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Abstract

The energy E of a graph G is equal to the sum of the absolute values

of the eigenvalues of G . In 2005 Lin et al. determined the trees with a

given maximum vertex degree ∆ and maximum E , that happen to be

trees with a single vertex of degree ∆ . Later, in 2009 Li et al. character-

ized the maximum energy trees having two vertices of maximum degree

∆ . In this paper we consider the general case and characterize the max-

imum energy trees with one maximum degree vertex and another second

maximum degree vertex.

1 Introduction

If λ1, λ2, . . . , λn are the eigenvalues of a graph G [1], then the energy of G is defined

in 1978 as [2]

E = E(G) =

n∑

i=1

|λi| . (1)

This definition was motivated by a large number of earlier results for the Hückel molec-

ular orbital total π-electron energy, bond orders, and related quantities [3–6]. In all



these works it was, explicitly or tacitly, assumed that the total π-electron energy satis-

fies the relation (1) (which is tantamount to the requirement that all bonding MOs are

doubly filled and all antibonding MOs are empty). The expression on the right–hand

side of (1) has a certain mathematical beauty, and in our time graph energy became a

popular topic of research in mathematical chemistry and mathematics.

One of the fundamental questions that is encountered in the study of graph energy

is which graphs (from a given class) have greatest and smallest E-values. The first such

result was obtained for trees [6], when it was demonstrated that the star has minimum

and the path maximum energy. In the meantime, a remarkably large number of papers

were published on such extremal problems. For more information, refer to the survey

[7] and the recent papers [8–14].

A vertex of a tree whose degree is three or greater will be called a branching vertex .

A pendent vertex attached to a vertex of degree two will be called a 2-branch.

For given maximum degree (∆), Lin et al. [15] characterized the trees with the min-

imal energy among all trees of order n and ⌈n+1

3
⌉ ≤ ∆(T ) ≤ n−2. Recently, Heuberger

and Wagner ([16, 17]) completely characterized the trees with given maximum degree

that minimize the energy for any ∆(T ).

On the other hand, Lin et al. [15] showed that among trees with a fixed number of

vertices (n) and of maximum vertex degree (∆), the maximum energy tree has exactly

one branching vertex (of degree ∆) and as many as possible 2-branches. In 2009 Li et

al. [18] showed that a closely analogous result holds for trees with two maximum degree

vertices (of degree ∆). In this paper we consider the general case and characterize the

maximum energy trees with one maximum degree vertex and another second maximum

degree vertex.

Theorem 1.1 Among trees with a fixed number of vertices (n) and two vertices of

maximum degree d1 and second maximum degree d2 (d1 > d2), the maximum energy

tree has as many as possible 2-branches. (1) If n ≥ 2d1 + 2d2 − 1 , then the maximum

energy tree is either the graph (a) or the graph (b), depicted in Figure 1 . (2) If n ≤



2d1+2d2−2 , then the maximum energy tree is among the graphs (c) depicted in Figure

1 .
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d(u) = d1, d(v) = d2, t = n− 2d1 − 2d2 + 4, p ≤ q.

Figure 1.1 The maximum energy trees with n vertices and two vertices u and v of

degree d1 and d2

2 Preliminaries

Denote by m(G, k) the number of selections of k mutually independent edges in the

graph G . This quantity is also known as the k-th matching number of G . The proofs

in this paper are based on the applications of the following long–time known results:

Lemma 2.1 [6, 19]. If for two trees T ′ and T ′′ ,

m(T ′, k) ≥ m(T ′′, k) holds for all k ≥ 0 (1)

then E(T ′) ≥ E(T ′′) . Moreover, if at least one of the inequalities in (1) is strict (which

happens in all non-trivial cases), then E(T ′) > E(T ′′) .

The fact that relations (1) are satisfied will be written in an abbreviated manner

as: T ′ < T ′′ or T ′′ 4 T ′ . Thus, T ′ < T ′′ implies E(T ′) ≥ E(T ′′) . If T ′ < T ′′ and

there is a k such that m(T ′, k) > m(T ′′, k), we call T ′ ≻ T ′′. Thus T ′ ≻ T ′′ implies

E(T ′) > E(T ′′) . For instance, in [6] it was demonstrated that for Tn being any n-vertex

tree, different from the path (Pn) and the star (Sn), then Pn ≻ Tn ≻ Sn , implying that

Pn and Sn are the n-vertex trees with, respectively, maximum and minimum energy.



Lemma 2.2 [20]. Let G be an arbitrary graph, and let e be an edge of G connecting

the vertices u and v . Then

m(G, k) = m(G− e, k) +m(G− u− v, k − 1) .

Lemma 2.3 [18]. Let An and A∗
n be trees whose structures are depicted in Figure 2.

By A is denoted an arbitrary tree. In An the fragment A is attached via the vertex u to

a terminal vertex v of the path Pn . In A∗
n the fragment A is attached to some n-vertex

tree other than Pn . Then An ≻ A∗
n .
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An A∗
n

Figure 2.1 The trees considered in Lemma 2.3.

Lemma 2.4 [18]. Let ABn and AB∗
n be trees whose structures are depicted in Figure

2.2. By A and B are denoted arbitrary tree fragments and Tn denotes an n-vertex

tree(n 6= 1). Then ABn ≻ AB∗
n .
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Figure 2.2 The trees considered in Lemma 2.4.

Lemma 2.5 [21]. Let Xn,i be the graph whose structure is depicted in Figure 2.3. For

the fragment X being an arbitrary tree other than P1,

Xn,1 ≻ Xn,3 ≻ Xn,5 ≻ · · · ≻ Xn,4 ≻ Xn,2 .
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Figure 2.3 The tree considered in Lemma 2.5.

Lemma 2.6 [22]. Let G be a forest of order n (n > 1) and G′ be a spanning subgraph

(respectively, a proper spanning subgraph) of G . Then G � G′ (respectively, G ≻ G′).

Lemma 2.7 [18]. Let AXn,i be the graph whose structure is depicted in Figure 2.4.

For the fragments X and A being arbitrary trees other than P1. Then AXn,3 ≻ AXn,i

for 2 ≤ i ≤ n− 1, i 6= 3 .

u n n-1 2 1i u n 2 14 3

AA

XX

AXn,i AXn,3

Figure 2.4 The trees considered in Lemma 2.7.

Let G be a graph and u, v be two vertices of G. The graph G(u, v)(Pa, Pb) is

obtained by joining the terminal vertices of Pa and Pb to u and v, respectively. Then

G(u, v)(P0, P0) ∼= G.

Lemma 2.8 Let T , T ′ be trees whose structure is shown in Figure 2.5. If dT (u) =

dT ′(u) = d1, dT (v) = dT ′(v) = d2, d1 > d2 ≥ 3, t1 ≥ 3, t2 ≥ 1, then T ′ ≻ T .

Proof. T and T ′ can be denoted by G(u, v)(Pt1, Pt2) and G(u, v)(P2, Pt1+t2−2) , respec-

tively, where G is shown in Figure 2.5.
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Figure 2.5 The trees considered in Lemma 2.8.

Applying Lemma 2.2 to T and T ′ , we get

m(T ′, k)−m(T, k)

= m(G(u, v)(P2, Pt2) ∪ Pt1−2, k) +m(G(u, v)(P2, Pt2−1) ∪ Pt1−3, k − 1)

− m(G(u, v)(P2, Pt2) ∪ Pt1−2, k) +m(G(u, v)(P1, Pt2) ∪ Pt1−3, k − 1)

= m(G(u, v)(P2, Pt2−1) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, Pt2) ∪ Pt1−3, k − 1) .

When t2 = 1, a repeated application of Lemma 2.2 and using the same notations

as in Lemma 2.3, we get

m(T ′, k)−m(T, k)

= m(G(u, v)(P2, P0) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, P1) ∪ Pt1−3, k − 1)

= m(G(u, v)(P1, P0) ∪ Pt1−3, k − 1) +m(G(u, v)(P0, P0) ∪ Pt1−3, k − 2)

− m(G(u, v)(P1, P0) ∪ Pt1−3, k − 1)−m(A1 ∪ (B − v) ∪ Pt1−3, k − 2)

= m(G(u, v)(P0, P0) ∪ Pt1−3, k − 2)−m(A1 ∪ (B − v) ∪ Pt1−3, k − 2) .

Since A1 ∪ (B − v) is a proper subgraph of G(u, v)(P0, P0), we have A1 ∪ (B − v) ≺

G(u, v)(P0, P0) by Lemma 2.6. Then m(G(u, v)(P0, P0) ∪ Pt1−3, k − 2) ≥ m(A1 ∪ (B −

v) ∪ Pt1−3, k − 2). Consequently, m(T ′, k) ≥ m(T, k) holds for all k ≥ 0 and it is strict

for k = 3. This implies T ′ ≻ T .



When t2 = 2, using Lemma 2.2 gives

m(T ′, k)−m(T, k)

= m(G(u, v)(P2, P1) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, P2) ∪ Pt1−3, k − 1)

= m(G(u, v)(P1, P1) ∪ Pt1−3, k − 1) +m(G(u, v)(P0, P1) ∪ Pt1−3, k − 2)

− m(G(u, v)(P1, P1) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, P0) ∪ Pt1−3, k − 2)

= m(G(u, v)(P0, P1) ∪ Pt1−3, k − 2)−m(G(u, v)(P1, P0) ∪ Pt1−3, k − 2)

= m(G(u, v)(P0, P0) ∪ Pt1−3, k − 2) +m(A ∪ (B − v) ∪ Pt1−3, k − 3)

− m(G(u, v)(P0, P0) ∪ Pt1−3, k − 2)−m((A− u) ∪ B ∪ Pt1−3, k − 3)

= m(A ∪ (B − v) ∪ Pt1−3, k − 3)−m((A− u) ∪ B ∪ Pt1−3, k − 3) .

Since (A−u)∪B is a proper subgraph of A∪ (B− v) when d1 > d2, thenA∪ (B− v)∪

Pt1−3 ≻ (A − u) ∪ B ∪ Pt1−3 by Lemma 2.6. Consequently, m(T ′, k) ≥ m(T, k) holds

for all k ≥ 0 and it is strict for k = 4. Then we have T ′ ≻ T .

When t2 ≥ 3, a repeated application of Lemma 2.2 and using the same notations

as in Lemma 2.3, we get

m(T ′, k)−m(T, k)

= m(G(u, v)(P2, Pt2−1) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, Pt2) ∪ Pt1−3, k − 1)

= m(G(u, v)(P1, Pt2−1) ∪ Pt1−3, k − 1) +m(G(u, v)(P0, Pt2−1) ∪ Pt1−3, k − 2)

− m(G(u, v)(P1, Pt2−1) ∪ Pt1−3, k − 1)−m(G(u, v)(P1, Pt2−2) ∪ Pt1−3, k − 2)

= m(G(u, v)(P0, Pt2−1) ∪ Pt1−3, k − 2)−m(G(u, v)(P1, Pt2−2) ∪ Pt1−3, k − 2)

= m(G(u, v)(P0, Pt2−2) ∪ Pt1−3, k − 2) +m(G(u, v)(P0, Pt2−3) ∪ Pt1−3, k − 3)

− m(G(u, v)(P0, Pt2−2) ∪ Pt1−3, k − 2)−m((A− u) ∪ Bt2−2 ∪ Pt1−3, k − 3)

= m(G(u, v)(P0, Pt2−3) ∪ Pt1−3, k − 3)−m((A− u) ∪ Bt2−2 ∪ Pt1−3, k − 3)

= m(A ∪ Bt2−3 ∪ Pt1−3, k − 3) +m((A− u) ∪ (B − v) ∪ Pt2−3 ∪ Pt1−3, k − 4)

− m((A− u) ∪ B ∪ Pt2−2 ∪ Pt1−3, k − 3)

− m((A− u) ∪ (B − v) ∪ Pt2−3 ∪ Pt1−3, k − 4)

= m(A ∪ Bt2−3 ∪ Pt1−3, k − 3)−m((A− u) ∪B ∪ Pt2−2 ∪ Pt1−3, k − 3) .



If t2 = 3, (A−u)∪B ∪Pt2−2∪Pt1−3 is a proper subgraph of A∪Bt2−3∪Pt1−3, then

m(T ′, k) ≥ m(T, k) holds for all k ≥ 0 and it is strict for k = 4. This implies T ′ ≻ T .

When t2 > 3,

m(T ′, k)−m(T, k)

= m(A ∪B ∪ Pt2−3 ∪ Pt1−3, k − 3) +m(A ∪ (B − v) ∪ Pt2−4 ∪ Pt1−3, k − 4)

− m((A− u) ∪B ∪ Pt2−3 ∪ Pt1−3, k − 3)−m((A− u) ∪ B ∪ Pt2−4 ∪ Pt1−3, k − 4) .

Since (A− u) ∪B is a proper subgraph of A ∪ (B − v) when d1 > d2 and (A− u) ∪B

is also a proper subgraph of A ∪B, then m(T ′, k) ≥ m(T, k) holds for all k ≥ 0 and it

is strict for k = 4. Consequently, T ′ ≻ T . Lemma 2.8 follows.
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Figure 2.6 The trees considered in Lemma 2.9.

Lemma 2.9 Let T , T ′ be trees whose structure is shown in Figure 2.6. For the frag-

ments A and B being arbitrary trees other than P1 and t ≥ 3, we have T ′ ≻ T .

Proof. T and T ′ can be denoted by G(u, v)(Pt, P1) and G(u, v)(P2, Pt−1) , respectively,

where G is shown in Figure 2.6. Applying Lemma 2.2 to T and T ′ and using the same

notations as in Lemma 2.3, we get

m(T ′, k)−m(T, k)

= m(G(u, v)(P2, P1) ∪ Pt−2, k) +m(G(u, v)(P2, P0) ∪ Pt−3, k − 1)

− m(G(u, v)(P2, P1) ∪ Pt−2, k)−m(G(u, v)(P1, P1) ∪ Pt−3, k − 1)

= m(G(u, v)(P1, P0) ∪ Pt−3, k − 1) +m(G(u, v)(P0, P0) ∪ Pt−3, k − 2)

− m(G(u, v)(P1, P0) ∪ Pt−3, k − 1)−m(A1 ∪ (B − v) ∪ Pt−3, k − 2)

= m(G(u, v)(P0, P0) ∪ Pt−3, k − 2)−m(A1 ∪ (B − v) ∪ Pt−3, k − 2) .



A1 ∪ (B − v) is a proper subgraph of G(u, v)(P0, P0) ∼= G, then A1 ∪ (B − v) ≺

G(u, v)(P0, P0) from Lemma 2.6. So we have m(G(u, v)(P0, P0)∪Pt−3, k−2) ≥ m(A1∪

(B − v) ∪ Pt−3, k − 2), and then m(T ′, k) ≥ m(T, k) holds for all k ≥ 0 and it is strict

for k = 3. The lemma follows.

Lemma 2.10 Let T , T ′ be trees whose structure is shown in Figure 2.7. If dT (u) =

dT ′(u) = d1, dT (v) = dT ′(v) = d2, d1 > d2 ≥ 3, t ≥ 3, d1 − 2 ≥ p ≥ 0, then T ′ ≻ T .
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Figure 2.7 The trees considered in Lemma 2.10.

Proof. T and T ′ can be denoted by G(u, v)(P1, Pt) and G(u, v)(P2, Pt−1) , respectively,

where G is shown in Figure 2.7. Applying Lemma 2.2 to T and T ′ and using the same

notations as in Lemma 2.3, we get

m(T ′, k)−m(T, k) = m(G(u, v)(P1, Pt−1), k) +m(G(u, v)(P0, Pt−1), k − 1)

−m(G(u, v)(P1, Pt−1), k)−m(G(u, v)(P1, Pt−2), k − 1)

= m(G(u, v)(P0, Pt−2), k − 1) +m(G(u, v)(P0, Pt−3), k − 2)

−m(G(u, v)(P0, Pt−2), k − 1)−m((A− u) ∪Bt−2, k − 2)

= m(G(u, v)(P0, Pt−3), k − 2)−m((A− u) ∪ Bt−2, k − 2) .

When t = 3, the graph (A − u) ∪ Bt−2 is a proper subgraph of G(u, v)(P0, Pt−3),

and then m(T ′, , k) ≥ m(T, k) holds for all k ≥ 0 and it is strict for k = 3. This implies

T ′ ≻ T .



When t ≥ 4, a repeated application of Lemma 2.2 gives

m(T ′, k)−m(T, k)

= m(A ∪Bt−3, k − 2) +m((A− u) ∪ (B − v) ∪ Pt−3, k − 3)

− m((A− u) ∪ B ∪ Pt−2, k − 2)−m((A− u) ∪ (B − v) ∪ Pt−3, k − 3)

= m(A ∪B ∪ Pt−3, k − 2) +m(A ∪ (B − v) ∪ Pt−4, k − 3)

− m((A− u) ∪ B ∪ Pt−3, k − 2)−m((A− u) ∪B ∪ Pt−4, k − 3) .

Since (A − u) ∪ B is a proper subgraph of A ∪ B, then m(A ∪ B ∪ Pt−3, k − 2) ≥

m((A−u)∪B∪Pt−3, k−2). We claim that A∪(B−v) ≻ (A−u)∪B whose proof given

below, then m(A∪ (B−v)∪Pt−4, k−3) ≥ m((A−u)∪B ∪Pt−4, k−3). Consequently,

m(T ′, k) ≥ m(T, k) holds for all k ≥ 0 and it is strict for k = 3. Lemma 2.10 follows.

Proof of Claim A ∪ (B − v) ≻ (A− u) ∪B.

When p = 0, (A−u)∪B is a proper subgraph of A∪(B−v), we have A∪(B−v) ≻

(A− u) ∪ B by Lemma 2.6.

When p > 0, Let F1 = (A− u) ∪ B and F2 = A ∪ (B − v), We show that F1 ≺ F2.

The orders of F1 and F2 are equal, i. e., |V (T1)| = |V (T2)| = 2(d1 + d2)− p− 7 . The

characteristic polynomials of F1 and F2 are denoted by φ(F1) and φ(F2), respectively.

Then

φ(F1) =

⌊n/2⌋∑

k=0

(−1)k m(F1, k) x
n−2k , φ(F2) =

⌊n/2⌋∑

k=0

(−1)k m(F2, k) x
n−2k

where n = 2(d1 + d2) − p − 7 is the order of F1 and F2. The order of the graph F

depicted in Figure 2.7 is 2(d1 + d2)− p− 11 = n− 4 . We have

φ(F ) =

⌊n−4

2
⌋∑

k=0

(−1)k m(F, k) xn−4−2k .

On the other hand, direct calculation gives

φ(F1) = xp−1(x2 − 1)d1+d2−p−5[x4 − (d2 − 1)x2]

φ(F2) = xp−1(x2 − 1)d1+d2−p−5[x4 − (d1 − 1)x2 + p]

φ(F ) = xp−1(x2 − 1)d1+d2−p−5 .



Then

φ(F1)− φ(F2) = xp−1(x2 − 1)d1+d2−p−5[(d1 − d2)x
2 − p] = φ(F )[(d1 − d2)x

2 − p] .

So we have m(F1, k) − m(F2, k) = −[(d1 − d2)m(F, k − 1) + p · m(F, k − 2)] ≤ 0

for 2 ≤ k ≤ ⌊n/2⌋ and m(F1, 0) = m(F2, 0) = 1, m(F1, 1) −m(F2, 1) = d2 − d1 < 0 .

Therefore, m(F1, k) ≤ m(F2, k) holds for all k ≥ 0 and it is strict for k = 1. This

implies F1 ≺ F2. The claim follows.

3 Proof of theorem

Suppose T is a tree of order n having exactly one vertex of maximum degree d1

and another vertex of the second maximum degree d2 (d1 > d2), with maximum energy.

Let u and v be the two vertices in T with degree d1 and d2, respectively. Let Pt be

the unique path connecting u and v . We can claim that there are no other branching

vertices in Pt except u and v by Lemma 2.4 and there are d1 − 1 and d2 − 1 pendent

paths at u and v, respectively, which follows from Lemma 2.3 .

When d2 = 1 or d2 = 2 , T has exactly one branching vertex u (of degree d1)

and as many as possible 2-branches by Lemma 2.5 . So in what follows we assume

d1 > d2 ≥ 3 .

We next claim that there is at most one pendent path with length ≥ 3 in T .

Otherwise, assume there are two or more such paths. By Lemma 2.5, there is at most

one pendent path of length ≥ 3 at each vertex of u and v . So we can assume that Pt1

and Pt2 (t1 ≥ 4, t2 ≥ 4) are the unique pendent paths of length ≥ 3 with terminal

vertex u and v in T , respectively. From Lemma 2.5 the other pendent paths in T are

all of length 2 . If the length of the unique path Pt connecting u and v is equal to 1,

i. e., t = 2, then u and v are adjacent. Then we can construct a new tree T ′ from T

by changing the paths Pt1 and Pt2 to P3 and Pt1+t2−3 , respectively. T ′ ≻ T follows

from Lemma 2.8, a contradiction. If t ≥ 3 , then we can also construct a new tree T ′

from T by changing Pt2 and Pt to P3 and Pt+t2−3 , respectively. T ′ ≻ T follows from



Lemma 2.7, a contradiction. So the claim follows. By this claim we consider two cases

according to the number of pendent paths of length ≥ 3 in T as follows.

Case 1. T has exactly one such path. We claim this path must be attached to the

vertex v and all the other pendent paths are of length 2 and in addition u and v are

adjacent, i. e., T has the structure (b) depicted in Figure 1.

By Lemma 2.7 , the length of the path Pt connecting u and v must be 1, i. e., u and

v are adjacent in T . Otherwise, we can construct a new tree T ′ with greater energy

than T as shown in Figure 2.4 , a contradiction.

The pendent path of length ≥ 3 must be attached to v . Otherwise, assume it is

attached to u, then the other pendent paths at u are of length 2 from Lemma 2.5 and

by Lemma 2.8 there must be at least one pendent path of length 1 at v. By Lemma

2.9 we can construct a new tree T ′ which has greater energy than T , a contradiction.

Thus the pendent path of length≥ 3 must be attached to v and all the other pendent

paths in T are of length 2 follows from Lemma 2.5 and Lemma 2.10. Consequently,

the claim follows and T has the structure (b) depicted in Figure 1.

Case 2. T has no pendent path of length ≥ 3 . Then all the pendent paths at u

and v are of length 1 or 2 .

If the length of the path Pt connecting u and v is greater than 1, then from Lemma

2.7 all the pendent paths in T are of length 2. Then T has the structure (a) depicted

in Figure 1 .

If the length of the path Pt is equal to 1 , i. e., u and v are adjacent, then n ≤

2d1+2d2−2 since each pendent path is either P3 or a pendent edge. Assume there are

p pendent edges and d1 − p− 1 pendent paths P3 at u , q pendent edges and d2 − q− 1

pendent paths P3 at v . Then p+ q = 2d1+2d2− n− 2 = m . Direct calculation of the

characteristic polynomial of T gives

φ(T, x) = xm−2(x2 − 1)d1+d2−m−4{x8 − (d1 + d2 + 1) x6

+ (d1d2 +m+ 2) x4 − (d1q + d2p+ 1) x2 + pq} .



Then in order that the E-value of T reaches the maximum, p must be less or equal to

q . T is depicted in (c) of Figure 1.

Remark. By using the method of comparing the matching number we cannot deter-

mine which graph of (a) and (b) in theorem have greater energy. Maybe one should

find other methods to solve this problem.
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