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Abstract

The Wiener polarity index WP (G) of a graph G = (V, E) is the number of unordered

pairs of vertices {u, v} of G such that dG(u, v) = 3. In this paper, we consider the

index for connected graphs. In the first part, we describe a linear time algorithm

APT for computing the index of trees, and then characterize the trees maximizing

the index among all trees of given order. In the second part, we present an algorithm

APG which computes the index WP (G) for any given connected graph G on n ver-

tices in time O
`

M(n)
´

, where M(n) denotes the time necessary to multiply two n×n

matrices of small integers (which is currently known to be O(n2.376)).

Keywords: distance, Wiener polarity index; Wiener index, algorithm; ex-

tremal graph.

1 Introduction

We use Trinajstić [14] for terminology and notations. Let G be a connected (molecular) graph.

The distance between two vertices u and v in G, denoted by dG(u, v), is the length of a shortest path

between u and v in G. A tree is a connected acyclic graph. It is well known that for any two vertices

u and v in a tree T , there exists exactly one path between u and v in T . Thus, the distance between

two vertices u and v in T is the length of the path between u and v in T . The Wiener polarity index

of a graph G = (V, E), denoted by WP (G), is defined by

WP (G) := #
{
{u, v} | dG(u, v) = 3, u, v ∈ V

}
, (1)

which is the number of unordered pairs of vertices {u, v} of G such that dG(u, v) = 3. In organic

compounds, say paraffin, this number is the number of pairs of carbon atoms which are separated by

three carbon-carbon bonds. The name “Wiener polarity index” for the quantity defined in Equation
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(1) is introduced by Harold Wiener [15] in 1947. Wiener himself conceived the index only for acyclic

molecules and defined it in a slightly different – yet equivalent – manner. In the same paper, Wiener

also introduced another index for acyclic molecules, called Wiener index or Wiener distance index and

defined by

W (G) :=
∑

{u,v}⊆V

dG(u, v).

Wiener [15] used a liner formula of W and WP to calculate the boiling points tB of the paraffins, i.e.,

tB = aW + bWP + c,

where a, b and c are constants for a given isomeric group.

The Wiener index W (G) is popular in chemical literatures. In the mathematical literature, it

seems to be studied firstly by Entringer et al.[8] in 1976. From then on, many researchers studied the

Wiener index in different ways. For instance, one can see [1], [2], [3] [6], [8], [9], [11], [12] and [15]

for theoretical aspects, and [4], [10] and [13] for algorithmic and computational aspects. Recently,

Dobrynin et al. wrote a comprehensive survey [7] for the Wiener index. The reader is referred to the

paper for further details.

However, it seems that less attention has been paid for the Wiener polarity index WP (G) up to

now. In the present paper, we consider the index for connected graphs. By the definition of Wiener

polarity index, one can readily check that WP (K1,n−1) = 0. Moreover, WP (T ) > 0 for any tree T of

order n ≥ 4. Thus, a star K1,n−1 minimize the Wiener polarity index among all trees of given order.

In Section 2, we first give a linear time algorithm APT for computing the index of trees, and then

characterize the trees maximizing the index among all trees of given order. In Section 3, we present

an algorithm APG which computes the index WP (G) for any given connected graph G on n vertices

in time O
(
M(n)

)
, where M(n) denotes the time necessary to multiply two n × n matrices of small

integers (which is currently known to be O(n2.376) [5]).

2 Wiener Polarity Index for Trees

In this section, we consider the Wiener polarity index WP for trees. We first introduce a linear

time algorithm APT for computing the index of trees, and then consider the problem of determining

which trees maximize the index among all trees of given order.

2.1 A Linear Time Algorithm

According to the definition of Wiener polarity index, Equation (1), one can readily design an

algorithm in O
(
|V (T )|(∆(T ) − 1)2

)
time for computing the index WP (T ) of a tree T by exhausted

searching. The algorithm, however, might be not linear time if the maximum degree ∆(T ) of T is

large. In fact, we can get a linear time algorithm APT for computing the index of a tree T due to a

good property that for any two vertices u and v in a tree T , there exists exactly one path between u

and v in T . Furthermore, we have the following result.



Lemma 1. Let T = (V, E) be a tree. Then

WP (T ) =
∑

uv∈E

(
dT (u) − 1

)(
dT (v) − 1

)
. (1)

Proof. We first define a set D3(T ) as follows:

D3(T ) :=
{
{u, v} | dT (u, v) = 3, u, v ∈ V

}
.

Clearly, WP (T ) = |D3(T )| by the definition of Wiener polarity index. Next, we introduce another set

SE(T ) as follows:

SE(T ) :=
{
{u, v} | ∃ xy ∈ E such that ux and vy ∈ E

}
.

One can readily see that

|SE(T )| =
∑

xy∈E

(
dT (x) − 1

)(
dT (y) − 1

)
.

Let ϕ : D3(T ) → SE(T ) be a mapping such that ϕ
(
{u, v}

)
= {u, v} for any {u, v} ∈ D3(T ). One

can easily check that the mapping ϕ is a bijection. Thus, |D3(T )| = |SE(T )|, and then Equation (1)

follows.

Let T be a tree of order n. In the sequel, we use a list li(T ) concerning edges of T and degrees of

V (T ) to represent T . Formally, we define

li(T ) := {e1 = x1y1, e2 = x2y2, . . . , en−1 = xn−1yn−1, dT (v1), . . . , dT (vn)}.

The following is a linear time algorithm for computing the Wiener polarity index WP (T ) of a tree T

represented by a list li(T ) of T .

APT

Input: A tree T of order n represented by a list li(T) of T.

Output: Wiener polarity index WP(T) of T.
begin

WP(T):=0

for all edges u[i]v[i] of T, i:=1 to (n-1) do

WP(T) = WP(T) + (d(u[i])-1)(d(v[i])-1)end

According to Lemma 1, the algorithm APT correctly computes the Wiener polarity index WP (T )

of T . Obviously, the algorithm APT can be done in O(n) time. Hence, we have the following result.

Theorem 1. Let T be a tree of order n. Then the algorithm APT correctly computes the Wiener

polarity index WP (T ) of T in O(n) time.

2.2 Extremal Trees

As we mentioned in the introduction, a star K1,n−1 minimizes the Wiener polarity index among

all trees of order n. The goal of this part is to characterize the trees maximizing the index among all

trees of given order. For this purpose, we first consider a simple case.



The diameter of a connected graph G, denoted by diam(G), is the maximum distance between

two vertices of G. Since there exists exactly one path between any two vertices of a tree, the diameter

of a tree is the length of a longest path in the tree. In what follows, we use T (n) to denote the set of

trees on n vertices. Let T ∈ T (n) with diam(T ) = 3, and let PL(T ) = v0v1v2v3 be a longest path in

T . It follows from Equation (1) that

WP (T ) =
(
dT (v1) − 1

)(
dT (v2) − 1

)
.

Thus,

WP (T ) ≤
(⌈n

2

⌉

− 1
)(⌊n

2

⌋

− 1
)

=

⌈
n − 2

2

⌉⌊
n − 2

2

⌋

.
(2)

On the other hand, if T ∈ T (n), n ≥ 4, and PL(T ) = v0v1v2v3 is a longest path of T with dT (v1) =
⌈

n
2

⌉

and dT (v2) =
⌊

n
2

⌋
then WP (T ) =

⌈
n−2

2

⌉ ⌊
n−2

2

⌋
. Hence, the following set

T3(n) := {T ∈ T (n) | diam(T ) = 3 and WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
}

is not empty. In the following, we will see that the above value
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
is the maximum value of

WP for trees of order n. Hence, T3(n) is one of the classes of extremal trees maximizing the Wiener

polarity index WP .

To characterize extremal trees with diameter larger than 3, we introduce an operation on trees.

Let T ∈ T (n) be a tree with diam(T ) = k where k ≥ 4 is an integer. We suppose that PL(T ) =

v0v1v2v3v4 . . . vk is a longest path of T . Let T ⊛ v0 denote the tree obtained from T by deleting the

edge v0v1 and adding a new edge v0v3 as shown in Figure 1.

v0 v1 v2 v3 v4 vk

PL(T ) The corresponding subgraph

of PL(T ) in T ⊛ v0

v1 v2

v3

v4 vk

v0

Figure 1. Maximization operation of a tree T with diam(T ) ≥ 4.

The above operation is called maximization operation. One can easily see that diam(T ⊛ v0) ≤

diam(T ). To establish the main theorem of this subsection, we first prove the following lemma

concerning the relation between WP (T ) and WP (T ⊛ v0).

Lemma 2. Let T = (V, E) be a tree, and let PL(T ) = v0v1 . . . vk be a longest path of T , where k ≥ 4

is an integer. Then

i) WP (T ) < WP (T ⊛ v0) if diam(T ) ≥ 5,

ii) WP (T ) ≤ WP (T ⊛ v0) if diam(T ) = 4.



Proof. We only prove the first assertion, and suppose that T is a tree with diam(T ) ≥ 5. Let

D3(T ) =
{
{u, v} | dT (u, v) = 3, u, v ∈ V }.

Obviously, WP (T ) = |D3(T )|. Thus, to show the first assertion, it is sufficient to show that

|D3(T )| < |D3(T ⊛ v0)|.

In order to establish the above inequality, we introduce a notion concerning a subset of D3(T ). Let

D3(T, u) =
{
{u, v} | {u, v} ∈ D3(T )

}
.

Obviously, D3(T, u) ⊆ D3(T ) for any vertex u ∈ V , and |D3(T )| = 1
2

∑

u∈V

∣
∣D3(T, u)

∣
∣. In fact, one

can readily verify that

|D3(T, v0)| < |D3(T ⊛ v0, v0)|, |D3(T, v1)| = |D3(T ⊛ v0, v1)| − 1,

and

|D3(T, v3)| = |D3(T ⊛ v0, v3)| + 1.

Furthermore, one can also verify that if u ∈ V \ {v0, v1, v3} then

|D3(T, u)| ≤ |D3(T ⊛ v0, u)|.

Thus, |D3(T )| < |D3(T ⊛ v0)| and then the first assertion holds.

Using a similar method, one can readily prove the second assertion.

By the second assertion of Lemma 2, if T is a tree with diam(T ) ≥ 4 then we can construct another

tree T ⊛ v0 by the maximization operation such that

WP (T ) ≤ WP (T ⊛ v0),

where v0 is one end of a longest path in T . Since WP (T ) ≤
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
for any tree T ∈ T (n) with

diam(T ) = 3, we have the following result.

Theorem 2. For any tree T of order n we have that 0 ≤ WP (T ) ≤
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
.

By the first assertion of Lemma 2, if T is a tree with diam(T ) ≥ 5 then we can construct another

tree T ⊛ v0 by the maximization operation such that

WP (T ) < WP (T ⊛ v0),

where v0 is one end of a longest path in T . Moreover, by Theorem 2, one can readily see that if T is a

tree with |V (T )| = n and WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
then diam(T ) ≤ 4. In the following, we characterize

trees T of order n with diam(T ) = 4 and WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
.

Lemma 3. There exists a tree T of order n such that diam(T ) = 4 and

WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
.



Proof. Let T be a tree with |V (T )| = n and diam(T ) = 4. It is not difficult to see that T can be

represented by m + 3 integers (see Figure 2) k1, k2, k3, l1, . . . , lm satisfying that ki ≥ 0 (i = 1, 2, 3),

m ≥ 0, lj ≥ 1 when m ≥ 1 and 1 ≤ j ≤ m, and

k1 + k2 + k3 + l1 + · · · + lm = n − 5 − m. (3)

v2

︷ ︸︸ ︷ ︷ ︸︸ ︷

l1 lm

v0 v1

︷ ︸︸ ︷

k2

︸ ︷︷ ︸

︷ ︸︸ ︷

v3 v4

k3k1

u1 um

Figure 2. The structure of T (k1, k2, k3, l1, . . . , lm).

Clearly, the above representation is unique for a given tree T ∈ T (n) with diameter 4. In

what follows, we use T (k1, k2, k3, l1, . . . , lm) to denote a tree which can be represented by integers

k1, k2, k3, l1, . . . , lm. By Equation (1), we have

WP

(
T (k1, k2, k3, l1, . . . , lm)

)
= (m + k2 + 1)(k1 + 1) + (m + k2 + 1)(k3 + 1)

+(m + k2 + 1)l1 + · · · + (m + k2 + 1)lm

= (m + k2 + 1)(k1 + k3 + l1 + · · · + lm + 2).

Using Equation (3), we have

WP

(
T (k1, k2, k3, l1, . . . , lm)

)
=

(
m + k2 + 1

)(
n − 2 − (m + k2 + 1)

)
.

One can readily check that n−2−(m+k2+1) =
⌊

n−2
2

⌋
if m+k2+1 =

⌈
n−2

2

⌉
, and n−2−(m+k2+1) =

⌈
n−2

2

⌉
if m + k2 + 1 =

⌊
n−2

2

⌋
. Thus, for a tree T (k1, k2, k3, l1, . . . , lm) with m + k2 + 1 =

⌈
n−2

2

⌉
or

⌊
n−2

2

⌋
, we have

WP

(
T (k1, k2, k3, l1, . . . , lm)

)
=

⌈
n − 2

2

⌉⌊
n − 2

2

⌋

,

and then the lemma follows.

Let

T4(n) = {T (k1, k2, k3, l1, . . . , lm) ∈ T (n) | m + k2 + 1 =
⌈

n−2
2

⌉
or

⌊
n−2

2

⌋
}.

By the proof of the above lemma, one can easily see that WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
if T ∈ T4(n).

According to our analysis above, we can obtain the main result of this subsection.

Theorem 3. Among all trees of order n, a tree T has the maximal Wiener polarity index if and only

if T belongs to T3(n) ∪ T4(n), and WP (T ) =
⌈

n−2
2

⌉ ⌊
n−2

2

⌋
.



3 An Algorithm for Connected Graphs

Let G be a graph with ω components C1, . . . , Cω. Obviously,

WP (G) =

ω∑

i=1

WP (Ci).

Thus, to calculate the Wiener polarity index for general graphs, it is sufficient to study how to calculate

the index for connected graphs. In this section, we present an algorithm APG which computes the

index WP (G) for any given connected graph G on n vertices in time O
(
M(n)

)
, where M(n) denotes

the time necessary to multiply two n × n matrices of small integers (which is currently known to be

O(n2.376) [5]).

To any graph G = (V, E) with the vertex set V = {v1, . . . , vn} there corresponds an n× n matrix,

called the adjacency matrix of G and denoted by A(G) or A, in which aij = 1 if and only if vivj ∈ E.

We use Ak =
(
a
(k)
ij

)

n×n
to denote the k-th repeated product of A where k is a positive integer. To

establish our main result of this section, we first introduce some lemmas.

Lemma 4. Let G be a connected graph, and let A = (aij)n×n be the adjacency matrix of G. If G

has a path of length k between two vertices vi and vj, then a
(k)
ij > 0 where

(
a
(k)
ij

)

n×n
= Ak and k is a

positive integer.

Lemma 5. Let G be a connected graph, and let A = (aij)n×n be the adjacency matrix of G. If vi and

vj are two vertices of G, and a
(k)
ij > 0 then dG(vi, vj) ≤ k where

(
a
(k)
ij

)

n×n
= Ak and k is a positive

integer.

The above two lemmas are well-known results. In fact, one can readily prove them by induction

on k.

We use B to denote an n × n matrix, called the distance-2 matrix of G, in which bij = 1(i 6= j) if

and only if aij = 1 or a
(2)
ij > 0, and bii = 0. Furthermore, we use C to denote another n × n matrix,

called the distance-3 matrix of G, in which cij = 1(i 6= j) if and only if bij = 1 or a
(3)
ij > 0, and cii = 0.

Using the above notations, we can characterize the distance between two vertices of a connected graph

G by the distance-2 matrix and distance-3 matrix of G as follows.

Lemma 6. Let G be a connected graph of order n, and let B = (bij)n×n and C = (cij)n×n be the

distance-2 matrix and distance-3 matrix of G, respectively. If vi and vj are two distinct vertices of G,

then

i) bij = 1 if and only if dG(vi, vj) ≤ 2,

ii) cij = 1 if and only if dG(vi, vj) ≤ 3.

Proof. We only show the first assertion. If dG(vi, vj) = 2 then a
(2)
ij > 0 by Lemma 4. Clearly, aij = 1

if vivj is an edge of G. Thus bij = 1 by the definition the distance-2 matrix. Conversely, if bij = 1

then aij = 1 or a
(2)
ij > 0 by the definition the distance-2 matrix. Thus dG(vi, vj) ≤ 2 by Lemma 5.

One can easily prove the second assertion by a similar manner.



Using above lemmas, we can prove the main theorem in this section.

Theorem 4. Let G be a connected graph of order n, and let B and C be the distance-2 matrix and

distance-3 matrix of G, respectively. If Z := C − B then

WP (G) =

n∑

i=1

∑

j>i

zij ,

where (zij)n×n = Z.

Proof. Let vi and vj be two distinct vertices of G. By Lemma 6, zij = 1 if and only if dG(vi, vj) = 3.

Thus,
n∑

i=1

∑

j>i

zij = #
{
{u, v} | dG(u, v) = 3, u, v ∈ V

}
.

Therefore, WP (G) =
∑n

i=1

∑

j>i zij due to the definition of the Wiener polarity index.

According to the above theorem, we can design the following algorithm APG to compute the

Wiener polarity index WP (G) for any connected graph G represented by the adjacency matrix A of

G.

APG

Input: A connected graph G with vertex set V := {v[1], · · · , v[n]}

represented by the adjacency matrix A := (a[i][j]) of G.

Output: Wiener polarity index WP(G) of G.
begin

X := A · A and B := (b[i][j])

for i:=1 to n do
for j:=1 to n do

if i=j then b[i][j]:=0.

if i 6= j and
(
a[i][j] = 1 or x[i][j] > 0

)
then b[i][j]:=1, else

b[i][j]:=0.

Y := X · A and C := (c[i][j])

for i:=1 to n do
for j:=1 to n do

if i=j then c[i][j]:=0.

if i 6= j and
(
b[i][j] = 1 or y[i][j] > 0

)
then c[i][j]:=1, else

c[i][j]:=0.

Z:=C-B and WP(G):=0

for i:=1 to n do

for j:=i+1 to n do

WP(T) = WP(T) + z[i][j]end

The correctness of the algorithm APG follows from Theorem 4. It is not difficult to see that the

algorithm APG can be done in O
(
M(n)

)
time, where M(n) denotes the time necessary to multiply

two n×n matrices of small integers. Up to now, the complexity of the known fast matrix multiplication

algorithm M(n) by Coppersmith and Winograd [5] is O(n2.376). Thus we have the following result.

Theorem 5. Let G be a connected graph of order n. Then the algorithm APG correctly computes

Wiener polarity index WP (G) of G in O
(
M(n)

)
time.
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