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Abstract3

A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈4

{1, . . . , k}, to each edge e. An edge-weighting naturally induces a vertex coloring c5

by defining c(u) = Σe3uw(e) for every u ∈ V (G). A k-edge-weighting of a graph G6

is vertex-coloring if the induced coloring c is proper, i.e., c(u) 6= c(v) for any edge7

uv ∈ E(G). When k ≡ 2 (mod 4) and k ≥ 6, we prove that if G is k-colorable and8

2-connected, δ(G) ≥ k − 1, then G admits a vertex-coloring k-edge-weighting. We also9

obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.10

Keywords. vertex coloring; edge-weighting;11

AMS Classification: 05C1512

1 Introduction13

In this paper, we consider only finite, undirected and simple graphs. For a vertex v of a14

graph G = (V, E), N(v) denotes the set of vertices which are adjacent to v. For a vertex set15

S ⊆ V , N(S) denotes the set of vertices which are adjacent to at least one vertex of S. Let16

d(v) and δ(G) denote the degree of a vertex v and the minimum degree of G, respectively.17

A k-vertex coloring c of G is an assignment of k integers, {1, 2, . . . , k}, to the vertices of G.18

The color of a vertex v is denoted by c(v). The coloring is proper if no two distinct adjacent19

vertices share the same color. A graph G is k-colorable if G has a proper k-vertex coloring.20

The chromatic number χ(G) is the minimum number r such that G is r-colorable. Notations21

and terminologies that are not defined here may be found in [3]. A k-edge-weighting w of22
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a graph G is an assignment of an integer weight w(e) ∈ {1, . . . , k} to each edge e of G.1

An edge weighting naturally induces a vertex coloring c(u) by defining c(u) = Σe3uw(e)2

for every u ∈ V (G). A k-edge-weighting of a graph G is vertex-coloring if for every edge3

e = uv, c(u) 6= c(v) and we call that G admits a vertex-coloring k-edge-weighting.4

If a graph has an edge as a component, it can not have a vertex-coloring k-edge-5

weighting. So in this paper, we only consider graphs without K2 component and refer6

those graphs as nice graphs.7

In [5], Karoński, ÃLuczak and Thomason initiated the study of vertex-coloring k-edge-8

weighting and they brought forward a conjecture as following.9

Conjecture 1.1 Every nice graph admits a vertex-coloring 3-edge-weighting.10

The above conjecture holds for 3-colorable graphs, which is due to Karoński, ÃLuczak11

and Thomason [5]. In fact, they proved a more general result that if k is odd, then every12

k-colorable nice graph admits a vertex-coloring k-edge-weighting. The proof of this result13

is elegant, by taking advantage of properties of abelian groups. Naturally, we next turn to14

the cases of k even. Duan, Lu and Yu [4] showed that every k-colorable nice graph admits a15

vertex-coloring k-edge-weighting for k ≡ 0 (mod 4). In this paper, we continue the study of16

vertex-coloring k-edge-weighting for k ≡ 2 (mod 4) and k ≥ 6. We show that a k-colorable17

2-connected graph G, where k ≡ 2 (mod 4) and k ≥ 6, admits a vertex-coloring k-edge-18

weighting. We can also obtain the same conclusion by eliminating 2-connectivity condition19

but posing some restriction of degrees.20

To conclude this section, we introduce two earlier results as our lemmas for the proofs21

of main results.22

Lemma 1.2 (Karoński, ÃLuczak and Thomason [5]) Let G be a connected non-bipartite23

graph, {tv | v ∈ V (G)} be any given vertex-coloring of G, and k be a positive integer. If24 ∑
v∈V tv is even, then there exists a k-edge-weighting w of G such that for all v ∈ V (G),25 ∑
v∈e w(e) ≡ tv (mod k).26

Lemma 1.3 (Duan, Lu and Yu [4]) Let G be a k-colorable graph, where (U0, U1, . . . , Uk−1)27

denote coloring classes of G. Then G admits a vertex-coloring k-edge-weighting, if any of28

following conditions holds:29

(i) k ≡ 0 (mod 4);30

(ii) δ(G) ≤ k − 2;31
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(iii) there exists a class Ui with |Ui| ≡ 0 (mod 2) for some i ∈ {0, 1, . . . , k − 1};1

(iv) |V (G)| is odd.2

2 Connectivity and edge-weighting3

In this section, we use connectivity as a sufficient condition to insure a vertex-coloring4

k-edge-weighting.5

Since every nice graph admits a vertex-coloring 13-edge-weighting (see [6]), we need only6

to consider the cases of k ≡ 2 (mod 4) and k ≤ 12, i.e., k ∈ {6, 10}.7

Theorem 2.1 Let G be a k-colorable graph, where k ∈ {6, 10}, and v be a vertex of V (G)8

with d(v) = δ(G). Denote N δ(v) = {x ∈ N(v) | d(x) = δ(G)}. If N δ(v) = ∅ and G − v is9

connected, then G admits a vertex-coloring k-edge-weighting.10

Proof. Denote coloring classes of G by (U0, U1, . . . , Uk−1). If there exists a class Ui with11

|Ui| ≡ 0 (mod 2), we are done by Lemma 1.3. So we may assume that |Ui| is odd for all12

i = 0, 1, . . . , k − 1.13

Without loss of generality, assume v ∈ U0 and |N(v) ∩ Ui| is odd for i = 1, 2, . . . , l,14

and |N(v) ∩ Ui| is even for i = l + 1, . . . , k − 1 (0 ≤ l ≤ k − 1). Note that l = 0 means15

that |N(v) ∩ Ui| is even for i = 1, . . . , k − 1, and in this case the proof is similar. Let16

W0 = (U0 − v) ∪ (U1 ∩ N(v)), Wi = (Ui − N(v)) ∪ (Ui+1 ∩ N(v)) for i = 1, 2, . . . , k − 2,17

Wk−1 = Uk−1−N(v). Then |Wi| is odd except i = l. The number of indices i with |Wi| odd18

in {0, . . . , k−1}−{l} is even, so
∑k−1

i=0,i6=l |Wi|(i− l+1) is even and thus
∑k−1

i=0 |Wi|(i− l+1)19

is even. Let tx, where x ∈ V (G−v), be a given set of vertex-coloring satisfying tx ≡ i− l+120

(mod k) for x ∈ Wi. Then
∑

x∈V (G−v) tx is even. So G − v has a vertex-coloring k-edge-21

weighting such that c(x) ≡ tx ≡ i− l + 1 (mod k) for all x ∈ Wi by Lemma 1.2. Assign the22

edges incident to v with weight 1. Then c(v) = δ(G) and N δ(v) = ∅ implies c(v) < c(u) for23

u ∈ N(v). Moreover, c(x) ≡ i− l + 1 (mod k) for all x ∈ Ui and x 6= v. Hence G admits a24

vertex-coloring k-edge weighting. 225

Lemma 2.2 Let G be a 2-connected graph and v be a vertex of V (G) with d(v) = δ(G) ≥ 5.26

Then there exists S ⊆ N(v) with |S| = δ − 3 such that G− v contains a spanning subgraph27

M satisfying dM (x) ≤ dG(x)− 2 for all x ∈ S.28

Proof. Suppose, to the contrary, that there exists no such a required connected spanning29

subgraph in G − v. Then we find a connected spanning subgraphs T so that the vertex30

set R = {x ∈ N(v) | dT (x) ≤ dG(x) − 2} is maximized. Among subgraphs T satisfying31
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the maximality condition of R, we choose a maximum graph with respect to the number of1

edges, say M . Then dM (x) = dG(x)− 2 for all x ∈ R.2

So |R| = r ≤ δ − 4. Let v1, v2, v3, v4 ∈ N(v) − R. Set H = M ∪ {vv1}. Then every3

edge incident with v1, v2, v3, v4 is a cut-edge of M in G− v since R is maximum and every4

cut-edge of M is also a cut-edge of H, and vv1 is a cut-edge of H as well. We observe5

that N(v1)∪N(v2)∪N(v3)∪N(v4)−{v, v1, v2, v3, v4} ≥ 4δ− 10, that is, there are at least6

4δ − 10 cut-vertices. Thus we need to add at least 4δ−10
2 + 1 = 2δ − 4 edges to H so that7

the resulting graph is 2-connected, because at least 4δ−10
2 edges are required to link the cut-8

vertices and one more edge incident to v. On the other hand, G is 2-connected, we delete9

at most δ− 1+ r edges from G to obtain H, so we have δ− 1+ r ≥ |E(G)−E(H)| ≥ 2δ− 410

and r ≥ δ − 3, a contradiction. 211

Theorem 2.3 Let G be a k-colorable graph, where k ≡ 2 (mod 4) and k ≥ 6. If G is12

2-connected and δ(G) ≥ k − 1, then G admits a vertex-coloring k-edge-weighting.13

Proof. Let (U0, . . . , Uk−1) be coloring classes of G. Let v ∈ U0 and d(v) = δ(G) ≥ 5. Let14

δ(G) ≡ r (mod k). Without loss of generality, assume that |U0|, . . . , |Uk−1| are all odd by15

Lemma 1.3. If N(v) ∩ Ui = ∅ for some i, we can move v into Ui from U0, the new classes16

are also coloring classes of G. Hence |U0| and |Ui| are both even and so G admits a vertex-17

coloring k-edge-weighting by Lemma 1.3. So N(v) ∩ Ui 6= ∅ for i = 1, . . . , k − 1. Without18

loss of generality, suppose |N(v) ∩ Ui| is odd for i = 1, . . . , l and |N(v) ∩ Ui| is even for19

i = l+1, . . . , k−1 (note that l = 0 means that there exists no Ui so that |N(v)∩Ui| is odd).20

Let W0 = (U0−v)∪(N(v)∩U1), Wk−1 = Uk−1−N(v) and Wi = (N(v)∩Ui+1)∪(Ui −N(v))21

for i = 1, . . . , k − 2. Then |Wl| is even and |Wi| is odd for any i 6= l. By Lemma 2.2, there22

exists a vertex set S ⊆ N(v) with |S| = δ−3 such that G− v contains a spanning subgraph23

M which satisfies dM (x) ≤ dG(x)−2 for all x ∈ S. (Note that, the spanning subgraph M is24

obtained by deleting at least one edge incident with each vertex x of S.) Since |S| = δ − 3,25

there are three vertices in N(v)−S, which are in at most three color classes, say Ui, Uj , Um.26

Then there are at most three color classes such that (Ui∪Uj ∪Um)∩N(v) * S. Thus there27

are at least two color classes, say Ua and Ub, so that N(v) ∩ Ua ⊆ S and N(v) ∩ Ub ⊆ S.28

We consider the following three cases.29

Case 1. |N(v) ∩ Ua| is odd and |N(v) ∩ Ub| is even.30

We may assume a = l, b = l + 1. We first give a set of target colors tx for all x ∈ V (M)
so that

∑
x∈V (M) tx is even, as follows.

(∗) if r is even, tx ≡ i− l + r − 1 (mod k) for x ∈ Wi;

if r is odd, tx ≡ i− l + r (mod k) for x ∈ Wi.
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It is not hard to verify that
∑

x∈V (M) tx is even. In fact, if r is even, since |Wl| is even1

and |Wi| is odd for i 6= l, we assign tx ≡ r − 1 (mod k) for x ∈ Wl and thus tx is odd.2

Since k ≡ 2 (mod 4), the number of odd weights in {1, 2, . . . , k} − {r − 1} is even. And3

tx ≡ i − l + r − 1 (mod k) for x ∈ Wi, so
∑

x∈V (M) tx is even. If r is odd, then tx ≡ r4

(mod k) for x ∈ Wl, and tx is also odd. The number of odd weights in {1, 2, . . . , k} − {r}5

is even and thus
∑

x∈V (M) tx is even again.6

Then, by Lemma 1.2, we have an edge-weighting of M such that for all u ∈ V (M),7 ∑
u∈e w(e) ≡ tu (mod k) and for any two vertices x, y ∈ V (M), c(x) ≡ c(y) (mod k) if8

and only if they belong to the same Wi for some i. We assign the edges incident with v9

with weight 1 and the edges of E(G− v)−E(M) with weight k. Then for any two vertices10

x, y ∈ V (G)− v, c(x) ≡ c(y) (mod k) if and only if they belong to the same Ui for some i.11

Now we have c(v) = δ(G) ≡ r (mod k). For any x ∈ N(v), c(x) ≡ r (mod k), only if x ∈ Ub12

(resp. Ua) when r is even (resp. odd). If c(x) ≡ c(v) (mod k) for x ∈ N(v)∩(Ua∪Ub), then13

c(x) is greater than c(v) by at least k since d(x) ≥ d(v). So we obtain an edge-weighting of14

G such that the resulting vertex-coloring is proper (see Figure 1).15

U_{0} U_{5}U_{4}U_{3}U_{2}U_{1}

v

a a a a a a a a a a

b
b

b

cPSfrag replacements

U0

U1

U2 = Ua = Ul

U3 = Ub

U4

U5

1
6

N(v) ∩ U1

Figure 1: k = 6, l = 2 and r is odd. The weights of edges in G−M are labeled.

Case 2. Both |N(v) ∩ Ua| and |N(v) ∩ Ub| are even.16

Let a = l + 1, b = l + 2. We can give a set of target colors tx for all x ∈ V (M). If r is17

even, we choose tx ≡ i− l+r−1 (mod k) for x ∈ Wi. If r is odd, we choose tx ≡ i− l+r−218

(mod k) for x ∈ Wi. It is routine to check that
∑

x∈V (M) tx is even as in Case 1. By19

Lemma 1.2, we have an edge-weighting of M such that
∑

x∈e w(e) ≡ tx (mod k) for all20
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x ∈ V (M). Now we assign all edges incident with v with weight 1, then for any two vertices1

x, y ∈ V (G) − v, c(x) ≡ c(y) (mod k) if and only if they belong to the same Ui for some2

i. Then c(v) ≡ r (mod k). For any x ∈ N(v), c(x) ≡ r (mod k), only if x ∈ Ua (resp. Ub)3

when r is even (resp. odd). Then we assign all edges in E(G − v) − E(M) with weight k.4

For x ∈ N(v)∩ (Ua ∪Ub) and c(x) ≡ c(v) (mod k), we see that c(x) is greater than c(v) by5

at least k. Still we have c(x) ≡ c(y) (mod k) if and only if they belong to the same Ui for6

some i, for any two vertices x 6= v 6= y. So we obtain an edge-weighting of G such that the7

resulting vertex-coloring is proper.8

Case 3. Both |N(v) ∩ Ua| and |N(v) ∩ Ub| are odd.9

Let a = l − 1, b = l. We give a set of target colors tx for all x ∈ V (M). If r is even, we10

choose tx ≡ i− l + r + 1 (mod k) for x ∈ Wi; if r is odd, tx ≡ i− l + r (mod k) for x ∈ Wi.11

We can check that
∑

x∈V (M) tx is even. By Lemma 1.2, we have an edge-weighting of M12

such that
∑

x∈e w(e) ≡ tx (mod k) for all x ∈ V (M). Now we assign all edges incident with13

v with weight 1 and all edges in E(G−v)−E(M) with weight k. Then for any two vertices14

x 6= v 6= y, c(x) ≡ c(y) (mod k) if and only if they belong to the same Ui for some i. For15

any x ∈ N(v), c(x) ≡ r (mod k), only if x ∈ Ua (resp. Ub) when r is even (resp. odd). For16

x ∈ N(v) ∩ (Ua ∪ Ub) and c(x) ≡ c(v) (mod k), we see that c(x) is greater than c(v) by17

at least k. So we obtain an edge-weighting of G such that the resulting vertex-coloring is18

proper. 219

Remark: Under the condition of 3-connectivity, the conclusion of Lemma 2.2 can be20

proved by a constructive method and thus we are able to design an efficient algorithm to21

find a k-edge-weighting such that the induced vertex-coloring is proper.22

3 Vertex-coloring k-edge-weighting with degree conditions23

Let a and b be two integers such that a ≤ b. We denote all integers i with a ≤ i ≤ b by24

[a, b]. Use degree intervals as sufficient conditions, we have the following theorem.25

Theorem 3.1 Let G be a k-colorable graphs with girth g(G) ≥ 4, where k ∈ {6, 10}. Then26

(i) if [d(v)+10, 5d(v)−10]∩ [6d(u)−5, 6d(u)−1] = ∅ for any uv ∈ E(G), then G admits27

a vertex-coloring 6-edge-weighting.28

(ii) if [d(v) + 36, 9d(v) − 36] ∩ [10d(u) − 9, 10d(u) − 1] = ∅ for any uv ∈ E(G), then G29

admits a vertex-coloring 10-edge-weighting.30

Proof. We only provide a proof for part (i) here, since the proof of part (ii) is very similar31

and is required only a few minor modifications.32
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By Lemma 1.3, we may assume that |Ui| is odd for i = 0, . . . , 5 and δ(G) ≥ 5. As before,1

for every v ∈ Uj , N(v) ∩ Ui 6= ∅, for i ∈ {0, . . . , 5} − {j}.2

Claim 1. There exists a vertex x in Ui, for some i, such that the vertices of G−N(x)3

in
⋃

j 6=i Uj are all in a same component of G−N(x).4

Suppose that Claim 1 is not true. Choose a vertex x such that the size of a maximum5

component of G−N(x) is largest, say G1 = (U1
0 ∪ U1

1 ∪ . . . ∪ U1
5 , E1) is such a component.6

We may assume x ∈ U0 and let another component of the graph G − N(x) besides G1 be7

G2 = (U2
0 ∪ U2

1 ∪ . . . ∪ U2
5 , E2). Without loss of generality, assume that U2

i is nonempty for8

i = 0, . . . , l, where l ≥ 1. If there exists a vertex x′ ∈ V (G2) which is not incident with9

some vertex u ∈ N(V (G1)) ∩ N(x), then G1 together with u is in a same component of10

G − N(x′) and the size of the maximum component of G − N(x′) is larger than that for11

x, a contradiction to the choice of x. So every vertex of G2 is incident with all vertices of12

N(V (G1)) ∩N(x) and thus we can find a triangle, a contradiction with g(G) ≥ 4.13

From Claim 1, we see that G − N(x) has a component G1 = (U1
0 ∪ U1

1 ∪ . . . ∪ U1
5 , E1)14

with U1
i = Ui \N(x) and all other components are isolated vertices in U0.15

Now we consider two cases.16

Case 1. |N(x) ∩ Ui| are odd for i = 1, . . . , l, where l ≥ 1.17

In this case, |U1
1 | is even. Then it is easy to show that there is a permutation of18

U1
2 , U1

3 , U1
4 , U1

5 , saying W2,W3,W4,W5 such that
∑5

i=2 i|Wi| is even. Let W0 = U1
0 and19

W1 = U1
1 . Then we have a set of target colors tu for all u ∈ V (G1), tu = 6 for u ∈ W020

and tu = i for u ∈ Wi, i 6= 0. Then
∑

u∈V (G1) tu is even. By Lemma 1.2, G1 has a vertex-21

coloring 6-edge-weighting such that c(u) ≡ i (mod 6) for u ∈ Wi, i = 0, . . . , 5. Next assign22

the edges xy with weight i if y ∈ Wi and the other edges in E(G−v)−E(G1) with 6. Then23

c(u) 6= c(v) for u ∈ Wi, v ∈ Wj and i 6= j. Note that if |N(x) ∩ Ui| = 1 for i = 2, 3, 4, 5,24

then c(x) = d(x) − 4 + 14 = d(x) + 10, which achieves the lower end of the interval; if25

|N(x) ∩ Ui| = 1 for i = 1, 2, 3, 4, then c(x) = 5(d(x)− 4) + 10 = 5d(x)− 10, which achieves26

the upper end of the interval. So we have d(x) + 10 ≤ c(x) ≤ 5d(x)− 10. For all u ∈ N(x),27

6d(u)−5 ≤ c(u) ≤ 6(d(u)−1)+5 = 6d(u)−1, which implying c(x) 6= c(u) for all u ∈ N(x).28

Therefore we have a vertex-coloring 6-edge-weighting of G.29

Case 2. |N(x) ∩ Ui| are even for i = 1, 2 . . . , 5.30

Then we can see d(x) ≥ 10. In this case, U1
i are odd for i = 1, 2, . . . , 5. Note that31

there is a vertex u∗ ∈ N(x), say u∗ ∈ U1, adjacent to some vertex v∗ ∈ U0 ∪ U2 ∪ · · · ∪ U5.32

Let G′ be the graph obtained from G1 by adding the vertex u∗ and the edge u∗v∗. Let33

W2,W3,W4,W5 be a permutation of U1
2 , U1

3 , U1
4 , U1

5 such that
∑5

i=2 i|Wi| is even. Let W0 =34
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U1
0 and W1 = U1

1 ∪ {u∗}. Then W1 is even. We assign target colors tv to v ∈ V (G1),1

where tv = 6 for v ∈ W0 and tv = i for v ∈ Wi (i 6= 0). Then
∑

v∈V (G′) tv is even.2

According to Lemma 1.2, the edges of G′ can be assigned weights from {1, 2, . . . , 6} so that3

c(u) ≡ i (mod 6) for u ∈ Wi, i = 0, . . . , 5. Next assign the edges xy (except xu∗) with4

weight i if y ∈ Ui and the remaining edges of (E(G−v)−E(G1))∪{xu∗} with 6. As before,5

d(x)+15 ≤ c(x) ≤ 5d(x)−5. For all u ∈ N(x), 6d(u)−5 ≤ c(u) ≤ 6(d(u)−1)+5 = 6d(u)−1,6

which implying c(x) 6= c(u) for all u ∈ N(x). So it is a vertex-coloring 6-edge-weighting of7

G. 28

From the Theorem 3.1, we have the following interesting corollary.9

Corollary 3.2 Let G be a k-colorable [r, r +1]-graph with girth g(G) ≥ 4, where k ≥ 6 and10

r ≥ 2. Then G admits a vertex-coloring k-edge-weighting.11
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