Note on the energy of regular graphs *

Xueliang Li, Yiyang Li and Yongtang Shi
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lx1@nankai.edu.cn; liycldk@mail.nankai.edu.cn; shi@nankai.edu.cn

Abstract

For a simple graph G, the energy $\mathcal{E}(G)$ is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix $A(G)$. Let n, m, respectively, be the number of vertices and edges of G. One well-known inequality is that $\mathcal{E}(G) \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}\right)}$, where λ_{1} is the spectral radius. If G is k-regular, we have $\mathcal{E}(G) \leq k+$ $\sqrt{k(n-1)(n-k)}$. Denote $\mathcal{E}_{0}=k+\sqrt{k(n-1)(n-k)}$. Balakrishnan [Linear Algebra Appl. 387 (2004) 287-295] proved that for each $\epsilon>0$, there exist infinitely many n for each of which there exists a k-regular graph G of order n with $k<n-1$ and $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}<\epsilon$, and proposed an open problem that, given a positive integer $n \geq 3$, and $\epsilon>0$, does there exist a k-regular graph G of order n such that $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}>1-\epsilon$. In this paper, we show that for each $\epsilon>0$, there exist infinitely many such n that $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}>1-\epsilon$. Moreover, we construct another class of simpler graphs which also supports the first assertion that $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}<\epsilon$.

Keywords: graph energy; regular graph; Paley graph; open problem
AMS subject classifications 2000: 05C50; 05C90; 15A18; 92E10

[^0]
1 Introduction

Let G be a simple graph with n vertices and m edges. Denote by $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$ the eigenvalues of G. Note that λ_{1} is called the spectral radius. The energy of G is defined as $\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. For more information on graph energy we refer to $[7,8]$, and for terminology and notations not defined here, we refer to Bondy and Murty [4].

On many topics, regular graphs are the far best studied types of graphs. Yet, relatively little is known on the energy of regular graphs. The authors of [1] gave the energy of the complement of regular line graphs. Gutman et. al. [9] obtained lower and upper bounds for the energy of some special kinds of regular graphs. The paper [12] gave analytic expressions for the energy of two specially defined regular graphs. The authors of $[2,3,11,13]$ obtained the energy for very symmetric graphs: circulant graphs, Cayley graphs and unitary Cayley graphs.

One well-known inequality for the energy of a graph G is that $\mathcal{E}(G) \leq \lambda_{1}+$ $\sqrt{(n-1)\left(2 m-\lambda_{1}\right)}$. If G is k-regular, we have $\mathcal{E}(G) \leq k+\sqrt{k(n-1)(n-k)}$. Denote $\mathcal{E}_{0}=k+\sqrt{k(n-1)(n-k)}$. In [2], Balakrishnan investigated the energy of regular graphs and proved that for each $\epsilon>0$, there exist infinitely many n for each of which there exists a k-regular graph G of order n with $k \leq n-1$ and $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}<\epsilon$. In this paper, we construct another class of simpler graphs which also support the above assertion. Furthermore, we show that for each $\epsilon>0$, there exist infinitely many n satisfying that there exists a k-regular graph G of order n with $k<n-1$ and $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}>1-\epsilon$, which answers the following open problem proposed by Balakrishnan in [2]:

Open problem. Given a positive integer $n \geq 3$ and $\epsilon>0$, does there exist a k-regular graph G of order n such that $\frac{\mathcal{E}(G)}{\mathcal{E}_{0}}>1-\epsilon$ for some $k<n-1$?

2 Main results

Throughout this paper, we denote $V(G)$ the vertex set of G and $E(G)$ the edge set of G. Firstly, we will introduce the following useful result given by So et al. [5].

Lemma 1 Let $G-e$ be the subgraph obtained by deleting an edge e of $E(G)$. Then

$$
\mathcal{E}(G) \leq \mathcal{E}(G-e)+2 .
$$

We then formulate the following theorem by employing the above lemma.

Theorem 1 ([2]) For any $\varepsilon>0$, there exist infinitely many n for each of which there exists a k-regular graph G of order n with $k<n-1$ and $\mathcal{E}(G) / \mathcal{E}_{0}<$ ε.

Proof. Let $q>2$ be a positive integer. We take q copies of the complete graph K_{q}. Denote by v_{1}, \ldots, v_{q} the vertices of K_{q} and the corresponding vertices in each copy by $v_{1}[i], \ldots, v_{q}[i]$, for $1 \leq i \leq q$. Let $G_{q^{2}}$ be a graph consisting of q copies of K_{q} and q^{2} edges by joining vertices $v_{j}[i]$ and $v_{j}[i+1],(1 \leq i<q)$, $v_{j}[q]$ and $v_{j}[1]$ where $1 \leq j \leq q$. Obviously, the graph $G_{q^{2}}$ is $q+1$ regular. Employing Lemma 1 , deleting all the q^{2} edges joining two copies of K_{q}, we have $\mathcal{E}\left(G_{q^{2}}\right) \leq \mathcal{E}\left(q K_{q}\right)+2 q^{2}$. Thus, $\mathcal{E}\left(G_{q^{2}}\right) \leq 2 q(q-1)+2 q^{2}$. Then, it follows that

$$
\begin{aligned}
\frac{\mathcal{E}\left(G_{q^{2}}\right)}{\mathcal{E}_{0}} & \leq \frac{4 q^{2}-2 q}{q+1+\sqrt{(q+1)\left(q^{2}-1\right)\left(q^{2}-q-1\right)}} \\
& \leq \frac{4 q^{2}-2 q}{\left(q^{2}-q-1\right) \sqrt{q+1}} \rightarrow 0 \text { as } q \rightarrow \infty
\end{aligned}
$$

Thus, for any $\varepsilon>0$, when q is large enough, the graph $G_{q^{2}}$ satisfies the required condition. The proof is thus complete.

Theorem 2 For any $\varepsilon>0$, there exist infinitely many n satisfying that there exists a k-regular graph of order n with $k<n-1$ and $\mathcal{E}(G) / \mathcal{E}_{0}>1-\varepsilon$.

Proof. It suffices to verify an infinite sequence of graphs satisfying the condition. To this end, we focus on the Paley graph (for details see [6]). Let $p \geq 11$ be a prime and $p \equiv 1(\bmod 4)$. The Paley graph G_{p} of order p has the elements of the finite field $G F(q)$ as vertex set and two vertices are adjacent if and only if their difference is a nonzero square in $G F(q)$. It is well known that the Paley graph G_{p} is a $(p-1) / 2$-regular graph. And the eigenvalues are $\frac{p-1}{2}$
(with multiplicity 1) and $\frac{-1 \pm \sqrt{p}}{2}$ (both with multiplicity $\frac{p-1}{2}$). Consequently, we have

$$
\mathcal{E}\left(G_{p}\right)=\frac{p-1}{2}+\frac{-1+\sqrt{p}}{2} \cdot \frac{p-1}{2}+\frac{1+\sqrt{p}}{2} \cdot \frac{p-1}{2}=(p-1) \frac{1+\sqrt{p}}{2}>\frac{p^{3 / 2}}{2} .
$$

Moreover, $\mathcal{E}_{0}=\frac{p-1}{2}+\sqrt{\frac{p-1}{2}(p-1)\left(p-\frac{p-1}{2}\right)}$, we can deduce that

$$
\mathcal{E}\left(G_{p}\right) / \mathcal{E}_{0}>\frac{\frac{p^{3 / 2}}{2}}{\frac{p-1}{2}(\sqrt{p+1}+1)}>\frac{\frac{p^{3 / 2}}{2}}{\frac{p}{2}(\sqrt{p}+2)} \rightarrow 1 \text { as } p \rightarrow \infty .
$$

Therefore, for any $\varepsilon>0$ and some integer N, if $p>N$, it follows that $\mathcal{E}\left(G_{p}\right) / \mathcal{E}_{0}>1-\varepsilon$. The theorem is thus proved.

Remark. The Laplacian energy of a graph G with n vertices and m edges is defined as follows: $\mathcal{E}_{L}(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|$, where $\mu_{i}(i=1,2, \ldots, n)$ are the eigenvalues of the Laplacian matrix $L(G)=\Delta(G)-A(G)$, in which $A(G)$ is the adjacency matrix of G and $\Delta(G)$ is the diagonal matrix whose diagonal elements are the vertex degrees of G. For more information on the Laplacian energy, we refer the readers to [10]. Since for a k-regular graph the average degree $\frac{2 m}{n}$ is k and $\mu_{i}=k-\lambda_{i}$, it is easy to see that for regular graphs G, $\mathcal{E}_{L}(G)=\mathcal{E}(G)$. Therefore, all results for the energy of regular graphs also apply to the Laplacian energy.

Acknowledgement. The authors are very grateful to the referees for helpful comments and suggestions.

References

[1] F. Alinaghipour, B. Ahmadi, On the energy of complement of regular line graph, MATCH Commun. Math. Comput. Chem. 60 (2008) 427-434.
[2] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287-295.
[3] S. R. Blackburn, I. E. Shparlinski, On the average energy of circulant graphs, Lin. Algebra Appl. 428 (2008) 1956-1963.
[4] J.A. Bondy, U.S. R. Murty, Graph Theory, Springer-Verlag, Berlin, 2008
[5] W. So, M. Robbiano, N.M.M. de Abreu, I. Gutman, Applications of a theorem by Ky Fan in the theorey of graph energy, Lin. Algebra Appl., doi:10.1016/j.laa.2009.01.006.
[6] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
[7] I. Gutman, The energy of a graph: old and new results, in: Betten, A. Kohnert, A., Laue, R., Wassermann, A. (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, (2001) 196-211.
[8] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. EmmertStreib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim, (2009) 145-174.
[9] I. Gutman, S. Z. Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442.
[10] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.
[11] A. Ilić, The energy of unitary Cayley graph, Lin. Algebra Appl. 431 (2009) 1881-1889.
[12] G. Indulal, A. Vijayakumar, A note on energy of some graphs, MATCH Commun. Math. Comput. Chem. 59 (2008) 269-274.
[13] H. N. Ramaswamy, C. R. Veena, On the energy of unitary Cayley graphs, Electron. J. Combin. 16 (2009) \#N24.

[^0]: *Supported by NSFC No.10831001, PCSIRT and the "973" program.

