A NOTE ON BI-NORMAL CAYLEY GRAPHS

JING JIAN LI, ZAI PING LU, AND GAIXIA WANG

Abstract

The aim of this paper is to answer a question posed by Li [3] and prove that every bi-normal Cayley graph is not 3 -arc-transitive. KEYWORDS. Cayley graph, bi-Cayley graph, s-arc-transitive graph.

1. Introduction

Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. We use Aut (Γ) to denote the automorphism group of Γ. The graph Γ is said to be (X, s) -arc-transitive for some $X \leq \operatorname{Aut}(\Gamma)$ if it has at least one s-arc and X is transitive on both the vertices and the s-arcs of Γ, where an s-arc means a sequence $v_{0}, v_{1}, \cdots, v_{s}$ of vertices such that $\left\{v_{i-1}, v_{i}\right\} \in E(\Gamma)$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. For the case where $X=\operatorname{Aut}(\Gamma)$, an (X, s)-arc-transitive graph is simply called s-arc-transitive. A graph is said to be s-transitive if it is s-arc-transitive but not $(s+1)$-arc-transitive.

Let G be a finite group and S be a subset of G with $1 \notin S=S^{-1}:=$ $\left\{s^{-1} \mid s \in S\right\}$. The Cayley graph $\operatorname{Cay}(G, S)$ of G with respect to S is defined as the graph with vertex set G and edge set $\left\{\{x, y\} \mid y x^{-1} \in S\right\}$. Then $\operatorname{Cay}(G, S)$ admits a group $\hat{G}:=\{\hat{g}: x \mapsto x g, x \in G \mid g \in G\}$ acting regularly on the vertices. The Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal if \hat{G} itself is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$, or bi-normal if \hat{G} has a subgroup of index 2 which is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$.

The aim of this paper is to answer a question posed by $\mathrm{Li}[3]$. For $s \geq 2$, Li [3] gave a characterization of s-transitive Cayley graphs, he proved that each connected s-transitive Cayley graph is normal with $s=2$, or bi-normal (so bipartite) with $s \leq 3$, or a normal cover of one of finite number of graphs. Then the following interesting question was proposed:

Question 1.1. (a) Do there exists 3-transitive bi-normal Cayley graphs?
(b) Do there exist s-transitive Cayley graphs for $s=5$ and $s=7$?

[^0]There is a positive answer to part (b) of the above question, one can find such examples in [6] and [1]. But the answer to part (a) is negative. In this paper, we shall prove the following result.

Theorem 1.2. Each connected bi-normal Cayley graph is not 3-arc-transitive.

2. Bi-CAYLEY GRaphS

Let G be a finite group and $S \subseteq G$ which possibly contains the identity element of G. The bi-Cayley graph, denoted by $\operatorname{BCay}(G, S)$, is defined to be the graph with vertex set $G \times\{l, r\}$ and edge set $\{\{(x, l),(y, r)\} \mid x, y \in$ $\left.G, y x^{-1} \in S\right\}$. Then $\operatorname{BCay}(G, S)$ is a well-defined bipartite graph with two bipartition subsets $G \times\{l\}$ and $G \times\{r\}$. It is easily shown that $\mathrm{BCay}(G, S)$ is connected if and only if $G=\left\langle S S^{-1}\right\rangle$ (if and only if $G=\left\langle S^{-1} S\right\rangle$), see [2] for example. For each $g \in G$, we define

$$
\hat{g}: G \times\{l, r\} \rightarrow G \times\{l, r\},(x, i) \mapsto(x g, i) \text { for } i=l, r .
$$

It is easy to see that \hat{g} is an automorphism of $\operatorname{BCay}(G, S)$. Set $\hat{G}=\{\hat{g} \mid g \in$ $G\}$. Then $g \mapsto \hat{g}$ gives an isomorphism from G to \hat{G}.

Of course, one can define other more automorphisms of bi-Cayley graphs satisfying special conditions such as normalizing \hat{G}, see $[4,5]$ for details. Here, we quote several results which will be used in the following section.

Let $\Gamma=\operatorname{BCay}(G, S)$ be a bi-Cayley graph, let $A=\operatorname{Aut}(\Gamma)$ and $A^{+}=$ $A_{G \times\{l\}}$, the set-wise stabilizer of $G \times\{l\}$ in A. Then A^{+}is a normal subgroup of A with index no more than 2 . Further, denote by N the normalizer $\mathbf{N}_{A}(\hat{G})$ of \hat{G} in A. Then $N^{+}:=\mathbf{N}_{A^{+}}(\hat{G})$ has index no more than 2 in N, and $N_{(1, i)}=N_{(1, i)}^{+} \leq A^{+}$for $i=l, r$.

Now we consider the point-wise stabilizers of $(1, l)$ and of $\{(1, l),(1, r)\}$ in N. For $\sigma \in \operatorname{Aut}(G)$ and $h \in G$, we define $\hat{\sigma}, \tilde{h}_{l}$ and \tilde{h}_{r} as follows:

$$
\begin{aligned}
& \hat{\sigma}: G \times\{l, r\} \rightarrow G \times\{l, r\} ;(x, l) \mapsto\left(x^{\sigma}, l\right),(x, r) \mapsto\left(x^{\sigma}, r\right), \\
& \tilde{h}_{l}: G \times\{l, r\} \rightarrow G \times\{l, r\} ;(x, l) \mapsto\left(h^{-1} x, l\right),(x, r) \mapsto(x, r), \\
& \tilde{h}_{r}: G \times\{l, r\} \rightarrow G \times\{l, r\} ;(x, l) \mapsto(x, l),(x, r) \mapsto\left(h^{-1} x, r\right) .
\end{aligned}
$$

Then $\hat{\sigma}, \tilde{h}_{l}$ and \tilde{h}_{r} are well-defined permutations on $G \times\{l, r\}$ and fix $G \times\{l\}$ set-wise. Further, we have the following lemma.

Lemma 2.1. Let $g, h, k \in G, \sigma, \tau \in \operatorname{Aut}(G)$ and $\Gamma=\operatorname{BCay}(G, S)$. Then
(1) $\widehat{\sigma \tau}=\hat{\sigma} \hat{\tau}, \hat{\sigma}^{-1} \hat{g} \hat{\sigma}=\widehat{g^{\sigma}}, \tilde{h}_{l} \hat{g}=\hat{g} \tilde{h}_{l}, \tilde{h}_{r} \hat{g}=\hat{g} \tilde{h}_{r}$ and $\tilde{h}_{l} \tilde{k}_{r}=\tilde{k}_{r} \tilde{h}_{l}$;
(2) $\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r}$ is an isomorphism from $\operatorname{BCay}(G, S)$ to $\operatorname{BCay}\left(G, k^{-1} S^{\sigma} h\right)$;
(3) $\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r} \in N^{+}$if and only if $S=k^{-1} S^{\sigma} h$;
(4) $\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r} \in N_{(1, l)}$ if and only if $h=1$ and $S=k^{-1} S^{\sigma}$;
(5) $\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r} \in N_{(1, r)}$ if and only if $k=1$ and $S=S^{\sigma} h$;
(6) $\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r} \in N_{(1, l)(1, r)}$ if and only if $h=k=1$ and $S^{\sigma}=S$.

Proof. (1) For any $x \in G$ and $i=l, r$, we have

$$
\begin{aligned}
& (x, i)^{\widehat{\sigma \tau}}=\left(\left(x^{\sigma}\right)^{\tau}, i\right)=\left(x^{\sigma}, i\right)^{\hat{\tau}}=(x, i)^{\hat{\sigma} \hat{\tau}}, \\
& (x, i)^{\hat{g} \hat{\sigma}}=(x g, i)^{\hat{\sigma}}=\left((x g)^{\sigma}, i\right)=(x, i)^{\hat{\sigma} g^{\sigma}} .
\end{aligned}
$$

It follows that the first equations in (1) hold. One may easily check the other three equations.
(2) Set $\omega=\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r}$. For $x, y \in G$, we have

$$
\begin{array}{ll}
& \left\{(x, l)^{\omega},(y, r)^{\omega}\right\}=\left\{\left(h^{-1} x^{\sigma}, l\right),\left(k^{-1} y^{\sigma}, r\right)\right\} \in E\left(\mathrm{BCay}\left(G, k^{-1} S^{\sigma} h\right)\right) \\
\Leftrightarrow & k^{-1} y^{\sigma}\left(x^{\sigma}\right)^{-1} h \in k^{-1} S^{\sigma} h \Leftrightarrow\left(y x^{-1}\right)^{\sigma}=y^{\sigma}\left(x^{\sigma}\right)^{-1} \in S^{\sigma} \Leftrightarrow y x^{-1} \in S \\
\Leftrightarrow & \{(x, l),(y, r)\} \in E(\Gamma) .
\end{array}
$$

It implies that ω is an isomorphism from Γ to $\operatorname{BCay}\left(G, k^{-1} S^{\sigma} h\right)$.
(3) Note that ω fixes $G \times\{l\}$ set-wise and that ω normalizes \hat{G} by (1). Then $\omega \in N^{+}$if and only if $\omega \in \operatorname{Aut}(\Gamma)$. If $S=k^{-1} S^{\sigma} h$ then, by (2), ω is an automorphism of Γ. Assume $\omega \in \operatorname{Aut}(\Gamma)$. Then ω maps the neighborhood $S \times\{r\}$ of $(1, l)$ onto the neighborhood $S h^{-1} \times\{r\}$ of $(1, l)^{\omega}=\left(h^{-1}, l\right)$. Noting $(S \times\{r\})^{\omega}=k^{-1} S^{\sigma}$, we get $S h^{-1}=k^{-1} S^{\sigma}$, and so $S=k^{-1} S^{\sigma} h$.

Note that $\hat{\sigma}$ fixes both $(1, l)$ and $(1, r), \tilde{h}_{l}$ fixes $(1, r)$ and \tilde{k}_{r} fixes $(1, l)$. Then (4), (5) and (6) hold.

Remark 2.2. By Lemma 2.1 (2), we get $\operatorname{BCay}(G, S) \cong \operatorname{BCay}\left(G, k^{-1} S\right) \cong$ $\operatorname{BCay}(G, S h)$ for any $h, k \in G$. In particular, $\operatorname{BCay}(G, S) \cong \operatorname{BCay}\left(G, s^{-1} S\right)$ for any $s \in S$. Thus, for a bi-Cayley graph $\operatorname{BCay}(G, S)$, one may assume that S contains the identity element of G.
Theorem 2.3. (1) $N^{+}=\left\{\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r} \mid h, k \in G, \sigma \in \operatorname{Aut}(G), S=k^{-1} S^{\sigma} h\right\}$;
(2) $N_{(1, l)}=\left\{\hat{\sigma} \tilde{k}_{r} \mid \sigma \in \operatorname{Aut}(G), k \in G, S=k^{-1} S^{\sigma}\right\}$;
(3) $N_{(1, r)}=\left\{\hat{\sigma} \tilde{h}_{l} \mid \sigma \in \operatorname{Aut}(G), h \in G, S=S^{\sigma} h\right\}$;
(4) $N_{(1, l)(1, r)}=\left\{\hat{\sigma} \mid \sigma \in \operatorname{Aut}(G), S^{\sigma}=S\right\}$.
(5) If $\Gamma=\mathrm{BCay}(G, S)$ is connected, then $N_{(1, i)}$ acts faithfully on the neighborhood of $(1, i)$ in Γ, where $i=l, r$;

Proof. Let $\omega \in N$. Then ω normalizes \hat{G} and so, for any $x \in G$, we have $\omega^{-1} \hat{x} \omega=\widehat{x^{\prime}}$ for some $x^{\prime} \in G$. Define $\sigma: G \rightarrow G ; x \mapsto x^{\prime}$. It is easily shown that σ is a well-defined bijection on G. For $x, y \in G$, we have

$$
\begin{aligned}
\left((x y)^{\sigma}, l\right) & =\left((x y)^{\prime}, l\right)=(1, l)^{\widehat{(x y)^{\prime}}}=(1, l)^{\omega^{-1} \widehat{x y} \omega} \\
& =(1, l)^{\omega^{-1} \hat{x} \hat{y} \omega}=(1, l)^{\widehat{x^{\prime}} \widehat{y^{\prime}}}=\left(x^{\prime} y^{\prime}, l\right)=\left(x^{\sigma} y^{\sigma}, l\right)
\end{aligned}
$$

and so $(x y)^{\sigma}=x^{\sigma} y^{\sigma}$. It implies $\sigma \in \operatorname{Aut}(G)$.
Assume $\omega \in N^{+}$. Then we may $\operatorname{set}_{\tilde{\sim}}(1, l)^{\omega}=\left(h^{-1}, 1\right)$ and $(1, r)^{\omega}=$ $\left(k^{-1}, r\right)$ for some $h, k \in G$. Then $\omega=\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r}$ follows from

$$
\begin{aligned}
& (x, l)^{\hat{\sigma} \tilde{h}_{l} \tilde{k}_{r}}=\left(h^{-1} x^{\sigma}, l\right)=\left(h^{-1}, l\right)^{\widehat{x^{\prime}}}=\left(h^{-1}, l\right)^{\omega^{-1} \hat{x} \omega}=(1, l)^{\hat{x} \omega}=(x, l)^{\omega} \\
& (x, r)^{\hat{\sigma} \tilde{\sigma}_{l} \tilde{k}_{r}}=\left(k^{-1} x^{\sigma}, r\right)=\left(k^{-1}, r\right)^{\widehat{x^{\prime}}}=\left(k^{-1}, r\right)^{\omega^{-1} \hat{x} \omega}=(1, r)^{\hat{x} \omega}=(x, r)^{\omega}
\end{aligned}
$$

(1) to (4). By Lemma 2.1 (3), we have $S=k^{-1} S^{\sigma} h$ and (1) holds. Further, (2), (3) and (4) follow from (1) and Lemma 2.1.
(5). By Remark 2.2 , we may assume that S contains the identity element of G. Thus $(1, j)$ belongs to the neighborhood $(1, i)$, where $\{i, j\}=\{l, r\}$. Since $1 \in S$ and Γ is connected, we have $G=\left\langle S^{-1} S\right\rangle=\langle S\rangle$. Noting that $S \times\{r\}$ is the neighborhood of $(1, l)$ and $S^{-1} \times\{l\}$ is the neighborhood of $(1, r)$, it follows from (4) that the stabilizer $N_{(1, i)(1, j)}$ of $(1, j)$ in $N_{(1, i)}$ acts faithfully on $S \times\{r\}$ for $i=l$ and on $S^{-1} \times\{l\}$ for $i=r$. Thus $N_{(1, i)}$ is faithful on the neighborhood of $(1, i)$.

Note that $(s, r)^{\hat{\sigma}}=(s, r)$ implies $s^{\sigma}=s$ and $\left(s^{-1}\right)^{\sigma}=s^{-1}$ for $s \in S$ and $\sigma \in \operatorname{Aut}(G)$ with $S^{\sigma}=S$. We have the following corollary.

Corollary 2.4. If $1 \neq s \in S$, then $N_{(1, r)(1, l)(s, r)}$ is intransitive on $S^{-1} \times$ $\{l\} \backslash\{(1, l)\}$. In particular, if $1 \in S$, then $N_{(1, r)(1, l)}$ is not transitive on the 3 -arcs which contains the arc $((1, r),(1, l))$ of $\operatorname{BCay}(G, S)$.

3. Proof of Theorem 1.2

Let Γ be a connected bi-normal Cayley graph. Then $\operatorname{Aut}(\Gamma)$ has a normal subgroup, say G, which is semiregular and has exactly two orbits on $V(\Gamma)$. Noting that these two G-orbits give an Aut (Γ)-invariant partition of $V(\Gamma)$. It follows that either Γ is not arc-transitive, or Γ is a bipartite graph and those two G-orbits are the bipartition subsets of Γ. Then the following argument completes the proof of Theorem 1.2.

Now let Γ be a connected bipartite graph with $G \leq \operatorname{Aut}(\Gamma)$ acting regularly on both two bipartition subsets U_{0} and U_{1} of Γ. Then it is easily shown that Γ is a regular graph. Let $\left\{u_{0}, u_{1}\right\} \in E(\Gamma)$ with $u_{0} \in U_{0}$ and $u_{1} \in U_{1}$. Then each vertex in U_{i} can be written uniquely as u_{i}^{x} for some $x \in G$. Define

$$
\phi: V(\Gamma) \rightarrow G \times\{l, r\} ; u_{i}^{x} \mapsto(x, i), i=0,2
$$

Then ϕ is a bijection. Set $S=\left\{s \in G \mid\left\{u_{0}, u_{1}^{s}\right\} \in E(\Gamma)\right\}$. Then, for $x, y \in G$, we have

$$
\left\{u_{0}^{x}, u_{1}^{y}\right\} \in E(\Gamma) \Leftrightarrow\left\{u_{0}, u_{1}^{y x^{-1}}\right\} \in E(\Gamma) \Leftrightarrow y x^{-1} \in S
$$

It follows that ϕ is an isomorphism from Γ to the bi-Cayley graph $\mathrm{BCay}(G, S)$. Further, $\phi^{-1} g \phi=\hat{g} \in \hat{G}$ for all $g \in G$, and $X \leq \mathbf{N}_{\text {Aut }(\Gamma)}(G)$ implies $\phi^{-1} X \phi \leq \mathbf{N}_{A}(\hat{G})$, where $A=\operatorname{Aut}(\operatorname{BCay}(G, S))$. It follows from Corollary 2.4 that Γ is not $(X, 3)$-arc-transitive for $X \leq \operatorname{Aut}(\Gamma)$ with $G \leq X \leq$ $\mathbf{N}_{\text {Aut }(\Gamma)}(G)$. This completes the proof of Theorem 1.2.

References

[1] M. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra(2008), doi:10.1016.
[2] S.F. Du and M.Y. Xu, A classification of semisymmetric graphs of order $2 p q$, Com. in Algebra 28(2000), 2685-2715.
[3] C. H. Li, Finite s-arc transitive Cayley graphsand flag-transitive projective planes, Proc. Amer. Math. Soc. 138 (2004), 31-41.
[4] Z.P. Lu, On the automorphism groups of biCayley graphs, Beijing Daxue Xuebao Ziran Kexue Ban 39(2003), 1-5.
[5] Z.P. Lu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_{n}, Ars Combinatoria 80(2006), 117-187.
[6] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28(2007), 1023-1036.

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

E-mail address: lu@nankai.edu.cn

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

[^0]: Date: February 20, 2009.
 The second author was partially supported by the NSF and the 973 program of China. E-mail address: lu@nankai.edu.cn (Z.P. Lu).

