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ABSTRACT. The aim of this paper is to answer a question posed by Li [3]
and prove that every bi-normal Cayley graph is not 3-arc-transitive.
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1. INTRODUCTION

Let I" be a graph with vertex set V' (I") and edge set E(I"). We use Aut(I")
to denote the automorphism group of I'. The graph I' is said to be (X, s)-
arc-transitive for some X < Aut(I') if it has at least one s-arc and X is
transitive on both the vertices and the s-arcs of I', where an s-arc means a
sequence vg, V1, - -+ , s of vertices such that {v;—1,v;} € E(I') for 1 <i<s
and v;—1 # v;41 for 1 < i < s — 1. For the case where X = Aut(I), an
(X, s)-arc-transitive graph is simply called s-arc-transitive. A graph is said
to be s-transitive if it is s-arc-transitive but not (s + 1)-arc-transitive.

Let G be a finite group and S be a subset of G with 1 ¢ § = S~! :=
{s71|s € S}. The Cayley graph Cay(G,S) of G with respect to S is
defined as the graph with vertex set G and edge set {{z,y} | yo~! € S}.
Then Cay(G, S) admits a group G = {g:2— zg, x € G| g€ G} acting
regularly on the vertices. The Cayley graph Cay(G, S) is said to be normal
if G itself is normal in Aut(Cay(G, S)), or bi-normal if G has a subgroup of
index 2 which is normal in Aut(Cay(G, 5)).

The aim of this paper is to answer a question posed by Li [3]. For s > 2,
Li [3] gave a characterization of s-transitive Cayley graphs, he proved that
each connected s-transitive Cayley graph is normal with s = 2, or bi-normal
(so bipartite) with s < 3, or a normal cover of one of finite number of graphs.
Then the following interesting question was proposed:

Question 1.1. (a) Do there exists 3-transitive bi-normal Cayley graphs?
(b) Do there exist s-transitive Cayley graphs for s =5 and s = 7%
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There is a positive answer to part (b) of the above question, one can find
such examples in [6] and [1]. But the answer to part (a) is negative. In this
paper, we shall prove the following result.

Theorem 1.2. Fach connected bi-normal Cayley graph is not 3-arc-transitive.

2. BI-CAYLEY GRAPHS

Let G be a finite group and S C G which possibly contains the identity
element of G. The bi-Cayley graph, denoted by BCay(G, .S), is defined to
be the graph with vertex set G x {l,r} and edge set {{(x,l), (y,7)} | =,y €
G,yx~! € S}. Then BCay(G, S) is a well-defined bipartite graph with two
bipartition subsets G x {l} and G x {r}. It is easily shown that BCay(G, S)
is connected if and only if G = (SS™1) (if and only if G = (S~1S)), see [2]
for example. For each g € GG, we define

g:Gx{l,r} — Gx{l,r}, (x,i) — (xg,i) for i =1,

It is easy to see that § is an automorphism of BCay (G, S). Set G = {j | g €

G}. Then g +— § gives an isomorphism from G to G.

Of course, one can define other more automorphisms of bi-Cayley graphs
satisfying special conditions such as normalizing é, see [4, 5] for details.
Here, we quote several results which will be used in the following section.

Let I' = BCay(G, S) be a bi-Cayley graph, let A = Aut(I') and AT =
Agx iy, the set-wise stabilizer of G x{l} in A. Then AT is a normal subgroup
of A with index no more than 2. Further, denote by N the normalizer
N4(G) of G in A. Then N* := N 44 (G) has index no more than 2 in N,

and N ;) = N(—;,i) < At fori=1r.

Now we consider the point-wise stabilizers of (1,1) and of {(1,1),(1,7)}
in N. For o € Aut(G) and h € G, we define 6, h; and h, as follows:
6:Gx{lr} = Gx{lr} (z,1) — (29,1), (x,r) = (27,7),
b G x AL} — G x AL 1} (,0) o (b 1), (a,7) e (7).
hy : G x {l,r} — G x {l,r}; (z,1) — (x,1), (z,7) — (R o, 7).
Then 6, h; and h, are well-defined permutations on G x {I,7} and fix G'x {I}
set-wise. Further, we have the following lemma.

Lemma 2.1. Let g,h,k € G, 0,7 € Aut(G) and I' = BCay(G, S). Then
(1) o7 =67, 6796 = g7, hig = ghi, heg = ghy and hoky = kv
(2) 6k, is an isomorphism from BCay(G, S) to BCay(G, k=1S7h);
(3) oluk, € NT if and only if S = k=1S%h;
(4) hiky € N1y if and only if h =1 and S = k1S,
(5) 6hik, € Ny if and only if k =1 and S = S°h;
(6) 6hik, € Naya,ry if and only if h =k =1 and S° = S.
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Proof. (1) For any z € G and i = [, r, we have
(l‘vi)ﬁ = ((ma)Tvi) = (ajgai)i— = (x’i)&i
(2,9)97 = (2g,49)” = ((x9)°, 1) = (2,9)7".
It follows that the first equations in (1) hold. One may easily check the
other three equations.
(2) Set w = Ghik,. For 2,y € G, we have
{(z,0°, (y, 1)} = {(h'2?,0), (k" 'y7,7)} € E(BCay(G,k~'S7h))
& klyo(2) the k™ 1Sh & (yr ) =y (%) e ST eyl e S
& A{(x,0),(y,r)} € E(I).
It implies that w is an isomorphism from I" to BCay(G, k~1Sh).

(3) Note that w fixes G x {I} set-wise and that w normalizes G by (1).
Then w € N7 if and only if w € Aut(I'"). If S = k~1S9h then, by (2), w is an
automorphism of I'. Assume w € Aut(I"). Then w maps the neighborhood
S x {r} of (1,1) onto the neighborhood Sh~! x {r} of (1,1)* = (h~1,1).
Noting (S x {r})* = k=187, we get Sh~! = k=157, and so S = k~1S7h.

Note that & fixes both (1,1) and (1,7), h; fixes (1,7) and k, fixes (1,1).
Then (4), (5) and (6) hold. O

Remark 2.2. By Lemma 2.1 (2), we get BCay(G, S) = BCay(G, k™ 1S) =
BCay(G, Sh) for any h,k € G. In particular, BCay(G, S) = BCay(G,s~19)
for any s € S. Thus, for a bi-Cayley graph BCay (G, S), one may assume
that S contains the identity element of G.

Theorem 2.3. (1) N* = {6k, | b,k € G,0 € Aut(G), S = k~157h};
(2) Nayy = {6k, | 0 € Aut(G), k € G, S = k~157};

) Ny ={6h | o €Aut(G), he G, S=Sh};

) N(lyl)(lﬂ") = {5’ ’ (S AUt(G), S7 = S}

5) If I' = BCay(G, S) is connected, then N ;) acts faithfully on the
neighborhood of (1,7) in I', where i =1,r;

Proof. Let w € N. Then w normalizes G and so, for any z € G, we have

w 3w = 2/ for some 2’ € G. Define 0 : G — G; z +— . It is easily shown

that o is a well-defined bijection on G. For x,y € GG, we have
((29)7,0) = (@)’ 1) = (LD = (1,1 "7
= (L2730 = (L,1)™ = 2y, 1) = (+7y°, 1),

and so (zy)? = z%y?. It implies o € Aut(G).

Assume w € N*. Then we may set (1,1)¥ = (b=, 1) and (1,r)* =
(k=% r) for some h,k € G. Then w = Ghyk, follows from

(:C,l)&i”l;’“ — (h_lmg,l) — (h—ljl)%\/ — (h—l’l)w—lfcw — (Ll)ﬁgw — (:L’,l)w,

(x,r)&hlkr — (kil.l‘a,r) — (kil,r)z/ _ (kil,?”)“’ilj“’ — (1’7,)9:%4; — (%T)w.
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(1) to (4). By Lemma 2.1 (3), we have S = k~1S%h and (1) holds.
Further, (2), (3) and (4) follow from (1) and Lemma 2.1.

(5). By Remark 2.2, we may assume that S contains the identity element
of G. Thus (1,7) belongs to the neighborhood (1,%), where {i,5} = {l,r}.
Since 1 € S and I is connected, we have G = (S~1S) = (S). Noting that
S x {r} is the neighborhood of (1,1) and S~! x {I} is the neighborhood of
(1,7), it follows from (4) that the stabilizer Ny ;1 ;) of (1,7) in Ny ;) acts
faithfully on S x {r} for i = I and on S~ x {I} for i = r. Thus Ny ;) is
faithful on the neighborhood of (1, 7). O

Note that (s,7)? = (s,r) implies s° = s and (s7!)” = s~! for s € S and
o € Aut(G) with S7 = S. We have the following corollary.

Corollary 2.4. If 1 # s € S, then N 1)(1,1)(s,r) 1S intransitive on S x
{3\, D} In particular, if 1 € S, then Ny, is not transitive on the
3-arcs which contains the arc ((1,7),(1,1)) of BCay(G, S).

3. PROOF OF THEOREM 1.2

Let I' be a connected bi-normal Cayley graph. Then Aut(I") has a normal
subgroup, say G, which is semiregular and has exactly two orbits on V(I").
Noting that these two G-orbits give an Aut(I”)-invariant partition of V(I).
It follows that either I' is not arc-transitive, or I' is a bipartite graph and
those two G-orbits are the bipartition subsets of I'. Then the following
argument completes the proof of Theorem 1.2.

Now let I" be a connected bipartite graph with G < Aut(I") acting reg-
ularly on both two bipartition subsets Uy and Uy of I'. Then it is easily
shown that I' is a regular graph. Let {ug,u1} € E(I") with up € Up and

u; € Up. Then each vertex in U; can be written uniquely as u] for some
z € GG. Define

¢: V() — Gx{lr}; uf — (z,i),i=0,2.

Then ¢ is a bijection. Set S = {s € G | {ug,uj} € E(I")}. Then, for
xz,y € G, we have

{uZ,ul} € B(I') & {uo,u!™ } € B(I') & ya~' € 8.

It follows that ¢ is an isomorphism from I" to the bi-Cayley graph BCay (G, S).
Further, ¢ 'g¢p = g € G for all ¢ € G, and X < Naut(r)(G) implies

¢ 1X¢p < N4(G), where A = Aut(BCay(G,S)). It follows from Corol-

lary 2.4 that I' is not (X, 3)-arc-transitive for X < Aut(I") with G < X <

Naut(r)(G). This completes the proof of Theorem 1.2.
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