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Abstract

Let n = 2λm ≥ 526 with m ∈ {2, 3, 5, 7, 11}, and let S be a sequence of elements in Cn ⊕ Cn with
|S | = n2+2n−2. Let N|G|0 (S ) denote the number of the subsequences with length n2(=|G|) and with
sum zero. Among other results, we prove that either N|G|0 (S ) = 1 or N|G|0 (S ) ≥ n2 + 1.

1. Introduction and Main Results

Let N denote the set of positive integers and N0 = N ∪ {0}. Let Z denote the set of integers. For
a, b ∈ Z with a ≤ b, we define [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let G be an additively written finite
abelian group. We denote by |G| the order of G, and denote by exp(G) the exponent of G. Let
F (G) be the free abelian monoid, multiplicatively written, with basis G. The elements of F (G)
are called sequences over G. If a sequence S ∈ F (G) is written in the form S = g1 · . . . · gl,

we call |S | = l the length of S . For every g ∈ G, k ∈ N, let Nk
g(S ) denote the number of subsets

I ⊆ [1, l] such that |I| = k and
∑

i∈I gi = g. The famous Erdős-Ginzburg-Ziv Theorem asserts that if
|S | ≥ 2|G| − 1 then N|G|0 (S ) ≥ 1 [5].

When G = Cn is the cyclic group of n elements, Nn
g(S ) has been studied since 1967 by many

authors including H.B. Mann, A. Bialostocki and M. Lotspeich, Z. Füredi and D.J. Kleitman, the
first author, D.J. Grynkiewicz, and M. Kisin. Let p be a prime and let S ∈ F (Cp) with |S | = 2p−1.
H.B. Mann [19] proved that if no element occurs more than p times in S then Np

g(S ) ≥ 1 for every
g ∈ Cp . With the same assumption above, the first author [9] proved that Np

g(S ) ≥ p for every
g ∈ Cp \ {0}, and either Np

0(S ) = 1 or Np
0(S ) ≥ p + 1. In 1999, the first author [8] showed that for

every positive integer n, if |S | = 2n−1 then for every g ∈ Cn \ {0} we have Nn
g(S ) = 0 or Nn

g(S ) ≥ n,
and either Nn

0(S ) = 1 or Nn
0(S ) ≥ n + 1. In 1992, Bialostocki and Lotspeich [2] formulated the
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following conjecture.

Conjecture 1.1 Let n ≥ 2 be a positive integer, and let S ∈ F (Cn). Then

Nn
0(S ) ≥

(
b|S |/2c

n

)
+

(
d|S |/2e

n

)
.

Conjecture 1.1 has been confirmed if one of the following conditions holds:

(i) n = paqb with p, q are primes (M. Kisin, [18]);

(ii) |S | ≥ n6n (Füredi and Kleitman, [6]);

(iii) |S | ≤ 6.5n (Grynkiewicz, [16]).

However, there is almost no result on N|G|g (S ) for non-cyclic group G. In this paper we shall
obtain some sharp results on N|G|g (S ) for G = Cn ⊕Cn and |S | = n2 + 2n − 2.

Before we can state our main results (see Corollary 1.4 and 1.6 below) more precisely, let us
introduce some notation and terminology first. We write sequence S ∈ F (G) in the form

S =
∏
g∈G

gvg(S )

with vg(S ) ∈ N0 for all g ∈ G.

We call vg(S ) the multiplicity of g in S . We say that S contains g if vg(S ) > 0. The unit element
1 ∈ F (G) is called the empty sequence. A sequence S 1 is called a subsequence of S if S 1|S in
F (G) (equivalently, vg(S 1) ≤ vg(S ) for all g ∈ G), and it is called a proper subsequence of S if it
is a subsequence with 1 , S 1 , S . Let S 1, S 2 ∈ F (G), we denote by S 1S 2 the sequence

∏
g∈G

gvg(S 1)+vg(S 2) ∈ F (G).

If a sequence S ∈ F (G) is written in the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and
g1, . . . , gl ∈ G. For g0 ∈ G, we set g0 + S = (g0 + g1) · . . . · (g0 + gl) ∈ F (G).

For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S ) ∈ F (G),

we call

|S | = l =
∑

g∈G
vg(S ) ∈ N0 the length of S ,
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h(S ) = max
{
vg(S )|g ∈ G

}
∈ [0, |S |] the maximum of the multiplicities of S ,

σ(S ) =
l∑

i=1
gi =

∑
g∈G

vg(S )g ∈ G the sum of S ,

∑
(S ) =

{∑
i∈I

gi|I ⊆ [1, l] with1 ≤ |I| ≤ l
}

the set of all subsums of S .

The sequence S is called

• zero-sumfree if 0 <
∑

(S ),

• a zero-sum sequence if σ(S ) = 0,

• a minimal zero-sum sequence if it is a non-empty zero-sum sequence and every proper sub-
sequence is zero-sumfree,

• a short zero-sum sequence if it is a zero-sum sequence of length |S | ∈ [1, exp(G)].

We denote by D(G) the smallest integer l ∈ N such that every sequence S ∈ F (G) of length
|S | ≥ l has a nonempty zero-sum subsequence. The invariant D(G) is called the Davenport constant
of G.

Let n ≥ 2 be a positive integer. We say that n has Property B if every minimal zero-sum
sequence in F (Cn⊕Cn) of length 2n−1 contains some element with multiplicity n−1. It has been
conjectured that

Conjecture 1.2 Every positive integer n ≥ 2 has Property B (for e.g., see [11], [12] and [15]).

Conjecture 1.2 has been confirmed for n = 2λm and m ∈ {2, 3, 5, 7, 11} (See [11], [14]).

Write the elements in Cn ⊕ Cn in the form (a, b). Let e1 = (1, 0) and e2 = (0, 1). Then every
(a, b) ∈ Cn ⊕Cn can be expressed as (a, b) = ae1 + be2 uniquely. Let 0 = (0, 0).

Now we can state our main results precisely.

Theorem 1.3 Let G = Cn ⊕ Cn with n ≥ 2, and let S ∈ F (G) be a sequence of length |S | =
|G| + D(G) − 1 = n2 + 2n − 2. If n has Property B then

N|G|g (S ) = 0 or N|G|g (S ) ≥ n

for every g ∈ G \ {0}.
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Corollary 1.4 Let n = 2λm with m ∈ {2, 3, 5, 7, 11}, and let G = Cn ⊕ Cn. If S ∈ F (G) is a
sequence of length |S | = |G| + D(G) − 1 = n2 + 2n − 2, then

N|G|g (S ) = 0 or N|G|g (S ) ≥ n

for every g ∈ G \ {0}.

Theorem 1.5 Let G = Cn ⊕ Cn with n ≥ 526, and let S ∈ F (G) be a sequence of length |S | =
|G| + D(G) − 1 = n2 + 2n − 2 . If n has Property B then

N|G|0 (S ) = 1 or N|G|0 (S ) ≥ n2 + 1.

Corollary 1.6 Let n = 2λm ≥ 526 with m ∈ {2, 3, 5, 7, 11}, and let G = Cn ⊕ Cn. If S ∈ F (G) is a
sequence of length |S | = |G| + D(G) − 1 = n2 + 2n − 2, then

N|G|0 (S ) = 1 or N|G|0 (S ) ≥ n2 + 1.

Now let us give some examples concerning the above results.

Example 1 G = Cn ⊕Cn, S = 0n2+2n−2, then N|G|g (S ) = 0, for every g ∈ G \ {0}.

Example 2 G = Cn ⊕Cn, S = 0n2−1e1
ne2

n−1, then N|G|e1
(S ) = n.

Example 3 G = Cn ⊕Cn, n ≥ 3, S = 0n2e1
n−1e2

n−1, then N|G|0 (S ) = 1.

Example 4 G = Cn ⊕Cn, n ≥ 3, S = 0n2+1e1
n−2e2

n−1, then N|G|0 (S ) = n2 + 1.

Example 5 G = C2 ⊕C2, S = (e1 + e2)2e1
2e2

2, then N|G|0 (S ) = 3.

Remarks 1.7 Example 1 and Example 2 show that the bounds in Theorem 1.3 are sharp. Example
3 and Example 4 show that the inequalities in Theorem 1.5 cannot be improved. Example 5 shows
that the conclusion of Theorem 1.5 is not true for G = C2 ⊕C2. Perhaps this is the only exceptional
case (see Conjecture 5.3 in Section 5). We believe that the conclusion of Theorem 1.5 is true for
all n ≥ 3, and we have checked it for all n ≤ 10. It would be interesting to prove Theorem 1.5 for
all n ∈ [11, 525].
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2. Preliminaries

To prove Theorem 1.3 and Theorem 1.5 we need some preliminaries begin with the following well
known result due to Olson [22].

Lemma 2.1 D(Cn ⊕Cn) = 2n − 1.

Lemma 2.2 ([15], Theorem 5.8.3) Every sequence S in Cn⊕Cn with |S | = 3n−2 contains a short
zero-sum subsequence.

Lemma 2.3 ([15], Theorem 5.8.7) Let G = Cn ⊕ Cn with n ≥ 2, and let S ∈ F (G) be a zero-
sumfree sequence of length |S | = 2n − 2. If n has Property B then there is an automorphism φ over
G such that φ(S ) = e2

n−1 ∏n−1
i=1 (e1 + aie2), or φ(S ) = e2

n−2 ∏n
i=1(e1 + aie2) with

∑n
i=1 ai ≡ 1 (mod n)

and h(S ) = n − 2.

Lemma 2.4 Let n ≥ 3 with n having Property B, and let G = Cn ⊕ Cn. Let S 1, S 2 ∈ F (G) with
|S 1| = |S 2| = 2n − 2. If h(S 1) ≤ 2n − 3 and h(S 2) ≤ 2n − 3, then there exist T1|S 1 and T2|S 2 such
that σ(T1) = σ(T2) and |T1| = |T2| ∈ [1, 2n − 2].

Proof. It is easy to check the lemma for n = 3. So, we assume that n ≥ 4. Let

S 1 =

2n−2∏
i=1

(aie1 + bie2)

and

S 2 =

2n−2∏
i=1

(cie1 + die2).

Let P2n−2 denote the symmetric group on [1, 2n−2]. Clearly, it suffices to prove that S 1−δ(S 2)
is not zero-sumfree for some δ ∈ P2n−2, where δ(S 2) =

∏2n−2
i=1 (cδ(i)e1 + dδ(i)e2).

Assume to the contrary that, S 1 − δ(S 2) is zero-sumfree for every δ ∈ P2n−2. By Lemma 2.3,
h(S 1 − δ(S 2)) = n − 1 or n − 2 holds for every δ ∈ P2n−2.

Case 1: h(S 1 − δ(S 2)) = n − 2 holds for every δ ∈ P2n−2.

Especially, h(S 1 − S 2) = n − 2. Again by Lemma 2.3, there exists an automorphism φ over G
such that

φ(S 1 − S 2) = e2
n−2

n∏
i=1

(e1 + zie2).
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Without loss of generality, we may assume that φ = id. Furthermore, by rearranging the subscripts,
if necessary, we assume that

(a1 − c1)e1 + (b1 − d1)e2 = · · · = (an−2 − cn−2)e1 + (bn−2 − dn−2)e2 = e2

and

(a j − c j)e1 + (b j − d j)e2 = e1 + z j−n+2e2

for every j ∈ [n − 1, 2n − 2].

Since h(S 1 − S 2) = n − 2, we may assume that

z1 , z2.

Claim 1. ai − c j ∈ {1, 2} holds for any i, j ∈ [n + 1, 2n − 2] with i , j.

Let i, j ∈ [n + 1, 2n − 2] with i , j, and let τ be the transposition (i, j) ∈ P2n−2. Then

S 1 − τ(S 2) = e2
n−2

(
(ai − c j)e1 + (bi − d j)e2

) (
(a j − ci)e1 + (b j − di)e2

) ∏
k,i−n+2, j−n+2

(e1 + zke2).

If ai − c j = 0 then (ai − c j)e1 + (bi − d j)e2 = (bi − d j)e2 , e2 follows from h(S 1 − τ(S 2)) = n− 2.
Therefore, 0 ∈

∑(
e2

n−2
(
(ai − c j)e1 + (bi − d j)e2

))
⊆

∑
(S 1 − τ(S 2)) , a contradiction.

Now we assume that ai − c j ∈ [3, n − 1]. Let I ⊆ [1, n] \ {1, 2, i − n − 2, j − n − 2} be a subset
with |I| = n − (ai − c j) − 1 ∈ [0, n − 4]. Then ai − c j + 1 +

∑
k∈I 1 = 0. Therefore

bi − d j + z1 +
∑
k∈I

zk

 e2,

bi − d j + z2 +
∑
k∈I

zk

 e2


⊆

∑((ai − c j)e1 + (bi − d j)e2
) ∏

k,i−n+2, j−n+2

(e1 + zke2)

 .
Since z1 , z2, we have that bi − d j + z1 +

∑
k∈I zk , bi − d j + z2 +

∑
k∈I zk. Therefore

0 ∈
∑e2

n−2

bi − d j + z1 +
∑
k∈I

zk

 e2

⋃∑e2
n−2

bi − d j + z2 +
∑
k∈I

zk

 e2


⊆

∑e2
n−2

(
(ai − c j)e1 + (bi − d j)e2

) ∏
k,i−n+2, j−n+2

(e1 + zke2)


⊆

∑
(S 1 − τ(S 2)) ,

a contradiction. This proves Claim 1.
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Note that ai − c j + a j − ci = (ai − ci) + (a j − c j) = 2. This forces that ai − c j = 1 for any pair of
i, j ∈ [n + 1, 2n − 2] with i , j. Therefore

an+1 = an+2 = · · · = a2n−2 = a (say),
cn+1 = cn+2 = · · · = c2n−2 = a − 1.

Since h(S 1 − S 2) = n − 2, we have that zk−n+2 , z1 holds for some k ∈ [n + 1, 2n − 2]. Let
j ∈ [n + 1, 2n − 2] \ {k}, and let i = n. Then repeating the proof above we obtain that

an = an+1 = · · · = a2n−2 = a,

cn = cn+1 = · · · = c2n−2 = a − 1.

Similarly, we obtain that

an−1 = an+1 = · · · = a2n−2 = a,

cn−1 = cn+1 = · · · = c2n−2 = a − 1.

Hence
an−1 = an = · · · = a2n−2 = cn−1 + 1 = cn + 1 = · · · = c2n−2 + 1 = a. (1)

Claim 2. ai − c j ∈ {0, 1} holds for every i ∈ [1, n − 2] and every j ∈ [n + 1, 2n − 2].

Let i ∈ [1, n − 2], j ∈ [n + 1, 2n − 2], and let θ be the transposition (i, j) ∈ P2n−2. Then

S 1 − θ(S 2) = e2
n−3

(
(ai − c j)e1 + (bi − d j)e2

) (
(a j − ci)e1 + (b j − di)e2

) ∏
k, j−n+2

(e1 + zke2).

Assume to the contrary that ai − c j ∈ [2, n − 1]. Let I ⊆ [1, n] \ { j − n + 2} be any subset with
|I| = n− (ai − c j). Let J = [1, n] \ {{ j−n+2} ∪ I}. Then ai − c j +

∑
k∈I 1 = 0 and a j − ci +

∑
k∈J 1 = 0.

Therefore

σ

((ai − c j)e1 + (bi − d j)e2
)∏

k∈I

(e1 + zke2)

 = bi − d j +
∑
k∈I

zk

 e2,

and

σ

((a j − ci)e1 + (b j − di)e2
)∏

k∈J

(e1 + zke2)

 = b j − di +
∑
k∈J

zk

 e2.

Since 0 <
∑(

e2
n−3

((
bi − d j +

∑
k∈I zk

)
e2

))
, we infer that

bi − d j +
∑
k∈I

zk ∈ {1, 2}.

Similarly
b j − di +

∑
k∈J

zk ∈ {1, 2}.
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Note that ai − c j + a j − ci + (n − 1) = 0. Similarly to above we have

bi − d j + b j − di +
∑
k∈I

zk +
∑
k∈J

zk ∈ {1, 2}.

These force that bi − d j +
∑

k∈I zk = b j − di +
∑

k∈J zk = 1 holds for every I ⊆ [1, n] \ { j− n+ 2} with
|I| = n − (ai − c j), which implies z1 = z2, a contradiction. This proves Claim 2.

Since ai − c j + a j − ci = 1, we have a j − ci ∈ {0, 1}. Therefore

ai − c j = 0, a j − ci = 1 or ai − c j = 1, a j − ci = 0 (2)

holds for every pair of i, j with i ∈ [1, n − 2] and j ∈ [n + 1, 2n − 2].

If a j − ci = 0 then a j = ai follows from ai − ci = 0. By (1), ai = an−1 = an = · · · = a2n−2. Let
t ∈ [n − 1, 2n − 2]. Let γ be the transposition (i, t) ∈ P2n−2. Then

S 1 − γ(S 2) = e2
n−3 ((ai − ct)e1 + (bi − dt)e2) ((at − ci)e1 + (bt − di)e2)

∏
k,t−n+2

(e1 + zke2).

By (1) we have ai − ct = 1, at − ci = 0. Therefore

σ

((ai − ct)e1 + (bi − dt)e2)
∏

k,t−n+2

(e1 + zke2)

 = bi − dt +

 n∑
k=1

zk

 − zt−n+2

 e2,

and

(at − ci)e1 + (bt − di)e2 = (bt − di)e2.

Hence

0 <
∑e2

n−3((bt − di)e2)

bi − dt +

 n∑
k=1

zk

 − zt−n+2

 e2

 ⊆∑
(S 1 − γ(S 2)).

This forces that

bt − di = bi − dt +

 n∑
k=1

zk

 − zt−n+2 = 1.

Since bi − di = 1 we have bi = bt. Therefore, aie1 + bie2 = ate1 + bte2 for every t ∈ [n − 1, 2n − 2].

Now we have proved that if a j − ci = 0 for some i ∈ [1, n − 2] and j ∈ [n + 1, 2n − 2], then

aie1 + bie2 = an−1e1 + bn−1e2 = · · · = a2n−2e1 + b2n−2e2. (3)

Similarly, if ai − c j = 0 for some i ∈ [1, n − 2] and some j ∈ [n + 1, 2n − 2], then

cie1 + die2 = cn−1e1 + dn−1e2 = · · · = c2n−2e1 + d2n−2e2. (4)
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From (2), (3) and (4) we infer that there are three possibilities:

(i) a1 = a2 = · · · = a2n−2 = a, which implies

a1e1 + b1e2 = a2e1 + b2e2 = · · · = a2n−2e1 + b2n−2e2.

(ii) c1 = c2 = · · · = c2n−2 = a − 1, which implies

c1e1 + d1e2 = c2e1 + d2e2 = · · · = c2n−2e1 + d2n−2e2.

(iii) ai = an−1 = · · · = a2n−2 = a and c j = cn−1 = · · · = c2n−2 = a − 1 for some i, j ∈ [1, n − 2]
with i , j, which implies

aie1 + bie2 = an−1e1 + bn−1e2 = · · · = a2n−2e1 + b2n−2e2,

and

c je1 + d je2 = cn−1e1 + dn−1e2 = · · · = c2n−2e1 + d2n−2e2.

But we always get a contradiction. This completes the proof of Case 1.

Case 2: h(S 1 − δ(S 2)) = n− 1 holds for some δ ∈ P2n−2. Since the proof is similar to and much
easier than Case 1, we omit it here. �

Lemma 2.5 Let n ≥ 3 with n having Property B, and let G = Cn ⊕ Cn. Let S ∈ F (G) be a
zero-sumfree sequence of length |S | = 2n − 2. Then for any g ∈ G \ {0}, either vg(S ) = n − 1 or
there exists a subsequence T of S such that |T | ≥ 2 and g = σ(T ).

Proof. By Lemma 2.1, for any g ∈ G \ {0}, (−g)S contains a nonempty zero-sum subsequence S 1.
Since S is zero-sumfree, we have (−g)|S 1. Let S 2 = S 1(−g)−1. Then g = σ(S 2). If g is not a term
of S then |S 2| ≥ 2. Let T = S 2 and we are done. So we may assume that g is a term of S . Clearly,
it suffices to prove that either vg(S ) = n − 1, or there is a subsequence W of S such that g is not a
term of W and g ∈

∑
(W).

By Lemma 2.3 there is an automorphism φ over G such that

φ(S ) = e2
r

2n−2−r∏
i=1

(e1 + aie2),

where r = h(S ) = n − 1 or n − 2.Without loss of generality let φ = id.

Case 1: S = e2
n−1 ∏n−1

i=1 (e1 + aie2).

Subcase 1.1: a1 = a2 = · · · = an−1. Since g is a term of S , g = e2 or e1 + a1e2. Therefore,
vg(S ) = n − 1.
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Subcase 1.2: a1 = a2 = · · · = an−1 does not hold. Without loss of generality let a1 , a2. If
g = e2 then vg(S ) = n − 1. Now assume g = e1 + aie2 for some i ∈ [1, n − 1]. Note that either
ai , a1 and we have g = e1 + aie2 ∈

∑(
e2

n−1(e1 + a1e2)
)
, or ai , a2 and we have g = e1 + aie2 ∈∑(

e2
n−1(e1 + a2e2)

)
.

Case 2: S = e2
n−2 ∏n

i=1(e1+aie2) and h(S ) = n−2. By rearranging the subscripts, if necessary,
we can assume that a1 , a2. By Lemma 2.3, e2 = σ

(∏n
i=1(e1 + aie2)

)
. So it remains to check the

case that g = e1 + aie2 for some i ∈ [1, n].

Subcase 2.1: There are three distinct elements among of a1, . . . , an. Then there are two indices
j, k ∈ [1, n] \ {i} such that ai, a j, ak are pairwise distinct. Since [a j, a j + n − 2] ∪ [ak, ak + n − 2] =
[0, n−1]\{a j+n−1}∪[0, n−1]\{ak+n−1} = [0, n−1], we infer that {e1, e1+e2, . . . , e1+(n−1)e2} ⊆∑(

e2
n−2(e1 + a je2)

)
∪

∑(
e2

n−2(e1 + ake2)
)
. Hence

g = e1 + aie2 ∈
∑(

e2
n−2(e1 + a je2)

)
∪

∑(
e2

n−2(e1 + ake2)
)
.

Subcase 2.2: There are exactly two distinct elements among of a1, . . . , an. Let j ∈ [1, n] with
a j , ai. If ai , a j + n − 1 then g = e1 + a1e2 ∈

∑(
e2

n−2(e1 + a je2)
)
. Otherwise ai = a j + n − 1.

Let r be the number of k ∈ {1, . . . , n} such that ak = ai. By Lemma 2.3, a1 + a2 + · · · + an ≡ 1
(mod n), that is, rai + (n − r)(ai + 1) ≡ 1 (mod n). Hence, r = n − 1 contradicting h(S ) = n − 2.
This completes the proof. �

Lemma 2.6 Let n ≥ 3 with n having Property B, and let G = Cn ⊕ Cn. Let S ∈ F (G) be a zero-
sumfree sequence of length |S | = 2n − 3, and let W ∈ F (G) be a nonempty zero-sum sequence. If
W contains no 0 then there exist W1|W and S 1|S such that σ(W1) = σ(S 1) and 1 ≤ |W1| ≤ |S 1|.

Proof. It is easy to check the lemma for n ∈ {3, 4}.

Let n ≥ 5. We may assume that W is a minimal zero-sum sequence. Let

W = g1 · . . . · gw, where w = |W | ≥ 2.

If (−gi)S contains a nonempty zero-sum subsequence S ′1 (say) for some i ∈ [1,w], then −gi|S ′1
follows from S is zero-sumfree. Let S 1 = S ′1(−gi)−1 and W1 = gi ∈ F (G). Then S 1|S , gi = σ(S 1)
and we are done.

Now we may assume that, for any i ∈ [1,w], (−gi)S is zero-sum free. By Lemma 2.3, there
exists an automorphism φ over G such that

φ((−g1)S ) = e2
r ∏2n−2−r

i=1 (e1 + zie2),

where h(φ((−g1)S )) = r = n − 1 or n − 2.Without loss of generality let φ = id. Then
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(−g1)S = e2
r ∏2n−2−r

i=1 (e1 + zie2),

where h((−g1)S ) = r = n − 1 or n − 2. By rearranging the subscripts, if necessary, we may assume
that

−g1 = e2, or −g1 = e1 + z1e2.

Case 1: w = 2. Then g1 + g2 = 0.

Subcase 1.1: −g1 = e1 + z1e2. Then g2 = −g1 = e1 + z1e2. If r = n − 1, it is easy to see that
g2 ∈

∑(
(e1 + z2e2)e2

n−1
)
⊆

∑
(S ) and we are done. If r = n − 2 then h(z2z3 · . . . · zn) ≤ n − 2. By

rearranging the subscripts, if necessary, we assume that z2 , z3. Furthermore, we may assume that
z1 , z2 + (n − 1). Thus g2 ∈

∑(
(e1 + z2e2)e2

n−2
)
⊆

∑
(S ) and we are done.

Subcase 1.2: −g1 = e2. Then g2 = −g1 = e2. Letting S 1 = e2 ∈ F (G) and W1 = g2 ∈ F (G)
verify the lemma.

Case 2: w ≥ 3. Let i, j ∈ [1,w] be an arbitrary pair with i , j. By Lemma 2.1, (−gi)(−g j)S
contains a nonempty zero-sum subsequence S ′2 (say). Since both (−gi)S and (−g j)S are zero-
sumfree, we have (−gi)(−g j)|S ′2. Let S 2 = S ′2(−gi)−1(−g j)−1. Then S 2|S and |S 2| ≥ 1. If |S 2| ≥ 2,
setting S 1 = S 2 and W1 = gig j verify the lemma. So, we may assume that |S 2| = 1. Therefore, for
any i, j ∈ [1,w] with i , j,

gi + g j

is a term of S .

Subcase 2.1: −g1 = e1+ z1e2. Then g1 = (n−1)e1+ (n− z1)e2. For any 2 ≤ i ≤ w, since g1+gi is
a term of S , we infer that gi = e1 + ze2 or 2e1 + ze2 for some z ∈ Cn. Therefore, for any i, j ∈ [2,w]
with i , j we have gi + g j = ae1 + be2 for some a ∈ {2, 3, 4}, a contradiction of gi + g j is a term of
S .

Subcase 2.2: −g1 = e2. Then g1 = (n − 1)e2. For any 2 ≤ i ≤ w, since g1 + gi is a term of S , we
infer that gi = 2e2 or e1 + ze2 for some z ∈ Cn. If gi = 2e2, letting W1 = gi and S 1 = e2

2 verify the
lemma. So we may assume that gi = e1 + ze2 for every 2 ≤ i ≤ w. Therefore, for any i, j ∈ [2,w]
with i , j we have gi + g j = 2e1 + z′e2, it is not a term of S , a contradiction. This completes the
proof. �

Lemma 2.7 ([7], Theorem 1) Let G be a finite abelian group, and let S ∈ F (G). If |S | = |G| +
D(G) − 1 then N|G|0 (S ) ≥ 1.

We also need the following technical results.

Lemma 2.8 Let n ≥ 3, k, p1, . . . , pk be positive integers. If p1 + p2 + · · · + pk ≥ 3n − 2 and
2 ≤ pi ≤ 2n − 3 for every i ∈ [1, k], then p1 p2 · · · pk ≥ n2 + 1.
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Proof. Since 2 ≤ pi ≤ 2n − 3 for every i ∈ [1, k], we have

p1 p2 · · · pk ≥ p1(p2 + · · · + pk) ≥ p1(3n − 2 − p1) ≥ (2n − 3)(n + 1) ≥ n2 + 1.

�

Lemma 2.9 Let A1, . . . , Al be subsets of [1, k] with |A1| = · · · = |Al| = 2. If l ≤ k then there exist a
subset A ⊆ [1, k] such that, |A| ≤ k

2 +
l
4 and A ∩ Ai , ∅ holds for every i ∈ [1, l].

Proof. By rearranging the subscripts, if necessary, we may assume that A1 ∩ A2 , ∅, A3 ∩ A4 ,

∅, . . . , A2t−1 ∩ A2t , ∅, and A2t+1, . . . , Al are pairwise disjoint. Put r = l − 2t. Clearly, 0 ≤ t ≤ l
2 and

r ≤ k
2 . Now take one element xi from A2i−1 ∩ A2i for every i ∈ [1, t] (Note that x1, . . . , xt are not

necessarily distinct), and take one element x2t+ j from A2t+ j for every j ∈ [1, r]. Let

A = {x1, . . . , xt, x2t+1, . . . , xl}.

Then, A ∩ Ai , ∅ for every i ∈ [1, l].

It remains to show |A| ≤ t + r ≤ k
2 +

l
4 . Note that

2t + r = l and r ≤
k
2
.

If r ≤ k − l
2 then |A| ≤ t + r = r + l−r

2 =
l+r
2 ≤

k
2 +

l
4 . Now assume that r > k − l

2 . Then,

t = l−r
2 <

l−k+ l
2

2 ≤ l
4 . Therefore, |A| ≤ r + t ≤ k

2 +
l
4 . This completes the proof. �

3. Proof of Theorem 1.3

Proof. Let n ≥ 3. Note that N|G|g (S ) = N|G|g (−x + S ) holds for every g ∈ G, we may assume that
v0(S ) = h(S ). Let g ∈ G \ {0}. Suppose N|G|g (S ) ≥ 1, we need to show that N|G|g (S ) ≥ n.

By rearranging the subscripts we may assume that

S = S 1S 2,

where

S 1 =a1a2 · . . . · an2−r0r,

S 2 =b1b2 · . . . · b2n−2−h(S )+r0h(S )−r,

g =σ(S 1) = a1 + a2 + · · · + an2−r.

We first assume that h(S ) ≤ 2n−3. By Lemma 2.4 there exist T1|a1a2 · . . . ·a2n−2 and T ′1|S 2 such
that σ(T1) = σ(T ′1) and |T1| = |T ′1| ≥ 1. By rearranging of the subscripts of S 1 we may assume that
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a1|T1. Again by Lemma 2.4 there exist T2|a2a3 · . . . · a2n−1 and T ′2|S 2 such that σ(T2) = σ(T ′2) and
|T2| = |T ′2| ≥ 1. Clearly, T1 and T2 are different. Similarly, we can obtain subsequences T3, . . . ,Tn

of S 1 and subsequences T ′3, . . . ,T
′
n of S 2 satisfying |Ti| = |T ′i |, σ(Ti) = σ(T ′i ) for any i ∈ [1, n],

and T1,T2, . . . ,Tn are pairwise different. Therefore, S 1T−1
1 T ′1, S 1T−1

2 T ′2, . . . , S 1T−1
n T ′n are pairwise

different subsequences of S with sum g and length n2. So we have N|G|g (S ) ≥ n.

Now suppose that h(S ) ≥ 2n − 2.We distinguish four cases.

Case 1: 1 ≤ r ≤ h(S ) − 1. Then N|G|g (S ) ≥
(

h(S )
r

)
≥

(
h(S )

1

)
= h(S ) > n.

Case 2: r = 0. Then h(S ) = 2n − 2. Since |S 1| = n2 ≥ 3n − 2, by Lemma 2.2, there is a short
zero-sum subsequence T of S 1. So S 1T−10|T | is a sequence with sum g and length n2. Replace S 1

by S 1T−10|T | and it reduces to Case 1.

Case 3: r = h(S ) and S 2 is not zero-sumfree. Assume that T |S 2 and σ(T ) = 0. Replace S 1 by
S 10−|T |T and it reduces to Case 1 or Case 2.

Case 4: r = h(S ) and S 2 is zero-sumfree. Since g , 0, there is at least one term of S 1 is
not zero. Let g′|S 1 and g′ , 0. By Lemma 2.5 we have that either vg′(S 2) = n − 1 or there
exists a subsequence T of S 2 such that |T | ≥ 2 and g′ = σ(T ). If vg′(S 2) = n − 1 then N|G|g (S ) ≥(

vg′ (S 1)+vg′ (S 2)
1

)
≥

(
n
1

)
= n. Now assume that g′ = σ(T ) for some T |S 2 with |T | ≥ 2. Replace S 1 by

S 1g′−10−|T |+1T and it reduces to Case 1 or Case 2.

It is easy to check the case n = 2 directly and we omit it here. Now the proof is completed. �

4. Proof of Theorem 1.5

Proof. Let n ≥ 526.Without loss of generality let h(S ) = v0(S ). From Lemma 2.7 and Lemma 2.1
we know that N|G|0 (S ) ≥ 1. Assume that N|G|0 (S ) ≥ 2. We have to show N|G|0 (S ) ≥ n2 + 1.

By rearranging the subscripts we may assume that

S = S 1S 2,

where

S 1 =a1a2 · . . . · an2−r0r,

S 2 =b1b2 · . . . · b2n−2−h(S )+r0h(S )−r,

0 =σ(S 1) = a1 + a2 + · · · + an2−r.

We distinguish cases according to the value taken by h(S ).

Case 1. h(S ) ≥ n2 + 1. Since 1 ≤ r ≤ n2, N|G|0 (S ) ≥
(

h(S )
r

)
≥

(
n2+1

1

)
≥ n2 + 1.
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Case 2. h(S ) = n2. We have n2 − 2n + 2 ≤ r ≤ n2 − 2 or r = n2. If n2 − 2n + 2 ≤ r ≤ n2 − 2
then N|G|0 (S ) ≥

(
n2

r

)
≥

(
n2

2

)
≥ n2 + 1. So we may assume that r = n2. If S 2 is zero-sumfree then

N|G|0 (S ) = 1, a contradiction. If S 2 has a zero-sum subsequence T of length at least 2 then T0n2−|T |

is a zero-sum sequence of length n2. Therefore, N|G|0 (S ) ≥
(

n2

n2−|T |

)
≥

(
n2

2

)
≥ n2 + 1.

Case 3. 2n − 2 ≤ h(S ) ≤ n2 − 1. We distinguish four subcases according to the value taken by
r.

Subcase 3.1: 2 ≤ r ≤ h(S ) − 2. Then N|G|0 (S ) ≥
(

h(S )
r

)
≥

(
2n−2

2

)
≥ n2 + 1.

Subcase 3.2: 0 ≤ r ≤ 1. Then h(S ) − r ≥ n + 2. Since n2 − r ≥ n2 − 1 ≥ 3n − 2, by Lemma
2.2, there is a zero-sum subsequence T of a1a2 · . . . · an2−r with 2 ≤ |T | ≤ n. Now replace S 1 by
S 1T−10|T | and it reduces to Subcase 3.1.

Subcase 3.3: r = h(S ) − 1. Let S ′1 = S 10−h(S )+1 and S ′2 = S 20−1. If S ′2 contains a nonempty
zero-sum subsequence T, then replace S 1 by S 1T0−|T | and it reduces to Subcase 3.1 or Subcase 3.2.
So we assume that S ′2 is zero-sumfree.

If there exist T |S 1 and U |S ′2 such that |T | < |U | andσ(T ) = σ(U) then replace S 1 by S 1UT−10|T |−|U |.
Note that |U | ≤ 2n − 3 and it reduces to Subcase 3.1 or Subcase 3.2. So we may assume that T |S ′1,
U |S ′2 and σ(T ) = σ(U) imply

|T | ≥ |U |. (5)

If h(S ) ≥ n2+1
2 , then by Lemma 2.6 and (5) there exist T |S ′1 and U |S ′2 such that |T | = |U | and

σ(T ) = σ(U). Therefore, N|G|0 (S ) ≥ 2
(

h(S )
1

)
≥ n2 + 1.

Now we may assume that n2+1
2 ≥ h(S ) ≥ 2n − 2. Since |S ′1| = n2 − h(S ) + 1 ≥ 2n − 1,

by Lemma 2.6 and (5), there exist T1|S ′1 and U1|S ′2 such that σ(T1) = σ(U1) and |T1| = |U1|.

Without loss of generality let a1|T1. Since
∣∣∣S ′1a−1

1

∣∣∣ ≥ n2 − h(S ) + 1 − 1 ≥ 2n − 1, by Lemma
2.1, there is a zero-sum subsequence of S ′1a−1

1 . Now by Lemma 2.6 and (5), there exist T1|S ′1a−1
1

and U1|S ′2 such that |T2| = |U2| and σ(T2) = σ(U2). Clearly, T1 and T2 are different. Assume
that a2|T2. Similarly we can obtain subsequences T3, . . . ,Tn of S ′1 and subsequences U3, . . . ,Un

of S ′2 satisfying |Ti| = |Ui| and σ(Ti) = σ(Ui) for for every i ∈ [1, n], and T1, . . . ,Tn are pairwise
different. Note that for every i ∈ [1, n], S ′1UiT−1

i 0h(S )−1 has sum zero and length n2, we infer that
N|G|0 (S ) ≥ n

(
h(S )

1

)
≥ n × (2n − 2) ≥ n2 + 1.

Subcase 3.4: r = h(S ). If S 2 has a zero-sum subsequence T with |T | ≥ 2, then replace S 1 by
S 1T0−|T | and it reduces to Subcase 3.1 or Subcase 3.2.

Now we assume that S 2 is zero-sumfree. Suppose S 1 = g
vg1 (S 1)
1 · · · g

vgk (S 1)
k 0h(S ),where g1, . . . , gk, 0

are distinct elements in G. If there exists a subsequence T of S 2 such that |T | ≥ 2 and gi = σ(T )
for some i, then replace S 1 by S 1g−1

i 0−|T |+1T and it reduces to Subcase 3.1 or Subcase 3.2 or Sub-
case 3.3. So by Lemma 2.5 we may suppose that vgi(S 2) = n − 1 holds for any i ∈ [1, k]. Since
|S 2| = 2n − 2, we have k ≤ 2.
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If k = 1 then vg1(S 1) ≥ n. Therefore, N|G|0 (S ) ≥
(

vg1 (S 1)+vg1 (S 2)
vg1 (S 2)

)
≥

(
n+n−1

n−1

)
≥ n2 + 1.

If k = 2 then g1+g2 , 0 follows from S 2 is zero-sumfree. Therefore, max{vg1(S 1), vg2(S 1)} ≥ 2.
Thus, N|G|0 (S ) ≥

(
vg1 (S 1)+vg1 (S 2)

vg1 (S 1)

)(
vg2 (S 1)+vg2 (S 2)

vg2 (S 1)

)
≥

(
1+n−1

1

)(
2+n−1

2

)
≥ n × (n + 1) > n2 + 1.

Case 4. h(S ) ≤ 2n − 3. Now rewrite S 1 and S 2 in the form

S 1 =g
vg1 (S 1)
1 · · · g

vgr1
(S 1)

r1 g
vgr1+1 (S 1)

r1+1 · · · g
vgr1+r2

(S 1)
r1+r2

,

S 2 =g
vg1 (S 2)
1 · · · g

vgr1
(S 2)

r1 g
vgr1+r2+1 (S 2)

r1+r2+1 · · · g
vgr1+r2+r3

(S 2)
r1+r2+r3

,

where g1, . . . , gr1+r2+r3 are distinct elements in G.

Let

S 3 = g
vgr1+1 (S 1)

r1+1 · · · g
vgr1+r2

(S 1)
r1+r2

= S 1

(
g

vg1 (S 1)
1 · · · g

vgr1
(S 1)

r1

)−1
.

If vg1(S 1) + · · · + vgr1
(S 1) ≥ 3n − 3, then(

vg1(S 1) + vg1(S 2)
)
+ · · · +

(
vgr1

(S 1) + vgr1
(S 2)

)
≥ 3n − 2.

By Lemma 2.8, we have

N|G|0 (S ) ≥
(
vg1(S 1) + vg1(S 2)

vg1(S 1)

)
· · ·

(
vgr1

(S 1) + vgr1
(S 2)

vgr1
(S 1)

)
≥

(
vg1(S 1) + vg1(S 2)

)
· · ·

(
vgr1

(S 1) + vgr1
(S 2)

)
≥ n2 + 1.

So we may assume that vg1(S 1) + · · · + vgr1
(S 1) ≤ 3n − 4.

Let N1 =
(

vg1 (S 1)+vg1 (S 2)
vg1 (S 1)

)
· · ·

(
vgr1

(S 1)+vgr1
(S 2)

vgr1
(S 1)

)
. Let N2 denote the number of subsequences T1 of S 3

satisfying (I) |T1| = 2, and (II) there is a subsequence T2 of S 2 such that |T2| = 2 andσ(T1) = σ(T2).

Clearly, N|G|0 (S ) ≥ N1 + N2. So we may assume that

N2 ≤ n2.

By Lemma 2.9 there exists a subsequence W of S 3 such that S 3W−1 contains no subsequence
satisfying both (I) and (II) and such that

|W | ≤
|S 3|

2
+

N2

4
.

LetN3 denote the set of nonempty subsequences T1 of S 3W−1 such that |T2| = |T1| and σ(T1) =
σ(T2) for some T2|S 2. By the definition of W |S 3 we know that

|T1| ≥ 3 (6)
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holds for every T1 ∈ N3.

Let k = |S 3W−1|. Note that

|S 3W−1| = |S 3| − |W |

≥ |S 3| −
|S 3|

2
−

N2

4
=
|S 3|

2
−

N2

4

≥
1
2

(
n2 −

(
vg1(S 1) + · · · + vgr1

(S 1)
))
−

1
4

n2

≥
1
4

n2 −
3
2

n + 2.

Therefore
k ≥

1
4

n2 −
3
2

n + 2. (7)

Note that every T1 ∈ N3 is contained by(
k − |T1|

2n − 2 − |T1|

)
=

(
k − |T1|

k − (2n − 2)

)
subsequences of S 3W−1 with length 2n − 2. By Lemma 2.4 we have∑

T1∈N3

(
k − |T1|

k − (2n − 2)

)
≥

(
k

k − (2n − 2)

)
. (8)

Let N3 = |N3|. Combining (6), (7) and (8) we obtain that

N3 ≥

(
k

k−(2n−2)

)(
k−3

k−(2n−2)

) = (
k

2n−2

)(
k−3

2n−5

)
=

k(k − 1)(k − 2)
(2n − 2)(2n − 3)(2n − 4)

≥

(
1
4n2 − 3

2n + 2
) (

1
4n2 − 3

2n + 1
) (

1
4n2 − 3

2n
)

(2n − 2)(2n − 3)(2n − 4)
≥ n2 + 1 (since n ≥ 526).

So N|G|0 (S ) ≥ N1 + N2 + N3 ≥ n2 + 1. This completes the proof. �

5. Remarks and Open Problems

Conjecture 1.2 and Theorem 1.3 suggest the following
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Conjecture 5.1 Let G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr be a finite abelian group, where ni|ni+1 for any
i ∈ [1, r − 1]. Let S ∈ F (G) be a sequence of length |S | = |G| + D(G) − 1. Then

N|G|g (S ) = 0 or N|G|g (S ) ≥ n1

for every g ∈ G \ {0}.

It is easy to see that Conjecture 5.1 is true for all elementary abelian groups from the following
result.

Proposition 5.2 Let p be a prime, and let G be a finite abelain p-group. Let S ∈ F (G) with
|S | = |G| + D(G) − 1. Then N|G|g (S ) = 0 or N|G|g (S ) ≥ p for every g ∈ G \ {0}, and either N|G|0 (S ) = 1
or N|G|0 (S ) ≥ p + 1.

Proof. By a result in [10] (or see [13], Theorem 8.3) we know that

N|G|g (S ) ≡
{

1 (mod p), if g = 0,
0 (mod p), otherwise.

Now the proposition follows. �

Conjecture 5.3 Let G be a finite abelian group. Let S ∈ F (G) be a sequence of length |S | =
|G| + D(G) − 1. If G , C2 ⊕C2, then

N|G|0 (S ) = 0 or N|G|0 (S ) ≥ |G| + 1.
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