New improvements on connectivity of cages*

Hongliang Lu^{1}, Yunjian Wu^{1}, Qinglin $\mathrm{Yu}^{12 \dagger}$, Yuqing Lin^{3}
${ }^{1}$ Center for Combinatorics, LPMC
Nankai University, Tianjin, 300071, China
${ }^{2}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada
${ }^{3}$ School of Electrical Engineering and Computer Science The University of Newcastle, Newcastle, Australia

Abstract

A (δ, g)-cage is a δ-regular graph with girth g and with the least possible number of vertices. In this paper, we show that all (δ, g)-cages with odd girth $g \geq 9$ are r-connected, where $(r-1)^{2} \leq$ $\delta+\sqrt{\delta}-2<r^{2}$ and all (δ, g)-cages with even girth $g \geq 10$ are r-connected, where r is the largest integer satisfying $\frac{r(r-1)^{2}}{4}+1+2 r(r-1) \leq \delta$. Those results support a conjecture of Fu, Huang and Rodger that all (δ, g)-cages are δ-connected.

Key words: Cage; Girth; Superconnectivity

1 Introduction

In this paper, we only consider simple graphs. Let $G=(V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$ and $N_{G}(v)$ denotes the neighborhood of a vertex v in G. If $S \subseteq V$, then the subgraph of G induced by S is denoted by $G[S]$. For $u, v \in V, d_{G}(u, v)$ denotes the distance between u and v in G. For $S, W \subseteq V$, define $d_{G}(S, W)=\min \left\{d_{G}(s, w) \mid s \in S, w \in W\right\}$. By deleting a vertex u from a graph G, we mean to delete the vertex u from G together with all the edges incident with u. By connecting two vertices we mean to join the two vertices by an edge.

A k-connected graph G is called k-superconnected if every k-vertex cutset $S \subseteq V(G)$ is a trivial cut set. The k-edge-superconnectivity is defined similarly.

The girth $g=g(G)$ is the length of a shortest cycle in G. A (δ, g)-graph is a regular graph of degree δ and girth g. Let $f(\delta, g)$ denote the smallest integer ν such that there exists a (δ, g)-graph having ν vertices. A (δ, g)-cage is a (δ, g)-graph with $f(\delta, g)$ vertices.

Cages were introduced by Tutte in 1947, and have been extensively studied (see survey [17] for more information). Fu, Huang and Rodger [6] proved that all cages are 2-connected, and then subsequently showed that all cubic cages are 3 -connected. They then conjectured that (δ, g)-cages

[^0]are δ-connected. Daven and Rodger [2], and independently Jiang and Mubayi [7], proved that all (δ, g)-cages are 3 -connected for $\delta \geq 3$. In [13, 18], it has been shown that every $(4, g)$-cage is 4-connected.

Recently, the following two results were obtained.
Theorem 1. (Lin, Miller and Balbuena [8]) Let G be $a(\delta, g)$-cage with $\delta \geq 3$ and odd girth $g \geq 7$. Then G is r-connected with $r \geq \sqrt{\delta+1}$.

Theorem 2. (Lin et al. [11]) Let G be a (δ, g)-cage with $\delta \geq 4$ and even girth $g \geq 10$. Then G is $(r+1)$-connected, where r is the largest integer satisfying $r^{3}+2 r^{2} \leq \delta$.

In this paper, we improve the bound of r in Theorem 1 to $\sqrt{\delta+\sqrt{\delta}-2}$ when g is odd. For even girth g, we show that (δ, g)-cage is $(r+1)$-connected, where r is the largest integer satisfying $\frac{1}{4} r^{3}+\frac{3}{2} r^{2}-\frac{7}{4} r+1 \leq \delta$.

2 Known Results

We often use the following theorems and lemmas.
Monotonicity Theorem. ([3, 6]) If $\delta \geq 3$ and $3 \leq g_{1}<g_{2}$, then $f\left(\delta ; g_{1}\right)<f\left(\delta ; g_{2}\right)$.
Lemma 1. ([1, 4, 5, 14, 15]) Let G be a graph with girth g, and minimum degree δ. Assume that S is a cutset with cardinality $|S| \leq \delta-1$. Then, for any connected component C in $G-S$, there exists a vertex $x \in V(C)$ such that $d(x, S) \geq\lfloor(g-1) / 2\rfloor$.

Theorem 3. ([10, 16]) Every (δ, g)-cage is δ-edge-connected.
Theorem 4. ([9, 12]) Every (δ, g)-cage is edge-superconnected.
Lemma 2. Let H be a bipartite graph with bipartition (U, W), where $|U|=|W|=m$. Suppose that $d(v) \leq 1$ for each $v \in W$ and the maximum degree of H is at most $m-1$. Denote $H^{*}=\left(V^{*}, W^{*}\right)$ as a copy of H. Then there exist two one-to-one mappings $f: W \mapsto U^{*}$ and $f^{*}: W^{*} \mapsto U$ such that no 4 -cycle created in the graph $H \cup H^{*} \cup E(f) \cup E\left(f^{*}\right)$.

Proof. It is clear that H contains at most m edges. Using Hall's theorem, it is easy to show that, between the vertices of U and W, there exists one-to-one mapping f, which satisfies $f(u)=w$, $d(u, w)>1$, where $u \in U$ and $w \in W$.

Connecting the vertices of W and U^{*} based on the mapping $f^{\prime}: w \rightarrow u^{*}$, if $f(u)=w$. After these new edges are added, we have a new graph G, we claim that there is a way to connect vertices of W^{*} and U in G such that there are no new 4 -cycles created.

Considering the graph G, it is easy to verify that for every vertex in U, there is a vertex in W^{*} at distance at least four apart. Otherwise, suppose $t \in U$ is connected to $w_{1}, \ldots, w_{x} \in W$ in H, then w_{1}, \ldots, w_{x} are connected to $u_{1}^{*}, \ldots, u_{x}^{*}$. Furthermore, $u_{1}^{*}, \ldots, u_{x}^{*}$ are connected to all the vertices in W^{*}. Since H^{*} is a copy of H, the edges $t^{*} w_{1}^{*}, \ldots, t^{*} w_{x}^{*}$ also exist in H^{*}. From the mapping f^{\prime}, it follows that the vertices in W connected to t^{*} must have distance more than one to t in H, this implies that w_{1}, \ldots, w_{x} are not connected to t^{*}, which also implies that t^{*} must be different
from $u_{1}^{*}, \ldots, u_{x}^{*}$. Therefore, H^{*} contains edges $t^{*} w_{1}^{*}, \ldots, t^{*} w_{x}^{*}$ and edges between $\left\{u_{1}^{*}, \ldots, u_{x}^{*}\right\}$ and all vertices of W^{*}, so there are more than m edges in total in H^{*}, a contradiction.

Follow the same reasoning, it is also easy to show that, in G, for any arbitrary number of vertices in U, there are at least the same number of vertices in W^{*} which are at distance 4 apart. From Hall's theorem, it follows that there exists a mapping between U and W^{*} such that there are no new 4-cycles created.

3 Main Results

To prove the main results, we adopt the same approaches as in $[8,11]$ and refine the techniques to get the improvements on connectivity. The idea is to use two copies of a suitable subgraph from a (δ, g)-cage to construct a $\left(\delta, g^{\prime}\right)$-graph with $g^{\prime} \geq g$ but having less vertices than the original graph and thus contradicting to the definition of cages. Throughout the paper, notion x^{*} denotes the copy of x, where x could be a single vertex, a set of vertices or a subgraph.

Theorem 5. Let G be $a(\delta, g)$-cage with $\delta \geq 3$ and odd girth $g \geq 9$. Then G is r-connected, where $(r-1)^{2} \leq \delta+\sqrt{\delta}-2<r^{2}$.

Proof. Since every (δ, g)-cage with $\delta \geq 3$ is 3 -connected, the theorem holds for $\delta \leq 8$. So we may assume $\delta \geq 9$. We reason by contradiction. Assume that there exists a cutset of order less than r. Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be a cutset with $|S|=k<r$ and C be one of the smallest components of $G-S$. Without loss of generality, assume that $|C|$ is minimized among all cutsets of cardinality at most $r-1$. Now we partition S into two subsets S_{1} and S_{2}, where $S_{1}=\left\{s \mid d_{C}(s) \geq k+1\right\}$ and $S_{2}=\left\{s \mid d_{C}(s) \leq k\right\}$. Let $\left|S_{1}\right|=m$ and $\left|S_{2}\right|=k-m$. By the choice of S, we may assume $\left|N_{C}\left(S_{2}\right)\right|>\left|S_{2}\right|$ and $\left|N_{C}(v)\right| \geq 2$ for all $v \in S_{2}$.

We consider two cases according to the cardinality of S_{1}.
Case 1. $\left|S_{1}\right|=m \geq 1$
Without loss of generality, assume that $S_{1}=\left\{s_{1}, \ldots s_{m}\right\}$ and $S_{2}=\left\{s_{m+1}, \ldots, s_{k}\right\}$. Let $S^{\prime}=$ $S_{1} \cup N_{C}\left(S_{2}\right)$. Then

$$
\begin{aligned}
\left|S^{\prime}\right| & \leq\left|S_{1}\right|+\left|N_{C}\left(S_{2}\right)\right| \\
& \leq\left|S_{1}\right|+\left|E\left(N_{C}\left(S_{2}\right), S_{2}\right)\right| \\
& \leq m+(k-m) k \\
& \leq m+(r-1-m)(r-1) \\
& \leq m+\delta+\sqrt{\delta}-2-m(\sqrt{\delta+\sqrt{\delta}-2}-1) \\
& =(\delta-1)+(2 m-1)+\sqrt{\delta}-m \sqrt{\delta+\sqrt{\delta}-2}
\end{aligned}
$$

If $m=1$, then $\left|S^{\prime}\right| \leq(\delta-1)+1+\sqrt{\delta}-\sqrt{\delta+\sqrt{\delta}-2}<\delta$ as $\delta \geq 9$. Furthermore, $\left|S^{\prime}\right|$ is an integer, so $\left|S^{\prime}\right| \leq \delta-1$. If $m \geq 2$, then $\left|S^{\prime}\right| \leq(\delta-1)+(2 m-1)-(m-1) \sqrt{\delta} \leq(\delta-1)+(2 m-1)-3(m-1)=$ $(\delta-1)+(2-m) \leq(\delta-1)$. Thus $\left|S^{\prime}\right|$ is smaller than δ and note that S^{\prime} is also a cutset.

By Lemma 1, there exists a vertex $v \in C$ such that $d\left(v, S^{\prime}\right) \geq(g-1) / 2$. Let $N(v)=\left\{v_{1} \ldots, v_{\delta}\right\}$. Note that there are at most m paths of length $(g-3) / 2$ from $N(v)$ to S_{1}. Otherwise, by Pigeonhole

Principle, there are two vertices v_{i}, v_{j} from $N(v)$ at distance $(g-3) / 2$ to a vertex $s \in S$, a cycle of length less than g is formed by two paths from v to s via v_{i} and v_{j}, respectively, which is a contradiction. Thus we may assume that $d\left(\left\{v_{m+1}, \ldots, v_{\delta}\right\}, S_{1}\right) \geq(g-1) / 2$. Following the same arguments, we see that there are at most k paths of length less than $(g-3) / 2$ from $N\left(v_{i}\right)-v$ to S for each $i=1, \ldots, m$. Hence there are at least $\delta-k-1$ vertices, denoted by T_{i}, in $N\left(v_{i}\right)-v$ such that $d\left(T_{i}, S\right) \geq(g-1) / 2$, for $i=1, \ldots, m$.

Moreover $\left|N_{C}\left(S_{2}\right)\right| \leq \delta-m-1$, and there are at most $\left|N_{C}\left(S_{2}\right)\right|$ paths of length $(g-3) / 2$ from $N(v)$ to $N_{C}\left(S_{2}\right)$. Now we may choose a subset $L \subseteq\left\{v_{m+1}, \ldots, v_{\delta}\right\}$ such that $|L|=\left|N_{C}\left(S_{2}\right)\right|$. For each $v_{j} \in L$, there are at most $|L|-1$ paths of length at most $(g-3) / 2$ from v_{j} to $N_{C}\left(S_{2}\right)$, otherwise a cycle of length less than g is formed since $N_{C}(v) \geq 2$ for all $v \in S_{2}$. Moreover, the set $\left\{v_{m+1}, \ldots, v_{\delta}\right\}-L$ is at distance at least $(g-1) / 2$ to $N_{C}\left(S_{2}\right)$.

Since $d\left(L, N_{C}\left(S_{2}\right)\right) \geq(g-3) / 2$, we construct a bipartite graph B with bipartition $\left(L, N_{C}\left(S_{2}\right)\right)$ such that an edge $s t \in E(B)$ if and only if $d_{C}(s, t)=(g-3) / 2$, where $s \in L$ and $t \in N_{C}\left(S_{2}\right)$. Clearly, B satisfies the conditions in Lemma 2. Thus there exist two one-to-one mappings $f: N_{C}\left(S_{2}\right) \mapsto L^{*}$ and $f^{*}: N_{C}\left(S_{2}^{*}\right) \mapsto L$ such that no 4-cycle appears in graph $B \cup B^{*} \cup E(f) \cup E\left(f^{*}\right)$.

Consider the subgraph $G_{1}=G\left[\left(C-\left\{v, v_{1}, \ldots, v_{m}\right\}\right) \cup S_{1}\right]-E\left[S_{1}\right]$ and take another copy of the subgraph G_{1}, denote it by G_{1}^{*}. The corresponding sets of interest are denoted by S_{1}^{*}, S_{2}^{*} and T_{i}^{*}, $i=1, \ldots, m$. We construct a δ-regular graph G^{\prime} with girth at least g by using G_{1} and G_{1}^{*}. The order of the new graph G^{\prime} is $2\left|V\left(G_{1}\right)\right|=2(|V(C)|-1)<|V(G)|$. Thus we construct a $\left(\delta, g^{\prime}\right)$-graph with $g^{\prime} \geq g$ and $\left|V\left(G^{\prime}\right)\right|<|V(G)|$. By Monotonicity Theorem, this contradicts to the assumption that G is a (δ, g)-cage. The construction is given below.
(a) For $i=1, \ldots, m$, each vertex $s_{i} \in S_{1}$ is of degree at least $k+1$ and T_{i} in G_{1} contains at least $\delta-k-1$ vertices at distance at least $(g-1) / 2$ to S_{1}, thus we connect s_{i} with $d_{G[G-C]}\left(s_{i}\right)$ distinct vertices in T_{i}^{*}. Similarly, we make the corresponding connections between the vertices in S_{1}^{*} and T_{i}.

After the operation is carried out in (a), for each $i=1, \ldots, m, d_{G[G-C]}\left(s_{i}\right)$ vertices of $N\left(v_{i}\right)-v$ (respectively, $N\left(v_{i}^{*}\right)-v^{*}$) are of degree δ and the remaining are of degree $\delta-1$.
(b) Connect each vertex in $N_{C}\left(S_{2}\right)$ to a vertex in L^{*}, and connect each vertex in $N_{C}\left(S_{2}^{*}\right)$ to a vertex in L according to the two one-to-one mappings f and f^{*} given in the graph $B \cup B^{*}$. After this operation, all the vertices in $L \cup L^{*}$ are of degree δ, but some vertices in $N_{C}\left(S_{2}\right) \cup N_{C}\left(S_{2}\right)^{*}$ might be of degree less than δ. Since $\left|N_{C}\left(S_{2}\right)\right| \leq\left|E\left(S_{2}, N_{C}\left(S_{2}\right)\right)\right| \leq \delta-m-1$, so we can connect some vertices in $N_{C}\left(S_{2}\right)$ to the vertices in $\left\{v_{m+1}^{*}, \ldots, v_{\delta}^{*}\right\}-L^{*}$ such that all vertices in $N_{C}\left(S_{2}\right)$ are of degree δ. Similarly, we make the corresponding connections between the vertices in $N_{C}\left(S_{2}^{*}\right)$ and $\left\{v_{m+1}, \ldots, v_{\delta}\right\}-L$.
(c) After the operations are carried out in (a) and (b), all the vertices are of degree δ or $\delta-1$. To obtain a δ-regular graph, we connect the vertices of degree $\delta-1$ in G_{1} with the corresponding vertices in G_{1}^{*}, and connect each pair of matched vertices by an edge.

Thus we have constructed a new graph G^{\prime} that is δ-regular (see Figure 1). Next, taking $g \geq 7$ into account, we show that the girth of G^{\prime} is at least g.

Clearly, we only need to show this for any new cycle, say \mathcal{C}, which is introduced in the construction. All new cycles have to use at least two new edges, so we consider the following six cases.

Figure 1: Illustration of the construction

- If \mathcal{C} goes through two edges in (a), then the cycle \mathcal{C} is of length at least $(g-2)+2 \geq g$ or $(g-1) / 2+(g-1) / 2+2>g$.
- If \mathcal{C} goes through two edges in (b), and the two edges in G^{\prime} are correspond to $E(f)$ or $E\left(f^{*}\right)$, then \mathcal{C} is of length at least $2+(g-1) / 2+(g-3) / 2=g$. Otherwise \mathcal{C} is also of length at least g, since $d\left(\left\{v_{m+1}^{*}, \ldots, v_{\delta}^{*}\right\}-L^{*}, N_{C}\left(S_{2}\right)\right) \geq(g-1) / 2$ and no 4 -cycle created in $B \cup B^{*} \cup E(f) \cup E\left(f^{*}\right)$.
- If \mathcal{C} goes through two edges in (c), then \mathcal{C} is of length at least $2(g-4)+2 \geq g$.
- If \mathcal{C} goes through one edge in (a) and one edge in (b), then \mathcal{C} is of length at least $(g-3)+2+1=$ g or $(g-1) / 2+2+(g-3) / 2 \geq g$.
- If \mathcal{C} goes through one edge in (a) and one edge in (c), then \mathcal{C} is of length at least $(g-4)+$ $2+(g-5) / 2 \geq g$.
- If \mathcal{C} goes through one edge in (b) and one edge in (c), then \mathcal{C} is of length at least $(g-3)+$ $2+(g-3) / 2 \geq g$.

Case 2. $\left|S_{1}\right|=m=0$.
Then $d_{C}\left(s_{i}\right) \leq k$ for $1 \leq i \leq k$. Now we partition S_{2} into two subsets S_{3} and S_{4}, where $S_{3}=\left\{s \mid d_{C}(s)=k\right\}$ and $S_{4}=\left\{s \mid d_{C}(s) \leq k-1\right\}$. Then $\left|S_{3}\right| \geq 2$. Otherwise, since $\delta \geq 9$, we have

$$
\begin{aligned}
\left|E\left(S, N_{C}(S)\right)\right| & \leq k+(k-1)(k-1) \\
& \leq(r-1)+(r-2)^{2} \\
& =(r-1)^{2}-r+2 \\
& \leq \delta+\sqrt{\delta}-2-\sqrt{\delta+\sqrt{\delta}-2}+2 \\
& =\delta+\sqrt{\delta}-\sqrt{\delta+\sqrt{\delta}-2} \\
& <\delta
\end{aligned}
$$

But we know $E\left(S, N_{C}(S)\right)$ is an edge-cut of G, which is a contradiction to Lemma 4. Now let $R_{1}=\left\{s_{1}, s_{2}\right\} \subseteq S_{3}$ and $R_{2}=S-R_{1}$. Note that

$$
\begin{aligned}
\left|R_{1} \cup N_{C}\left(R_{2}\right)\right| & =\left|R_{1}\right|+\left|N_{C}\left(R_{2}\right)\right| \\
& \leq\left|R_{1}\right|+\left|E\left(R_{2}, N_{C}\left(R_{2}\right)\right)\right| \\
& \leq 2+k(k-2) \\
& \leq 2+(r-1)(r-3) \\
& =(r-1)^{2}-2 r+4 \\
& \leq \delta+\sqrt{\delta}-2-2 \sqrt{\delta+\sqrt{\delta}-2}+4 \\
& <\delta+2-\sqrt{\delta+\sqrt{\delta}-2} \\
& <\delta-1 .
\end{aligned}
$$

The last inequality is due to the assumption $\delta \geq 9$ and the condition that $\left|R_{1} \cup N_{C}\left(R_{2}\right)\right|$ is an integer. Thus by Lemma 1 , there exists a vertex $v \in V(C)$ such that $d\left(v, R_{1} \cup N_{C}\left(R_{2}\right)\right) \geq(g-1) / 2$. From $N(v)$, we can find two vertices v_{1} and v_{2} such that there are at most $k-1$ paths of length less than $(g-1) / 2$ from $\left\{N\left(v_{i}\right)-v \mid 1 \leq i \leq \delta\right\}$ to S. If two such vertices do not exist, it implies that there are at least $(\delta-1) k$ paths of length less than $(g-1) / 2$ from $\cup_{i=1}^{\delta}\left(N\left(v_{i}\right)-v\right)$ to S. Note that $(\delta-1) k>(r-1) k \geq k^{2}$ and $\left|E\left(S, N_{C}(S)\right)\right| \leq k^{2}$, which implies a cycle of length less than g.

From $N_{C}\left(v_{1}\right)$ and $N_{C}\left(v_{2}\right)$, we can find two sets $T_{1} \subseteq N_{C}\left(v_{1}\right)$ and $T_{2} \subseteq N_{C}\left(v_{2}\right)$ such that $d\left(T_{i}, S\right) \geq(g-1) / 2$, where $\left|T_{i}\right|=\delta-k$ and $i=1,2$. Also there are at most two paths of length less than $(g-1) / 2$ from $N(v)$ to R_{1}. We may assume $d\left(v_{i}, R_{1}\right) \geq(g-1) / 2$ for $5 \leq i \leq \delta$. Moreover, $\left|R_{2}\right|<\left|N_{C}\left(R_{2}\right)\right| \leq\left|E\left(N_{C}\left(R_{2}\right), R_{2}\right)\right| \leq \delta-4$. We may choose a subset $L \subseteq\left\{v_{5}, \ldots, v_{\delta}\right\}$ such that $|L|=\left|N_{G_{1}}\left(R_{2}\right)\right|$ and for each $v_{j} \in L$, there are at most $|L|-1$ paths of length at most $(g-3) / 2$ from v_{j} to $N_{C}\left(R_{2}\right)$.

We construct a bipartite graph B with bipartition $\left(L, N_{C}\left(R_{2}\right)\right)$ such that st $\in E(B)$ if and only if $d_{C}(s, t)=(g-3) / 2$, where $s \in L$ and $t \in N_{C}\left(R_{2}\right)$. Clearly, B satisfies the conditions in Lemma 2. Thus there exist two one-to-one mappings $f: N_{C}\left(R_{2}\right) \mapsto L^{*}$ and $f^{*}: N_{C}\left(R_{2}^{*}\right) \mapsto L$ such that no 4 -cycle created in graph $B \cup B^{*} \cup E(f) \cup E\left(f^{*}\right)$.

Consider the subgraph $G_{1}=G\left[\left(C-\left\{v, v_{1}, v_{2}\right\}\right) \cup R_{1}\right]-E\left(G\left[R_{1}\right]\right)$ and take another copy of the subgraph G_{1}, denote it by G_{1}^{*}. The corresponding sets of interest are denoted by R_{1}^{*}, R_{2}^{*} and T_{i}^{*},
$i=1,2$. Similar to the proof in Case 1 , we construct a δ-regular graph G^{\prime} with girth at least g by using G_{1} and G_{1}^{*}.
(a) For $i=1,2$, each vertex $s_{i} \in R_{1}$ connects to $d_{G-C}\left(s_{i}\right)$ distinct vertices in T_{i}^{*}. Similarly, we make the corresponding connections between the vertices in R_{1}^{*} and T_{i}.

After the operation is carried out in (a), for each $i=1,2, d_{G-C}\left(s_{i}\right)$ vertices of $N\left(v_{i}\right)-v$ (respectively, $N\left(v_{i}^{*}\right)-v^{*}$) are of degree δ and the remaining are of degree $\delta-1$.
(b) Connect each vertex in $N_{C}\left(R_{2}\right)$ to a vertex in L^{*}, and connect each vertex in $N_{C}\left(R_{2}^{*}\right)$ to a vertex in L according to the two one-to-one mappings f and f^{*} given in the graph $B \cup B^{*}$. After this operation, all vertices in $L \cup L^{*}$ are of degree δ, but some vertices in $N_{C}\left(R_{2}\right) \cup N_{C}\left(R_{2}\right)^{*}$ might be of degree less than δ. Since $\left|N_{C}\left(R_{2}\right)\right| \leq\left|E\left(R_{2}, N_{C}\left(R_{2}\right)\right)\right| \leq \delta-4$, so we can connect a vertex in $N_{C}\left(R_{2}\right)$ to the vertices in $\left\{v_{4}^{*}, \ldots, v_{\delta}^{*}\right\}-L^{*}$ such that all vertices in $N_{C}\left(R_{2}\right)$ are of degree δ. Similarly, we make the corresponding connections between the vertices in $N_{C}\left(R_{2}^{*}\right)$ and $\left\{v_{4}, \ldots, v_{\delta}\right\}-L$.
(c) After the operations are carried out in (a) and (b), all vertices are of degree δ or $\delta-1$. To obtain a δ-regular graph, we connect the vertices of degree $\delta-1$ in G_{1} with the corresponding vertices in G_{1}^{*}, and connect each pair of matched vertices by an edge.

Thus we have constructed a new δ-regular graph G^{\prime}. Verifying the girth of G^{\prime} can be done in the same fashion as in Case 1.

Theorem 6. Let G be $a(\delta, g)$-cage with $\delta \geq 4$ and even girth $g \geq 10$. Then G is $(r+1)$-connected, where r is the largest integer such that $\frac{r(r-1)^{2}}{4}+1+2 r(r-1) \leq \delta$.

Proof. In [13], (δ, g)-cages with $g \geq 10$ are showed to be 4 -connected. Thus if $\delta \leq 16$, the theorem holds. So assume $r \geq 4$ and $\delta \geq 17$. Suppose, to the contrary, $\kappa(G)<r+1$. Then G has a cutset $S=\left\{s_{1}, \ldots, s_{k}\right\}$ with $k \leq r$. Let C be a smallest component of $G-S$ and let $G_{1}=G[V(C) \cup S]-E(G[S])$.

Now we partition the set S into three subsets (see Figure 2).

$$
\begin{aligned}
& X=\left\{u \mid d_{G_{1}}(u) \leq r, u \in S\right\}, \\
& Y=\left\{u \mid r+1 \leq d_{G_{1}}(u) \leq r x+r-x, u \in S\right\}, \\
& Z=\left\{u \mid d_{G_{1}}(u) \geq r x+r-x+1, u \in S\right\} .
\end{aligned}
$$

where $|X|=x,|Y|=y$ and $|Z|=z$. Thus $r \geq k=|X|+|Y|+|Z|=x+y+z$. By Lemma 4, it follows $|Z| \geq 1$, otherwise, $E(N(S), S)$ is an edge-cut and $|E(N(S), S)| \leq r x+(r-x)(r x+r-x)=$ $\left(r^{2}-r\right) x+(1-r) x^{2}+r^{2}<\delta$, a contradiction to Theorem 4.

Based on this partition, we conclude:

$$
\begin{aligned}
& |N(X) \cap V(C)| \leq r x, \\
& |N(Y) \cap V(C)| \leq y(x r+r-x), \\
& |N(X) \cap V(C) \cup Y \cup Z| \leq x r+r-x<r^{2} .
\end{aligned}
$$

Figure 2: The structure of X, Y and Z

Let $F=(N(X) \cap V(C)) \cup Y \cup Z$. Obviously, the set F is also a vertex-cut whose cardinality is less than δ. Instead of considering the vertex-cut S, we focus on this new vertex-cut F in the rest of the proof.

By Lemma 1, there exists a vertex $u \in C$ such that the distance from u to F is at least $g / 2-1$. Let W stand for the set of edges of the subgraph induced by $Y \cup Z$, that is, $W=E(G[Y \cup Z])$. It is easy to see that there are at most $y(x r+r-x)$ vertices in $N(u)$ which are at distance $g / 2-1$ or $g / 2-2$ to Y in the graph $G_{1}-W$, because all shortest paths in $G_{1}-W$ of length $g / 2-1$ or $g / 2-2$ from vertices in $N(u)$ to vertices in Y must go via the vertices in $N(Y) \cap V(C)$. As $|N(Y) \cap V(C)| \leq y(x r+r-x)$, there are at most $y(x r+r-x)$ disjoint paths of length $g / 2-1$ or $g / 2-2$ from $N(u)$ to Y. Otherwise, by the Pigeonhole Principle, there exists a cycle of length less than g in the graph, which goes through u, two distinct vertices in $N(u)$, and a vertex in $N(Y) \cap V(C)$, a contradiction.

Since $|F-Y|=|N(X) \cap V(C) \cup Z| \leq r x+z=r x+r-x-y$, using the arguments as in the previous cases, we see that among the vertices left, at least $\delta-y(x r+r-x)$ vertices are in $N(u)$, and there are at most $r x+z$ vertices which have distance $g / 2-2$ in G to $(N(X) \cap V(C)) \cup Z$. Moreover, because of

$$
\begin{aligned}
y r x+y(r-x)+z+2 r x & =r x y+y r-x y+r-x-y+2 r x \\
& \leq \frac{r(r-1)^{2}}{4}+y r-x y+r-x-y+2 r x \\
& =\frac{r(r-1)^{2}}{4}+1+2 r(r-1)
\end{aligned}
$$

we have

$$
\delta-y(x r+r-x)-z-2 r x \geq \delta-\frac{r(r-1)^{2}}{4}-1-2 r(r-1) \geq 0
$$

Therefore, there are at least

$$
\delta-y(x r+r-x)-z-r x \geq r x
$$

vertices in $N(u)$ which have distance at least $g / 2$ to Y and at least $g / 2-1$ to $(N(X) \cap V(C)) \cup Z$ in $G-W$. Thus, we have

$$
d(v, F) \geq g / 2-2 \text { for all } v \in N(u)
$$

and there exists a set $U=\left\{u_{1}, \ldots, u_{t}\right\} \subseteq N(u)$, where $t \geq r x$, such that

$$
d(U, Y) \geq g / 2 \text { and } d(U, F \backslash Y) \geq g / 2-1 .
$$

For each vertex u_{i} in $N(u)$, denote by U_{i} the vertices in $N\left(u_{i}\right)-u$ which have distance at least $g / 2-1$ to F in $G_{1}-W$. It is clear that $\left|U_{i}\right|$ is at least $\delta-1-r x-z-y$, since $|F| \leq r x+y+z$. Denote by \widehat{U}_{i} the set of vertices in $N\left(u_{i}\right)-u$ which have distance at least $g / 2-1$ to $X \cup Y \cup Z$ in $G_{1}-W$. So $U_{i} \subseteq \widehat{U}_{i}$. It is easy to see that $\left|\widehat{U}_{i}\right| \geq \delta-r-1$ as $|X \cup Y \cup Z| \leq r$. To summarize, there exist two sets $U_{i} \subset \widehat{U}_{i} \subset N\left(u_{i}\right)-u, i=1,2$, with $\left|U_{i}\right| \geq \delta-1-r x-z-y$ and $\left|\widehat{U}_{i}\right| \geq \delta-r-1$ such that

$$
\begin{gathered}
d\left(U_{i}, F\right) \geq g / 2-1, \\
d\left(\widehat{U}_{i}, X \cup Y \cup Z\right) \geq g / 2-1, \\
d\left(\widehat{U}_{i}, F\right) \geq g / 2-2 .
\end{gathered}
$$

Using the similar approach as before, we construct a $\left(\delta, g^{\prime}\right)$-graph with smaller size. Taking the subgraph of $G-W$ induced by $V(C) \cup Y \cup Z-\{u\}$ and deleting some vertices (which are described in the proof later), we denote the resulting graph by H. Take another copy of H and denote it by H^{*}, the corresponding sets of interests in H^{*} are $U^{*}=\left\{u_{1}^{*}, u_{2}^{*}, \ldots, u_{t}^{*}\right\}, Y^{*}$ and Z^{*}. We join the vertices of H and H^{*} by some edges, which are described below, to construct a new graph G^{\prime}. The new graph G^{\prime} is δ-regular and its girth is at least g but with fewer vertices than G. By Monotonicity Theorem, we arrive at a contradiction and thus the theorem is proved.

The connections are described below (see Figure 3 for an illustration).
(a) The degrees of vertices in $N(X) \cap V(C)$ are unknown at this point, however we know that the number of new edges that should be added in order to achieve degree δ for all the vertices in $N(X) \cap V(C)$ is at most $r x$. Therefore, every vertex, say x_{i}, in $N(X) \cap V(C)$ is connected to $\left|N\left(x_{i}\right) \cap V(C)\right|$ vertices in U^{*}. Note that $|U| \geq r x$, thus this operation is well defined. We make the same connections between $N\left(X^{*}\right) \cap V\left(C^{*}\right)$ and U . It is obvious that now the vertices in $N(X) \cap V(C)$ and $N\left(X^{*}\right) \cap V\left(C^{*}\right)$ have degree δ.
(b) There are at least $|Y|+|Z|$ vertices left in $N(u)$ with degree $\delta-1$ which are at distance at least $g / 2-1$ to F. The the same statement applies to $N\left(u^{*}\right)$. Every vertex y_{i} in Y is arbitrarily connected with one of these remaining vertices in $N\left(u^{*}\right)$, say u_{i}^{*}. We remove u_{i}^{*} from the graph and connect y_{i} to some vertices in $\widehat{U_{i}^{*}}$ such that y_{i} has degree δ. Note that $\left|\widehat{U_{i}^{*}}\right| \geq \delta-r-1$ and $\left|N\left(y_{i}\right) \cap V(C)\right| \leq \delta-r-1$. Therefore, we guarantee that the degree of y_{i} equals to δ by connecting it to vertices in $\widehat{U_{i}^{*}}$. We make the similar connections between Y^{*} and $N(u)$.

Figure 3: Illustration of G^{\prime}
(c) At this stage, there are at least $|Z|$ vertices left in $N(u)$ with degree $\delta-1$ and these vertices are at distance at least $g / 2-1$ to F. Each vertex z_{j} of Z is arbitrarily connected with a vertex in $N\left(u^{*}\right)$, say u_{j}^{*}. We remove u_{j} from the graph and connect z_{j} to some vertices in U_{j}^{*} such that z_{j} has degree δ. Note that $\left|U_{j}^{*}\right| \geq \delta-(1+r x+z+y)$ and $\delta-d_{G_{1}}\left(z_{j}\right) \leq \delta-(r x+z+y)-1$. Therefore, we can connect z_{j} to some vertices of U_{j}^{*} to insure that degree of z_{j} is δ. We make the similar connections between Z^{*} and $N(u)$.
(d) The rest of the vertices in the graph have degree δ or $\delta-1$. We connect each vertex $x \in V(H)$ with degree $\delta-1$ to its copy $x^{*} \in V\left(H^{*}\right)$.

The graph G^{\prime} is a δ-regular graph. It is not hard to verify that this graph has girth at least g in the same way as what we did in the proof of the previous theorem. Now we have constructed a $\left(\delta, g^{\prime}\right)$-graph G^{\prime} with girth $g^{\prime} \geq g$ but $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, arriving at a contradiction by Monotonicity Theorem.

References

[1] C. Balbuena, A. Carmona, Fábrega and M.A. Fiol, On the order and size of s-geodetic digraphs with given connectivity, Discrete Math., 174(1997), 19-27.
[2] M. Daven and C. Rodger, (k, g)-cages are 3-connected, Discrete Math., 199(1999), 207-215.
[3] P. Erdös, H. Sachs, Regulare Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Uni. Halle (Math. Nat.), 12(1963), 251-257.
[4] J. Fábrega and M.A. Fiol, Maximally connected digraphs, J. Graph Theory, 13(1989), 657-668.
[5] M.A. Fiol, J. Fábrega and M. Escudero, Short paths and connectivity in graphs and digraphs, Ars Combin., 29(1990), 17-31.
[6] L. Fu, C. Huang and C. Rodger, Connectivity of cages, J. Graph Theory, 24(1997), 187-191.
[7] T. Jiang and D. Mubayi, Connectivity and separating sets of cages, J. Graph Theory, 29(1998), 35-44.
[8] Y. Lin, M. Miller and C. Balbuena, Improved lower bound for the vertex connectivity of (δ, g)-cages, Discrete Math., 299(2005), 162-171.
[9] Y. Lin, M. Miller, C. Balbuena and X. Marcote, All (k, g)-cages are edge-superconnected, Networks, 47(2006), 102-110.
[10] Y. Lin, M. Miller and C. Rodger, All (k, g)-cages are k-edge-connected, J. Graph Theory, 48(2005), 219-227.
[11] Y. Lin, M. Miller and C. Balbuena, X. Marcote, On the connectivity (δ, g)-cages of even girth, Discrete Math., (2007), doi:10.1016/j.disc.2007.06.030
[12] X. Marcote and C. Balbuena, Edge-superconnectivity of cages, Networks, 43(2004), 54-59.
[13] X. Marcote, C. Balbuena, I. Pelayo and J. Fábrega, (δ, g)-cages with $g \geq 10$ are 4 -connected, Discrete Math., 301(2005), 124-136.
[14] T. Soneoka, H. Nakada and M. Imase, Sufficient conditions for dense graphs to be maximally connected, Proceedings of ISCAS85, 1985, 811-814.
[15] T. Soneoka, H. Nakada, M. Imase and C. Peyrat, Sufficient conditions for maximally connected dense graphs, Discrete Math., 63(1987), 53-66.
[16] P. Wang, B. Xu and J. Wang, A note on the edge-connectivity of cages, Electron. J. Combin., 10(2003), N4.
[17] P. K. Wong, Cages-A survey, J. Graph Theory, 6(1982), 1-22.
[18] B. Xu, P. Wang and F. Wang, On the connectivity of (4,g)-cage, Ars Combin., 64(2002), 181-192.

[^0]: *This work is supported partially by 973 Project of Ministry of Science and Technology of China and Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ Corresponding email: yu@tru.ca

