2

3

A note on vertex-coloring edge-weighting of graphs *

Hongliang Lu^a, Xu Yang^a, Qinglin Yu^{a,b†}

^aCenter for Combinatorics, LPMC Nankai University, Tianjin, China ^bDepartment of Mathematics and Statistics Thompson Rivers University, Kamloops, BC, Canada

Abstract

A k-edge-weighting w of a graph G is an assignment of an integer weight, $w(e) \in \{1, \ldots, k\}$, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining $c(u) = \sum_{e \ni u} w(e)$ for every $u \in V(G)$. A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., $c(u) \neq c(v)$ for any edge $uv \in E(G)$. When $k \equiv 2 \pmod{4}$ and $k \ge 6$, we prove that if G is k-colorable and 2-connected, $\delta(G) \ge k - 1$, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.

11 **Keywords.** vertex coloring; edge-weighting;

12 AMS Classification: 05C15

13 **1** Introduction

In this paper, we consider only finite, undirected and simple graphs. For a vertex v of a 14 graph G = (V, E), N(v) denotes the set of vertices which are adjacent to v. For a vertex set 15 $S \subseteq V, N(S)$ denotes the set of vertices which are adjacent to at least one vertex of S. Let 16 d(v) and $\delta(G)$ denote the degree of a vertex v and the minimum degree of G, respectively. 17 A k-vertex coloring c of G is an assignment of k integers, $\{1, 2, \ldots, k\}$, to the vertices of G. 18 The color of a vertex v is denoted by c(v). The coloring is *proper* if no two distinct adjacent 19 vertices share the same color. A graph G is k-colorable if G has a proper k-vertex coloring. 20 The chromatic number $\chi(G)$ is the minimum number r such that G is r-colorable. Notations 21 and terminologies that are not defined here may be found in [3]. A k-edge-weighting w of 22

^{*}This work is supported in part by 973 Project of Ministry of Science and Technology of China and Natural Sciences and Engineering Research Council of Canada.

[†]Corresponding email: yu@tru.ca (Q. Yu)

¹ a graph G is an assignment of an integer weight $w(e) \in \{1, \ldots, k\}$ to each edge e of G.

An edge weighting naturally induces a vertex coloring c(u) by defining $c(u) = \sum_{e \ni u} w(e)$ for every $u \in V(G)$. A k-edge-weighting of a graph G is vertex-coloring if for every edge $e = uv, c(u) \neq c(v)$ and we call that G admits a vertex-coloring k-edge-weighting.

If a graph has an edge as a component, it can not have a vertex-coloring k-edgeweighting. So in this paper, we only consider graphs without K_2 component and refer those graphs as *nice graphs*.

In [5], Karoński, Łuczak and Thomason initiated the study of vertex-coloring k-edgeweighting and they brought forward a conjecture as following.

¹⁰ Conjecture 1.1 Every nice graph admits a vertex-coloring 3-edge-weighting.

The above conjecture holds for 3-colorable graphs, which is due to Karoński, Łuczak 11 and Thomason [5]. In fact, they proved a more general result that if k is odd, then every 12 k-colorable nice graph admits a vertex-coloring k-edge-weighting. The proof of this result 13 is elegant, by taking advantage of properties of abelian groups. Naturally, we next turn to 14 the cases of k even. Duan, Lu and Yu [4] showed that every k-colorable nice graph admits a 15 vertex-coloring k-edge-weighting for $k \equiv 0 \pmod{4}$. In this paper, we continue the study of 16 vertex-coloring k-edge-weighting for $k \equiv 2 \pmod{4}$ and $k \geq 6$. We show that a k-colorable 17 2-connected graph G, where $k \equiv 2 \pmod{4}$ and $k \geq 6$, admits a vertex-coloring k-edge-18 weighting. We can also obtain the same conclusion by eliminating 2-connectivity condition 19 but posing some restriction of degrees. 20

To conclude this section, we introduce two earlier results as our lemmas for the proofs of main results.

Lemma 1.2 (Karoński, Łuczak and Thomason [5]) Let G be a connected non-bipartite graph, $\{t_v \mid v \in V(G)\}$ be any given vertex-coloring of G, and k be a positive integer. If $\sum_{v \in V} t_v$ is even, then there exists a k-edge-weighting w of G such that for all $v \in V(G)$, $\sum_{v \in e} w(e) \equiv t_v \pmod{k}$.

Lemma 1.3 (Duan, Lu and Yu [4]) Let G be a k-colorable graph, where $(U_0, U_1, \ldots, U_{k-1})$ denote coloring classes of G. Then G admits a vertex-coloring k-edge-weighting, if any of following conditions holds:

30 (i) $k \equiv 0 \pmod{4};$

31 $(ii) \delta(G) \leq k-2;$

1 (iii) there exists a class U_i with $|U_i| \equiv 0 \pmod{2}$ for some $i \in \{0, 1, \dots, k-1\}$;

² (iv) |V(G)| is odd.

³ 2 Connectivity and edge-weighting

In this section, we use connectivity as a sufficient condition to insure a vertex-coloring
 k-edge-weighting.

Since every nice graph admits a vertex-coloring 13-edge-weighting (see [6]), we need only to consider the cases of $k \equiv 2 \pmod{4}$ and $k \leq 12$, i.e., $k \in \{6, 10\}$.

Theorem 2.1 Let G be a k-colorable graph, where $k \in \{6, 10\}$, and v be a vertex of V(G)with $d(v) = \delta(G)$. Denote $N^{\delta}(v) = \{x \in N(v) \mid d(x) = \delta(G)\}$. If $N^{\delta}(v) = \emptyset$ and G - v is connected, then G admits a vertex-coloring k-edge-weighting.

Proof. Denote coloring classes of G by $(U_0, U_1, \ldots, U_{k-1})$. If there exists a class U_i with $|U_i| \equiv 0 \pmod{2}$, we are done by Lemma 1.3. So we may assume that $|U_i|$ is odd for all $i = 0, 1, \ldots, k-1$.

Without loss of generality, assume $v \in U_0$ and $|N(v) \cap U_i|$ is odd for $i = 1, 2, \ldots, l$, 14 and $|N(v) \cap U_i|$ is even for $i = l + 1, \ldots, k - 1$ $(0 \le l \le k - 1)$. Note that l = 0 means 15 that $|N(v) \cap U_i|$ is even for $i = 1, \ldots, k-1$, and in this case the proof is similar. Let 16 $W_0 = (U_0 - v) \cup (U_1 \cap N(v)), W_i = (U_i - N(v)) \cup (U_{i+1} \cap N(v)) \text{ for } i = 1, 2, \dots, k-2,$ 17 $W_{k-1} = U_{k-1} - N(v)$. Then $|W_i|$ is odd except i = l. The number of indices i with $|W_i|$ odd 18 in $\{0, \ldots, k-1\} - \{l\}$ is even, so $\sum_{i=0, i \neq l}^{k-1} |W_i| (i-l+1)$ is even and thus $\sum_{i=0}^{k-1} |W_i| (i-l+1)$ 19 is even. Let t_x , where $x \in V(G-v)$, be a given set of vertex-coloring satisfying $t_x \equiv i-l+1$ 20 (mod k) for $x \in W_i$. Then $\sum_{x \in V(G-v)} t_x$ is even. So G-v has a vertex-coloring k-edge-21 weighting such that $c(x) \equiv t_x \equiv i - l + 1 \pmod{k}$ for all $x \in W_i$ by Lemma 1.2. Assign the 22 edges incident to v with weight 1. Then $c(v) = \delta(G)$ and $N^{\delta}(v) = \emptyset$ implies c(v) < c(u) for 23 $u \in N(v)$. Moreover, $c(x) \equiv i - l + 1 \pmod{k}$ for all $x \in U_i$ and $x \neq v$. Hence G admits a 24 vertex-coloring k-edge weighting. 25

Lemma 2.2 Let G be a 2-connected graph and v be a vertex of V(G) with $d(v) = \delta(G) \ge 5$. Then there exists $S \subseteq N(v)$ with $|S| = \delta - 3$ such that G - v contains a spanning subgraph M satisfying $d_M(x) \le d_G(x) - 2$ for all $x \in S$.

Proof. Suppose, to the contrary, that there exists no such a required connected spanning subgraph in G - v. Then we find a connected spanning subgraphs T so that the vertex set $R = \{x \in N(v) \mid d_T(x) \leq d_G(x) - 2\}$ is maximized. Among subgraphs T satisfying the maximality condition of R, we choose a maximum graph with respect to the number of edges, say M. Then $d_M(x) = d_G(x) - 2$ for all $x \in R$.

So $|R| = r \leq \delta - 4$. Let $v_1, v_2, v_3, v_4 \in N(v) - R$. Set $H = M \cup \{vv_1\}$. Then every 3 edge incident with v_1, v_2, v_3, v_4 is a cut-edge of M in G - v since R is maximum and every 4 cut-edge of M is also a cut-edge of H, and vv_1 is a cut-edge of H as well. We observe 5 that $N(v_1) \cup N(v_2) \cup N(v_3) \cup N(v_4) - \{v, v_1, v_2, v_3, v_4\} \ge 4\delta - 10$, that is, there are at least 6 $4\delta - 10$ cut-vertices. Thus we need to add at least $\frac{4\delta - 10}{2} + 1 = 2\delta - 4$ edges to H so that the resulting graph is 2-connected, because at least $\frac{4\delta-10}{2}$ edges are required to link the cut-8 vertices and one more edge incident to v. On the other hand, G is 2-connected, we delete g at most $\delta - 1 + r$ edges from G to obtain H, so we have $\delta - 1 + r \ge |E(G) - E(H)| \ge 2\delta - 4$ 10 and $r \geq \delta - 3$, a contradiction. 11

Theorem 2.3 Let G be a k-colorable graph, where $k \equiv 2 \pmod{4}$ and $k \geq 6$. If G is 2-connected and $\delta(G) \geq k-1$, then G admits a vertex-coloring k-edge-weighting.

Proof. Let (U_0, \ldots, U_{k-1}) be coloring classes of G. Let $v \in U_0$ and $d(v) = \delta(G) \ge 5$. Let 14 $\delta(G) \equiv r \pmod{k}$. Without loss of generality, assume that $|U_0|, \ldots, |U_{k-1}|$ are all odd by 15 Lemma 1.3. If $N(v) \cap U_i = \emptyset$ for some i, we can move v into U_i from U_0 , the new classes 16 are also coloring classes of G. Hence $|U_0|$ and $|U_i|$ are both even and so G admits a vertex-17 coloring k-edge-weighting by Lemma 1.3. So $N(v) \cap U_i \neq \emptyset$ for $i = 1, \ldots, k - 1$. Without 18 loss of generality, suppose $|N(v) \cap U_i|$ is odd for $i = 1, \ldots, l$ and $|N(v) \cap U_i|$ is even for 19 $i = l+1, \ldots, k-1$ (note that l = 0 means that there exists no U_i so that $|N(v) \cap U_i|$ is odd). 20 Let $W_0 = (U_0 - v) \cup (N(v) \cap U_1)$, $W_{k-1} = U_{k-1} - N(v)$ and $W_i = (N(v) \cap U_{i+1}) \cup (U_i - N(v))$ 21 for $i = 1, \ldots, k - 2$. Then $|W_l|$ is even and $|W_i|$ is odd for any $i \neq l$. By Lemma 2.2, there 22 exists a vertex set $S \subseteq N(v)$ with $|S| = \delta - 3$ such that G - v contains a spanning subgraph 23 M which satisfies $d_M(x) \leq d_G(x) - 2$ for all $x \in S$. (Note that, the spanning subgraph M is 24 obtained by deleting at least one edge incident with each vertex x of S.) Since $|S| = \delta - 3$, 25 there are three vertices in N(v) - S, which are in at most three color classes, say U_i, U_j, U_m . 26 Then there are at most three color classes such that $(U_i \cup U_j \cup U_m) \cap N(v) \nsubseteq S$. Thus there 27 are at least two color classes, say U_a and U_b , so that $N(v) \cap U_a \subseteq S$ and $N(v) \cap U_b \subseteq S$. 28

²⁹ We consider the following three cases.

30 Case 1. $|N(v) \cap U_a|$ is odd and $|N(v) \cap U_b|$ is even.

We may assume a = l, b = l + 1. We first give a set of target colors t_x for all $x \in V(M)$ so that $\sum_{x \in V(M)} t_x$ is even, as follows.

(*) if r is even,
$$t_x \equiv i - l + r - 1 \pmod{k}$$
 for $x \in W_i$;
if r is odd, $t_x \equiv i - l + r \pmod{k}$ for $x \in W_i$.

It is not hard to verify that $\sum_{x \in V(M)} t_x$ is even. In fact, if r is even, since $|W_l|$ is even 1 and $|W_i|$ is odd for $i \neq l$, we assign $t_x \equiv r-1 \pmod{k}$ for $x \in W_l$ and thus t_x is odd. 2 Since $k \equiv 2 \pmod{4}$, the number of odd weights in $\{1, 2, \dots, k\} - \{r - 1\}$ is even. And 3 $t_x \equiv i - l + r - 1 \pmod{k}$ for $x \in W_i$, so $\sum_{x \in V(M)} t_x$ is even. If r is odd, then $t_x \equiv r$ (mod k) for $x \in W_l$, and t_x is also odd. The number of odd weights in $\{1, 2, \ldots, k\} - \{r\}$ is even and thus $\sum_{x \in V(M)} t_x$ is even again.

Then, by Lemma 1.2, we have an edge-weighting of M such that for all $u \in V(M)$, 7 $\sum_{u \in e} w(e) \equiv t_u \pmod{k}$ and for any two vertices $x, y \in V(M), c(x) \equiv c(y) \pmod{k}$ if 8 and only if they belong to the same W_i for some *i*. We assign the edges incident with v9 with weight 1 and the edges of E(G-v) - E(M) with weight k. Then for any two vertices 10 $x, y \in V(G) - v, c(x) \equiv c(y) \pmod{k}$ if and only if they belong to the same U_i for some *i*. 11 Now we have $c(v) = \delta(G) \equiv r \pmod{k}$. For any $x \in N(v)$, $c(x) \equiv r \pmod{k}$, only if $x \in U_b$ 12 (resp. U_a) when r is even (resp. odd). If $c(x) \equiv c(v) \pmod{k}$ for $x \in N(v) \cap (U_a \cup U_b)$, then 13 c(x) is greater than c(v) by at least k since $d(x) \ge d(v)$. So we obtain an edge-weighting of

G such that the resulting vertex-coloring is proper (see Figure 1). 15

14

Figure 1: k = 6, l = 2 and r is odd. The weights of edges in G - M are labeled.

Both $|N(v) \cap U_a|$ and $|N(v) \cap U_b|$ are even. Case 2. 16

Let a = l + 1, b = l + 2. We can give a set of target colors t_x for all $x \in V(M)$. If r is 17 even, we choose $t_x \equiv i - l + r - 1 \pmod{k}$ for $x \in W_i$. If r is odd, we choose $t_x \equiv i - l + r - 2$ 18 (mod k) for $x \in W_i$. It is routine to check that $\sum_{x \in V(M)} t_x$ is even as in Case 1. By 19 Lemma 1.2, we have an edge-weighting of M such that $\sum_{x \in e} w(e) \equiv t_x \pmod{k}$ for all 20

1 $x \in V(M)$. Now we assign all edges incident with v with weight 1, then for any two vertices 2 $x, y \in V(G) - v, c(x) \equiv c(y) \pmod{k}$ if and only if they belong to the same U_i for some 3 *i*. Then $c(v) \equiv r \pmod{k}$. For any $x \in N(v), c(x) \equiv r \pmod{k}$, only if $x \in U_a$ (resp. U_b) 4 when r is even (resp. odd). Then we assign all edges in E(G - v) - E(M) with weight k. 5 For $x \in N(v) \cap (U_a \cup U_b)$ and $c(x) \equiv c(v) \pmod{k}$, we see that c(x) is greater than c(v) by 6 at least k. Still we have $c(x) \equiv c(y) \pmod{k}$ if and only if they belong to the same U_i for 7 some i, for any two vertices $x \neq v \neq y$. So we obtain an edge-weighting of G such that the 8 resulting vertex-coloring is proper.

9 Case 3. Both $|N(v) \cap U_a|$ and $|N(v) \cap U_b|$ are odd.

Let a = l - 1, b = l. We give a set of target colors t_x for all $x \in V(M)$. If r is even, we 10 choose $t_x \equiv i - l + r + 1 \pmod{k}$ for $x \in W_i$; if r is odd, $t_x \equiv i - l + r \pmod{k}$ for $x \in W_i$. 11 We can check that $\sum_{x \in V(M)} t_x$ is even. By Lemma 1.2, we have an edge-weighting of M 12 such that $\sum_{x \in e} w(e) \equiv t_x \pmod{k}$ for all $x \in V(M)$. Now we assign all edges incident with 13 v with weight 1 and all edges in E(G-v) - E(M) with weight k. Then for any two vertices 14 $x \neq v \neq y, c(x) \equiv c(y) \pmod{k}$ if and only if they belong to the same U_i for some i. For 15 any $x \in N(v)$, $c(x) \equiv r \pmod{k}$, only if $x \in U_a$ (resp. U_b) when r is even (resp. odd). For 16 $x \in N(v) \cap (U_a \cup U_b)$ and $c(x) \equiv c(v) \pmod{k}$, we see that c(x) is greater than c(v) by 17 at least k. So we obtain an edge-weighting of G such that the resulting vertex-coloring is 18 proper. 19

Remark: Under the condition of 3-connectivity, the conclusion of Lemma 2.2 can be proved by a constructive method and thus we are able to design an efficient algorithm to find a k-edge-weighting such that the induced vertex-coloring is proper.

²³ 3 Vertex-coloring *k*-edge-weighting with degree conditions

Let a and b be two integers such that $a \leq b$. We denote all integers i with $a \leq i \leq b$ by [a, b]. Use degree intervals as sufficient conditions, we have the following theorem.

Theorem 3.1 Let G be a k-colorable graphs with girth $g(G) \ge 4$, where $k \in \{6, 10\}$. Then (i) if $[d(v) + 10, 5d(v) - 10] \cap [6d(u) - 5, 6d(u) - 1] = \emptyset$ for any $uv \in E(G)$, then G admits a vertex-coloring 6-edge-weighting.

(ii) if $[d(v) + 36, 9d(v) - 36] \cap [10d(u) - 9, 10d(u) - 1] = \emptyset$ for any $uv \in E(G)$, then G admits a vertex-coloring 10-edge-weighting.

Proof. We only provide a proof for part (i) here, since the proof of part (ii) is very similar and is required only a few minor modifications. By Lemma 1.3, we may assume that $|U_i|$ is odd for i = 0, ..., 5 and $\delta(G) \ge 5$. As before, for every $v \in U_j$, $N(v) \cap U_i \neq \emptyset$, for $i \in \{0, ..., 5\} - \{j\}$.

³ Claim 1. There exists a vertex x in U_i , for some i, such that the vertices of G - N(x)⁴ in $\bigcup_{i \neq i} U_j$ are all in a same component of G - N(x).

Suppose that Claim 1 is not true. Choose a vertex x such that the size of a maximum component of G - N(x) is largest, say $G_1 = (U_0^1 \cup U_1^1 \cup \ldots \cup U_5^1, E_1)$ is such a component. We may assume $x \in U_0$ and let another component of the graph G - N(x) besides G_1 be $G_2 = (U_0^2 \cup U_1^2 \cup \ldots \cup U_5^2, E_2)$. Without loss of generality, assume that U_i^2 is nonempty for $i = 0, \ldots, l$, where $l \ge 1$. If there exists a vertex $x' \in V(G_2)$ which is not incident with some vertex $u \in N(V(G_1)) \cap N(x)$, then G_1 together with u is in a same component of G - N(x') and the size of the maximum component of G - N(x') is larger than that for x, a contradiction to the choice of x. So every vertex of G_2 is incident with all vertices of $N(V(G_1)) \cap N(x)$ and thus we can find a triangle, a contradiction with $g(G) \ge 4$.

From Claim 1, we see that G - N(x) has a component $G_1 = (U_0^1 \cup U_1^1 \cup \ldots \cup U_5^1, E_1)$ with $U_i^1 = U_i \setminus N(x)$ and all other components are isolated vertices in U_0 .

¹⁶ Now we consider two cases.

17 Case 1.
$$|N(x) \cap U_i|$$
 are odd for $i = 1, ..., l$, where $l \ge 1$.

In this case, $|U_1^1|$ is even. Then it is easy to show that there is a permutation of 18 $U_2^1, U_3^1, U_4^1, U_5^1$, saying W_2, W_3, W_4, W_5 such that $\sum_{i=2}^5 i|W_i|$ is even. Let $W_0 = U_0^1$ and 19 $W_1 = U_1^1$. Then we have a set of target colors t_u for all $u \in V(G_1), t_u = 6$ for $u \in W_0$ 20 and $t_u = i$ for $u \in W_i$, $i \neq 0$. Then $\sum_{u \in V(G_1)} t_u$ is even. By Lemma 1.2, G_1 has a vertex-21 coloring 6-edge-weighting such that $c(u) \equiv i \pmod{6}$ for $u \in W_i$, $i = 0, \ldots, 5$. Next assign 22 the edges xy with weight i if $y \in W_i$ and the other edges in $E(G-v) - E(G_1)$ with 6. Then 23 $c(u) \neq c(v)$ for $u \in W_i$, $v \in W_j$ and $i \neq j$. Note that if $|N(x) \cap U_i| = 1$ for i = 2, 3, 4, 5, 524 then c(x) = d(x) - 4 + 14 = d(x) + 10, which achieves the lower end of the interval; if 25 $|N(x) \cap U_i| = 1$ for i = 1, 2, 3, 4, then c(x) = 5(d(x) - 4) + 10 = 5d(x) - 10, which achieves 26 the upper end of the interval. So we have $d(x) + 10 \le c(x) \le 5d(x) - 10$. For all $u \in N(x)$, 27 $6d(u) - 5 \le c(u) \le 6(d(u) - 1) + 5 = 6d(u) - 1$, which implying $c(x) \ne c(u)$ for all $u \in N(x)$. 28 Therefore we have a vertex-coloring 6-edge-weighting of G. 29

30 Case 2.
$$|N(x) \cap U_i|$$
 are even for $i = 1, 2..., 5$.

Then we can see $d(x) \ge 10$. In this case, U_i^1 are odd for i = 1, 2, ..., 5. Note that there is a vertex $u^* \in N(x)$, say $u^* \in U_1$, adjacent to some vertex $v^* \in U_0 \cup U_2 \cup \cdots \cup U_5$. Let G' be the graph obtained from G_1 by adding the vertex u^* and the edge u^*v^* . Let W_2, W_3, W_4, W_5 be a permutation of $U_2^1, U_3^1, U_4^1, U_5^1$ such that $\sum_{i=2}^5 i|W_i|$ is even. Let $W_0 =$ ¹ U_0^1 and $W_1 = U_1^1 \cup \{u^*\}$. Then W_1 is even. We assign target colors t_v to $v \in V(G_1)$, ² where $t_v = 6$ for $v \in W_0$ and $t_v = i$ for $v \in W_i$ $(i \neq 0)$. Then $\sum_{v \in V(G')} t_v$ is even. ³ According to Lemma 1.2, the edges of G' can be assigned weights from $\{1, 2, \ldots, 6\}$ so that ⁴ $c(u) \equiv i \pmod{6}$ for $u \in W_i$, $i = 0, \ldots, 5$. Next assign the edges xy (except xu^*) with ⁵ weight i if $y \in U_i$ and the remaining edges of $(E(G-v) - E(G_1)) \cup \{xu^*\}$ with 6. As before, ⁶ $d(x) + 15 \leq c(x) \leq 5d(x) - 5$. For all $u \in N(x)$, $6d(u) - 5 \leq c(u) \leq 6(d(u) - 1) + 5 = 6d(u) - 1$, ⁷ which implying $c(x) \neq c(u)$ for all $u \in N(x)$. So it is a vertex-coloring 6-edge-weighting of ⁸ G.

⁹ From the Theorem 3.1, we have the following interesting corollary.

Corollary 3.2 Let G be a k-colorable [r, r+1]-graph with girth $g(G) \ge 4$, where $k \ge 6$ and 11 $r \ge 2$. Then G admits a vertex-coloring k-edge-weighting.

12 References

- [1] L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex coloring edge
 partitions, J. Combin. Theory Ser. B, 94 (2005), 237-244.
- [2] P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory, 42 (2003), 95-109.
- 17 [3] B. Bollobás, Modern Graph Theory, 2nd Edition, Springer-Verlag New York, Inc. 1998.
- [4] Y. H. Duan, H. L. Lu and Q. Yu, L-factor and adjacent vertex-distinguishing edge weighting, (submitted).
- [5] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colors, J. Combin.
 Theory Ser. B, 91 (2004), 151-157.
- [6] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, *Front. Math. China*, 3 (2008), 581-587.