10

11

12

13

14

15

16

17

18

19

20

21

22

A note on vertex-coloring edge-weighting of graphs *
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Abstract

A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) €
{1,...,k}, to each edge e. An edge-weighting naturally induces a vertex coloring ¢
by defining c(u) = 3es,w(e) for every u € V(G). A k-edge-weighting of a graph G
is wvertez-coloring if the induced coloring ¢ is proper, i.e., c¢(u) # c(v) for any edge
wv € E(G). When k = 2 (mod 4) and k > 6, we prove that if G is k-colorable and
2-connected, §(G) > k — 1, then G admits a vertex-coloring k-edge-weighting. We also

obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.

Keywords. vertex coloring; edge-weighting;
AMS Classification: 05C15

1 Introduction

In this paper, we consider only finite, undirected and simple graphs. For a vertex v of a
graph G = (V, E), N(v) denotes the set of vertices which are adjacent to v. For a vertex set
S CV, N(S) denotes the set of vertices which are adjacent to at least one vertex of S. Let
d(v) and 6(G) denote the degree of a vertex v and the minimum degree of G, respectively.
A k-vertex coloring ¢ of G is an assignment of k integers, {1,2,...,k}, to the vertices of G.
The color of a vertex v is denoted by ¢(v). The coloring is proper if no two distinct adjacent
vertices share the same color. A graph G is k-colorable if G has a proper k-vertex coloring.
The chromatic number x(G) is the minimum number r such that G is r-colorable. Notations

and terminologies that are not defined here may be found in [3]. A k-edge-weighting w of

*This work is supported in part by 973 Project of Ministry of Science and Technology of China and
Natural Sciences and Engineering Research Council of Canada.
fCorresponding email: yu@tru.ca (Q. Yu)
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a graph G is an assignment of an integer weight w(e) € {1,...,k} to each edge e of G.
An edge weighting naturally induces a vertex coloring c(u) by defining c(u) = Yes,w(e)
for every u € V(G). A k-edge-weighting of a graph G is vertex-coloring if for every edge

e = uv, c(u) # c(v) and we call that G admits a vertez-coloring k-edge-weighting.

If a graph has an edge as a component, it can not have a vertex-coloring k-edge-
weighting. So in this paper, we only consider graphs without Ko component and refer

those graphs as nice graphs.

In [5], Karoniski, Luczak and Thomason initiated the study of vertex-coloring k-edge-

weighting and they brought forward a conjecture as following.
Conjecture 1.1 Fvery nice graph admits a vertez-coloring 3-edge-weighting.

The above conjecture holds for 3-colorable graphs, which is due to Karonski, Luczak
and Thomason [5]. In fact, they proved a more general result that if k is odd, then every
k-colorable nice graph admits a vertex-coloring k-edge-weighting. The proof of this result
is elegant, by taking advantage of properties of abelian groups. Naturally, we next turn to
the cases of k even. Duan, Lu and Yu [4] showed that every k-colorable nice graph admits a
vertex-coloring k-edge-weighting for £ = 0 (mod 4). In this paper, we continue the study of
vertex-coloring k-edge-weighting for £ = 2 (mod 4) and k > 6. We show that a k-colorable
2-connected graph G, where k = 2 (mod 4) and k > 6, admits a vertex-coloring k-edge-
weighting. We can also obtain the same conclusion by eliminating 2-connectivity condition

but posing some restriction of degrees.

To conclude this section, we introduce two earlier results as our lemmas for the proofs

of main results.

Lemma 1.2 (Karonski, Luczak and Thomason [5]) Let G be a connected non-bipartite
graph, {t, | v € V(G)} be any given vertex-coloring of G, and k be a positive integer. If
Y vey to is even, then there exists a k-edge-weighting w of G such that for all v € V(G),

ZUEew(e) =ty (mOd k‘)

Lemma 1.3 (Duan, Lu and Yu [4]) Let G be a k-colorable graph, where (Uy,Un,...,Ux_1)
denote coloring classes of G. Then G admits a vertex-coloring k-edge-weighting, if any of

following conditions holds:

(i) k=0 (mod 4);

(i) 6(G) < k—2;
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(7i1) there exists a class U; with |U;] =0 (mod 2) for some i € {0,1,...,k—1};

(v) |V(G)] is odd.

2 Connectivity and edge-weighting

In this section, we use connectivity as a sufficient condition to insure a vertex-coloring
k-edge-weighting.

Since every nice graph admits a vertex-coloring 13-edge-weighting (see [6]), we need only
to consider the cases of k =2 (mod 4) and k < 12, i.e., k € {6,10}.

Theorem 2.1 Let G be a k-colorable graph, where k € {6,10}, and v be a vertex of V(G)
with d(v) = 6(G). Denote N°(v) = {z € N(v) | d(z) = 6(G)}. If N°(v) =0 and G — v is

connected, then G admits a vertex-coloring k-edge-weighting.

Proof. Denote coloring classes of G by (Ug, Uy, ...,Ux_1). If there exists a class U; with
|U;| = 0 (mod 2), we are done by Lemma 1.3. So we may assume that |U;| is odd for all
i=0,1,.. . k—1.

Without loss of generality, assume v € Uy and |N(v) NU;| is odd for i = 1,2,...,1,
and [N(v)NU;|iseven fori =1+1,...,k—1 (0 <1 <k —1). Note that I = 0 means
that |N(v) NU;| is even for @ = 1,...,k — 1, and in this case the proof is similar. Let
Wo = (Uy —v) U (Ui NN()), W; = (Ui — N(v)) U (U1 N N(v)) for i =1,2,...,k —2,
Wi—1 = Uk_1— N(v). Then |W;| is odd except i = I. The number of indices ¢ with |W;| odd
in {0,...,k—1}—{l} is even, so Zf:_&#l |Wi|(i —141) is even and thus Zf:_ol |[Wil(i—1+41)
is even. Let t,, where € V(G —v), be a given set of vertex-coloring satisfying t, =i —1+1
(mod k) for € W;. Then ) .y (g_y) ta is even. So G — v has a vertex-coloring k-edge-
weighting such that ¢(z) =t, =i—1+1 (mod k) for all x € W; by Lemma 1.2. Assign the
edges incident to v with weight 1. Then ¢(v) = 6(G) and N°(v) = @ implies ¢(v) < ¢(u) for
u € N(v). Moreover, ¢(z) =i — 141 (mod k) for all z € U; and = # v. Hence G admits a

vertex-coloring k-edge weighting. O

Lemma 2.2 Let G be a 2-connected graph and v be a vertex of V(G) with d(v) = 6(G) > 5.
Then there exists S C N(v) with |S| = § — 3 such that G — v contains a spanning subgraph
M satisfying dayr(x) < dg(x) — 2 for allz € S.

Proof. Suppose, to the contrary, that there exists no such a required connected spanning
subgraph in G — v. Then we find a connected spanning subgraphs 7' so that the vertex

set R = {z € N(v) | dr(z) < dg(x) — 2} is maximized. Among subgraphs T satisfying
3
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the maximality condition of R, we choose a maximum graph with respect to the number of
edges, say M. Then dy(z) = dg(z) — 2 for all z € R.

So |R| =r <40 —4. Let vi,va,v3,v4 € N(v) — R. Set H = M U{vv;}. Then every
edge incident with v1,v9,v3,v4 is a cut-edge of M in G — v since R is maximum and every
cut-edge of M is also a cut-edge of H, and vv; is a cut-edge of H as well. We observe
that N(v1) UN(v2) UN(v3) U N(vg) —{v,v1,v2,v3,04} > 45 — 10, that is, there are at least
40 — 10 cut-vertices. Thus we need to add at least 4‘5%10 4+ 1 =26 — 4 edges to H so that
the resulting graph is 2-connected, because at least @ edges are required to link the cut-
vertices and one more edge incident to v. On the other hand, G is 2-connected, we delete
at most 6 — 1+ edges from G to obtain H, so we have 6 —1+4+r > |E(G)— E(H)| > 25 —4

and r > 0 — 3, a contradiction. O

Theorem 2.3 Let G be a k-colorable graph, where k = 2 (mod 4) and k > 6. If G is
2-connected and 6(G) > k — 1, then G admits a vertez-coloring k-edge-weighting.

Proof. Let (Up,...,Ux_1) be coloring classes of G. Let v € Uy and d(v) = 6(G) > 5. Let
d(G) =r (mod k). Without loss of generality, assume that |Up], ..., |Ux_1| are all odd by
Lemma 1.3. If N(v) N U; = 0 for some i, we can move v into U; from Uy, the new classes
are also coloring classes of G. Hence |Uy| and |U;| are both even and so G admits a vertex-
coloring k-edge-weighting by Lemma 1.3. So N(v) N U; # 0 for i = 1,...,k — 1. Without
loss of generality, suppose |N(v) NU;| is odd for ¢ = 1,...,l and |N(v) NUj| is even for
i=10+4+1,...,k—1 (note that [ = 0 means that there exists no U; so that |N(v)NU;] is odd).
Let Wy = (UQ—U)U(N(U)QUl), Wi = Uk_l—N(v) and W; = (N(U)ﬂUi_H)U(Ui - N(U))
fori =1,...,k —2. Then |W| is even and |W;| is odd for any i # [. By Lemma 2.2, there
exists a vertex set S C N(v) with |S| = 6 — 3 such that G — v contains a spanning subgraph
M which satisfies dys(z) < dg(z) —2 for all z € S. (Note that, the spanning subgraph M is
obtained by deleting at least one edge incident with each vertex x of S.) Since |S| =6 — 3,
there are three vertices in N(v) —.S, which are in at most three color classes, say U;, U;, U,.
Then there are at most three color classes such that (U; UU; UU,,) NN (v) € S. Thus there
are at least two color classes, say U, and Uy, so that N(v) NU, C S and N(v)NU, C S.

We consider the following three cases.
Case 1. |N(v) NU,| is odd and |N(v) NUy| is even.

We may assume a =1, b =1+ 1. We first give a set of target colors t, for all x € V(M)
so that }° cy(a) te is even, as follows.

(¢) if riseven, t, =i—Il4+r—1 (mod k) for x € W;;
ifrisodd, t,=i—1l+r (mod k) for z € W;.
4
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It is not hard to verify that }- ¢y () te is even. In fact, if 7 is even, since [W;] is even
and |W;] is odd for i # [, we assign t, = r — 1 (mod k) for x € W, and thus ¢, is odd.
Since k = 2 (mod 4), the number of odd weights in {1,2,...,k} — {r — 1} is even. And
ty =i—1+r—1 (mod k) for z € W;, so Eer(M) ty is even. If r is odd, then t, = r
(mod k) for x € W, and t, is also odd. The number of odd weights in {1,2,...,k} — {r}

is even and thus 3,y () te is even again.

Then, by Lemma 1.2, we have an edge-weighting of M such that for all u € V(M),
Y ucew(e) = t, (mod k) and for any two vertices z,y € V(M), c(x) = c(y) (mod k) if
and only if they belong to the same W; for some 7. We assign the edges incident with v
with weight 1 and the edges of E(G —v) — E(M) with weight k. Then for any two vertices
z,y € V(G) — v, c(x) = c(y) (mod k) if and only if they belong to the same U; for some i.
Now we have ¢(v) = 0(G) =r (mod k). For any = € N(v), ¢(x) =r (mod k), only if x € U,
(resp. U,) when r is even (resp. odd). If ¢(x) = ¢(v) (mod k) for x € N(v)N(UyUUy), then
c(x) is greater than c(v) by at least k since d(x) > d(v). So we obtain an edge-weighting of

G such that the resulting vertex-coloring is proper (see Figure 1).

Us = U, = U, e

Uo
Uy

Us =Up //
Uy |
Us |
1 //
6 U0
N(’U) Ny

Figure 1: k=6, =2 and r is odd. The weights of edges in G — M are labeled.

Case 2. Both |N(v) NUy,| and |N(v) NUy| are even.

Let a =141, b=1+2. We can give a set of target colors ¢, for all z € V/(M). If r is
even, we choose t, =i—I1+r—1 (mod k) for x € W;. If r is odd, we choose t, =i—1+r—2
(mod k) for x € W;. It is routine to check that erV(M) t, is even as in Case 1. By
Lemma 1.2, we have an edge-weighting of M such that ) . w(e) = t; (mod k) for all

xrEe

5
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x € V(M). Now we assign all edges incident with v with weight 1, then for any two vertices
z,y € V(G) — v, ¢(x) = ¢(y) (mod k) if and only if they belong to the same U; for some
i. Then ¢(v) =r (mod k). For any € N(v), ¢(x) =r (mod k), only if x € U, (resp. Up)
when 7 is even (resp. odd). Then we assign all edges in E(G —v) — E(M) with weight k.
For z € N(v)N (U, UUy) and c¢(x) = ¢(v) (mod k), we see that c¢(x) is greater than ¢(v) by
at least k. Still we have c¢(z) = ¢(y) (mod k) if and only if they belong to the same U; for
some i, for any two vertices x # v # y. So we obtain an edge-weighting of GG such that the

resulting vertex-coloring is proper.
Case 3. Both |N(v) NU,| and |N(v) NUy| are odd.

Let a=1—1,b=1. We give a set of target colors t, for all x € V(M). If r is even, we
choose t; =i —1l+r+1 (mod k) for x € W;; if ris odd, t, =i — 1+ r (mod k) for x € W,.
We can check that erV(M) t; is even. By Lemma 1.2, we have an edge-weighting of M
such that ) . w(e) =, (mod k) for all z € V/(M). Now we assign all edges incident with
v with weight 1 and all edges in E(G —v) — E(M) with weight k. Then for any two vertices
x#v#y, c(x) =c(y) (mod k) if and only if they belong to the same U; for some i. For
any © € N(v), c(z) =r (mod k), only if x € U, (resp. Up) when r is even (resp. odd). For
x € Nw) N (U, UUp) and c(z) = ¢(v) (mod k), we see that c¢(x) is greater than c¢(v) by
at least k. So we obtain an edge-weighting of G such that the resulting vertex-coloring is

proper. a

Remark: Under the condition of 3-connectivity, the conclusion of Lemma 2.2 can be
proved by a constructive method and thus we are able to design an efficient algorithm to

find a k-edge-weighting such that the induced vertex-coloring is proper.

3 Vertex-coloring k-edge-weighting with degree conditions

Let a and b be two integers such that a < b. We denote all integers ¢ with a < ¢ < b by

[a,b]. Use degree intervals as sufficient conditions, we have the following theorem.

Theorem 3.1 Let G be a k-colorable graphs with girth g(G) > 4, where k € {6,10}. Then
(4) if [d(v) +10,5d(v) —10]N[6d(u) —5,6d(u) — 1] = O for any uwv € E(G), then G admits
a vertex-coloring 6-edge-weighting.

(#) if [d(v) + 36,9d(v) — 36] N [10d(u) — 9,10d(u) — 1] = @ for any wv € E(G), then G

admits a vertez-coloring 10-edge-weighting.

Proof. We only provide a proof for part (i) here, since the proof of part (ii) is very similar

and is required only a few minor modifications.

6
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By Lemma 1.3, we may assume that |U;| is odd for i = 0,...,5 and §(G) > 5. As before,
for every v € Uj, N(v) NU; # 0, for i € {0,...,5} — {j}.

Claim 1. There exists a vertex x in U;, for some i, such that the vertices of G — N (x)

inU;; Uj are all in a same component of G — N ().

Suppose that Claim 1 is not true. Choose a vertex x such that the size of a maximum
component of G — N(x) is largest, say G; = (U3 UU{ U...U U2, Ey) is such a component.
We may assume = € Uy and let another component of the graph G — N(z) besides G; be
Go = (Ug UU?u...U U52, E5). Without loss of generality, assume that Uf is nonempty for
i =0,...,1, where [ > 1. If there exists a vertex 2’ € V(G2) which is not incident with
some vertex u € N(V(G1)) N N(x), then G} together with u is in a same component of
G — N(2') and the size of the maximum component of G — N(2') is larger than that for
x, a contradiction to the choice of z. So every vertex of (G5 is incident with all vertices of
N(V(G1)) N N(z) and thus we can find a triangle, a contradiction with ¢(G) > 4.

From Claim 1, we see that G — N(z) has a component Gy = (Ut UUL U...UUL, Ey)

with Ul = U; \ N(z) and all other components are isolated vertices in U.

Now we consider two cases.
Case 1. |N(z)NU;| are odd fori=1,...,1, wherel > 1.

In this case, |Ui| is even. Then it is easy to show that there is a permutation of
Us,Us, UL, U, saying Wa, W3, Wy, W5 such that 215:2’L|W1’ is even. Let Wy = U} and
Wy = Ui. Then we have a set of target colors ¢, for all u € V(G1), t, = 6 for u € Wy
and t, =1 for u € Wy, i # 0. Then ZueV(Gl) t, is even. By Lemma 1.2, G1 has a vertex-
coloring 6-edge-weighting such that ¢(u) = ¢ (mod 6) for u € W;, i =0,...,5. Next assign
the edges zy with weight i if y € W; and the other edges in F(G —v) — E(G1) with 6. Then
c(u) # c(v) for u € W;, v € Wj and i # j. Note that if |[N(z) N U;| = 1 for i = 2,3,4,5,
then c(x) = d(x) — 4 4+ 14 = d(x) + 10, which achieves the lower end of the interval; if
IN(x)NU;| =1 for i =1,2,3,4, then c¢(x) = 5(d(z) — 4) + 10 = 5d(z) — 10, which achieves
the upper end of the interval. So we have d(x)+ 10 < ¢(x) < 5d(z) — 10. For all u € N(z),
6d(u) —5 < c(u) < 6(d(u)—1)+5 = 6d(u) — 1, which implying c(z) # c(u) for all u € N(x).

Therefore we have a vertex-coloring 6-edge-weighting of G.
Case 2. |N(x)NU;| are even fori=1,2...,5.

Then we can see d(x) > 10. In this case, Ui1 are odd for ¢ = 1,2,...,5. Note that
there is a vertex u* € N(x), say u* € Uy, adjacent to some vertex v* € Uy UUs U --- U Us.
Let G’ be the graph obtained from G; by adding the vertex u* and the edge u*v*. Let
Wa, W3, Wy, W5 be a permutation of U}, U3, U}, Ut such that Z?:Q i|W;| is even. Let Wy =

7
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Us and Wy = U{ U {u*}. Then W is even. We assign target colors t, to v € V(G1),
where t, = 6 for v € Wy and ¢, = i for v € W; (i # 0). Then ZUEV(G’)tU is even.
According to Lemma 1.2, the edges of G’ can be assigned weights from {1,2,...,6} so that
c(u) = ¢ (mod 6) for u € Wy, i = 0,...,5. Next assign the edges zy (except xu*) with
weight ¢ if y € U; and the remaining edges of (E(G —v) — E(G1))U{zu*} with 6. As before,
d(x)+15 < ¢(x) < 5d(z)—5. Forallu € N(z), 6d(u)—5 < c(u) < 6(d(u)—1)+5 = 6d(u)—1,
which implying ¢(x) # c¢(u) for all u € N(z). So it is a vertex-coloring 6-edge-weighting of
G. O

From the Theorem 3.1, we have the following interesting corollary.

Corollary 3.2 Let G be a k-colorable [r,r + 1]-graph with girth g(G) > 4, where k > 6 and
r > 2. Then G admits a vertex-coloring k-edge-weighting.
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