A NOTE ON BI-NORMAL CAYLEY GRAPHS

JING JIAN LI, ZAI PING LU, AND GAIXIA WANG

ABSTRACT. The aim of this paper is to answer a question posed by Li [3] and prove that every bi-normal Cayley graph is not 3-arc-transitive. KEYWORDS. Cayley graph, bi-Cayley graph, s-arc-transitive graph.

1. INTRODUCTION

Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. We use $\operatorname{Aut}(\Gamma)$ to denote the automorphism group of Γ . The graph Γ is said to be (X, s)arc-transitive for some $X \leq \operatorname{Aut}(\Gamma)$ if it has at least one s-arc and X is transitive on both the vertices and the s-arcs of Γ , where an s-arc means a sequence v_0, v_1, \dots, v_s of vertices such that $\{v_{i-1}, v_i\} \in E(\Gamma)$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. For the case where $X = \operatorname{Aut}(\Gamma)$, an (X, s)-arc-transitive graph is simply called s-arc-transitive. A graph is said to be s-transitive if it is s-arc-transitive but not (s + 1)-arc-transitive.

Let G be a finite group and S be a subset of G with $1 \notin S = S^{-1} := \{s^{-1} \mid s \in S\}$. The Cayley graph $\mathsf{Cay}(G,S)$ of G with respect to S is defined as the graph with vertex set G and edge set $\{\{x, y\} \mid yx^{-1} \in S\}$. Then $\mathsf{Cay}(G,S)$ admits a group $\hat{G} := \{\hat{g} : x \mapsto xg, x \in G \mid g \in G\}$ acting regularly on the vertices. The Cayley graph $\mathsf{Cay}(G,S)$ is said to be normal if \hat{G} itself is normal in $\mathsf{Aut}(\mathsf{Cay}(G,S))$, or bi-normal if \hat{G} has a subgroup of index 2 which is normal in $\mathsf{Aut}(\mathsf{Cay}(G,S))$.

The aim of this paper is to answer a question posed by Li [3]. For $s \ge 2$, Li [3] gave a characterization of s-transitive Cayley graphs, he proved that each connected s-transitive Cayley graph is normal with s = 2, or bi-normal (so bipartite) with $s \le 3$, or a normal cover of one of finite number of graphs. Then the following interesting question was proposed:

Question 1.1. (a) Do there exists 3-transitive bi-normal Cayley graphs? (b) Do there exist s-transitive Cayley graphs for s = 5 and s = 7?

Date: February 20, 2009.

The second author was partially supported by the NSF and the 973 program of China. *E-mail* address: lu@nankai.edu.cn (Z.P. Lu).

There is a positive answer to part (b) of the above question, one can find such examples in [6] and [1]. But the answer to part (a) is negative. In this paper, we shall prove the following result.

Theorem 1.2. Each connected bi-normal Cayley graph is not 3-arc-transitive.

2. BI-CAYLEY GRAPHS

Let G be a finite group and $S \subseteq G$ which possibly contains the identity element of G. The bi-Cayley graph, denoted by $\operatorname{BCay}(G, S)$, is defined to be the graph with vertex set $G \times \{l, r\}$ and edge set $\{\{(x, l), (y, r)\} \mid x, y \in G, yx^{-1} \in S\}$. Then $\operatorname{BCay}(G, S)$ is a well-defined bipartite graph with two bipartition subsets $G \times \{l\}$ and $G \times \{r\}$. It is easily shown that $\operatorname{BCay}(G, S)$ is connected if and only if $G = \langle SS^{-1} \rangle$ (if and only if $G = \langle S^{-1}S \rangle$), see [2] for example. For each $g \in G$, we define

$$\hat{g}: G \times \{l, r\} \to G \times \{l, r\}, (x, i) \mapsto (xg, i) \text{ for } i = l, r.$$

It is easy to see that \hat{g} is an automorphism of BCay(G, S). Set $\hat{G} = \{\hat{g} \mid g \in G\}$. Then $g \mapsto \hat{g}$ gives an isomorphism from G to \hat{G} .

Of course, one can define other more automorphisms of bi-Cayley graphs satisfying special conditions such as normalizing \hat{G} , see [4, 5] for details. Here, we quote several results which will be used in the following section.

Let $\Gamma = \operatorname{BCay}(G, S)$ be a bi-Cayley graph, let $A = \operatorname{Aut}(\Gamma)$ and $A^+ = A_{G \times \{l\}}$, the set-wise stabilizer of $G \times \{l\}$ in A. Then A^+ is a normal subgroup of A with index no more than 2. Further, denote by N the normalizer $\mathbf{N}_A(\hat{G})$ of \hat{G} in A. Then $N^+ := \mathbf{N}_{A^+}(\hat{G})$ has index no more than 2 in N, and $N_{(1,i)} = N^+_{(1,i)} \leq A^+$ for i = l, r.

Now we consider the point-wise stabilizers of (1, l) and of $\{(1, l), (1, r)\}$ in N. For $\sigma \in Aut(G)$ and $h \in G$, we define $\hat{\sigma}$, \tilde{h}_l and \tilde{h}_r as follows:

$$\begin{split} \hat{\sigma}: G \times \{l, r\} &\to G \times \{l, r\}; \, (x, l) \mapsto (x^{\sigma}, l), \, (x, r) \mapsto (x^{\sigma}, r), \\ \tilde{h}_l: G \times \{l, r\} \to G \times \{l, r\}; \, (x, l) \mapsto (h^{-1}x, l), \, (x, r) \mapsto (x, r), \\ \tilde{h}_r: G \times \{l, r\} \to G \times \{l, r\}; \, (x, l) \mapsto (x, l), \, (x, r) \mapsto (h^{-1}x, r). \end{split}$$

Then $\hat{\sigma}$, \tilde{h}_l and \tilde{h}_r are well-defined permutations on $G \times \{l, r\}$ and fix $G \times \{l\}$ set-wise. Further, we have the following lemma.

Lemma 2.1. Let $g, h, k \in G$, $\sigma, \tau \in Aut(G)$ and $\Gamma = BCay(G, S)$. Then

- (1) $\widehat{\sigma\tau} = \hat{\sigma}\hat{\tau}, \ \hat{\sigma}^{-1}\hat{g}\hat{\sigma} = \widehat{g\sigma}, \ \tilde{h}_l\hat{g} = \hat{g}\tilde{h}_l, \ \tilde{h}_r\hat{g} = \hat{g}\tilde{h}_r \ and \ \tilde{h}_l\tilde{k}_r = \tilde{k}_r\tilde{h}_l;$
- (2) $\hat{\sigma}h_l k_r$ is an isomorphism from BCay(G, S) to $BCay(G, k^{-1}S^{\sigma}h)$;
- (3) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N^+$ if and only if $S = k^{-1}S^{\sigma}h$;
- (4) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N_{(1,l)}$ if and only if h = 1 and $S = k^{-1}S^{\sigma}$;
- (5) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N_{(1,r)}$ if and only if k = 1 and $S = S^{\sigma}h$;
- (6) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N_{(1,l)(1,r)}$ if and only if h = k = 1 and $S^{\sigma} = S$.

Proof. (1) For any $x \in G$ and i = l, r, we have

$$\begin{aligned} (x,i)^{\hat{\sigma}\hat{\tau}} &= ((x^{\sigma})^{\tau},i) = (x^{\sigma},i)^{\hat{\tau}} = (x,i)^{\hat{\sigma}\hat{\tau}}, \\ (x,i)^{\hat{g}\hat{\sigma}} &= (xg,i)^{\hat{\sigma}} = ((xg)^{\sigma},i) = (x,i)^{\hat{\sigma}\widehat{g}^{\sigma}}. \end{aligned}$$

It follows that the first equations in (1) hold. One may easily check the other three equations.

- (2) Set $\omega = \hat{\sigma} \tilde{h}_l \tilde{k}_r$. For $x, y \in G$, we have
- $\begin{array}{l} \{(x,l)^{\omega},(y,r)^{\omega}\} = \{(h^{-1}x^{\sigma},l),(k^{-1}y^{\sigma},r)\} \in E(\operatorname{BCay}(G,k^{-1}S^{\sigma}h)) \\ \Leftrightarrow \quad k^{-1}y^{\sigma}(x^{\sigma})^{-1}h \in k^{-1}S^{\sigma}h \Leftrightarrow (yx^{-1})^{\sigma} = y^{\sigma}(x^{\sigma})^{-1} \in S^{\sigma} \Leftrightarrow yx^{-1} \in S \end{array}$
- $\Leftrightarrow \quad k^{-1}y^{o}(x^{o})^{-1}h \in k^{-1}S^{o}h \Leftrightarrow (yx^{-1})^{o} = y^{o}(x^{o})^{-1} \in S^{o} \Leftrightarrow yx^{-1} \in S$ $\Leftrightarrow \quad \{(x,l),(y,r)\} \in E(\Gamma).$

It implies that ω is an isomorphism from Γ to $BCay(G, k^{-1}S^{\sigma}h)$.

(3) Note that ω fixes $G \times \{l\}$ set-wise and that ω normalizes \hat{G} by (1). Then $\omega \in N^+$ if and only if $\omega \in \operatorname{Aut}(\Gamma)$. If $S = k^{-1}S^{\sigma}h$ then, by (2), ω is an automorphism of Γ . Assume $\omega \in \operatorname{Aut}(\Gamma)$. Then ω maps the neighborhood $S \times \{r\}$ of (1, l) onto the neighborhood $Sh^{-1} \times \{r\}$ of $(1, l)^{\omega} = (h^{-1}, l)$. Noting $(S \times \{r\})^{\omega} = k^{-1}S^{\sigma}$, we get $Sh^{-1} = k^{-1}S^{\sigma}$, and so $S = k^{-1}S^{\sigma}h$.

Note that $\hat{\sigma}$ fixes both (1, l) and (1, r), \tilde{h}_l fixes (1, r) and \tilde{k}_r fixes (1, l). Then (4), (5) and (6) hold.

Remark 2.2. By Lemma 2.1 (2), we get $BCay(G, S) \cong BCay(G, k^{-1}S) \cong BCay(G, Sh)$ for any $h, k \in G$. In particular, $BCay(G, S) \cong BCay(G, s^{-1}S)$ for any $s \in S$. Thus, for a bi-Cayley graph BCay(G, S), one may assume that S contains the identity element of G.

Theorem 2.3. (1) $N^+ = \{\hat{\sigma}\tilde{h}_l\tilde{k}_r \mid h, k \in G, \sigma \in \operatorname{Aut}(G), S = k^{-1}S^{\sigma}h\};$ (2) $N_{(1,l)} = \{\hat{\sigma}\tilde{k}_r \mid \sigma \in \operatorname{Aut}(G), k \in G, S = k^{-1}S^{\sigma}\};$

- (3) $N_{(1,r)} = \{\hat{\sigma}h_l \mid \sigma \in \operatorname{Aut}(G), h \in G, S = S^{\sigma}h\};$
- (4) $N_{(1,l)(1,r)} = \{ \hat{\sigma} \mid \sigma \in \operatorname{Aut}(G), S^{\sigma} = S \}.$
- (5) If $\Gamma = \text{BCay}(G, S)$ is connected, then $N_{(1,i)}$ acts faithfully on the neighborhood of (1, i) in Γ , where i = l, r;

Proof. Let $\omega \in N$. Then ω normalizes \hat{G} and so, for any $x \in G$, we have $\omega^{-1}\hat{x}\omega = \hat{x'}$ for some $x' \in G$. Define $\sigma : G \to G$; $x \mapsto x'$. It is easily shown that σ is a well-defined bijection on G. For $x, y \in G$, we have

$$\begin{aligned} ((xy)^{\sigma}, l) &= ((xy)', l) = (1, l)^{\widehat{(xy)'}} = (1, l)^{\omega^{-1}\widehat{xy}\omega} \\ &= (1, l)^{\omega^{-1}\widehat{xy}\omega} = (1, l)^{\widehat{x'y'}} = (x'y', l) = (x^{\sigma}y^{\sigma}, l), \end{aligned}$$

and so $(xy)^{\sigma} = x^{\sigma}y^{\sigma}$. It implies $\sigma \in \operatorname{Aut}(G)$.

Assume $\omega \in N^+$. Then we may set $(1,l)^{\omega} = (h^{-1},1)$ and $(1,r)^{\omega} = (k^{-1},r)$ for some $h, k \in G$. Then $\omega = \hat{\sigma} \tilde{h}_l \tilde{k}_r$ follows from

$$\begin{aligned} (x,l)^{\hat{\sigma}h_lk_r} &= (h^{-1}x^{\sigma},l) = (h^{-1},l)^{x'} = (h^{-1},l)^{\omega^{-1}\hat{x}\omega} = (1,l)^{\hat{x}\omega} = (x,l)^{\omega}, \\ (x,r)^{\hat{\sigma}\tilde{h}_l\tilde{k}_r} &= (k^{-1}x^{\sigma},r) = (k^{-1},r)^{\hat{x'}} = (k^{-1},r)^{\omega^{-1}\hat{x}\omega} = (1,r)^{\hat{x}\omega} = (x,r)^{\omega}. \end{aligned}$$

(1) to (4). By Lemma 2.1 (3), we have $S = k^{-1}S^{\sigma}h$ and (1) holds. Further, (2), (3) and (4) follow from (1) and Lemma 2.1.

(5). By Remark 2.2, we may assume that S contains the identity element of G. Thus (1, j) belongs to the neighborhood (1, i), where $\{i, j\} = \{l, r\}$. Since $1 \in S$ and Γ is connected, we have $G = \langle S^{-1}S \rangle = \langle S \rangle$. Noting that $S \times \{r\}$ is the neighborhood of (1, l) and $S^{-1} \times \{l\}$ is the neighborhood of (1, r), it follows from (4) that the stabilizer $N_{(1,i)(1,j)}$ of (1, j) in $N_{(1,i)}$ acts faithfully on $S \times \{r\}$ for i = l and on $S^{-1} \times \{l\}$ for i = r. Thus $N_{(1,i)}$ is faithful on the neighborhood of (1, i).

Note that $(s,r)^{\hat{\sigma}} = (s,r)$ implies $s^{\sigma} = s$ and $(s^{-1})^{\sigma} = s^{-1}$ for $s \in S$ and $\sigma \in Aut(G)$ with $S^{\sigma} = S$. We have the following corollary.

Corollary 2.4. If $1 \neq s \in S$, then $N_{(1,r)(1,l)(s,r)}$ is intransitive on $S^{-1} \times \{l\} \setminus \{(1,l)\}$. In particular, if $1 \in S$, then $N_{(1,r)(1,l)}$ is not transitive on the 3-arcs which contains the arc ((1,r),(1,l)) of BCay(G,S).

3. Proof of Theorem 1.2

Let Γ be a connected bi-normal Cayley graph. Then $\operatorname{Aut}(\Gamma)$ has a normal subgroup, say G, which is semiregular and has exactly two orbits on $V(\Gamma)$. Noting that these two G-orbits give an $\operatorname{Aut}(\Gamma)$ -invariant partition of $V(\Gamma)$. It follows that either Γ is not arc-transitive, or Γ is a bipartite graph and those two G-orbits are the bipartition subsets of Γ . Then the following argument completes the proof of Theorem 1.2.

Now let Γ be a connected bipartite graph with $G \leq \operatorname{Aut}(\Gamma)$ acting regularly on both two bipartition subsets U_0 and U_1 of Γ . Then it is easily shown that Γ is a regular graph. Let $\{u_0, u_1\} \in E(\Gamma)$ with $u_0 \in U_0$ and $u_1 \in U_1$. Then each vertex in U_i can be written uniquely as u_i^x for some $x \in G$. Define

$$\phi: V(\Gamma) \to G \times \{l, r\}; u_i^x \mapsto (x, i), i = 0, 2.$$

Then ϕ is a bijection. Set $S = \{s \in G \mid \{u_0, u_1^s\} \in E(\Gamma)\}$. Then, for $x, y \in G$, we have

$$\{u_0^x, u_1^y\} \in E(\Gamma) \Leftrightarrow \{u_0, u_1^{yx^{-1}}\} \in E(\Gamma) \Leftrightarrow yx^{-1} \in S.$$

It follows that ϕ is an isomorphism from Γ to the bi-Cayley graph $\operatorname{BCay}(G, S)$. Further, $\phi^{-1}g\phi = \hat{g} \in \hat{G}$ for all $g \in G$, and $X \leq \mathbf{N}_{\operatorname{Aut}(\Gamma)}(G)$ implies $\phi^{-1}X\phi \leq \mathbf{N}_A(\hat{G})$, where $A = \operatorname{Aut}(\operatorname{BCay}(G,S))$. It follows from Corollary 2.4 that Γ is not (X,3)-arc-transitive for $X \leq \operatorname{Aut}(\Gamma)$ with $G \leq X \leq \mathbf{N}_{\operatorname{Aut}(\Gamma)}(G)$. This completes the proof of Theorem 1.2.

CAYLEY GRAPHS

References

- [1] M. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra(2008), doi:10.1016.
- S.F. Du and M.Y. Xu, A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28(2000), 2685-2715.
- [3] C. H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 138 (2004), 31-41.
- [4] Z.P. Lu, On the automorphism groups of biCayley graphs, *Beijing Daxue Xuebao Ziran Kexue Ban* 39(2003), 1-5.
- [5] Z.P. Lu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_n , Ars Combinatoria **80**(2006), 117-187.
- [6] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, *European J. Combin.* 28(2007), 1023-1036.

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

E-mail address: lu@nankai.edu.cn

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China