in E \text { such that } u x \text { and } v y \in E\} .
$$

One can readily see that

$$
\left|S_{E}(T)\right|=\sum_{x y \in E}\left(d_{T}(x)-1\right)\left(d_{T}(y)-1\right)
$$

Let $\varphi: D_{3}(T) \rightarrow S_{E}(T)$ be a mapping such that $\varphi(\{u, v\})=\{u, v\}$ for any $\{u, v\} \in D_{3}(T)$. One can easily check that the mapping φ is a bijection. Thus, $\left|D_{3}(T)\right|=\left|S_{E}(T)\right|$, and then Equation (1) follows.

Let T be a tree of order n. In the sequel, we use a list $l i(T)$ concerning edges of T and degrees of $V(T)$ to represent T. Formally, we define

$$
l i(T):=\left\{e_{1}=x_{1} y_{1}, e_{2}=x_{2} y_{2}, \ldots, e_{n-1}=x_{n-1} y_{n-1}, d_{T}\left(v_{1}\right), \ldots, d_{T}\left(v_{n}\right)\right\}
$$

The following is a linear time algorithm for computing the Wiener polarity index $W_{P}(T)$ of a tree T represented by a list $l i(T)$ of T.

```
                    APT
Input: A tree T of order n represented by a list li(T) of T.
Output: Wiener polarity index WP(T) of T.
    begin
        WP(T):=0
        for all edges u[i]v[i] of T, i:=1 to (n-1) do
    end WP(T) = WP(T) + (d(u[i])-1) (d(v[i])-1)
```

According to Lemma 1, the algorithm APT correctly computes the Wiener polarity index $W_{P}(T)$ of T. Obviously, the algorithm APT can be done in $O(n)$ time. Hence, we have the following result.

Theorem 1. Let T be a tree of order n. Then the algorithm APT correctly computes the Wiener polarity index $W_{P}(T)$ of T in $O(n)$ time.

2.2 Extremal Trees

As we mentioned in the introduction, a star $K_{1, n-1}$ minimizes the Wiener polarity index among all trees of order n. The goal of this part is to characterize the trees maximizing the index among all trees of given order. For this purpose, we first consider a simple case.

The diameter of a connected graph G, denoted by $\operatorname{diam}(G)$, is the maximum distance between two vertices of G. Since there exists exactly one path between any two vertices of a tree, the diameter of a tree is the length of a longest path in the tree. In what follows, we use $\mathcal{T}(n)$ to denote the set of trees on n vertices. Let $T \in \mathcal{T}(n)$ with $\operatorname{diam}(T)=3$, and let $P_{L}(T)=v_{0} v_{1} v_{2} v_{3}$ be a longest path in T. It follows from Equation (1) that

$$
W_{P}(T)=\left(d_{T}\left(v_{1}\right)-1\right)\left(d_{T}\left(v_{2}\right)-1\right)
$$

Thus,

$$
\begin{equation*}
W_{P}(T) \leq\left(\left\lceil\frac{n}{2}\right\rceil-1\right)\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor \tag{2}
\end{equation*}
$$

On the other hand, if $T \in \mathcal{T}(n), n \geq 4$, and $P_{L}(T)=v_{0} v_{1} v_{2} v_{3}$ is a longest path of T with $d_{T}\left(v_{1}\right)=\left\lceil\frac{n}{2}\right\rceil$ and $d_{T}\left(v_{2}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ then $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$. Hence, the following set

$$
\mathcal{T}_{3}(n):=\left\{T \in \mathcal{T}(n) \mid \operatorname{diam}(T)=3 \text { and } W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor\right\}
$$

is not empty. In the following, we will see that the above value $\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$ is the maximum value of W_{P} for trees of order n. Hence, $\mathcal{T}_{3}(n)$ is one of the classes of extremal trees maximizing the Wiener polarity index W_{P}.

To characterize extremal trees with diameter larger than 3, we introduce an operation on trees. Let $T \in \mathcal{T}(n)$ be a tree with $\operatorname{diam}(T)=k$ where $k \geq 4$ is an integer. We suppose that $P_{L}(T)=$ $v_{0} v_{1} v_{2} v_{3} v_{4} \ldots v_{k}$ is a longest path of T. Let $T \circledast v_{0}$ denote the tree obtained from T by deleting the edge $v_{0} v_{1}$ and adding a new edge $v_{0} v_{3}$ as shown in Figure 1.

The corresponding subgraph

$$
\text { of } P_{L}(T) \text { in } T \circledast v_{0}
$$

Figure 1. Maximization operation of a tree T with $\operatorname{diam}(T) \geq 4$.

The above operation is called maximization operation. One can easily see that $\operatorname{diam}\left(T \circledast v_{0}\right) \leq$ $\operatorname{diam}(T)$. To establish the main theorem of this subsection, we first prove the following lemma concerning the relation between $W_{P}(T)$ and $W_{P}\left(T \circledast v_{0}\right)$.

Lemma 2. Let $T=(V, E)$ be a tree, and let $P_{L}(T)=v_{0} v_{1} \ldots v_{k}$ be a longest path of T, where $k \geq 4$ is an integer. Then
i) $W_{P}(T)<W_{P}\left(T \circledast v_{0}\right)$ if $\operatorname{diam}(T) \geq 5$,
ii) $W_{P}(T) \leq W_{P}\left(T \circledast v_{0}\right)$ if $\operatorname{diam}(T)=4$.

Proof. We only prove the first assertion, and suppose that T is a tree with $\operatorname{diam}(T) \geq 5$. Let

$$
D_{3}(T)=\left\{\{u, v\} \mid d_{T}(u, v)=3, u, v \in V\right\} .
$$

Obviously, $W_{P}(T)=\left|D_{3}(T)\right|$. Thus, to show the first assertion, it is sufficient to show that

$$
\left|D_{3}(T)\right|<\left|D_{3}\left(T \circledast v_{0}\right)\right| .
$$

In order to establish the above inequality, we introduce a notion concerning a subset of $D_{3}(T)$. Let

$$
D_{3}(T, u)=\left\{\{u, v\} \mid\{u, v\} \in D_{3}(T)\right\}
$$

Obviously, $D_{3}(T, u) \subseteq D_{3}(T)$ for any vertex $u \in V$, and $\left|D_{3}(T)\right|=\frac{1}{2} \sum_{u \in V}\left|D_{3}(T, u)\right|$. In fact, one can readily verify that

$$
\left|D_{3}\left(T, v_{0}\right)\right|<\left|D_{3}\left(T \circledast v_{0}, v_{0}\right)\right|,\left|D_{3}\left(T, v_{1}\right)\right|=\left|D_{3}\left(T \circledast v_{0}, v_{1}\right)\right|-1
$$

and

$$
\left|D_{3}\left(T, v_{3}\right)\right|=\left|D_{3}\left(T \circledast v_{0}, v_{3}\right)\right|+1
$$

Furthermore, one can also verify that if $u \in V \backslash\left\{v_{0}, v_{1}, v_{3}\right\}$ then

$$
\left|D_{3}(T, u)\right| \leq\left|D_{3}\left(T \circledast v_{0}, u\right)\right| .
$$

Thus, $\left|D_{3}(T)\right|<\left|D_{3}\left(T \circledast v_{0}\right)\right|$ and then the first assertion holds.

Using a similar method, one can readily prove the second assertion.

By the second assertion of Lemma 2, if T is a tree with $\operatorname{diam}(T) \geq 4$ then we can construct another tree $T \circledast v_{0}$ by the maximization operation such that

$$
W_{P}(T) \leq W_{P}\left(T \circledast v_{0}\right)
$$

where v_{0} is one end of a longest path in T. Since $W_{P}(T) \leq\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$ for any tree $T \in \mathcal{T}(n)$ with $\operatorname{diam}(T)=3$, we have the following result.

Theorem 2. For any tree T of order n we have that $0 \leq W_{P}(T) \leq\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$.

By the first assertion of Lemma 2, if T is a tree with $\operatorname{diam}(T) \geq 5$ then we can construct another tree $T \circledast v_{0}$ by the maximization operation such that

$$
W_{P}(T)<W_{P}\left(T \circledast v_{0}\right)
$$

where v_{0} is one end of a longest path in T. Moreover, by Theorem 2, one can readily see that if T is a tree with $|V(T)|=n$ and $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$ then $\operatorname{diam}(T) \leq 4$. In the following, we characterize trees T of order n with $\operatorname{diam}(T)=4$ and $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$.

Lemma 3. There exists a tree T of order n such that $\operatorname{diam}(T)=4$ and $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$.

Proof. Let T be a tree with $|V(T)|=n$ and $\operatorname{diam}(T)=4$. It is not difficult to see that T can be represented by $m+3$ integers (see Figure 2) $k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}$ satisfying that $k_{i} \geq 0(i=1,2,3)$, $m \geq 0, l_{j} \geq 1$ when $m \geq 1$ and $1 \leq j \leq m$, and

$$
\begin{equation*}
k_{1}+k_{2}+k_{3}+l_{1}+\cdots+l_{m}=n-5-m \tag{3}
\end{equation*}
$$

Figure 2. The structure of $T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)$.

Clearly, the above representation is unique for a given tree $T \in \mathcal{T}(n)$ with diameter 4. In what follows, we use $T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)$ to denote a tree which can be represented by integers $k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}$. By Equation (1), we have

$$
\begin{aligned}
W_{P}\left(T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)\right)= & \left(m+k_{2}+1\right)\left(k_{1}+1\right)+\left(m+k_{2}+1\right)\left(k_{3}+1\right) \\
& +\left(m+k_{2}+1\right) l_{1}+\cdots+\left(m+k_{2}+1\right) l_{m} \\
= & \left(m+k_{2}+1\right)\left(k_{1}+k_{3}+l_{1}+\cdots+l_{m}+2\right)
\end{aligned}
$$

Using Equation (3), we have

$$
W_{P}\left(T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)\right)=\left(m+k_{2}+1\right)\left(n-2-\left(m+k_{2}+1\right)\right)
$$

One can readily check that $n-2-\left(m+k_{2}+1\right)=\left\lfloor\frac{n-2}{2}\right\rfloor$ if $m+k_{2}+1=\left\lceil\frac{n-2}{2}\right\rceil$, and $n-2-\left(m+k_{2}+1\right)=$ $\left\lceil\frac{n-2}{2}\right\rceil$ if $m+k_{2}+1=\left\lfloor\frac{n-2}{2}\right\rfloor$. Thus, for a tree $T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)$ with $m+k_{2}+1=\left\lceil\frac{n-2}{2}\right\rceil$ or $\left\lfloor\frac{n-2}{2}\right\rfloor$, we have

$$
W_{P}\left(T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right)\right)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor
$$

and then the lemma follows.

Let

$$
\mathcal{T}_{4}(n)=\left\{T\left(k_{1}, k_{2}, k_{3}, l_{1}, \ldots, l_{m}\right) \in \mathcal{T}(n) \left\lvert\, m+k_{2}+1=\left\lceil\frac{n-2}{2}\right\rceil\right. \text { or }\left\lfloor\frac{n-2}{2}\right\rfloor\right\} .
$$

By the proof of the above lemma, one can easily see that $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$ if $T \in \mathcal{T}_{4}(n)$. According to our analysis above, we can obtain the main result of this subsection.

Theorem 3. Among all trees of order n, a tree T has the maximal Wiener polarity index if and only if T belongs to $\mathcal{T}_{3}(n) \cup \mathcal{T}_{4}(n)$, and $W_{P}(T)=\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor$.

3 An Algorithm for Connected Graphs

Let G be a graph with ω components $C_{1}, \ldots, C_{\omega}$. Obviously,

$$
W_{P}(G)=\sum_{i=1}^{\omega} W_{P}\left(C_{i}\right)
$$

Thus, to calculate the Wiener polarity index for general graphs, it is sufficient to study how to calculate the index for connected graphs. In this section, we present an algorithm APG which computes the index $W_{P}(G)$ for any given connected graph G on n vertices in time $O(M(n))$, where $M(n)$ denotes the time necessary to multiply two $n \times n$ matrices of small integers (which is currently known to be $\left.O\left(n^{2.376}\right)[5]\right)$.

To any graph $G=(V, E)$ with the vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ there corresponds an $n \times n$ matrix, called the adjacency matrix of G and denoted by $A(G)$ or A, in which $a_{i j}=1$ if and only if $v_{i} v_{j} \in E$. We use $A^{k}=\left(a_{i j}^{(k)}\right)_{n \times n}$ to denote the k-th repeated product of A where k is a positive integer. To establish our main result of this section, we first introduce some lemmas.

Lemma 4. Let G be a connected graph, and let $A=\left(a_{i j}\right)_{n \times n}$ be the adjacency matrix of G. If G has a path of length k between two vertices v_{i} and v_{j}, then $a_{i j}^{(k)}>0$ where $\left(a_{i j}^{(k)}\right)_{n \times n}=A^{k}$ and k is a positive integer.

Lemma 5. Let G be a connected graph, and let $A=\left(a_{i j}\right)_{n \times n}$ be the adjacency matrix of G. If v_{i} and v_{j} are two vertices of G, and $a_{i j}^{(k)}>0$ then $d_{G}\left(v_{i}, v_{j}\right) \leq k$ where $\left(a_{i j}^{(k)}\right)_{n \times n}=A^{k}$ and k is a positive integer.

The above two lemmas are well-known results. In fact, one can readily prove them by induction on k.

We use B to denote an $n \times n$ matrix, called the distance- 2 matrix of G, in which $b_{i j}=1(i \neq j)$ if and only if $a_{i j}=1$ or $a_{i j}^{(2)}>0$, and $b_{i i}=0$. Furthermore, we use C to denote another $n \times n$ matrix, called the distance- 3 matrix of G, in which $c_{i j}=1(i \neq j)$ if and only if $b_{i j}=1$ or $a_{i j}^{(3)}>0$, and $c_{i i}=0$. Using the above notations, we can characterize the distance between two vertices of a connected graph G by the distance-2 matrix and distance-3 matrix of G as follows.

Lemma 6. Let G be a connected graph of order n, and let $B=\left(b_{i j}\right)_{n \times n}$ and $C=\left(c_{i j}\right)_{n \times n}$ be the distance-2 matrix and distance-3 matrix of G, respectively. If v_{i} and v_{j} are two distinct vertices of G, then
i) $b_{i j}=1$ if and only if $d_{G}\left(v_{i}, v_{j}\right) \leq 2$,
ii) $c_{i j}=1$ if and only if $d_{G}\left(v_{i}, v_{j}\right) \leq 3$.

Proof. We only show the first assertion. If $d_{G}\left(v_{i}, v_{j}\right)=2$ then $a_{i j}^{(2)}>0$ by Lemma 4 . Clearly, $a_{i j}=1$ if $v_{i} v_{j}$ is an edge of G. Thus $b_{i j}=1$ by the definition the distance- 2 matrix. Conversely, if $b_{i j}=1$ then $a_{i j}=1$ or $a_{i j}^{(2)}>0$ by the definition the distance- 2 matrix. Thus $d_{G}\left(v_{i}, v_{j}\right) \leq 2$ by Lemma 5 .

One can easily prove the second assertion by a similar manner.

Using above lemmas, we can prove the main theorem in this section.
Theorem 4. Let G be a connected graph of order n, and let B and C be the distance-2 matrix and distance-3 matrix of G, respectively. If $Z:=C-B$ then

$$
W_{P}(G)=\sum_{i=1}^{n} \sum_{j>i} z_{i j}
$$

where $\left(z_{i j}\right)_{n \times n}=Z$.

Proof. Let v_{i} and v_{j} be two distinct vertices of G. By Lemma $6, z_{i j}=1$ if and only if $d_{G}\left(v_{i}, v_{j}\right)=3$. Thus,

$$
\sum_{i=1}^{n} \sum_{j>i} z_{i j}=\#\left\{\{u, v\} \mid d_{G}(u, v)=3, u, v \in V\right\}
$$

Therefore, $W_{P}(G)=\sum_{i=1}^{n} \sum_{j>i} z_{i j}$ due to the definition of the Wiener polarity index.

According to the above theorem, we can design the following algorithm APG to compute the Wiener polarity index $W_{P}(G)$ for any connected graph G represented by the adjacency matrix A of G.

```
                    APG
Input: A connected graph \(G\) with vertex set \(\mathrm{V}:=\{\mathrm{v}[1], \cdots, \mathrm{v}[\mathrm{n}]\}\)
            represented by the adjacency matrix \(A:=(a[i][j])\) of \(G\).
Output: Wiener polarity index WP(G) of G.
    begin
        \(\mathrm{X}:=\mathrm{A} \cdot \mathrm{A}\) and \(\mathrm{B}:=(\mathrm{b}[\mathrm{i}][\mathrm{j}])\)
        for \(i:=1\) to \(n\) do
            for \(j:=1\) to \(n\) do
                if \(i=j\) then \(b[i][j]:=0\).
                if \(i \neq j\) and \((a[i][j]=1\) or \(x[i][j]>0)\) then \(b[i][j]:=1\), else
                b[i][j]:=0.
        \(\mathrm{Y}:=\mathrm{X} \cdot \mathrm{A}\) and \(\mathrm{C}:=(\mathrm{c}[\mathrm{i}][\mathrm{j}])\)
        for \(i:=1\) to \(n\) do
            for \(j:=1\) to \(n\) do
                if \(i=j\) then \(c[i][j]:=0\).
                if \(i \neq j\) and \((b[i][j]=1\) or \(y[i][j]>0)\) then \(c[i][j]:=1\), else
                \(c[i][j]:=0\).
        \(\mathrm{Z}:=\mathrm{C}-\mathrm{B}\) and \(\mathrm{WP}(\mathrm{G}):=0\)
        for \(i:=1\) to \(n\) do
            for \(j:=i+1\) to \(n\) do
    end \(\quad W P(T)=W P(T)+z[i][j]\)
```

The correctness of the algorithm APG follows from Theorem 4. It is not difficult to see that the algorithm APG can be done in $O(M(n))$ time, where $M(n)$ denotes the time necessary to multiply two $n \times n$ matrices of small integers. Up to now, the complexity of the known fast matrix multiplication algorithm $M(n)$ by Coppersmith and Winograd [5] is $O\left(n^{2.376}\right)$. Thus we have the following result.

Theorem 5. Let G be a connected graph of order n. Then the algorithm APG correctly computes Wiener polarity index $W_{P}(G)$ of G in $O(M(n))$ time.

References

[1] C.A. Barefoot, R.C. Entringer and L.A. Székely, Extremal values for ratios of distances in trees, Discrete Math. 80 (1997), 37-56.
[2] D. Bonchev and O.E. Polansky, The Wiener number of graphs, I. General theory and change due to graph operations, MATCH Commun. Math. Comput. Chem. 21 (1986), 133-186.
[3] D. Bonchev and N. Trinajstić, Information theory, distance matrix and molecular branching, J. Chem. Phys. 67(1977), 4517-4533.
[4] E.R. Canfield, R.W. Robinson and D.H. Rouvray, Determination of the Wiener molecular branching index for the general tree, J. Comput. Chem. 6 (1985), 598-609.
[5] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression, J. Symb. Comput. 9(3)(1990), 251-280.
[6] P. Dankelmann, R.C. Entringer, Average distance, minimum degree, and spanning trees, J. Graph Theory 33(1) (2000), 1-13.
[7] A.A. Dobrynin, R.C. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), 211-249.
[8] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.
[9] R.C. Entringer, A. Meir, J.W. Moon and L.A. Székely, On the Wiener index of trees from certain families, Australas. J. Combin. 10(1994), 211-224.
[10] I. Gutman, A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem) 285 (1993), 137-142.
[11] I. Gutman, S.L. Lee, Y.L. Luo and Y.N. Yeh, Some recent results in the theory of Wiener index, Indian J. Chem. 32A (1993), 137-142.
[12] B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graph Combin. 7 (1991), 53-64.
[13] B. Mohar and T. Pisanski, How to compute the Wiener index of a graph, J. Math. Chem. 2 (1988), 267-277.
[14] N. Trinajstić, Chemical graph theory, CRC Press: Boca Raton, FL, 1993.
[15] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

[^0]: *Supported by PCSIRT, NSFC and the "973" program.

