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1. PRELIMINARIES

1.1. Definitions. Given two RNA sequences R and S (e.g. an antisense RNA and its target) with
N and M vertices, we index the vertices such that R; is the 5’ end of R and S; denotes the 3’ end
of S. The edges of R and S represent the intramolecular base pairs. A pre-structure, G(R, S, I),
is a graph with the following properties:

(1) R, S are secondary structures (each nucleotide being paired with at most one other nu-
cleotide via hydrogen bonds, without internal pseudoknots);

(2) I is a set of arcs of the form R;S; without pseudoknots, i.e., if R;, S;,, Ri,S;j, € I where
11 < 12, then j1 < jg holds.

An arc is called exterior if it is of the form R;S; and interior, otherwise. Let G be a graph and V'
be a subset of G-vertices. The (induced) subgraph of G induced by V has vertex set V and contains
all G-edges having both incident vertices in V. In particular, we use S|z, j] to denote the subgraph
of the pre-structure G(R, S, I) induced by {S;, Sit1,...,S5;}, where S[i,i] = S; and S[i,i—1] = @.
In absence of interactions a pre-structure is a pair of induced secondary structures on R and S,
which we will refer to as a pair of segments. A segment S[iy, j1] is called maximal if there is no

segment, S[i, j] strictly containing S[i1, j1].

An interior arc R;, R;, is an R-ancestor of the exterior arc R;S; if i1 < ¢ < ji. Analogously,

Si, S, is an S-ancestor of R;S; if io < j < jo. The sets of R-ancestors and S-ancestors of R;S;
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are denoted by Agr(R;S;) and Ag(R;S;), respectively. We will also refer to R;S; as a descendant
of R;, R;, and S;,5;, in this situation. The R- and S-ancestors of R;S; with minimum arc-length
are referred to as R- and S-parents, see Fig. 1, (A). Finally, we call R;, R;, and S;,S;, dependent
if they have a common descendant and independent, otherwise.
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FIGURE 1. (A) Ancestors and parents: for the exterior arc R3Sy, we have the fol-
lowing ancestor sets Ar(R3Ss) = {R1Re, RoR4} and Ag(R3Ss) = {5256, 5355}
In particular, RyR4 and S3S5 are the R-parent and S-parent respectively. (B)
Subsumed and equivalent arcs: R;Rg subsumes S1.5; and S5Ss. Furthermore,
RsR5 is equivalent to S1.9.

Suppose there is an exterior arc R,S;, with ancestors R;R; and SiS;. Then R;R; is subsumed in
Sy Sy, if for any RSk € I', i < k < j implies ¢/ < k' < j/, see Fig. 1, (B). If R;, R, is subsumed
in S;, 5, and wice versa, we call these arcs equivalent. A zigzag, is a subgraph containing two

dependent interior arcs R;, Rj, and S;,.S;, neither one subsuming the other, see Fig. 2, (A).
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FIGURE 2. (A): A zigzag, generated by R2S1, R3S3 and R5S4. (B): We partition

the joint structure Ji 241,23 in segments and tight structures.

A joint structure, J(R, S, ), is a zigzag-free pre-structure, see Fig. 2, (B). Joint structures are ex-
actly the configurations that are considered in the maximum matching approach of [4], in the energy
minimization algorithm of [1], and in the partition function approach of [2]. The subgraph of a joint
structure J(R, S, I) induced by a pair of subsequences {R;, Ri41,...,R;} and {Sh, Sht1,..., 5S¢}
is denoted by J; j:ne. In particular, J(R,S,I) = Ji n.,m. We say RqRy(SaSp, RaSy) € Ji jine if
and only if R,Ry(S.5%, RaSp) is an edge of the graph J; j.; ¢. Furthermore, J; j.p. 0 C Jo p;c,q if and
only if J; j.p¢ is a subgraph of Jg p.c.q induced by {R;, ..., R;} and {Sh,...,S¢}.
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We next define a tight structure (T'S). Given a joint structure, Jo pic g, its tight Jor p/,e v is either a
single exterior arc R,/ S (in the case a’ = o’ and ¢’ = d’), or the minimal block centered around the
leftmost and rightmost exterior arcs «y, ., (possibly being equal) and an interior arc subsuming
both, i.e., Jor prier g is tight in Jy pic g if it has either an arc Ry Ry or SeSgy if a’ # b or ¢/ #d'.

More formally, let Jus pr;er,ar be contained in Jg p;e,q with rightmost and leftmost exterior arc R;S;
and R;,S;j, and let M be the set of R;S;-ancestors in J, p;c.¢ with maximal length. Then Jo/ p,er ar
is tight in Jg p;e,q if

(1) for M = @: Jy p.or.r = {R:iS;};

(2) for M ={Ry,Rj,}: Jo v, = Jiy jrse.j, Where ¢ is the origin (left) of the S-ancestor of
R;,S;, with maximal length (or i if there is none). The case M = {S,,S,, } is analogous;

(3) for M = {R;, Rj,,Sr,Ss, }, suppose R; R;, subsumes S,, Ss,. Then Jo p.crar = Jiy jiiar 15
where x1 is the origin of the S-ancestor of R;,S;, with maximal length (or i¢ if there is
none). In particular, Jos prier.ar = Jiy jiir,s When Ry, R, is equivalent with S, Ss,. The

case, where S, S, subsumes R;, R;, is analogous.

In the following, a TS is denoted by Jgj;h,e' If Jor prier,ar s tight in Jg p.c.q, then we call Jg pic.d
its envelope. By construction, the notion of TS is depending on its envelope. There are only four

basic types of TS:

o: {R;Sp} = J;j;h,e and i = j, h = {;

A\VAR: RiRJ‘ c Jv?j;h,é and S;,S¢ € Jv?j;h,é;

O: {RiR;,ShSe} € Jp o5

A SpSe€ Jl, and RiR; €07, .
A hybrid structure, J;‘nu j1.je» 18 a mazimal sequence of intermolecular interior loops consisting of
exterior arcs (R;, Sj,, ..., Ri,S;,) where R;, Sj, is nested within R;, ., Sj, , and where the internal

segments R[ip+1,ip11— 1] and S[jn+1, ja+1 — 1] consist of single-stranded nucleotides only. That
is, a hybrid is the maximal unbranched stem-loop formed by external arcs. Each hybrid thus forms

a distinctive region of interaction between the two RNAs.
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We call a joint structure right-tight (RTS), JEL in J;, j,.r s, if its rightmost block is a Ji, j, oy s1-

ijirys

TS and double-tight (DTS), JPT _in Ji, j,.r\ s if both of its leftmost and its rightmost blocks are

i,5;m,8

Jis jrir,s - LS’s. In particular, we consider single interaction arcs as particular DTS.

1.2. Energy model. Let us review the energy model, implemented in rip2. The standard en-
ergy model for RNA folding [3] is consistent with the basic decomposition of secondary structure

diagrams in the following sense: for secondary structures, we have
(1.1) S—.S|PS|P and P —(5)

representing the cases that either the first base pair is unpaired or paired. Here S denotes an
arbitrary structure, while P is secondary structure enclosed by a base pair. In fact, we use this
decomposition to evaluate the secondary structure segments A and B in Fig. 7 of the main docu-

ment.

The energy model, however, enforces a further refinement of the decomposition by distinguishing
three different types of loops, for which energy contributions need to be computed by means of
different rules: hairpin loops P — Ha, interior loops (including bulges and stacked base pairs)

P — Int, and multi-branched loops: P — M. These are now expanded further
(1.2) Ha — (h) Int — (i’ Pi") M — (M'M")

where h, i/, 1" are the unpaired regions of the hairpin and interior loops. Multi-branch loops are
further decomposed into components with a single branch M’ and with multiple branches M”
for which the energy contributions are assumed to be additive. For completeness, we recall the
productions M’" — .M'|P and M — .M"|PM"|Pm, where m is a stretch of unpaired nucleotides.
The importance of this refined decomposition lies in the fact that the energy of each substructure
can be obtained as a sum of the energies of the substructures associated with non-terminal symbols
and an additional contribution that depends uniquely on the production and the terminals. The

latter rules form the specific energy parameters [3].

The energy model, implemented in rip2 (also in rip1) is an extension of the standard energy

model of RNA secondary structures and recognizes the following loop-types:

(1) Hairpin-loop: a hairpin loop Ha, ; has tabulated energies GlHj depending on their sequence

and length.
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Int
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(3) Multi-loop: a multi-loop My, j, has energy a; + ao(t + 1) + agco, where ¢ = |E§z[

(2) Interior-loop: an interior loop Int;, j, ., j, also have tabulated energies G

io0,doll
(“branching order”) inside R|[ig,jo] and ¢ is the number of isolated vertices containeod]?]rl
Rlio, jo]-

(4) Kissing-loop: a kissing-loop K, j, has energy 01+ fa2(t+ 1)+ f3co, where t = |E}§[i0’j0]| and
¢2 is the number of isolated vertices contained in R[ig, jo|, analogous to the parametrization
of multiloops.

(5) Hybrid: a hybrid Hy, ;.. . has energy Gzy,iz;jl,je =00+0), GL’;ZGHJMQH, where a

Sj

intermolecular interior loop formed by R;,S;, and R;, S, , is treated like an interior

loop Inti, jyiig.1,jo With an affine scaling o.

1.3. Structural components. In Figure 3 we display the twelve basic structural components:
A, B: maximal secondary structure segments, R][i, j] and S[r, s], respectively; C: an arbitrary joint
structure J; j.r s; D: a right-tight structures Ji%a,s; E: a double-tight structure ijﬂfm; F: a tight

structure having type 7, A or [, respectively; G: a tight structure, JEj;T,S, of type [J; H: a tight
structure, J.Y, of type v/ ; J: a tight structure, JA

1,551,87 1,J57,87

of type A ; K: exterior arc; L: isolated
segment; M: pair of secondary segments, one of which containing at least one arc; N: hybrid
structure J:'JY_ n.oi O: substructure of a hybrid J;: j:ne Such that R;S; and Ry S, are exterior arcs

and J;: jone itself is mot a hybrid since it is not maximal.

2. CONSTRUCTION OF THE DECOMPOSITION TREES ACCORDING TO THE HYBRID-GRAMMAR

Procedure (a) [Block Decomposition]

input: a joint structure ¥o = J; j.n,e, which is neither a 9¥o-TS of type {7, A, 0} nor a maximal
secondary segment (MS).

output: a unique tree Ty (Vo) = (Vo (T), Eo(T))

Let i < j* < j+1 and R[j*, j| be the ¥9-MS contain j. In particular, j* = j+ 1 in case of such an
MS does not exist and j* = 4 if R][i, j] itself is a MS. Analogously, we define S[¢*, ¢]. We construct
the tree T, (Jo) recursively as follows:

initialization: V,(T) = {9} and E,(T) = @.

(al): in case of j* = j+1 and ¢* = (+1,1.e. ¥y is RTS. Let i —1 < i* < j and RJ[¢,4*] be the ¥o-MS
contain ¢ and analogously define S[h, h*|, where h — 1 < h* < £. Consider the number of 9,-TS
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A : maximal secondary structure segments R|i, j];

B : maximal secondary structure segments S[r, s|;

C : arbitrary joint structure J; j;r o

RT
Ji,j;hs

D : right-tight structures

E : double-tight structure ]LDJJM

F . tight structure of type 7| A or OJ;

: type O tight structure Jo

657,87

H : type v/ tight structure JLV]AT‘S;

J . type A tight structure JA

i,
K : exterior arc;
L : isolated segment;

M : pair of secondary segments such that they are not isolated segments
at the same time.

N: hybrid structure J,t'ly;,,j;

EENNl-dP®Zaed0oll

O: substructure of a hybrid J; ihot such that R;S; and RSy are exterior arcs.

F1GURE 3. The panel displays the twelve basic types of structural components.

exist in JiRJTh s, 01, we have two cases. In case of § = 1, then 9y decomposes into ¥1 = RJ[i, i%],

Yy = S[h, hx] and a ¥o-TS 93 = i{*?l‘?j’;gﬁl,é' Otherwise, ¥y decomposes into 91 = RJ[i, %],

U9 = S[h, hx] and a 9o-DTS 93 = J2T, .. 11 .
Accordingly, we have

(2.1) Vo(T) = Vo(T)U{¥1,92,95},
(22) Ea(T) = Ea(T)U{ﬁoﬁl,ﬁoﬁg,ﬁoﬁg}.
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Furthermore, a 9o-DTS, 93 = Jf,?zl_j;h*_me, depending on whether J#?Il’j;h*ﬂ_e is a hybrid, there

are two cases. In case of Ji?};l,j;h”rl,é = Jgim;hwu, depending on whether Jﬂim;hm,@ is
. . . H .

a single exterior arc, there are two subcases, in case of Ji*};l Gl = R;S¢, nothing changes,

otherwise let Rj« Sy be the exterior arc such that R[j* + 1,7 — 1] and S[¢*T1, ¢ — 1] are unpaired

nucleotides. 3 decomposes into a substructure of hybrid, ¥, = Jih* +1,j+:h 41,0~ and an exterior arc

¥5 = R;Sp. Accordingly, we obtain
(2.3) Va(T) Va(T)U {04,951},
(2.4) E.(T) = E.(T)U{¥394,9395}.

Furthermore, as a substructure of hybrid, ¥, = th* 41,j%:h* 41,0+ Can be recursively decomposed into

a smaller substructure of hybrid and an exterior arc from right to left.

Otherwise, in case of Jig-iq:l.j;h*—i-l,é is not a hybrid, depending on the type of the leftmost TS,
Jij:+1,j1;h*+1,€1a we have two subcases. In case of Jgﬂ_jl;h*ﬂ_el is of type lies in {57, A, O}, 93

: A0 .
decomposes into a ¥3-TS, g = Ji{*‘Zl,jl;}};*Jrl,ll and a 93-RTS 97 = Jﬁ£17j;el+17e. Accordingly, we

obtain
(2.5) Vo(T) = Vo (T)U {6,997},
(26) Ea(T) = Ea(T) @] {193196, 193197}.

Otherwise, in case of J3:+17j1;h*+17€1 is of type o, 13 decomposes into a hybrid Jg = JiH*i17j2;h*+17e2

and a U3-RTS 99 = J££17j;€2+17€. Accordingly, we have

(2.7) Vo(T) = Vo (T)U{9s,39},

(2.8) Eu(T) = Eu(T)U {0305, 959}

(a2) Otherwise, ¥y decomposes into a RTS 05 = Ji’qu:fl;h,z*fl in ¥ and two MS’s ¥4 = R[j*, j],
95 = S[*, £]. Accordingly, we have

(2.9) Vo(T) = Vo(T)U{V3,04,95},

(2.10) E (T) = E.(T)U{993,9004,0095}.

We iterate the process until all the leaves of T, () are either ¥o-TS or ¥p-MS.

Procedure (b): [Arc Removal]
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M: aTS 9g = Ji7j;h7g

output: a unique tree Ty (o) = (Vi(T), Ep(T))

initialization: V,(T) = {Jo} and E,(T) = @.

We distinguish J (i, j; h, £) by type:

o: do nothing.

O: Yo decomposes into 91 = R;R;, 92 = R[i + 1,11 — 1], ¥J5 = Jlf{ll’jj’fg’g and 94 = R[j1 + 1,5 — 1],
which gives rise to

(2.11) Vo(T) = Vu(T)U{91,02,93,04},

(2.12) Ey(T) = E (T)U {901,002, Jos, P04}

v: we consider the set of Jit1 ,;_1.5,¢-tight structures, denoted by M. In case of |[M| = 1,
Jit+1,j—1;h,e decompose into a sequence of a Ji11 j—1;ne-tight structure ¢ = jﬁ’;ihh’e and two

Jit1,j—1:0,0-MS, 97 = R[i + 1,11 — 1] and ¥s = R[j1 + 1,7 — 1], where i <14y < j; < j. Accordingly,
(213) ‘/b(T) = V(l(T) U {1917 196) ’077 198}5
(214) Eb(T) = Ea(T) @] {19()191, Yo, PoU7, 19()198}.

In case of [M| > 1, Jiy1 j—1;h,¢ decomposes into a sequence consisting of a DTS in Jiy1 j_1h,,
denoted by 99 = JD{,jfl;h,Z and two Ji11 j_1;n,e-ms. 97 = Ri+ 1,41 — 1] and Jg = R[j1 + 1,5 — 1],

3

where 7 < iy < j; < j. Accordingly,

(215) %(T) = Va(T)U{ﬁl,ﬁmﬁg,ﬁg},
(216) Eb(T) = Ea(T)U{ﬁoﬁl,ﬁoﬁ'z,ﬁoﬁg,ﬁoﬁg}.

A: analogous to type T/ via symmetry.

Finally, we have the well-known secondary structure loop-decomposition
Procedure (c): [Secondary Structure]

input: a secondary structure ¥o = RJ[i, j]
output: a tree T.(99) = (V.(T), E.(T))
initialization: V,(T) = {Jo} and E,(T) = @.

We distinguish the following two cases:
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(c1): in case of R;R; ¢ R[i, j], let @2 denote empty segment in which all the vertices are isolated.
For1 < j* <j+1, let @; be the maximal empty segment that contains R;. In particular, if j is not
isolated, we have j* = j+ 1. Let R’(iy,j* — 1) denote the segment in which R;, is connected with
Rj-_1. Then R[i, j] decomposes as follows R[i, j] = (91 = R[i,i1—1],92 = R%(i1,5* —1),95 = Zg*)

and we set
(2.17) Vo(T) = Vo(T)U{v1,92,93},
(218) EC(T) = FE. (T) U {190191, 190192, 190193}.

(c2): in case of R;R; € R[i,j], i.e. for R[i,j] = R(i,7), we have a decomposition into the pair
(¥4 = RiR;,95 = Rla+ 1,b — 1]). Accordingly, we have V.(T') = Vo(T) U {¥4,95} and E.(T) =
E (T)U {904, 9005}

We iterate (cl) and (c2), until all the leaves in T are either isolated segments or single arcs.

For any joint structure, Ji n.1,a7, We can now construct a tree, with root Ji n,1,ps and whose
vertices are specific subgraphs of Ji n;1,a7. To be precise, let H be the graph rooted in Ji ;1,0
defined inductively as follows: for the induction basis for fixed Jy n.1 ar only one, Procedure (a),
(b) or (¢) applies. Procedure (a), (b) or (¢) generates the (procedure-specific, nontrivial) subtrees,
To, Tp and Te.. Suppose ¥+ is a leaf of T' that has been constructed via Procedure (a), (b) or (c).
As in case of the induction basis, each such leaf is input for exactly one procedure, which in turn
generates a corresponding subtree. The construction imply that H itself is a tree. We denote this

decomposition tree by Ty, ., ,,-
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3. RECURRENCES

The computation of the partition function conceptually follows the logic of the McCaskill’s ap-
proach for RNA secondary structures. The generalization of the computation of the base pairing
probabilities, however, is less straight-forward. The reason is that base pairs in joint structures are
not always the unique closing pairs of loop, hence base pairing probabilities cannot be identified
directly with the probabilities of certain TS. Instead, one has to compute the pairing probabilities

by explicitly “tracing back” all contributing joint structures.

The complete set of 4D-storage arrays and 2D-storage array for the partition function are displayed
in the Tables 1-4.

TABLE 1. Tight structures, Q;-I:j;r’sz 9 4D-arrays.

Qv,E QVJW Qv,F
Qv,K QA,E QA,M
QA,F QA,K QD

TABLE 2. Right-tight structures, ijT;T’S: 20 4D-arrays.

QFT.BEA [ ORT.EEB [ ORT.ME [ RT.EM QFT.FE
QRT.EF | QRT,MM | ORT,MF | (RT,FM QRT.FF
TEKA T,EKB T, MK T.FK T,KEA
QI QI QI QI QI
QFT.KEB | QRT.KM | QRT.KF | QRT.KKA | QRT.KKE

DT

TABLE 3. Double-tight joint structures, @', s: 20 4D-matrices.

QPT-EEA [ ODT.EEB [ QDT.ME | ()DT.EM QPTFE
QPT.EF | DT.MM | ODT,MF [ ODT,FM QPT.FF
QPT-EKA | ODT.EKB | QDT.MK | (DPT.FK | DT.KFA
QPT-KEB | oDT.KM | oDT.KF | ODT.KKA | DT.KKE

TABLE 4. Secondary segments: 8 2D-arrays.

QR

QR,b

QR,M

QR,F

QS

QS,b

QS,M

QS,F
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The complete set of recursions comprises for tight structures Q;fjms, 9 4D-arrays, for right-tight

joint structures Qf}:rys, 20 4D-arrays, for double-tight structures ijfm, 20 4D-arrays, and 8
2D-arrays for secondary segments.

Structure-type | recurrence-formula (symbolic)
Jivj; hot Figure 6
JiAj;h ‘ Figure 7
JFj;h ¢ Figure 8
Ji%?h’ ‘ Figure 9
JEL Figure 10
ijih.t gure
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4. MORE DATA

_ gHy
- Jibdb;kb,lb'

and B
1 if there is base pair R,S,; such that

i <P < Ja, ka < q <, in the sampled structure s, and 0 otherwise. Analogously, we define

XB(S)

asjaikasla

JH

K3

Given a RNA sequence, s, consider two hybrids in s, denoted by A =

Define the indicator function X4 as follows: X4(s)

ompA

MicA

(™

)

<~

W

&

—

MicA

-

(A)

FIGURE 4. Interaction of ompA-MicA. (A) Base pairing probability matrix. The upper-

right triangle shows the probabilities obtained from the exact backwards recursion, the

lower-left triangle is the estimate from a sample of 500,000 structures obtained by sto-

chastic backtracing, showing that the estimates converge quickly. (B) Comparison of the

structure proposed in [5]. and the rip2 prediction. While the major stable hairpins agree

and rip2 correctly predicts the primary interaction region, rip2 also identifies additional

interaction regions that may stabilize the interaction. (C) Sampled joint structures (here

the 20 most frequent ones) are represented as dot-bracket strings: () and [] represent pairs

of interior and exterior arc, respectively, while dots indicate unpaired bases. | separates

the two RNA sequences which are both written in 5 — 3’ direction.
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TABLE 5. The top 5 hybrid-sampling frequencies for the interaction of sodB-RyhB.

H H H H H H
Ji,;/-h,é J52y,60;45,53 J15y,17;11,13 J38y,47;26,35 J72y,75;69,72 J77y,78;79,80
P, 1082230 053961 | 024124 [0.17140 | 0.16124

TABLE 6. The covariance of top 5 sampling-hybrids for the interaction of sodB-
RyhB. We index the vertices such that R; is the 5’ end of R and S; denotes the 3’
end of S. For instance, J;2y760; 45,53 1s the hybrid formed by two intervals [Rs2, Reo)

and [545, 553].

. H H H H H
Covariance 1:J52y,60;45,53 2: J15y,17;11,13 3: J3sy,47;26,35 4: J72y,75;69,72 5: J77y,78;79,80
1: ng}:ﬁo;%ﬁg 0.0091644375 | 0.0000105125 | 0.00347623 0.001405585 | -0.000682525
2:.]15"717;11’13 - 0.1851533775 | 0.007708706 | 0.001300787 | -0.009122055
3: J§|8{47;26’35 - - 0.1983983344 | 0.1011387688 | -0.032266132
e - - 0.2481354876 | 0.006675986
5 J7H7y,78;79,80 - - - - 0.22201071

TABLE 7. The top 5 hybrid-sampling frequencies for the interaction of ompA-
MicA. We index the vertices such that R is the 5’ end of R and S; denotes the
3" end of S.
H H H H H H

J; ;’/;hé J11y3,128;55,71 J87y,89;45,47 J39y,40;19,20 J67y,69;51,53 J27y,28;21,22

P?;{-h.f 0.61477 0.25157 0.20731 0.13927 0.12372
TABLE 8. The covariance of top 5 sampling-hybrids for the interaction of ompA-
MicA. We index the vertices such that R; is the 5’ end of R and S; denotes
the 3’ end of S. For instance, Jﬂy&w&%m is the hybrid formed by two intervals
[R113, Ri2g] and [Ss5, S71].
: A A H H A

Covariance 1: J11y3,128;55,71 2: J87y,89;45,47 3: J39y,40;19,20 4: J67y,69;51,53 o: J27y,28;21,22

. 7Hy
1: ']113,128;55,71

0.0000299991

0.0000104406

0.0000066726

0.0000075426

0.0000069108

. 7Hy
: J87,89;45,47

0.2269020796

0.0363833916

-0.0874991884

-0.0177998872

. 7Hy
: J39,40;19,20

0.1729493436

-0.0483208364

-0.0512366712

. 7Hy
: ']67,69;51,53

0.1882079836

0.0243728888

(S8 IS GVR N )

. 7Hy
: J27,28;21,22

0.1772942704
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5. COMPUTATION OF THE PROBABILITIES

In contrast to the computation of the partition function “from the inside to the outside”, the
computation of the base pairing probabilities (BPP) is obtained “from the outside to the inside”.
Let ijyzyl?% be the set of substructures J; j.n.¢ C Ji w10 such that J; ;. ¢ appears in 11 n1, v
as an interaction structure of type £ € {DT, RT, 7, AA,[, o} with loop-subtypes Y1, Y5 € {M,K, F}
on the sub-intervals RJ[i, j] and S[h, (], Y5 € {A,B}. Let ]P’fJY}IYZY3 be the probability of ijY}LYEYS
For instance, ]P’ff}l'\’/ngA is the sum over all the probabilities of substructures J; j.p.¢ € T1,n;1,1 such
that J; j.n¢ is a right-tight structure of type rA and R[i,j], S[h,!] are enclosed by a multi-loop

and kissing loop, respectively.

£,Y1YaYs
i1+ r+s”
arrays of partition functions over the respective subcomplexes and the quantities P

This is obtained via the corresponding
§,Y1Y2Y3

iyitg;rrts
the outside to the inside. In other words Algorithm 1 facilitates the recursive translation of the

Algorithm 1 constructs recursively all 4D-arrays P

from

4D-arrays of partition functions into base pairing probabilities. By construction we have

(5 1) E,Y1Y2Y3 _ E,Y1Y2Y3
. iyidgirrds T T dyidgirrtst

i@iﬂ
@ﬂi-l:l:j-iﬂ i-D::I-Hj i-@-iﬂ

1 11 111 v

FIGURE 5. Further refinement: the four decompositions of .J, VM via Procedure

VHEES
(b). These cases correspond to the four contributions in Algorithm 1).
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Algorithm 1 Case I to Case IV correspond to the fours cases showed in Figure 5.
1: j <« lengthR-1
2: while j > 0 do
3. for i < 1 to lengthR — j do
4: s « lengthS-1
5
6

while s > 0 do
for r < 1 to lengthS — s do

7: 1fQ“+JM+87éOthen

8: forh—i+1toi+j—1do

9: f0r€<—ht0i+j—1d0

10: Q — QY e s e~ Cltrine

11 Pherr+s Pherr+e+Pz 7+]T"r‘+€ Q/Qv Jitjirr+s {Case I}

12: Q— Qz+1 h—1 Qe+1 itj—1 Qh,@;r,rJrs'eXp(_(al +20a2)/RT)
13: Ph€1 rts ‘_Pherm-e szfﬂrr-ye Q/Qv 1+JT7’+€

14: P?Jrl\{l,hfl - Pz+'\{| h—1 T szut/l] irr4s Q/Qz Jitjir, r+s

15: PRJI-I\T 1+J 1 - PRJI-I\T 1+J 1t Pyi—'l\-/ljmr—i-e Q/Qv Sitgirrts {Case H}
16: Q < Q- Qi ivy1 @Riinr's - exP(—(0n + 02)/RT)

e PE;;%M« P?E r rM+e szf—i-j rrts Q/Qv 1+J ror+s

18: P?—;-I\{I,h—l - P1+1 h—1T P@VZLAJ s Q/Qz s

19: P?ﬂ,iﬂ—l P?Jrl\f £l +PY; z+g s Q/Ql itjrts {Case I}
20: Q< Q7+1 h—1 Q€+1z+] 1 Q?;;TKX—@'@XP(_(@ + B32)/RT)
2L }?,-Il:,rK,I;/IJrs — PSE :f,';/lJrs + Pz l+] r,r4s Q/Qz z+] rrts
22: zF'{-ilFl,h—l - P7+1 net va{ﬂ s Q/QY, 7+j rrks
23: PlISJrFl,iJrjfl - P£+1 irj—1 T szzi/lg s Q/Qz Jitjirrts {Case IV}
24: end for
25: end for
26: end if
27: end for
28: s—s—1
29: end while

30: end for
31: je—jg—1
32: end while
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i@j

i@j
e
i@j
FEREhS COS SR

i@j

K K

FIGURE 6. Decomposition for J;7,, ,.
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I J

i j

// \\

M

@ww@;/

l@,
// \\

K

IS/

B P o B iy

FIGURE 7. Decomposition for ij;h,l.

&8

N T

FIGURE 8. Decomposition for JEj;h,[.
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FIGURE 9. Decomposition for J, ,
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PR TN ' N N v
/N | N }
= =H =0 =0 =
PR Y\ Y\ Y\ Y\
AR Y\ Y\ Y\ Y\

. -
PR Y\

FIGURE 10. Decomposition for J/%), ,.



20 HUANG, QIN, REIDYS, STADLER

6. CONTRASTING THE RIP1- AND RIP2-GRAMMARS

Firstly, it is clear that the base pairing probabilities derived in rip1 are not suited to characterize
hybrid loops, since the probabilities of exterior arcs in hybrids can be strongly correlated. Similarly,

the probabilities of blocks cannot be derived from base pair probabilities.

Secondly, as for using the probabilities of blocks considered in ripil, let us consider again the
sodB-RhyB RNA-RNA interaction. Now we contrast m; j-values based on the hybrids of the rip2-
grammar and the various block-types available in the ripl-grammar. Since for neither DTS,
RTS nor TS the quantities 7; ;, are sampling probabilities, we normalize the entries according to
0 < mr < 1. We denote m; ;[Hy] = m; 1, and these normalized coefficients by 7; , [DTS], m; 1 [RTS]
and 7; 1 [TS]. In Fig. 11, we illustrate clearly that neither DTS’s (B), nor RTS’s (C) or TS’s (D)

can characterize the interaction regions adequately.
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qal al
| .
] =
1 ik om
4 |
(5.3 I I I I I I I (;Q I I I I I I I I I
5 Hybrid 3 5 Double tight 3
(A (B)
a1
(JQ [ I I I I I I 1 09 [ I I I I I
5 Right tight 3 5 Tight 3
©) (D)

FIGURE 11. Contrasting the ripl- and rip2-grammars via the sodB-RhyB RNA-RNA
interaction. We display 7; x[Hy] (A), 7 x[DTS] (B), 7. [RTS] (C) and 7 [TS] (D). Note
that only m; x[Hy]-terms are probabilities. The figure shows that only the hybrid-blocks
of the rip2-grammar identify the two hybridization regions in the middle of the molecules
and a diffuse contact area at the 3’ end of sodB. The grayscale show the probabilities
7,k [Hy] and the normalized quantities m; ,x[DTS], m; x[RTS] and 7, [TS]. Tick marks
indicate every 10th nucleotide.
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