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Abstract. In this paper, we give two inverse pairs of identities involving products of the
Bernoulli polynomials and the Bernoulli polynomials of the second kind.
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1. Introduction
The Stirling numbers of the first kind s(n, k) and the Stirling numbers of the second kind
S(n, k) satisfy the following pair of classical inverse relations:
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The n-th Bernoulli polynomial B, (x) and the n-th Bernoulli polynomial of the second
kind b, (z) are defined by the generating functions
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Based on (1), we give the following two inverse pairs of identities involving products
of the Bernoulli polynomials and the Bernoulli polynomials of the second kind.

Theorem 1. Let y =21+ ---+ xn. Then forn > N, we have
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and for n > N + 1, we have
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Theorem 2. Let y =21+ ---+ xn. Then forn > N, we have
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and for n > N + 1, we have
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where () = x(x — 1) (& —n+ 1)/n! for complex number x.

Identity (2) was first discovered by Dilcher [3] by induction. Later, Chen [2] proved it
by evaluating certain Zeta functions. Follow Dilcher’s method, Wu and Pan [5] derived an
identity on the sum of products of Bernoulli numbers of the second kind recently, which
is the special case of (4) by setting 1 = --- =xzx = 0.

2. Proof of Theorem 1

We first give a lemma, in which the second identity is already proved in [1] by induction.
Here we offer a different proof.

Lemma 1. Let N be a positive integer. We have

1 1 N A
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and
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Proof. By (1), it suffices to prove one of those two formulas, say (6). The right hand side
of (6) equals
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as desired. O

Lemma 2. We have the binomial identities,

i (7;) (1= {(()’—1)"1(";1), Zihzerz;ise, (8)
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and for complex number x,y,

Lemma 3. We have
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where we denote [t"|f(t) the coefficient of [t"] in f(t).

Proof. Since
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it follows that
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Proof of Theorem 1. We first give a proof of (2).
By the generating function of Bernoulli polynomials, it can be checked that the left

hand side of (2) is equal to [£] (%) :
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From (6), one obtains
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From (10), the last summation equals
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Changing the order of summations and replacing 7 by N — 1 — j, we complete the proof

of (2).
Mutiplying both sides of (7) by (—=1)Ne®t¥*! then using Lemma 3 to compare the
coefficients of ¢ on the both sides of the new formula, we obtain (3). O

3. Proof of Theorem 2

Lemma 4. Let N be a positive integer. We have
N .
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Proof. By (1), we only need to prove (11). It is easy to check that
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Note that (see [4])
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Then identity (11) can be deduced from (13) and (14). O

Lemma 5. Let x be complex number, and m,n,r be integers, for m,n > 0 we have

oo (mtza)) = (i) 0

Proof. We have

Extracting the coefficient of t" yields

w3 S (TN (L) S ()
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Now changing the summation order appropriately then applying (8) and (9) and notic-
ing (7%) = (=1)"(*""""), we get the desired result. O
Proof of Theorem 2. By the generating function of Bernoulli polynomials of the second

kind, the left side of (1) cquals "] ({2 052).
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From (11) we have

Yo be(w) by (o)
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From (15), the last summation equals
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Now changing the order of summations, and replacing 7 by n — k — 7 — 1, we complete
the proof of (4).

Multiplying both sides of (12) by ¢ +1(1+¢)¥*¥  then using Lemma 5 to compare the
coefficients of ¢" on the both sides of the new formula, we derive (5). O
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