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Abstract

A (δ, g)-cage is a δ-regular graph with girth g and with the least possible number of vertices.
In this paper, we show that all (δ, g)-cages with odd girth g ≥ 9 are r-connected, where (r−1)2 ≤
δ+

√
δ−2 < r2 and all (δ, g)-cages with even girth g ≥ 10 are r-connected, where r is the largest

integer satisfying r(r−1)2

4 + 1 + 2r(r − 1) ≤ δ. Those results support a conjecture of Fu, Huang
and Rodger that all (δ, g)-cages are δ-connected.
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1 Introduction

In this paper, we only consider simple graphs. Let G = (V,E) be a graph with vertex set V (G) and
edge set E(G) and NG(v) denotes the neighborhood of a vertex v in G. If S ⊆ V , then the subgraph
of G induced by S is denoted by G[S]. For u, v ∈ V, dG(u, v) denotes the distance between u and
v in G. For S,W ⊆ V, define dG(S,W ) = min{dG(s,w) | s ∈ S,w ∈ W}. By deleting a vertex u
from a graph G, we mean to delete the vertex u from G together with all the edges incident with
u. By connecting two vertices we mean to join the two vertices by an edge.

A k-connected graph G is called k-superconnected if every k-vertex cutset S ⊆ V (G) is a trivial
cut set. The k-edge-superconnectivity is defined similarly.

The girth g = g(G) is the length of a shortest cycle in G. A (δ, g)-graph is a regular graph of
degree δ and girth g. Let f(δ, g) denote the smallest integer ν such that there exists a (δ, g)-graph
having ν vertices. A (δ, g)-cage is a (δ, g)-graph with f(δ, g) vertices.

Cages were introduced by Tutte in 1947, and have been extensively studied (see survey [17]
for more information). Fu, Huang and Rodger [6] proved that all cages are 2-connected, and then
subsequently showed that all cubic cages are 3-connected. They then conjectured that (δ, g)-cages
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are δ-connected. Daven and Rodger [2], and independently Jiang and Mubayi [7], proved that
all (δ, g)-cages are 3-connected for δ ≥ 3. In [13, 18], it has been shown that every (4, g)-cage is
4-connected.

Recently, the following two results were obtained.

Theorem 1. (Lin, Miller and Balbuena [8]) Let G be a (δ, g)-cage with δ ≥ 3 and odd girth g ≥ 7.
Then G is r-connected with r ≥

√
δ + 1.

Theorem 2. (Lin et al. [11]) Let G be a (δ, g)-cage with δ ≥ 4 and even girth g ≥ 10. Then G is

(r + 1)-connected, where r is the largest integer satisfying r3 + 2r2 ≤ δ.

In this paper, we improve the bound of r in Theorem 1 to
√

δ +
√

δ − 2 when g is odd. For
even girth g, we show that (δ, g)-cage is (r + 1)-connected, where r is the largest integer satisfying
1
4r3 + 3

2r2 − 7
4r + 1 ≤ δ.

2 Known Results

We often use the following theorems and lemmas.

Monotonicity Theorem. ([3, 6]) If δ ≥ 3 and 3 ≤ g1 < g2, then f(δ; g1) < f(δ; g2).

Lemma 1. ([1, 4, 5, 14, 15]) Let G be a graph with girth g, and minimum degree δ. Assume that

S is a cutset with cardinality |S| ≤ δ − 1. Then, for any connected component C in G − S, there

exists a vertex x ∈ V (C) such that d(x, S) ≥ ⌊(g − 1)/2⌋.

Theorem 3. ([10, 16]) Every (δ, g)-cage is δ-edge-connected.

Theorem 4. ([9, 12]) Every (δ, g)-cage is edge-superconnected.

Lemma 2. Let H be a bipartite graph with bipartition (U,W ), where |U | = |W | = m. Suppose that

d(v) ≤ 1 for each v ∈ W and the maximum degree of H is at most m − 1. Denote H∗ = (V ∗,W ∗)
as a copy of H. Then there exist two one-to-one mappings f : W 7→ U∗ and f∗ : W ∗ 7→ U such

that no 4-cycle created in the graph H ∪ H∗ ∪ E(f) ∪ E(f∗).

Proof. It is clear that H contains at most m edges. Using Hall’s theorem, it is easy to show that,
between the vertices of U and W , there exists one-to-one mapping f , which satisfies f(u) = w,
d(u,w) > 1, where u ∈ U and w ∈ W .

Connecting the vertices of W and U∗ based on the mapping f
′
: w → u∗, if f(u) = w. After

these new edges are added, we have a new graph G, we claim that there is a way to connect vertices
of W ∗ and U in G such that there are no new 4-cycles created.

Considering the graph G, it is easy to verify that for every vertex in U , there is a vertex in W ∗ at
distance at least four apart. Otherwise, suppose t ∈ U is connected to w1, . . . , wx ∈ W in H, then
w1, . . . , wx are connected to u∗

1, . . . , u
∗
x. Furthermore, u∗

1, . . . , u
∗
x are connected to all the vertices

in W ∗. Since H∗ is a copy of H, the edges t∗w∗
1, . . . , t

∗w∗
x also exist in H∗. From the mapping

f
′
, it follows that the vertices in W connected to t∗ must have distance more than one to t in H,

this implies that w1, . . . , wx are not connected to t∗, which also implies that t∗ must be different
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from u∗
1, . . . , u

∗
x. Therefore, H∗ contains edges t∗w∗

1, . . . , t
∗w∗

x and edges between {u∗
1, . . . , u

∗
x} and

all vertices of W ∗, so there are more than m edges in total in H∗, a contradiction.
Follow the same reasoning, it is also easy to show that, in G, for any arbitrary number of

vertices in U , there are at least the same number of vertices in W ∗ which are at distance 4 apart.
From Hall’s theorem, it follows that there exists a mapping between U and W ∗ such that there are
no new 4-cycles created. �

3 Main Results

To prove the main results, we adopt the same approaches as in [8, 11] and refine the techniques to
get the improvements on connectivity. The idea is to use two copies of a suitable subgraph from a
(δ, g)-cage to construct a (δ, g′)-graph with g′ ≥ g but having less vertices than the original graph
and thus contradicting to the definition of cages. Throughout the paper, notion x∗ denotes the
copy of x, where x could be a single vertex, a set of vertices or a subgraph.

Theorem 5. Let G be a (δ, g)-cage with δ ≥ 3 and odd girth g ≥ 9. Then G is r-connected, where

(r − 1)2 ≤ δ +
√

δ − 2 < r2.

Proof. Since every (δ, g)-cage with δ ≥ 3 is 3-connected, the theorem holds for δ ≤ 8. So we may
assume δ ≥ 9. We reason by contradiction. Assume that there exists a cutset of order less than
r. Let S = {s1, . . . , sk} be a cutset with |S| = k < r and C be one of the smallest components of
G − S. Without loss of generality, assume that |C| is minimized among all cutsets of cardinality
at most r − 1. Now we partition S into two subsets S1 and S2, where S1 = {s | dC(s) ≥ k + 1}
and S2 = {s | dC(s) ≤ k}. Let |S1| = m and |S2| = k − m. By the choice of S, we may assume
|NC(S2)| > |S2| and |NC(v)| ≥ 2 for all v ∈ S2.

We consider two cases according to the cardinality of S1.

Case 1. |S1| = m ≥ 1

Without loss of generality, assume that S1 = {s1, . . . sm} and S2 = {sm+1, . . . , sk}. Let S′ =
S1 ∪ NC(S2). Then

|S′| ≤ |S1| + |NC(S2)|
≤ |S1| + |E(NC(S2), S2)|
≤ m + (k − m)k

≤ m + (r − 1 − m)(r − 1)

≤ m + δ +
√

δ − 2 − m(

√
δ +

√
δ − 2 − 1)

= (δ − 1) + (2m − 1) +
√

δ − m

√
δ +

√
δ − 2

If m = 1, then |S′| ≤ (δ−1)+1+
√

δ−
√

δ +
√

δ − 2 < δ as δ ≥ 9. Furthermore, |S′| is an integer,
so |S′| ≤ δ−1. If m ≥ 2, then |S′| ≤ (δ−1)+(2m−1)−(m−1)

√
δ ≤ (δ−1)+(2m−1)−3(m−1) =

(δ − 1) + (2 − m) ≤ (δ − 1). Thus |S′| is smaller than δ and note that S′ is also a cutset.
By Lemma 1, there exists a vertex v ∈ C such that d(v, S′) ≥ (g−1)/2. Let N(v) = {v1 . . . , vδ}.

Note that there are at most m paths of length (g−3)/2 from N(v) to S1. Otherwise, by Pigeonhole
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Principle, there are two vertices vi, vj from N(v) at distance (g − 3)/2 to a vertex s ∈ S, a cycle
of length less than g is formed by two paths from v to s via vi and vj, respectively, which is a
contradiction. Thus we may assume that d({vm+1, . . . , vδ}, S1) ≥ (g − 1)/2. Following the same
arguments, we see that there are at most k paths of length less than (g − 3)/2 from N(vi)− v to S
for each i = 1, . . . ,m. Hence there are at least δ − k − 1 vertices, denoted by Ti, in N(vi)− v such
that d(Ti, S) ≥ (g − 1)/2, for i = 1, . . . ,m.

Moreover |NC(S2)| ≤ δ − m − 1, and there are at most |NC(S2)| paths of length (g − 3)/2
from N(v) to NC(S2). Now we may choose a subset L ⊆ {vm+1, . . . , vδ} such that |L| = |NC(S2)|.
For each vj ∈ L, there are at most |L| − 1 paths of length at most (g − 3)/2 from vj to NC(S2),
otherwise a cycle of length less than g is formed since NC(v) ≥ 2 for all v ∈ S2. Moreover, the set
{vm+1, . . . , vδ} − L is at distance at least (g − 1)/2 to NC(S2).

Since d(L,NC(S2)) ≥ (g − 3)/2, we construct a bipartite graph B with bipartition (L,NC(S2))
such that an edge st ∈ E(B) if and only if dC(s, t) = (g−3)/2, where s ∈ L and t ∈ NC(S2). Clearly,
B satisfies the conditions in Lemma 2. Thus there exist two one-to-one mappings f : NC(S2) 7→ L∗

and f∗ : NC(S∗
2) 7→ L such that no 4-cycle appears in graph B ∪ B∗ ∪ E(f) ∪ E(f∗).

Consider the subgraph G1 = G[(C −{v, v1, . . . , vm})∪S1]−E[S1] and take another copy of the
subgraph G1, denote it by G∗

1. The corresponding sets of interest are denoted by S∗
1 , S∗

2 and T ∗
i ,

i = 1, . . . ,m. We construct a δ-regular graph G′ with girth at least g by using G1 and G∗
1. The

order of the new graph G′ is 2|V (G1)| = 2(|V (C)| − 1) < |V (G)|. Thus we construct a (δ, g′)-graph
with g′ ≥ g and |V (G′)| < |V (G)|. By Monotonicity Theorem, this contradicts to the assumption
that G is a (δ, g)-cage. The construction is given below.

(a) For i = 1, . . . ,m, each vertex si ∈ S1 is of degree at least k + 1 and Ti in G1 contains at
least δ − k − 1 vertices at distance at least (g − 1)/2 to S1, thus we connect si with dG[G−C](si)
distinct vertices in T ∗

i . Similarly, we make the corresponding connections between the vertices in
S∗

1 and Ti.
After the operation is carried out in (a), for each i = 1, . . . ,m, dG[G−C](si) vertices of N(vi)− v

(respectively, N(v∗i ) − v∗) are of degree δ and the remaining are of degree δ − 1.

(b) Connect each vertex in NC(S2) to a vertex in L∗, and connect each vertex in NC(S∗
2) to a

vertex in L according to the two one-to-one mappings f and f∗ given in the graph B ∪ B∗. After
this operation, all the vertices in L ∪ L∗ are of degree δ, but some vertices in NC(S2) ∪ NC(S2)

∗

might be of degree less than δ. Since |NC(S2)| ≤ |E(S2, NC(S2))| ≤ δ − m − 1, so we can connect
some vertices in NC(S2) to the vertices in {v∗m+1, . . . , v

∗
δ}−L∗ such that all vertices in NC(S2) are

of degree δ. Similarly, we make the corresponding connections between the vertices in NC(S∗
2) and

{vm+1, . . . , vδ} − L.

(c) After the operations are carried out in (a) and (b), all the vertices are of degree δ or δ − 1.
To obtain a δ-regular graph, we connect the vertices of degree δ − 1 in G1 with the corresponding
vertices in G∗

1, and connect each pair of matched vertices by an edge.

Thus we have constructed a new graph G′ that is δ-regular (see Figure 1). Next, taking g ≥ 7
into account, we show that the girth of G′ is at least g.

Clearly, we only need to show this for any new cycle, say C, which is introduced in the con-
struction. All new cycles have to use at least two new edges, so we consider the following six
cases.
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T1

Tm
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N(S2)
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Tm*

L*
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N(S*2)G1 G*1

Figure 1: Illustration of the construction

• If C goes through two edges in (a), then the cycle C is of length at least (g − 2) + 2 ≥ g or
(g − 1)/2 + (g − 1)/2 + 2 > g.

• If C goes through two edges in (b), and the two edges in G′ are correspond to E(f) or
E(f∗), then C is of length at least 2 + (g − 1)/2 + (g − 3)/2 = g. Otherwise C is also of
length at least g, since d({v∗m+1, . . . , v

∗
δ} −L∗, NC(S2)) ≥ (g − 1)/2 and no 4-cycle created in

B ∪ B∗ ∪ E(f) ∪ E(f∗).

• If C goes through two edges in (c), then C is of length at least 2(g − 4) + 2 ≥ g.

• If C goes through one edge in (a) and one edge in (b), then C is of length at least (g−3)+2+1 =
g or (g − 1)/2 + 2 + (g − 3)/2 ≥ g.

• If C goes through one edge in (a) and one edge in (c), then C is of length at least (g − 4) +
2 + (g − 5)/2 ≥ g.

• If C goes through one edge in (b) and one edge in (c), then C is of length at least (g − 3) +
2 + (g − 3)/2 ≥ g.

Case 2. |S1| = m = 0.

Then dC(si) ≤ k for 1 ≤ i ≤ k. Now we partition S2 into two subsets S3 and S4, where
S3 = {s | dC(s) = k} and S4 = {s | dC(s) ≤ k−1}. Then |S3| ≥ 2. Otherwise, since δ ≥ 9, we have
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|E(S,NC (S))| ≤ k + (k − 1)(k − 1)

≤ (r − 1) + (r − 2)2

= (r − 1)2 − r + 2

≤ δ +
√

δ − 2 −
√

δ +
√

δ − 2 + 2

= δ +
√

δ −
√

δ +
√

δ − 2

< δ

But we know E(S,NC(S)) is an edge-cut of G, which is a contradiction to Lemma 4. Now let
R1 = {s1, s2} ⊆ S3 and R2 = S − R1. Note that

|R1 ∪ NC(R2)| = |R1| + |NC(R2)|
≤ |R1| + |E(R2, NC(R2))|
≤ 2 + k(k − 2)

≤ 2 + (r − 1)(r − 3)

= (r − 1)2 − 2r + 4

≤ δ +
√

δ − 2 − 2

√
δ +

√
δ − 2 + 4

< δ + 2 −
√

δ +
√

δ − 2

< δ − 1.

The last inequality is due to the assumption δ ≥ 9 and the condition that |R1 ∪ NC(R2)| is an
integer. Thus by Lemma 1, there exists a vertex v ∈ V (C) such that d(v,R1∪NC(R2)) ≥ (g−1)/2.
From N(v), we can find two vertices v1 and v2 such that there are at most k − 1 paths of length
less than (g − 1)/2 from {N(vi) − v | 1 ≤ i ≤ δ} to S. If two such vertices do not exist, it implies
that there are at least (δ − 1)k paths of length less than (g− 1)/2 from ∪δ

i=1(N(vi)− v) to S. Note
that (δ − 1)k > (r − 1)k ≥ k2 and |E(S,NC(S))| ≤ k2, which implies a cycle of length less than g.

From NC(v1) and NC(v2), we can find two sets T1 ⊆ NC(v1) and T2 ⊆ NC(v2) such that
d(Ti, S) ≥ (g−1)/2, where |Ti| = δ−k and i = 1, 2. Also there are at most two paths of length less
than (g − 1)/2 from N(v) to R1. We may assume d(vi, R1) ≥ (g − 1)/2 for 5 ≤ i ≤ δ. Moreover,
|R2| < |NC(R2)| ≤ |E(NC(R2), R2)| ≤ δ − 4. We may choose a subset L ⊆ {v5, . . . , vδ} such that
|L| = |NG1

(R2)| and for each vj ∈ L, there are at most |L| − 1 paths of length at most (g − 3)/2
from vj to NC(R2).

We construct a bipartite graph B with bipartition (L,NC(R2)) such that st ∈ E(B) if and only
if dC(s, t) = (g − 3)/2, where s ∈ L and t ∈ NC(R2). Clearly, B satisfies the conditions in Lemma
2. Thus there exist two one-to-one mappings f : NC(R2) 7→ L∗ and f∗ : NC(R∗

2) 7→ L such that no
4-cycle created in graph B ∪ B∗ ∪ E(f) ∪ E(f∗).

Consider the subgraph G1 = G[(C −{v, v1, v2})∪R1]−E(G[R1]) and take another copy of the
subgraph G1, denote it by G∗

1. The corresponding sets of interest are denoted by R∗
1, R∗

2 and T ∗
i ,
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i = 1, 2. Similar to the proof in Case 1, we construct a δ-regular graph G′ with girth at least g by
using G1 and G∗

1.

(a) For i = 1, 2, each vertex si ∈ R1 connects to dG−C(si) distinct vertices in T ∗
i . Similarly, we

make the corresponding connections between the vertices in R∗
1 and Ti.

After the operation is carried out in (a), for each i = 1, 2, dG−C(si) vertices of N(vi) − v
(respectively, N(v∗i ) − v∗) are of degree δ and the remaining are of degree δ − 1.

(b) Connect each vertex in NC(R2) to a vertex in L∗, and connect each vertex in NC(R∗
2) to

a vertex in L according to the two one-to-one mappings f and f∗ given in the graph B ∪ B∗.
After this operation, all vertices in L∪L∗ are of degree δ, but some vertices in NC(R2)∪NC(R2)

∗

might be of degree less than δ. Since |NC(R2)| ≤ |E(R2, NC(R2))| ≤ δ − 4, so we can connect
a vertex in NC(R2) to the vertices in {v∗4 , . . . , v∗δ} − L∗ such that all vertices in NC(R2) are of
degree δ. Similarly, we make the corresponding connections between the vertices in NC(R∗

2) and
{v4, . . . , vδ} − L.

(c) After the operations are carried out in (a) and (b), all vertices are of degree δ or δ − 1.
To obtain a δ-regular graph, we connect the vertices of degree δ − 1 in G1 with the corresponding
vertices in G∗

1, and connect each pair of matched vertices by an edge.

Thus we have constructed a new δ-regular graph G′. Verifying the girth of G′ can be done in
the same fashion as in Case 1. �

Theorem 6. Let G be a (δ, g)-cage with δ ≥ 4 and even girth g ≥ 10. Then G is (r+1)-connected,

where r is the largest integer such that
r(r−1)2

4 + 1 + 2r(r − 1) ≤ δ.

Proof. In [13], (δ, g)-cages with g ≥ 10 are showed to be 4-connected. Thus if δ ≤ 16, the
theorem holds. So assume r ≥ 4 and δ ≥ 17. Suppose, to the contrary, κ(G) < r + 1. Then
G has a cutset S = {s1, . . . , sk} with k ≤ r. Let C be a smallest component of G − S and let
G1 = G[V (C) ∪ S] − E(G[S]).

Now we partition the set S into three subsets (see Figure 2).

X = {u | dG1
(u) ≤ r, u ∈ S},

Y = {u | r + 1 ≤ dG1
(u) ≤ rx + r − x, u ∈ S},

Z = {u | dG1
(u) ≥ rx + r − x + 1, u ∈ S}.

where |X| = x, |Y | = y and |Z| = z. Thus r ≥ k = |X| + |Y | + |Z| = x + y + z. By Lemma 4, it
follows |Z| ≥ 1, otherwise, E(N(S), S) is an edge-cut and |E(N(S), S)| ≤ rx+(r−x)(rx+r−x) =
(r2 − r)x + (1 − r)x2 + r2 < δ, a contradiction to Theorem 4.

Based on this partition, we conclude:

|N(X) ∩ V (C)| ≤ rx,

|N(Y ) ∩ V (C)| ≤ y(xr + r − x),

|N(X) ∩ V (C) ∪ Y ∪ Z| ≤ xr + r − x < r2.
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 Figure 2: The structure of X, Y and Z

Let F = (N(X)∩ V (C))∪ Y ∪Z. Obviously, the set F is also a vertex-cut whose cardinality is
less than δ. Instead of considering the vertex-cut S, we focus on this new vertex-cut F in the rest
of the proof.

By Lemma 1, there exists a vertex u ∈ C such that the distance from u to F is at least g/2− 1.
Let W stand for the set of edges of the subgraph induced by Y ∪ Z, that is, W = E(G[Y ∪ Z]). It
is easy to see that there are at most y(xr + r − x) vertices in N(u) which are at distance g/2 − 1
or g/2 − 2 to Y in the graph G1 − W , because all shortest paths in G1 − W of length g/2 − 1
or g/2 − 2 from vertices in N(u) to vertices in Y must go via the vertices in N(Y ) ∩ V (C). As
|N(Y ) ∩ V (C)| ≤ y(xr + r − x), there are at most y(xr + r − x) disjoint paths of length g/2 − 1
or g/2 − 2 from N(u) to Y . Otherwise, by the Pigeonhole Principle, there exists a cycle of length
less than g in the graph, which goes through u, two distinct vertices in N(u), and a vertex in
N(Y ) ∩ V (C), a contradiction.

Since |F − Y | = |N(X) ∩ V (C) ∪ Z| ≤ rx + z = rx + r − x − y, using the arguments as in the
previous cases, we see that among the vertices left, at least δ − y(xr + r − x) vertices are in N(u),
and there are at most rx + z vertices which have distance g/2 − 2 in G to (N(X) ∩ V (C)) ∪ Z.
Moreover, because of

yrx + y(r − x) + z + 2rx = rxy + yr − xy + r − x − y + 2rx

≤ r(r − 1)2

4
+ yr − xy + r − x − y + 2rx

=
r(r − 1)2

4
+ 1 + 2r(r − 1),

we have

δ − y(xr + r − x) − z − 2rx ≥ δ − r(r − 1)2

4
− 1 − 2r(r − 1) ≥ 0.
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Therefore, there are at least

δ − y(xr + r − x) − z − rx ≥ rx

vertices in N(u) which have distance at least g/2 to Y and at least g/2 − 1 to (N(X) ∩ V (C)) ∪Z
in G − W . Thus, we have

d(v, F ) ≥ g/2 − 2 for all v ∈ N(u)

and there exists a set U = {u1, . . . , ut} ⊆ N(u), where t ≥ rx, such that

d(U, Y ) ≥ g/2 and d(U,F\Y ) ≥ g/2 − 1.

For each vertex ui in N(u), denote by Ui the vertices in N(ui)− u which have distance at least
g/2 − 1 to F in G1 − W . It is clear that |Ui| is at least δ − 1 − rx − z − y, since |F | ≤ rx + y + z.
Denote by Ûi the set of vertices in N(ui)− u which have distance at least g/2 − 1 to X ∪ Y ∪Z in
G1 −W . So Ui ⊆ Ûi. It is easy to see that |Ûi| ≥ δ− r−1 as |X ∪Y ∪Z| ≤ r. To summarize, there
exist two sets Ui ⊂ Ûi ⊂ N(ui) − u, i = 1, 2, with |Ui| ≥ δ − 1 − rx − z − y and |Ûi| ≥ δ − r − 1
such that

d(Ui, F ) ≥ g/2 − 1,

d(Ûi,X ∪ Y ∪ Z) ≥ g/2 − 1,

d(Ûi, F ) ≥ g/2 − 2.

Using the similar approach as before, we construct a (δ, g′)-graph with smaller size. Taking the
subgraph of G−W induced by V (C)∪Y ∪Z−{u} and deleting some vertices (which are described
in the proof later), we denote the resulting graph by H. Take another copy of H and denote it
by H∗, the corresponding sets of interests in H∗ are U∗ = {u∗

1, u
∗
2, . . . , u

∗
t }, Y ∗ and Z∗. We join

the vertices of H and H∗ by some edges, which are described below, to construct a new graph
G′. The new graph G′ is δ-regular and its girth is at least g but with fewer vertices than G. By
Monotonicity Theorem, we arrive at a contradiction and thus the theorem is proved.

The connections are described below (see Figure 3 for an illustration).

(a) The degrees of vertices in N(X) ∩ V (C) are unknown at this point, however we know that
the number of new edges that should be added in order to achieve degree δ for all the vertices
in N(X) ∩ V (C) is at most rx. Therefore, every vertex, say xi, in N(X) ∩ V (C) is connected
to |N(xi) ∩ V (C)| vertices in U∗. Note that |U | ≥ rx, thus this operation is well defined. We
make the same connections between N(X∗) ∩ V (C∗) and U. It is obvious that now the vertices in
N(X) ∩ V (C) and N(X∗) ∩ V (C∗) have degree δ.

(b) There are at least |Y |+ |Z| vertices left in N(u) with degree δ − 1 which are at distance at
least g/2 − 1 to F . The the same statement applies to N(u∗). Every vertex yi in Y is arbitrarily
connected with one of these remaining vertices in N(u∗), say u∗

i . We remove u∗
i from the graph

and connect yi to some vertices in Û∗
i such that yi has degree δ. Note that |Û∗

i | ≥ δ − r − 1 and
|N(yi)∩V (C)| ≤ δ− r− 1. Therefore, we guarantee that the degree of yi equals to δ by connecting

it to vertices in Û∗
i . We make the similar connections between Y ∗ and N(u).
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Y

Z

N(X)∩V (C) N(X∗)∪V (C∗)

C∗

U∗

Y ∗

Z∗

U

C

Figure 3: Illustration of G′

(c) At this stage, there are at least |Z| vertices left in N(u) with degree δ− 1 and these vertices
are at distance at least g/2 − 1 to F . Each vertex zj of Z is arbitrarily connected with a vertex
in N(u∗), say u∗

j . We remove uj from the graph and connect zj to some vertices in U∗
j such that

zj has degree δ. Note that |U∗
j | ≥ δ − (1 + rx + z + y) and δ − dG1

(zj) ≤ δ − (rx + z + y) − 1.
Therefore, we can connect zj to some vertices of U∗

j to insure that degree of zj is δ. We make the
similar connections between Z∗ and N(u).

(d) The rest of the vertices in the graph have degree δ or δ−1. We connect each vertex x ∈ V (H)
with degree δ − 1 to its copy x∗ ∈ V (H∗).

The graph G′ is a δ-regular graph. It is not hard to verify that this graph has girth at least g
in the same way as what we did in the proof of the previous theorem. Now we have constructed a
(δ, g′)-graph G′ with girth g′ ≥ g but |V (G′)| < |V (G)|, arriving at a contradiction by Monotonicity
Theorem. �
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