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Abstract. The aim of this paper is to answer a question posed by Li [3]
and prove that every bi-normal Cayley graph is not 3-arc-transitive.
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1. Introduction

Let Γ be a graph with vertex set V (Γ ) and edge set E(Γ ). We use Aut(Γ )
to denote the automorphism group of Γ . The graph Γ is said to be (X, s)-
arc-transitive for some X ≤ Aut(Γ ) if it has at least one s-arc and X is
transitive on both the vertices and the s-arcs of Γ , where an s-arc means a
sequence v0, v1, · · · , vs of vertices such that {vi−1, vi} ∈ E(Γ ) for 1 ≤ i ≤ s
and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1. For the case where X = Aut(Γ ), an
(X, s)-arc-transitive graph is simply called s-arc-transitive. A graph is said
to be s-transitive if it is s-arc-transitive but not (s + 1)-arc-transitive.

Let G be a finite group and S be a subset of G with 1 6∈ S = S−1 :=
{s−1 | s ∈ S}. The Cayley graph Cay(G,S) of G with respect to S is
defined as the graph with vertex set G and edge set {{x, y} | yx−1 ∈ S}.
Then Cay(G,S) admits a group Ĝ := {ĝ : x 7→ xg, x ∈ G | g ∈ G} acting
regularly on the vertices. The Cayley graph Cay(G,S) is said to be normal
if Ĝ itself is normal in Aut(Cay(G,S)), or bi-normal if Ĝ has a subgroup of
index 2 which is normal in Aut(Cay(G,S)).

The aim of this paper is to answer a question posed by Li [3]. For s ≥ 2,
Li [3] gave a characterization of s-transitive Cayley graphs, he proved that
each connected s-transitive Cayley graph is normal with s = 2, or bi-normal
(so bipartite) with s ≤ 3, or a normal cover of one of finite number of graphs.
Then the following interesting question was proposed:

Question 1.1. (a) Do there exists 3-transitive bi-normal Cayley graphs?
(b) Do there exist s-transitive Cayley graphs for s = 5 and s = 7?
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There is a positive answer to part (b) of the above question, one can find
such examples in [6] and [1]. But the answer to part (a) is negative. In this
paper, we shall prove the following result.

Theorem 1.2. Each connected bi-normal Cayley graph is not 3-arc-transitive.

2. Bi-Cayley graphs

Let G be a finite group and S ⊆ G which possibly contains the identity
element of G. The bi-Cayley graph, denoted by BCay(G,S), is defined to
be the graph with vertex set G× {l, r} and edge set {{(x, l), (y, r)} | x, y ∈
G, yx−1 ∈ S}. Then BCay(G,S) is a well-defined bipartite graph with two
bipartition subsets G×{l} and G×{r}. It is easily shown that BCay(G,S)
is connected if and only if G = 〈SS−1〉 (if and only if G = 〈S−1S〉), see [2]
for example. For each g ∈ G, we define

ĝ : G× {l, r} → G× {l, r}, (x, i) 7→ (xg, i) for i = l, r.

It is easy to see that ĝ is an automorphism of BCay(G,S). Set Ĝ = {ĝ | g ∈
G}. Then g 7→ ĝ gives an isomorphism from G to Ĝ.

Of course, one can define other more automorphisms of bi-Cayley graphs
satisfying special conditions such as normalizing Ĝ, see [4, 5] for details.
Here, we quote several results which will be used in the following section.

Let Γ = BCay(G,S) be a bi-Cayley graph, let A = Aut(Γ ) and A+ =
AG×{l}, the set-wise stabilizer of G×{l} in A. Then A+ is a normal subgroup
of A with index no more than 2. Further, denote by N the normalizer
NA(Ĝ) of Ĝ in A. Then N+ := NA+(Ĝ) has index no more than 2 in N ,
and N(1,i) = N+

(1,i) ≤ A+ for i = l, r.

Now we consider the point-wise stabilizers of (1, l) and of {(1, l), (1, r)}
in N . For σ ∈ Aut(G) and h ∈ G, we define σ̂, h̃l and h̃r as follows:

σ̂ : G× {l, r} → G× {l, r}; (x, l) 7→ (xσ, l), (x, r) 7→ (xσ, r),
h̃l : G× {l, r} → G× {l, r}; (x, l) 7→ (h−1x, l), (x, r) 7→ (x, r),
h̃r : G× {l, r} → G× {l, r}; (x, l) 7→ (x, l), (x, r) 7→ (h−1x, r).

Then σ̂, h̃l and h̃r are well-defined permutations on G×{l, r} and fix G×{l}
set-wise. Further, we have the following lemma.

Lemma 2.1. Let g, h, k ∈ G, σ, τ ∈ Aut(G) and Γ = BCay(G,S). Then

(1) σ̂τ = σ̂τ̂ , σ̂−1ĝσ̂ = ĝσ, h̃lĝ = ĝh̃l, h̃rĝ = ĝh̃r and h̃lk̃r = k̃rh̃l;
(2) σ̂h̃lk̃r is an isomorphism from BCay(G,S) to BCay(G, k−1Sσh);
(3) σ̂h̃lk̃r ∈ N+ if and only if S = k−1Sσh;
(4) σ̂h̃lk̃r ∈ N(1,l) if and only if h = 1 and S = k−1Sσ;
(5) σ̂h̃lk̃r ∈ N(1,r) if and only if k = 1 and S = Sσh;
(6) σ̂h̃lk̃r ∈ N(1,l)(1,r) if and only if h = k = 1 and Sσ = S.
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Proof. (1) For any x ∈ G and i = l, r, we have

(x, i)σ̂τ = ((xσ)τ , i) = (xσ, i)τ̂ = (x, i)σ̂τ̂ ,

(x, i)ĝσ̂ = (xg, i)σ̂ = ((xg)σ, i) = (x, i)σ̂ĝσ
.

It follows that the first equations in (1) hold. One may easily check the
other three equations.

(2) Set ω = σ̂h̃lk̃r. For x, y ∈ G, we have

{(x, l)ω, (y, r)ω} = {(h−1xσ, l), (k−1yσ, r)} ∈ E(BCay(G, k−1Sσh))
⇔ k−1yσ(xσ)−1h ∈ k−1Sσh ⇔ (yx−1)σ = yσ(xσ)−1 ∈ Sσ ⇔ yx−1 ∈ S
⇔ {(x, l), (y, r)} ∈ E(Γ ).

It implies that ω is an isomorphism from Γ to BCay(G, k−1Sσh).

(3) Note that ω fixes G × {l} set-wise and that ω normalizes Ĝ by (1).
Then ω ∈ N+ if and only if ω ∈ Aut(Γ ). If S = k−1Sσh then, by (2), ω is an
automorphism of Γ . Assume ω ∈ Aut(Γ ). Then ω maps the neighborhood
S × {r} of (1, l) onto the neighborhood Sh−1 × {r} of (1, l)ω = (h−1, l).
Noting (S × {r})ω = k−1Sσ, we get Sh−1 = k−1Sσ, and so S = k−1Sσh.

Note that σ̂ fixes both (1, l) and (1, r), h̃l fixes (1, r) and k̃r fixes (1, l).
Then (4), (5) and (6) hold. ¤

Remark 2.2. By Lemma 2.1 (2), we get BCay(G,S) ∼= BCay(G, k−1S) ∼=
BCay(G,Sh) for any h, k ∈ G. In particular, BCay(G,S) ∼= BCay(G, s−1S)
for any s ∈ S. Thus, for a bi-Cayley graph BCay(G,S), one may assume
that S contains the identity element of G.

Theorem 2.3. (1) N+ = {σ̂h̃lk̃r | h, k ∈ G, σ ∈ Aut(G), S = k−1Sσh};
(2) N(1,l) = {σ̂k̃r | σ ∈ Aut(G), k ∈ G, S = k−1Sσ};
(3) N(1,r) = {σ̂h̃l | σ ∈ Aut(G), h ∈ G, S = Sσh};
(4) N(1,l)(1,r) = {σ̂ | σ ∈ Aut(G), Sσ = S}.
(5) If Γ = BCay(G,S) is connected, then N(1,i) acts faithfully on the

neighborhood of (1, i) in Γ , where i = l, r;

Proof. Let ω ∈ N . Then ω normalizes Ĝ and so, for any x ∈ G, we have
ω−1x̂ω = x̂′ for some x′ ∈ G. Define σ : G → G; x 7→ x′. It is easily shown
that σ is a well-defined bijection on G. For x, y ∈ G, we have

((xy)σ, l) = ((xy)′, l) = (1, l)(̂xy)′ = (1, l)ω−1x̂yω

= (1, l)ω−1x̂ŷω = (1, l)x̂′ŷ′ = (x′y′, l) = (xσyσ, l),

and so (xy)σ = xσyσ. It implies σ ∈ Aut(G).

Assume ω ∈ N+. Then we may set (1, l)ω = (h−1, 1) and (1, r)ω =
(k−1, r) for some h, k ∈ G. Then ω = σ̂h̃lk̃r follows from

(x, l)σ̂h̃lk̃r = (h−1xσ, l) = (h−1, l)x̂′ = (h−1, l)ω−1x̂ω = (1, l)x̂ω = (x, l)ω,

(x, r)σ̂h̃lk̃r = (k−1xσ, r) = (k−1, r)x̂′ = (k−1, r)ω−1x̂ω = (1, r)x̂ω = (x, r)ω.
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(1) to (4). By Lemma 2.1 (3), we have S = k−1Sσh and (1) holds.
Further, (2), (3) and (4) follow from (1) and Lemma 2.1.

(5). By Remark 2.2, we may assume that S contains the identity element
of G. Thus (1, j) belongs to the neighborhood (1, i), where {i, j} = {l, r}.
Since 1 ∈ S and Γ is connected, we have G = 〈S−1S〉 = 〈S〉. Noting that
S × {r} is the neighborhood of (1, l) and S−1 × {l} is the neighborhood of
(1, r), it follows from (4) that the stabilizer N(1,i)(1,j) of (1, j) in N(1,i) acts
faithfully on S × {r} for i = l and on S−1 × {l} for i = r. Thus N(1,i) is
faithful on the neighborhood of (1, i). ¤

Note that (s, r)σ̂ = (s, r) implies sσ = s and (s−1)σ = s−1 for s ∈ S and
σ ∈ Aut(G) with Sσ = S. We have the following corollary.

Corollary 2.4. If 1 6= s ∈ S, then N(1,r)(1,l)(s,r) is intransitive on S−1 ×
{l} \ {(1, l)}. In particular, if 1 ∈ S, then N(1,r)(1,l) is not transitive on the
3-arcs which contains the arc ((1, r), (1, l)) of BCay(G,S).

3. Proof of Theorem 1.2

Let Γ be a connected bi-normal Cayley graph. Then Aut(Γ ) has a normal
subgroup, say G, which is semiregular and has exactly two orbits on V (Γ ).
Noting that these two G-orbits give an Aut(Γ )-invariant partition of V (Γ ).
It follows that either Γ is not arc-transitive, or Γ is a bipartite graph and
those two G-orbits are the bipartition subsets of Γ . Then the following
argument completes the proof of Theorem 1.2.

Now let Γ be a connected bipartite graph with G ≤ Aut(Γ ) acting reg-
ularly on both two bipartition subsets U0 and U1 of Γ . Then it is easily
shown that Γ is a regular graph. Let {u0, u1} ∈ E(Γ ) with u0 ∈ U0 and
u1 ∈ U1. Then each vertex in Ui can be written uniquely as ux

i for some
x ∈ G. Define

φ : V (Γ ) → G× {l, r}; ux
i 7→ (x, i), i = 0, 2.

Then φ is a bijection. Set S = {s ∈ G | {u0, u
s
1} ∈ E(Γ )}. Then, for

x, y ∈ G, we have

{ux
0 , uy

1} ∈ E(Γ ) ⇔ {u0, u
yx−1

1 } ∈ E(Γ ) ⇔ yx−1 ∈ S.

It follows that φ is an isomorphism from Γ to the bi-Cayley graph BCay(G,S).
Further, φ−1gφ = ĝ ∈ Ĝ for all g ∈ G, and X ≤ NAut(Γ )(G) implies
φ−1Xφ ≤ NA(Ĝ), where A = Aut(BCay(G,S)). It follows from Corol-
lary 2.4 that Γ is not (X, 3)-arc-transitive for X ≤ Aut(Γ ) with G ≤ X ≤
NAut(Γ )(G). This completes the proof of Theorem 1.2.
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