A note on vertex-coloring edge-weighting of graphs *

Hongliang Lu ${ }^{\mathrm{a}}$, Xu Yang ${ }^{\mathrm{a}}$, Qinglin $\mathrm{Yu}^{\mathrm{a}, \mathrm{b} \dagger}$
${ }^{a}$ Center for Combinatorics, LPMC
Nankai University, Tianjin, China
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

A k-edge-weighting w of a graph G is an assignment of an integer weight, $w(e) \in$ $\{1, \ldots, k\}$, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining $c(u)=\Sigma_{e \ni u} w(e)$ for every $u \in V(G)$. A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., $c(u) \neq c(v)$ for any edge $u v \in E(G)$. When $k \equiv 2(\bmod 4)$ and $k \geq 6$, we prove that if G is k-colorable and 2-connected, $\delta(G) \geq k-1$, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.

Keywords. vertex coloring; edge-weighting;
AMS Classification: 05C15

1 Introduction

In this paper, we consider only finite, undirected and simple graphs. For a vertex v of a graph $G=(V, E), N(v)$ denotes the set of vertices which are adjacent to v. For a vertex set $S \subseteq V, N(S)$ denotes the set of vertices which are adjacent to at least one vertex of S. Let $d(v)$ and $\delta(G)$ denote the degree of a vertex v and the minimum degree of G, respectively. A k-vertex coloring c of G is an assignment of k integers, $\{1,2, \ldots, k\}$, to the vertices of G. The color of a vertex v is denoted by $c(v)$. The coloring is proper if no two distinct adjacent vertices share the same color. A graph G is k-colorable if G has a proper k-vertex coloring. The chromatic number $\chi(G)$ is the minimum number r such that G is r-colorable. Notations and terminologies that are not defined here may be found in [3]. A k-edge-weighting w of

[^0]a graph G is an assignment of an integer weight $w(e) \in\{1, \ldots, k\}$ to each edge e of G. An edge weighting naturally induces a vertex coloring $c(u)$ by defining $c(u)=\Sigma_{e \ni u} w(e)$ for every $u \in V(G)$. A k-edge-weighting of a graph G is vertex-coloring if for every edge $e=u v, c(u) \neq c(v)$ and we call that G admits a vertex-coloring k-edge-weighting.

If a graph has an edge as a component, it can not have a vertex-coloring k-edgeweighting. So in this paper, we only consider graphs without K_{2} component and refer those graphs as nice graphs.

In [5], Karoński, Luczak and Thomason initiated the study of vertex-coloring k-edgeweighting and they brought forward a conjecture as following.

Conjecture 1.1 Every nice graph admits a vertex-coloring 3-edge-weighting.
The above conjecture holds for 3 -colorable graphs, which is due to Karoński, Luczak and Thomason [5]. In fact, they proved a more general result that if k is odd, then every k-colorable nice graph admits a vertex-coloring k-edge-weighting. The proof of this result is elegant, by taking advantage of properties of abelian groups. Naturally, we next turn to the cases of k even. Duan, Lu and $\mathrm{Yu}[4]$ showed that every k-colorable nice graph admits a vertex-coloring k-edge-weighting for $k \equiv 0(\bmod 4)$. In this paper, we continue the study of vertex-coloring k-edge-weighting for $k \equiv 2(\bmod 4)$ and $k \geq 6$. We show that a k-colorable 2 -connected graph G, where $k \equiv 2(\bmod 4)$ and $k \geq 6$, admits a vertex-coloring k-edgeweighting. We can also obtain the same conclusion by eliminating 2 -connectivity condition but posing some restriction of degrees.

To conclude this section, we introduce two earlier results as our lemmas for the proofs of main results.

Lemma 1.2 (Karoński, Luczak and Thomason [5]) Let G be a connected non-bipartite graph, $\left\{t_{v} \mid v \in V(G)\right\}$ be any given vertex-coloring of G, and k be a positive integer. If $\sum_{v \in V} t_{v}$ is even, then there exists a k-edge-weighting w of G such that for all $v \in V(G)$, $\sum_{v \in e} w(e) \equiv t_{v} \quad(\bmod k)$.

Lemma 1.3 (Duan, Lu and Yu [4]) Let G be a k-colorable graph, where $\left(U_{0}, U_{1}, \ldots, U_{k-1}\right)$ denote coloring classes of G. Then G admits a vertex-coloring k-edge-weighting, if any of following conditions holds:
(i) $k \equiv 0(\bmod 4)$;
(ii) $\delta(G) \leq k-2$;
(iii) there exists a class U_{i} with $\left|U_{i}\right| \equiv 0(\bmod 2)$ for some $i \in\{0,1, \ldots, k-1\}$;
(iv) $|V(G)|$ is odd.

2 Connectivity and edge-weighting

In this section, we use connectivity as a sufficient condition to insure a vertex-coloring k-edge-weighting.

Since every nice graph admits a vertex-coloring 13-edge-weighting (see [6]), we need only to consider the cases of $k \equiv 2(\bmod 4)$ and $k \leq 12$, i.e., $k \in\{6,10\}$.

Theorem 2.1 Let G be a k-colorable graph, where $k \in\{6,10\}$, and v be a vertex of $V(G)$ with $d(v)=\delta(G)$. Denote $N^{\delta}(v)=\{x \in N(v) \mid d(x)=\delta(G)\}$. If $N^{\delta}(v)=\emptyset$ and $G-v$ is connected, then G admits a vertex-coloring k-edge-weighting.

Proof. Denote coloring classes of G by $\left(U_{0}, U_{1}, \ldots, U_{k-1}\right)$. If there exists a class U_{i} with $\left|U_{i}\right| \equiv 0(\bmod 2)$, we are done by Lemma 1.3 . So we may assume that $\left|U_{i}\right|$ is odd for all $i=0,1, \ldots, k-1$.

Without loss of generality, assume $v \in U_{0}$ and $\left|N(v) \cap U_{i}\right|$ is odd for $i=1,2, \ldots, l$, and $\left|N(v) \cap U_{i}\right|$ is even for $i=l+1, \ldots, k-1(0 \leq l \leq k-1)$. Note that $l=0$ means that $\left|N(v) \cap U_{i}\right|$ is even for $i=1, \ldots, k-1$, and in this case the proof is similar. Let $W_{0}=\left(U_{0}-v\right) \cup\left(U_{1} \cap N(v)\right), W_{i}=\left(U_{i}-N(v)\right) \cup\left(U_{i+1} \cap N(v)\right)$ for $i=1,2, \ldots, k-2$, $W_{k-1}=U_{k-1}-N(v)$. Then $\left|W_{i}\right|$ is odd except $i=l$. The number of indices i with $\left|W_{i}\right|$ odd in $\{0, \ldots, k-1\}-\{l\}$ is even, so $\sum_{i=0, i \neq l}^{k-1}\left|W_{i}\right|(i-l+1)$ is even and thus $\sum_{i=0}^{k-1}\left|W_{i}\right|(i-l+1)$ is even. Let t_{x}, where $x \in V(G-v)$, be a given set of vertex-coloring satisfying $t_{x} \equiv i-l+1$ $(\bmod k)$ for $x \in W_{i}$. Then $\sum_{x \in V(G-v)} t_{x}$ is even. So $G-v$ has a vertex-coloring k-edgeweighting such that $c(x) \equiv t_{x} \equiv i-l+1(\bmod k)$ for all $x \in W_{i}$ by Lemma 1.2. Assign the edges incident to v with weight 1 . Then $c(v)=\delta(G)$ and $N^{\delta}(v)=\emptyset$ implies $c(v)<c(u)$ for $u \in N(v)$. Moreover, $c(x) \equiv i-l+1(\bmod k)$ for all $x \in U_{i}$ and $x \neq v$. Hence G admits a vertex-coloring k-edge weighting.

Lemma 2.2 Let G be a 2-connected graph and v be a vertex of $V(G)$ with $d(v)=\delta(G) \geq 5$. Then there exists $S \subseteq N(v)$ with $|S|=\delta-3$ such that $G-v$ contains a spanning subgraph M satisfying $d_{M}(x) \leq d_{G}(x)-2$ for all $x \in S$.

Proof. Suppose, to the contrary, that there exists no such a required connected spanning subgraph in $G-v$. Then we find a connected spanning subgraphs T so that the vertex set $R=\left\{x \in N(v) \mid d_{T}(x) \leq d_{G}(x)-2\right\}$ is maximized. Among subgraphs T satisfying
the maximality condition of R, we choose a maximum graph with respect to the number of edges, say M. Then $d_{M}(x)=d_{G}(x)-2$ for all $x \in R$.

So $|R|=r \leq \delta-4$. Let $v_{1}, v_{2}, v_{3}, v_{4} \in N(v)-R$. Set $H=M \cup\left\{v v_{1}\right\}$. Then every edge incident with $v_{1}, v_{2}, v_{3}, v_{4}$ is a cut-edge of M in $G-v$ since R is maximum and every cut-edge of M is also a cut-edge of H, and $v v_{1}$ is a cut-edge of H as well. We observe that $N\left(v_{1}\right) \cup N\left(v_{2}\right) \cup N\left(v_{3}\right) \cup N\left(v_{4}\right)-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\} \geq 4 \delta-10$, that is, there are at least $4 \delta-10$ cut-vertices. Thus we need to add at least $\frac{4 \delta-10}{2}+1=2 \delta-4$ edges to H so that the resulting graph is 2 -connected, because at least $\frac{4 \delta-10}{2}$ edges are required to link the cutvertices and one more edge incident to v. On the other hand, G is 2 -connected, we delete at most $\delta-1+r$ edges from G to obtain H, so we have $\delta-1+r \geq|E(G)-E(H)| \geq 2 \delta-4$ and $r \geq \delta-3$, a contradiction.

Theorem 2.3 Let G be a k-colorable graph, where $k \equiv 2(\bmod 4)$ and $k \geq 6$. If G is 2 -connected and $\delta(G) \geq k-1$, then G admits a vertex-coloring k-edge-weighting.

Proof. Let $\left(U_{0}, \ldots, U_{k-1}\right)$ be coloring classes of G. Let $v \in U_{0}$ and $d(v)=\delta(G) \geq 5$. Let $\delta(G) \equiv r(\bmod k)$. Without loss of generality, assume that $\left|U_{0}\right|, \ldots,\left|U_{k-1}\right|$ are all odd by Lemma 1.3. If $N(v) \cap U_{i}=\emptyset$ for some i, we can move v into U_{i} from U_{0}, the new classes are also coloring classes of G. Hence $\left|U_{0}\right|$ and $\left|U_{i}\right|$ are both even and so G admits a vertexcoloring k-edge-weighting by Lemma 1.3. So $N(v) \cap U_{i} \neq \emptyset$ for $i=1, \ldots, k-1$. Without loss of generality, suppose $\left|N(v) \cap U_{i}\right|$ is odd for $i=1, \ldots, l$ and $\left|N(v) \cap U_{i}\right|$ is even for $i=l+1, \ldots, k-1$ (note that $l=0$ means that there exists no U_{i} so that $\left|N(v) \cap U_{i}\right|$ is odd). Let $W_{0}=\left(U_{0}-v\right) \cup\left(N(v) \cap U_{1}\right), W_{k-1}=U_{k-1}-N(v)$ and $W_{i}=\left(N(v) \cap U_{i+1}\right) \cup\left(U_{i}-N(v)\right)$ for $i=1, \ldots, k-2$. Then $\left|W_{l}\right|$ is even and $\left|W_{i}\right|$ is odd for any $i \neq l$. By Lemma 2.2, there exists a vertex set $S \subseteq N(v)$ with $|S|=\delta-3$ such that $G-v$ contains a spanning subgraph M which satisfies $d_{M}(x) \leq d_{G}(x)-2$ for all $x \in S$. (Note that, the spanning subgraph M is obtained by deleting at least one edge incident with each vertex x of S.) Since $|S|=\delta-3$, there are three vertices in $N(v)-S$, which are in at most three color classes, say U_{i}, U_{j}, U_{m}. Then there are at most three color classes such that $\left(U_{i} \cup U_{j} \cup U_{m}\right) \cap N(v) \nsubseteq S$. Thus there are at least two color classes, say U_{a} and U_{b}, so that $N(v) \cap U_{a} \subseteq S$ and $N(v) \cap U_{b} \subseteq S$.

We consider the following three cases.
Case 1. $\left|N(v) \cap U_{a}\right|$ is odd and $\left|N(v) \cap U_{b}\right|$ is even.
We may assume $a=l, b=l+1$. We first give a set of target colors t_{x} for all $x \in V(M)$ so that $\sum_{x \in V(M)} t_{x}$ is even, as follows.
$(*)$ if r is even, $t_{x} \equiv i-l+r-1 \quad(\bmod k)$ for $x \in W_{i} ;$

$$
\text { if } r \text { is odd, } t_{x} \equiv i-l+r \quad(\bmod k) \text { for } x \in W_{i} .
$$

It is not hard to verify that $\sum_{x \in V(M)} t_{x}$ is even. In fact, if r is even, since $\left|W_{l}\right|$ is even and $\left|W_{i}\right|$ is odd for $i \neq l$, we assign $t_{x} \equiv r-1(\bmod k)$ for $x \in W_{l}$ and thus t_{x} is odd. Since $k \equiv 2(\bmod 4)$, the number of odd weights in $\{1,2, \ldots, k\}-\{r-1\}$ is even. And $t_{x} \equiv i-l+r-1(\bmod k)$ for $x \in W_{i}$, so $\sum_{x \in V(M)} t_{x}$ is even. If r is odd, then $t_{x} \equiv r$ $(\bmod k)$ for $x \in W_{l}$, and t_{x} is also odd. The number of odd weights in $\{1,2, \ldots, k\}-\{r\}$ is even and thus $\sum_{x \in V(M)} t_{x}$ is even again.

Then, by Lemma 1.2, we have an edge-weighting of M such that for all $u \in V(M)$, $\sum_{u \in e} w(e) \equiv t_{u}(\bmod k)$ and for any two vertices $x, y \in V(M), c(x) \equiv c(y)(\bmod k)$ if and only if they belong to the same W_{i} for some i. We assign the edges incident with v with weight 1 and the edges of $E(G-v)-E(M)$ with weight k. Then for any two vertices $x, y \in V(G)-v, c(x) \equiv c(y)(\bmod k)$ if and only if they belong to the same U_{i} for some i. Now we have $c(v)=\delta(G) \equiv r(\bmod k)$. For any $x \in N(v), c(x) \equiv r(\bmod k)$, only if $x \in U_{b}$ (resp. U_{a}) when r is even (resp. odd). If $c(x) \equiv c(v)(\bmod k)$ for $x \in N(v) \cap\left(U_{a} \cup U_{b}\right)$, then $c(x)$ is greater than $c(v)$ by at least k since $d(x) \geq d(v)$. So we obtain an edge-weighting of G such that the resulting vertex-coloring is proper (see Figure 1).

PSfrag replacements

$N(v) \cap U_{1}$
Figure 1: $k=6, l=2$ and r is odd. The weights of edges in $G-M$ are labeled.

Case 2. Both $\left|N(v) \cap U_{a}\right|$ and $\left|N(v) \cap U_{b}\right|$ are even.
Let $a=l+1, b=l+2$. We can give a set of target colors t_{x} for all $x \in V(M)$. If r is even, we choose $t_{x} \equiv i-l+r-1(\bmod k)$ for $x \in W_{i}$. If r is odd, we choose $t_{x} \equiv i-l+r-2$ $(\bmod k)$ for $x \in W_{i}$. It is routine to check that $\sum_{x \in V(M)} t_{x}$ is even as in Case 1. By Lemma 1.2, we have an edge-weighting of M such that $\sum_{x \in e} w(e) \equiv t_{x}(\bmod k)$ for all
$x \in V(M)$. Now we assign all edges incident with v with weight 1 , then for any two vertices $x, y \in V(G)-v, c(x) \equiv c(y)(\bmod k)$ if and only if they belong to the same U_{i} for some i. Then $c(v) \equiv r(\bmod k)$. For any $x \in N(v), c(x) \equiv r(\bmod k)$, only if $x \in U_{a}$ (resp. $\left.U_{b}\right)$ when r is even (resp. odd). Then we assign all edges in $E(G-v)-E(M)$ with weight k. For $x \in N(v) \cap\left(U_{a} \cup U_{b}\right)$ and $c(x) \equiv c(v)(\bmod k)$, we see that $c(x)$ is greater than $c(v)$ by at least k. Still we have $c(x) \equiv c(y)(\bmod k)$ if and only if they belong to the same U_{i} for some i, for any two vertices $x \neq v \neq y$. So we obtain an edge-weighting of G such that the resulting vertex-coloring is proper.

Case 3. Both $\left|N(v) \cap U_{a}\right|$ and $\left|N(v) \cap U_{b}\right|$ are odd.
Let $a=l-1, b=l$. We give a set of target colors t_{x} for all $x \in V(M)$. If r is even, we choose $t_{x} \equiv i-l+r+1(\bmod k)$ for $x \in W_{i}$; if r is odd, $t_{x} \equiv i-l+r(\bmod k)$ for $x \in W_{i}$. We can check that $\sum_{x \in V(M)} t_{x}$ is even. By Lemma 1.2, we have an edge-weighting of M such that $\sum_{x \in e} w(e) \equiv t_{x}(\bmod k)$ for all $x \in V(M)$. Now we assign all edges incident with v with weight 1 and all edges in $E(G-v)-E(M)$ with weight k. Then for any two vertices $x \neq v \neq y, c(x) \equiv c(y)(\bmod k)$ if and only if they belong to the same U_{i} for some i. For any $x \in N(v), c(x) \equiv r(\bmod k)$, only if $x \in U_{a}\left(\right.$ resp. $\left.U_{b}\right)$ when r is even (resp. odd). For $x \in N(v) \cap\left(U_{a} \cup U_{b}\right)$ and $c(x) \equiv c(v)(\bmod k)$, we see that $c(x)$ is greater than $c(v)$ by at least k. So we obtain an edge-weighting of G such that the resulting vertex-coloring is proper.

Remark: Under the condition of 3-connectivity, the conclusion of Lemma 2.2 can be proved by a constructive method and thus we are able to design an efficient algorithm to find a k-edge-weighting such that the induced vertex-coloring is proper.

3 Vertex-coloring k-edge-weighting with degree conditions

Let a and b be two integers such that $a \leq b$. We denote all integers i with $a \leq i \leq b$ by $[a, b]$. Use degree intervals as sufficient conditions, we have the following theorem.

Theorem 3.1 Let G be a k-colorable graphs with girth $g(G) \geq 4$, where $k \in\{6,10\}$. Then
(i) if $[d(v)+10,5 d(v)-10] \cap[6 d(u)-5,6 d(u)-1]=\emptyset$ for any $u v \in E(G)$, then G admits a vertex-coloring 6 -edge-weighting.
(ii) if $[d(v)+36,9 d(v)-36] \cap[10 d(u)-9,10 d(u)-1]=\emptyset$ for any $u v \in E(G)$, then G admits a vertex-coloring 10-edge-weighting.

Proof. We only provide a proof for part (i) here, since the proof of part (ii) is very similar and is required only a few minor modifications.

By Lemma 1.3, we may assume that $\left|U_{i}\right|$ is odd for $i=0, \ldots, 5$ and $\delta(G) \geq 5$. As before, for every $v \in U_{j}, N(v) \cap U_{i} \neq \emptyset$, for $i \in\{0, \ldots, 5\}-\{j\}$.

Claim 1. There exists a vertex x in U_{i}, for some i, such that the vertices of $G-N(x)$ in $\bigcup_{j \neq i} U_{j}$ are all in a same component of $G-N(x)$.

Suppose that Claim 1 is not true. Choose a vertex x such that the size of a maximum component of $G-N(x)$ is largest, say $G_{1}=\left(U_{0}^{1} \cup U_{1}^{1} \cup \ldots \cup U_{5}^{1}, E_{1}\right)$ is such a component. We may assume $x \in U_{0}$ and let another component of the graph $G-N(x)$ besides G_{1} be $G_{2}=\left(U_{0}^{2} \cup U_{1}^{2} \cup \ldots \cup U_{5}^{2}, E_{2}\right)$. Without loss of generality, assume that U_{i}^{2} is nonempty for $i=0, \ldots, l$, where $l \geq 1$. If there exists a vertex $x^{\prime} \in V\left(G_{2}\right)$ which is not incident with some vertex $u \in N\left(V\left(G_{1}\right)\right) \cap N(x)$, then G_{1} together with u is in a same component of $G-N\left(x^{\prime}\right)$ and the size of the maximum component of $G-N\left(x^{\prime}\right)$ is larger than that for x, a contradiction to the choice of x. So every vertex of G_{2} is incident with all vertices of $N\left(V\left(G_{1}\right)\right) \cap N(x)$ and thus we can find a triangle, a contradiction with $g(G) \geq 4$.

From Claim 1, we see that $G-N(x)$ has a component $G_{1}=\left(U_{0}^{1} \cup U_{1}^{1} \cup \ldots \cup U_{5}^{1}, E_{1}\right)$ with $U_{i}^{1}=U_{i} \backslash N(x)$ and all other components are isolated vertices in U_{0}.

Now we consider two cases.
Case 1. $\left|N(x) \cap U_{i}\right|$ are odd for $i=1, \ldots, l$, where $l \geq 1$.
In this case, $\left|U_{1}^{1}\right|$ is even. Then it is easy to show that there is a permutation of $U_{2}^{1}, U_{3}^{1}, U_{4}^{1}, U_{5}^{1}$, saying $W_{2}, W_{3}, W_{4}, W_{5}$ such that $\sum_{i=2}^{5} i\left|W_{i}\right|$ is even. Let $W_{0}=U_{0}^{1}$ and $W_{1}=U_{1}^{1}$. Then we have a set of target colors t_{u} for all $u \in V\left(G_{1}\right), t_{u}=6$ for $u \in W_{0}$ and $t_{u}=i$ for $u \in W_{i}, i \neq 0$. Then $\sum_{u \in V\left(G_{1}\right)} t_{u}$ is even. By Lemma 1.2, G_{1} has a vertexcoloring 6 -edge-weighting such that $c(u) \equiv i(\bmod 6)$ for $u \in W_{i}, i=0, \ldots, 5$. Next assign the edges $x y$ with weight i if $y \in W_{i}$ and the other edges in $E(G-v)-E\left(G_{1}\right)$ with 6 . Then $c(u) \neq c(v)$ for $u \in W_{i}, v \in W_{j}$ and $i \neq j$. Note that if $\left|N(x) \cap U_{i}\right|=1$ for $i=2,3,4,5$, then $c(x)=d(x)-4+14=d(x)+10$, which achieves the lower end of the interval; if $\left|N(x) \cap U_{i}\right|=1$ for $i=1,2,3,4$, then $c(x)=5(d(x)-4)+10=5 d(x)-10$, which achieves the upper end of the interval. So we have $d(x)+10 \leq c(x) \leq 5 d(x)-10$. For all $u \in N(x)$, $6 d(u)-5 \leq c(u) \leq 6(d(u)-1)+5=6 d(u)-1$, which implying $c(x) \neq c(u)$ for all $u \in N(x)$. Therefore we have a vertex-coloring 6 -edge-weighting of G.

Case 2. $\quad\left|N(x) \cap U_{i}\right|$ are even for $i=1,2 \ldots, 5$.
Then we can see $d(x) \geq 10$. In this case, U_{i}^{1} are odd for $i=1,2, \ldots, 5$. Note that there is a vertex $u^{*} \in N(x)$, say $u^{*} \in U_{1}$, adjacent to some vertex $v^{*} \in U_{0} \cup U_{2} \cup \cdots \cup U_{5}$. Let G^{\prime} be the graph obtained from G_{1} by adding the vertex u^{*} and the edge $u^{*} v^{*}$. Let $W_{2}, W_{3}, W_{4}, W_{5}$ be a permutation of $U_{2}^{1}, U_{3}^{1}, U_{4}^{1}, U_{5}^{1}$ such that $\sum_{i=2}^{5} i\left|W_{i}\right|$ is even. Let $W_{0}=$
U_{0}^{1} and $W_{1}=U_{1}^{1} \cup\left\{u^{*}\right\}$. Then W_{1} is even. We assign target colors t_{v} to $v \in V\left(G_{1}\right)$, where $t_{v}=6$ for $v \in W_{0}$ and $t_{v}=i$ for $v \in W_{i}(i \neq 0)$. Then $\sum_{v \in V\left(G^{\prime}\right)} t_{v}$ is even. According to Lemma 1.2, the edges of G^{\prime} can be assigned weights from $\{1,2, \ldots, 6\}$ so that $c(u) \equiv i(\bmod 6)$ for $u \in W_{i}, i=0, \ldots, 5$. Next assign the edges $x y$ (except $\left.x u^{*}\right)$ with weight i if $y \in U_{i}$ and the remaining edges of $\left(E(G-v)-E\left(G_{1}\right)\right) \cup\left\{x u^{*}\right\}$ with 6 . As before, $d(x)+15 \leq c(x) \leq 5 d(x)-5$. For all $u \in N(x), 6 d(u)-5 \leq c(u) \leq 6(d(u)-1)+5=6 d(u)-1$, which implying $c(x) \neq c(u)$ for all $u \in N(x)$. So it is a vertex-coloring 6-edge-weighting of G.

From the Theorem 3.1, we have the following interesting corollary.
Corollary 3.2 Let G be a k-colorable $[r, r+1]$-graph with girth $g(G) \geq 4$, where $k \geq 6$ and $r \geq 2$. Then G admits a vertex-coloring k-edge-weighting.

References

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex coloring edge partitions, J. Combin. Theory Ser. B, 94 (2005), 237-244.
[2] P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory, 42 (2003), 95-109.
[3] B. Bollobás, Modern Graph Theory, 2nd Edition, Springer-Verlag New York, Inc. 1998.
[4] Y. H. Duan, H. L. Lu and Q. Yu, L-factor and adjacent vertex-distinguishing edgeweighting, (submitted).
[5] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colors, J. Combin. Theory Ser. B, 91 (2004), 151-157.
[6] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China, 3 (2008), 581-587.

[^0]: *This work is supported in part by 973 Project of Ministry of Science and Technology of China and Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ Corresponding email: yu@tru.ca (Q. Yu)

