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ABSTRACT
The RNA-RNA interaction problems (RIP) deals with the

energetically optimal structure of two RNA molecules that bind to
each other. The standard model introduced by Alkan et al. (J.
Comput. Biol. 13: 267-282, 2006) allows secondary structures in
both partners as well as additional base pairs between the two
RNAs subject to certain restrictions that allow a polynomial time
dynamic programming solution. We derive the partition function for
RIP based on a notion of “tight structures” as an alternative to the
approach of Chitsaz et al. (Bioinformatics, 25, i365-i373, 2009).
This dynamic programming approach is extended here by a full-
fledged computation of the base pairing probabilities. The O(N6)

time and O(N4) space algorithm is implemented in C (available
from http://www.combinatorics.cn/cbpc/rip.html) and is
efficient enough to investigate for instance the interactions of small
bacterial RNAs and their target mRNAs.

1 INTRODUCTION
RNA-RNA interactions constitute one of the fundamental mechanisms
of cellular regulation. In an important subclass, small RNAs
specifically bind a larger (m)RNA target. Examples include the
regulation of translation in both prokaryotes (Narberhausand Vogel,
2007) and eukaryotes (McManus and Sharp, 2002; Banerjee and
Slack, 2002), the targeting of chemical modifications (Bachellerie
et al., 2002), and insertion editing (Benne, 1992), transcriptional
control (Kugel and Goodrich, 2007). The common theme in many
RNA classes, including miRNAs, siRNAs, snRNAs, gRNAs, and
snoRNAs is the formation of RNA-RNA interaction structuresthat
are more complex than simple sense-antisense interactions. The
ability to predict the details of RNA-RNA interactions bothin terms
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of the thermodynamics of binding in its structural consequences
is a necessary prerequisite to understanding RNA based regulation
mechanisms. The exact location of binding and the subsequent
impact of the interaction on the structure of the target molecule
can have profound biological consequences. In the case of sRNA-
mRNA interactions, these details decide whether the sRNA isa
positive or negative regulator of transcription dependingon whether
binding exposes or covers the Shine-Dalgarno sequence (Sharma
et al., 2007; Majdalaniet al., 2002). Similar effects have been
observed using artificially designed opener and closer RNAsthat
regulate the binding of theHuRprotein to human mRNAs (Meisner
et al., 2004; Hackermülleret al., 2005).

In its most general form, the RNA-RNA interaction problem
(RIP) is NP-complete (Alkanet al., 2006; Mneimneh, 2007). The
argument for this statement is based on an extension of the work
of Akutsu (2000) for RNA folding with pseudoknots. Polynomial-
time algorithms can be derived, however, by restricting thespace
of allowed configurations in ways that are similar to pseudoknot
folding algorithms (Rivas and Eddy, 1999). The second major
problem concerns the energy parameters since the standard loop
types (hairpins, internal and multiloops) are insufficient; for the
additional types, such as kissing hairpins, experimental data are
virtually absent. Tertiary interactions, furthermore, are likely to have
a significant impact.

Several restricted versions of RNA-RNA interaction have been
considered in the literature. The simplest approach concatenates
the two interacting sequences, essentially employing a slightly
modified secondary structure folding algorithm. The algorithms
RNAcofold (Hofacker et al., 1994; Bernhartet al., 2006),
pairfold (Andronescuet al., 2005), andNUPACK (Ren et al.,
2005) belong to this class. One major shortcoming of this approach
is that it cannot predict important motifs such as kissing-hairpin
loops. The paradigm of concatenation has also been generalized
to the pseudoknot folding algorithm of Rivas and Eddy (1999).
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The resulting model, however, still does not generate all relevant
interaction structures (Chitsazet al., 2009; Qin and Reidys, 2008).
An alternative approach is to neglect all internal base pairings
in either strand and to compute the minimum free energy (mfe)
secondary structure for their hybridization under this constraint.
For instance,RNAduplex andRNAhybrid (Rehmsmeieret al.,
2004) follow this paradigm.RNAup (Mückstein et al., 2006,
2008) andintaRNA (Buschet al., 2008) restrict interactions to
a single interval that remains unpaired in the secondary structure
for each partner. These models have proved particularly useful for
bacterial sRNA-mRNA interactions. Due to the highly conserved
interaction motif, snoRNA-target interaction structurescan be dealt
with efficiently using specialized tools (Taferet al., 2009).

Pervouchine (2004) and Alkanet al. (2006) independently
derived and implemented mfe folding algorithms for predicting the
joint secondary structure of two interacting RNA moleculeswith
polynomial time complexity. In their model, a “joint structure”
means that the intramolecular structures of each molecule are
pseudoknot-free, the intermolecular binding pairs are noncrossing
and there exist no so-called “zigzags”, see Fig. 1(A) and 2(A) for
examples of the “joint structures”. The optimal “joint structure”
can be computed inO(N6) time andO(N4) space by means of
dynamic programming.

Recently, Chitsazet al. (2009) presentedpiRNA, a tool that uses
dynamic programming algorithm to compute the partition function
of “joint structures”, also inO(N6) time. The algorithmic cores
of the forward recursions ofpiRNA and rip were developed
independently. Albeit differing in design details, they are equivalent.
In addition, we identified here a basic data structure that forms the
basis for computing additional important quantities such as the base
pairing probability matrix, and probabities of hybrid formations (see
(Huanget al., 2009) for the latter). Further differences between the
two approaches will be discussed in Section 5.

The key innovation for passing from the mfe folding of Alkan
et al. (2006) to the partition function is a unique grammar by
which each interaction structure can be generated. Then, the
computation of the partition function follows McCaskill’sapproach
for RNA secondary structures (McCaskill, 1990). The key idea is
to identify a certain subclass of interaction structures that serve
as building blocks in a recursive decomposition generalizing the
loop decomposition of secondary structures. These are the “tight
structures”, a generalization of the subsecondary structures enclosed
by a unique closing pair.

In the following two sections we first derive a grammar that allows
the unambiguous parsing of zigzag-free interaction structures, thus
forming the basis for the computation of the partition function in
O(N6) time andO(N4) memory, corresponding the mfe algorithm
of Alkan et al. (2006). Then we proceed by deriving the recursions
for the base pairing probabilities, which are based on a conceptual
reversing of the production rules. Indeed, one has to compute the
pairing probabilities by explicitly “tracing back” all contributing
joint structures. The output ofrip consists of the partition function,
the base pairing probability matrix and the joint structurepredicted
by the maximal weighted (in terms of the base pair probabilities)
matching (MWM) algorithm (Cary and Stormo, 1995; Gabow,
1973) and the most likely hybrid loops.

The sodB-RhyB interaction structure (Geissmann and Touati,
2004) is a well-known paradigmatic example with a unique
interaction region, Fig. 1. Therip software predicts this interaction

region correctly. Results obtained with other algorithms deviate
noticeably from the known structure, see Supplemental Fig.S2.
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Fig. 1. (A) The natural structure ofsodB-RhyB (Geissmann and
Touati, 2004). (B) The base pairing probability matrix (McCaskill,
1990) generated viarip. This matrix represents all potential
base pairs of thesodB-RhyB structure as squares, whose area
is proportional to their respective probability. Intermolecular and
intramolecular base pairs are depicted in the blue upper right
rectangle and the two white triangles, respectively. (C) “Zoom” into
the most likely interaction region as predicted byrip. All base pairs
of the hybrid are labeled by their probabilities.

To-date, only a handful of interaction structures are knownthat
are more complex than those covered byintaRNA/RNAup. The
best-known example is the repression offhlA by OxySRNA, which
involves two widely separated kissing-hairpin loops (Argaman and
Altuvia, 2000). In Fig. 2, we display the natural interaction structure
as well as the output ofrip, which predicts two distinct interaction
regions. The left (red) one coincides exactly with the published
structure, while the right (blue) one differs by only two base pairs.
We shall return to thefhlA-OxySprediction in more detail in the
Discussion section.

2 JOINT STRUCTURES
Given two RNA sequencesR andS (e.g. an antisense RNA and its target)
with N andM vertices, we index the vertices such thatR1 is the5′ end
of R andS1 denotes the3′ end ofS. The edges ofR andS represent the
intramolecular base pairs. Apre-structure, G(R, S, I), is a graph with the
following properties:

1. R, S are secondary structures (each nucleotide being paired with
at most one other nucleotide via hydrogen bonds, without internal
pseudoknots);

2. I is a set of arcs of the formRiSj without pseudoknots, i.e., ifRi1Sj1 ,
Ri2Sj2 ∈ I wherei1 < i2, thenj1 < j2 holds.
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RIP: Partition Function and Base Pairing Probabilities
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Fig. 2. (A) The natural structure off hlA-OxyS(Chitsazet al., 2009).
(B) The base pairing probability matrix see the caption of Fig. 1 for
notation. (C) “Zoom” into the two distinct, most likely interaction
regions, as predicted byrip.

An arc is calledexterior if it is of the form RiSj andinterior, otherwise.
Let G be a graph andV be a subset ofG-vertices. The(induced) subgraph
of G induced byV has vertex setV and contains allG-edges having both
incident vertices inV . In particular, we useS[i, j] to denote the subgraph
of the pre-structureG(R, S, I) induced by{Si, Si+1, . . . , Sj}, where
S[i, i] = Si andS[i, i − 1] = ∅. In absence of interactions a pre-structure
is a pair of induced secondary structures onR andS, which we will refer to
as a pair ofsegments. A segmentS[i1, j1] is called maximal if there is no
segment,S[i, j] strictly containingS[i1, j1].

An interior arcRi1Rj1 is an R-ancestorof the exterior arcRiSj if i1 <
i < j1. Analogously,Si2Sj2 is anS-ancestor ofRiSj if i2 < j < j2. The
sets ofR-ancestors andS-ancestors ofRiSj are denoted byAR(RiSj)

andAS(RiSj), respectively. We will also refer toRiSj as a descendant
of Ri1Rj1 andSi2Sj2 in this situation. TheR- andS-ancestors ofRiSj

with minimum arc-length are referred to asR- andS-parents, see Fig. 3,
(A). Finally, we callRi1Rj1 andSi2Sj2 dependent if they have a common
descendant and independent, otherwise.

1 2 3 4 5 6 7 81 2 3 4 5 6(A) (B)

Fig. 3. (A) Ancestors and parents: for the exterior arcR3S4, we have the
following ancestor setsAR(R3S4) = {R1R6, R2R4} andAS(R3S4) =
{S2S6, S3S5}. In particular, R2R4 and S3S5 are theR-parent andS-
parent respectively.(B) Subsumed and equivalent arcs:R1R8 subsumes
S1S4 andS5S8. Furthermore,R2R5 is equivalent toS1S4.

Suppose there is an exterior arcRaSb with ancestorsRiRj andSi′Sj′ .
ThenRiRj is subsumedin Si′Sj′ , if for any RkSk′ ∈ I′, i < k < j
impliesi′ < k′ < j′, see Fig. 3,(B). If Ri1Rj1 is subsumed inSi2Sj2 and

vice versa, we call these arcsequivalent. A zigzag, is a subgraph containing
two dependent interior arcsRi1Rj1 andSi2Sj2 neither one subsuming the
other, see Fig. 4,(A).
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Fig. 4. (A): A zigzag, generated byR2S1, R3S3 andR5S4. (B): the joint
structureJ1,24;1,23, we display the different segments and tight structures
in which J1,24;1,23 decomposes.

A joint structure, J(R, S, I), is a zigzag-free pre-structure, see Fig. 4,
(B). Joint structures are exactly the configurations that are considered in
the maximum matching approach of Pervouchine (2004), in theenergy
minimization algorithm of Alkanet al. (2006), and in the partition function
approach of Chitsazet al. (2009). The subgraph of a joint structure
J(R, S, I) induced by a pair of subsequences{Ri, Ri+1, . . . , Rj} and
{Sh, Sh+1, . . . , Sℓ} is denoted byJi,j;h,ℓ. In particular, J(R, S, I) =
J1,N;1,M . We say RaRb(SaSb, RaSb) ∈ Ji,j;h,ℓ if and only if
RaRb(SaSb, RaSb) is an edge of the graphJi,j;h,ℓ. Furthermore,
Ji,j;h,ℓ ⊂ Ja,b;c,d if and only if Ji,j;h,ℓ is a subgraph ofJa,b;c,d induced
by {Ri, . . . , Rj} and{Sh, . . . , Sℓ}.

We next define atight structure (ts). Given a joint structure,Ja,b;c,d, its
tight Ja′,b′;c′,d′ is either a single exterior arcRa′Sc′ (in the casea′ =
b′ and c′ = d′), or the minimal block centered around the leftmost and
rightmost exterior arcsαl, αr , (possibly being equal) and an interior arc
subsuming both, i.e.,Ja′,b′;c′,d′ is tight in Ja,b;c,d if it has either an arc
Ra′Rb′ or Sc′Sd′ if a′ 6= b′ or c′ 6= d′.

More formally, letJa′,b′;c′,d′ be contained inJa,b;c,d with rightmost
and leftmost exterior arcRiSj andRi0Sj0 and letM be the set ofRiSj -
ancestors inJa,b;c,d with maximal length. ThenJa′,b′;c′,d′ is tight in
Ja,b;c,d if

1. for M = ∅: Ja′,b′;c′,d′ = {RiSj};

2. for M = {Ri1Rj1}: Ja′,b′;c′,d′ = Ji1,j1;c′,j , wherec′ is the origin
(left) of theS-ancestor ofRi0Sj0 with maximal length (ori0 if there
is none). The caseM = {Sr1Ss1} is analogous;

3. for M = {Ri1Rj1 , Sr1Ss1}, supposeRi1Rj1 subsumesSr1Ss1 .
Then Ja′,b′;c′,d′ = Ji1,j1;x1,s1

, where x1 is the origin of
the S-ancestor ofRi0Sj0 with maximal length (ori0 if there is
none). In particular,Ja′,b′;c′,d′ = Ji1,j1;r1,s1

when Ri1Rj1 is
equivalent withSr1Ss1 . The case, whereSr1Ss1 subsumesRi1Rj1

is analogous.

In the following, a ts is denoted byJT
i,j;h,ℓ. If Ja′,b′;c′,d′ is tight inJa,b;c,d,

then we callJa,b;c,d its envelope. By construction, the notion of ts is
depending on its envelope. There are only four basic types ofts, see Fig. 5:

◦ : {RiSh} = J◦
i,j;h,ℓ andi = j, h = ℓ;

▽ : RiRj ∈ J▽
i,j;h,ℓ andShSℓ 6∈ J▽

i,j;h,ℓ;

� : {RiRj , ShSℓ} ∈ J�
i,j;h,ℓ;

△ : ShSℓ ∈ J△
i,j;h,ℓ andRiRj 6∈ J△

i,j;h,ℓ.

In the Supplemental Material we prove:

PROPOSITION2.1. LetJa,b;c,d be a joint structure. Then
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Fig. 5. From left to right: tights of type◦, ▽, � and△.

1. any exterior arcRiSj in Ja,b;c,d is contained in a uniqueJa,b;c,d-ts;

2. Ja,b;c,d decomposes into a unique collection ofJa,b;c,d-ts and
maximal segments.

Given a ts,J▽
i0,j0;r,s (or J△

i,j;r0,s0
), we introducedouble tight structures

as maximal substructure whose distinct leftmost and rightmost blocks are
tights. By construction, therefore, each dts contains at least two tights.

More formally, given a tsJ▽
i0,j0;r,s, adouble-tight structure, J

DT |▽
i,j;r,s , in

J▽
i0,j0;r,s, wherei0 < i < j < j0, is defined as follows: there exists labels

a, b, c, d wherei ≤ a < b ≤ j andr ≤ c < d ≤ s. Furthermore, two ts
JT

i,a;r,c andJT
b,j;d,s in Ji0+1,j0−1;r,s such that

J
DT |▽
i,j;r,s = JT

i,a;r,c∪̇Ja+1,b−1;c+1,d−1∪̇JT
b,j;d,s . (2.1)

Here, the disjoint unioṅ∪ refers to both the vertex and arc sets of the joint

structures, see Fig. 6. The case of a dts,J
DT |△
i,j;r,s , within a ts,J△

i,j;r0,s0
,

is defined accordingly. By abuse of terminology, we simply use JDT
i,j;r,s in

order to denote eitherJDT |▽
i,j;r,s or J

DT |△
i,j;r,s .

6

151

11

202 21

1

Fig. 6. A dts J
DT |▽
6,15;1,11 in J2,20;1,11 . Note that the joint structure

J1,21;1,11 itself is ▽-tight. Here, J2,15;1,11 is neither a ts nor a rts in
J2,20;1,11.

With the help of dts, as illustrated in Fig. 7,Procedure (b), we decompose
a ts as follows:
Let J▽

i,j;r,s be a ts of type▽ and letRh1
Sℓ1 andRh2

Sℓ2 be the leftmost
and rightmost exterior arcs inJi,j;r,s andi + 1 ≤ i1 ≤ j1 ≤ j − 1. Then
Ji+1,j−1;r,s decomposes into

8

>

>

>

>

<

>

>

>

>

:

R[i + 1, i1 − 1]∪̇J
{▽,◦}
i1,j1;r,s∪̇R[j1 + 1, j − 1],

if JT
Rh1

Sℓ1
= JT

Rh2
Sℓ2

;

R[i + 1, i1 − 1]∪̇JDT
i1,j1;r,s∪̇R[j1 + 1, j − 1],

otherwise,

(2.2)

where J
{▽,◦}
i1,j1;r,s denotes aJi+1,j−1;r,s-ts of type▽ or ◦ and JT

RhSℓ

denotes the unique ts inJi+1,j−1;r,s contain the exterior arcRhSℓ.

Analogously, in case of a tsJ△
i,j;r,s with leftmost and rightmost exterior

arcsRh1
Sℓ1 andRh2

Sℓ2 , andr + 1 ≤ r1 ≤ s1 ≤ s − 1, Ji,j;r+1,s−1

can be decomposed in the form
8

>

>

>

>

<

>

>

>

>

:

S[r + 1, r1 − 1]∪̇J
{△,◦}
i,j;r1,s1

∪̇S[s1 + 1, s − 1],

if JT
Rh1

Sℓ1
= JT

Rh2
Sℓ2

;

S[r + 1, r1 − 1]∪̇JDT
i,j;r1,s1

∪̇S[s1 + 1, s − 1],

otherwise,

(2.3)

whereJ
{△,◦}
i1,j1;r,s denotes aJi,j;r+1,s−1-tight of type△ or ◦.

For a tsJ�
i,j;r,s with i + 1 ≤ i1 ≤ j1 ≤ j − 1 we analogously derive

Ji+1,j−1;r,s =

R[i + 1, i1 − 1]∪̇J
{△,�}
i1,j1;r,s∪̇R[j1 + 1, j − 1],

(2.4)

whereJ
{△,�}
i1,j1;r,s denotes aJi+1,j−1;r,s-tight of type△ or �.

Prop.(2.1) and equ. (2.1-2.4) establish, for each joint structure, a unique
decomposition into interior and exterior arcs.

3 THE PARTITION FUNCTION

3.1 Refined Decomposition
The unique decomposition of ts would formally suffice to construct a
partition function algorithm. Indeed, each decompositionstep, such as
equ. (2.1-2.4), corresponds to a multiplicative recursionrelation for the
partition function associated with the joint structures. However, this would
result in an unwieldy expensive implementation. The reasonare the multiple
break pointsa, b, c, d, . . . , each of which corresponding to a nestedfor-
loop.

We therefore introduce a refined decomposition that reducesthe number
of break points. For this purpose we call a joint structureright-tight if its
rightmost block is a ts. We adopt the point of view of Algebraic Dynamic
Programming (Giegerich and Meyer, 2002) and regard each decomposition
rule as a production in a suitable grammar. Fig. 7 summarizestwo major
steps in the decomposition: (I) the “arc-removal” reducingts and dts. The
scheme is complemented by the usual loop decomposition of secondary
structures, and (II) the “block-decomposition” splittingjoint structures into
blocks.

The details of the decomposition procedures are collected in the SM,
where we show that for eachJ1,N;1,M there exists a unique decomposition-
tree (parse-tree), denoted byTJ1,N ;1,M

. This tree has rootJ1,N;1,M and
all other vertices correspond to specific substructures ofJ1,N;1,M obtained
by the successive application of the decomposition steps ofFig. 7 and the
loop decomposition of the secondary structures, see Fig. 8.

3.2 Extended Loop Model
The standard energy model for RNA folding (Mathewset al., 1999),
presented in the SM, is consistent with the basic decomposition of secondary
structures. In addition, joint structures give rise to two further types of loops.
Following Chitsazet al.(2009), we call themhybrid andkissing-loop, Fig. 9.

• A hybrid is a maximal sequence of intermolecular interior loops formed
by ℓ ≥ 2 exterior arcsRi1Sj1 , . . . , Riℓ

Sjℓ
whereRih

Sjh
is nested

within Rih+1
Sjh+1

and where the internal segmentsR[ih+1, ih+1−
1] andS[jh +1, jh+1−1] consist of single-stranded nucleotides. I.e. ,
a hybrid is the maximal unbranched stem-loop formed by external arcs.

• A kissing-loopis either a pair,(RiRj , R[i + 1, j − 1]), where the set
of RiRj -children,, Ri1Sj1 , . . . where i < i1 < j is nonempty,
or a pair (SiSj , S[i + 1, j − 1]), where the set ofSiSj-children
Ri1Sj1 , . . . wherei < j1 < j is nonempty.

Kissing loops have been singled out for logical reasons and because some
investigations into their thermodynamic properties have been reported in the
literature (Gagoet al., 2005). For details of the parametrization employed in
rip we refer to the SM.

Let us now have a closer look at the energy evaluation ofJi,j;h,ℓ.
Each decomposition step in Fig. 7 results in substructures whose energies
we assume to contribute additively and generalized loops that need to be
evaluated directly. There are the following two scenarios:
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or

or

or

or or

or

oror

Procedure (b)

Procedure (a)

= or or

A B C D E F G H J K

Fig. 7. Illustration of Procedure (a) the reduction of arbitrary joint structures
and rts, and Procedure (b) the decomposition of tight structures. The panel
below indicates the 10 different types of structural components: A, B:
maximal secondary structure segmentsR[i, j], S[r, s]; C: arbitrary joint
structureJi,j;r,s; D: right-tight structuresJRT

i,j;r,s; E: double-tight structure

JDT
i,j;r,s; F: tight structure of type▽, △ or �; G: type� tight J�

i,j;r,s, the
solid curved line (top and bottom) denotes an arc and a singlehorizontal
line (top and bottom) denotes the backbone;H: type ▽ tight J▽

i,j;r,s,
a solid curved line (top) denotes an arc, a single horizontalline (top)
denotes the backbone and a double-horizontal line (bottom)denotes that
the two terminals are not paired wit each other;J: type △ tight J△

i,j;r,s,
a solid curved line (bottom) denotes an arc, a single horizontal line (bottom)
denotes the backbone and a double-horizontal line (top) indicates that the
two terminals are not paired with each other;K : an exterior arc.

Fig. 8. The decomposition treeTJ1,15;1,8
for the joint structureJ1,15;1,8.

5’

5’3’

3’

5’ 3’

3’ 5’
5’ 3’

3’ 5’

5’

3’

5’

3’

(A) (B)

Fig. 9. The two new loop-types: hybrid(A) and kissing-loop(B).

I. Arc removal. Most of the decomposition operations in Procedure (b)
displayed in Fig. 7 can be viewed as the “removal” of an arc (corresponding
to the closing pair of a loop in secondary structure folding)followed by
decomposition. Both, loop-type as well as the subsequent decomposition
steps depend on the newly exposed structural elements. Following the
approach of Zuker and Stiegler (1981) for secondary structures, we treat the

loop-decomposition problem by introducing additional matrices. Without
loss of generality, we can assume that we open an interior base pairRiRj .

The set of base pairs onR[i, j] consists of all interior pairsRpRq with
i ≤ p < q ≤ j and all exterior pairsRpSh with i ≤ p ≤ j. An interior arc
is exposedonR[i + 1, j − 1] if and only if it is not enclosed by any interior
arc inR[i, j]. An exterior arc isexposedonR[i + 1, j − 1] if and only if it
is not a descendant of any interior arc inR[i+1, j−1]. GivenRij , the arcs
exposed onR[i+1, j−1] corresponds to the base pairsimmediately interior
of RiRj . Let us writeER[i,j] = Ei

R[i,j]
∪̇Ee

R[i,j]
for this set of “exposed

base pairs” and its subsets of interior and exterior arcs. Asin secondary
structure folding, the loop type is determined byER[i,j] := ER as follows:
ER = ∅, hairpin loop;ER = Ei

R and|ER| = 1, interior loop (including
bulge and stacks);ER = Ei

R, |ER| ≥ 2, multi-branch loop;ER = Ee
R,

kissing-hairpin loop;|Ei
R|, |Ee

R| ≥ 1, general kissing-loop.
This picture needs to be refined even further since the arc removal is

coupled with further decomposition of the intervalR[i + 1, j − 1]. This
prompts us to distinguish ts and dts with different classes of exposed base
pairs on one or both strands. It will be convenient, furthermore to include
information on the type of loop in which it was found.

A ts J▽
i,j;h,ℓ is of type E, if S[h, ℓ] is not enclosed in any base pair

(J▽,E
i,j;h,ℓ). SupposeJ▽

i,j;h,ℓ is located immediately interior to the closing
pairSpSq (p < h < ℓ < q). If the loop closed bySpSq is a multiloop, then

J▽
i,j;h,ℓ is of typeM (J▽,M

i,j;h,ℓ). If SpSq is contained in a kissing-loop, we
distinguish the typesF andK, depending on whether or notEe

S[h,ℓ]
= ∅.

Fig. 10 displays this decomposition forJ▽,M
i,j;r,s.

M

M

K

I

i j

K

M

M

M M

M
M

i jji j ji i

M

Fig. 10. Further refinement: the four decompositions ofJ▽,M
i,j;r,s via

Procedure (b). The green rectangle denotes single-stranded segments. The
lettersI, M, etc denote the loop-type and the type of the exposed arc(s) of the
dts. See Fig. 7 for more details on the notation. The four cases correspond to
the four contributions in equ. (3.1).

For a dtsJDT
p,q,r,s (denoted by “E” in Fig. 7) we need to determine the type

of the exposed pairs of bothR[p, q] andS[r, s]. Hence each such structure
will be indexed by two types. In total, we arrive at 18 distinct cases since
some combinations cannot occur. For instance, a dts cannot be external in
bothR andS, that is, typeEE does not exist, whereE means external.

K

B

K

A

K

K

K

B

K

K

B

K

F

F

F

K

F

K

Fig. 11. Decomposition ofJRT,KKB

i,j;h,ℓ by means of procedure (b). Here the
red rectangle denotes a pair of secondary segments having the property that
at least one of them is not single-stranded.
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M

M M M

K

K F KK K

MM

K

M

KF

Fig. 12. Decomposition ofJDT,KM

i,j;h,ℓ by means of procedure (b). The five
alternatives correspond to the three additive terms in equ.(3.2).

II. Block decomposition. The second type of decomposition is the splitting
of joint structures into “blocks”, such as the decompositions of a rts in
Procedure (a) and a dts in Procedure (b), see Fig. 7. A rtsJRT

i,j;h,ℓ may
appear in two ways, depending on whether or not there exists an exterior arc
Ri1Sj1 such thatR[i1+1, j] andS[j1+1, ℓ] are single-stranded segments.
If such an exterior arc exists,JRT

i,j;h,ℓ is of type (rB), otherwise it is of
type (rA). Analogously, (ℓB) and (ℓA) are defined for dts. Fig. 11 shows the
decomposition ofJRT,KKB

i,j;h,ℓ . SupposeJDT
i,j;r,ℓ is a dts contained in a kissing-

loop, that is we have eitherEe
R[i,j]

6= ∅ or Ee
S[h,ℓ]

6= ∅. W.l.o.g., we

may assumeEe
R[i,j]

6= ∅. Then at least one of the two “blocks” contains
the exterior arc belonging toEe

R[i,j]
(i.e., direct bonds in the language of

Chitsazet al. (2009)) labeled byK. Otherwise the block is labeledF, see
Fig. 12. The situation is analogous if we decomposeJRT

i,j;r,ℓ contained in a
kissing-loop.

3.3 Recursions
The computation of the partition function is obtained “fromthe inside to
the outside”, see equs. (3.1,3.2). The recursions are initialized with the
energies of individual external base pairs and empty secondary structures
on subsequences of length up to four. In order to differentiate multi- and
kissing-loop contributions, we introduce the partition functions Qm

i,j and

QF
i,j as a generalization of Zuker’s algorithm (Zuker and Stiegler, 1981).

Here,Qm
i,j denotes the partition function of secondary structures onR[i, j]

or S[i, j] having at least one arc contained in a multi-loop. Similarly, QF
i,j

denotes the partition function of secondary structures onR[i, j] or S[i, j] in
which at least one arc is contained in a kissing-loop.

For instance, the recursion forQ▽,M
i,j;r,s in Fig. 10 reads:

Q▽,M
i,j;r,s =

X

h,ℓ



Q▽,M
h,ℓ;r,se−GInt

i,j;h,ℓ/kT

+QDT,MM

h,ℓ;r,s e−(α1+α2)/kT × (e−(h−i−1)α3/kT + Qm
i+1,h−1)

× (e−(j−ℓ−1)α3/kT + Qm
ℓ+1,j−1),

+QDT,KM

h,ℓ;r,s e−(β1+β2)/kT × (e−(h−i−1)β3/kT + QF
i+1,h−1)

× (e−(j−ℓ−1)β3/kT + QF
ℓ+1,j−1),

+Q▽,M
h,ℓ;r,se−(α1+2α2)/kT

ˆ

e−(j−ℓ−1)α3/kT Qm
i+1,h−1

+ e−(h−i−1)α3/kT Qm
ℓ+1,j−1 + Qm

ℓ+1,j−1Qm
i+1,h−1

˜

ff

.

(3.1)

Analogously, the recursion for the dtsQDT,KM
i,j;r,s of Fig.12 is given by

QDT,KM
i,j;r,s =

X

i1,j1



(Q▽,M
i,i1;r,j1

e−β2/kT + Q△,K
i,i1;r,j1

e−α2/kT

+Q�
i,i1;r,j1

e−(α2+β2)/kT + Q△,F
i,i1;r,j1

e−α2/kT )QRT,KM
i1+1,j;j1+1,s

+Q△,K
i,i1;r,j1

e−α2/kT QRT,FM
i1+1,j;j1+1,s

ff

.

(3.2)

4 BASE PAIRING PROBABILITIES
Given two RNA sequences, our sample space is the ensemble of all zigzag-
free joint interaction structures. LetQI denote the corresponding partition
function. The probability of a joint structureJ1,N;1,M is then given by
PJ1,N ;1,M

= QJ1,N ;1,M
/QI .

4.1 Approach
While the computation of the partition function proceeds from smaller
to larger subsequences, the computation of the substructure probabilities
follows the order of the decomposition outlined in the previous section.
That is, the longest-range substructures are computed first, analogous to
McCaskill’s algorithm for secondary structures (McCaskill, 1990).

Let J
ξ,Y1Y2Y3

i,j;h,ℓ be the set of substructuresJi,j;h,ℓ ⊂ J1,N;1,M such
that Ji,j;h,ℓ appears inTJ1,N ;1,M

as an interaction structure of typeξ ∈
{DT, RT,▽,△, �, ◦} with loop-subtypesY1, Y2 ∈ {M,K, F} on the
sub-intervalsR[i, j] and S[h, ℓ], Y3 ∈ {A,B}. Let P

ξ,Y1Y2Y3

i,j;h,ℓ be the

probability of J
ξ,Y1Y2Y3

i,j;h,ℓ . For instance,PRT,MKA

i,j;h,ℓ is the sum over all the
probabilities of substructuresJi,j;h,ℓ ∈ TJ1,N ;1,M

such thatJi,j;h,ℓ is a
rts of typerA andR[i, j], S[h, ℓ] are enclosed by a multi-loop and kissing-
loop, respectively. Then the computation of the pairing probabilities reduces
to a trace-back routine in the decomposition tree constructed in Section 3.1.

SetJ = J1,N;1,M , T = TJ1,N ;1,M
and letΛJi,j;h,ℓ

= {J |Ji,j;h,ℓ ∈
T} denote the set of all joint structuresJ such thatJi,j;h,ℓ is a vertex in
the decomposition treeT . Then we havePJi,j;h,ℓ

=
P

J∈Λi,j;h,ℓ
PJ and

furthermore

P
ξ,Y1Y2Y3

i,j;h,ℓ =
X

Ji,j;h,ℓ∈J
ξ,Y1Y2Y3
i,j;h,ℓ

Pi,j;h,ℓ. (4.1)

4.2 Case Study: Secondary Structures
In order to illustrate the logic of our backtracking procedure, we first
consider the special case of secondary structures.

Let PRiRj
denote the base pairing binding probability ofRiRj ,

i.e. PRiRj
=

P

RiRj∈W QW Q−1, where the sums is taken over all the

partition functions of secondary structuresW in R such thatRiRj ∈ W .
Let TW be the decomposition tree of a particular secondary structure W on
R[1, N ] via Procedure (c), the key observation here is

RiRj ∈ W ⇐⇒ RiRj ∈ TW . (4.2)

Let Ω(RiRj) be the set of secondary structures whose decomposition tree
contain the pairRiRj as a leaf. Clearly, via equ. (4.2), we obtain

PRiRj
=

X

W∈Ω(RiRj)

QW Q−1. (4.3)

In order to computePRiRj
, we express it as a sum over the probabilities

of all substructuresξ, that are a parent ofRiRj in the decomposition tree.
Let Rb(i, j) denote the set of secondary segmentsR[i, j] in which Ri is
connected withRj and letPb

Ri,Rj
be its probability. By construction, we

havePRiRj
= Pb

Ri,Rj
, since the parent ofRiRj in the decomposition tree

must be a secondary segmentR[i, j] such thatRiRj ∈ R[i, j]. Therefore
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the computation ofPRiRj
is reduced to the calculation of the substructure

probabilityPb
Ri,Rj

.

The decomposition is summarized in Procedure (c), Fig. 13. In view
of the fact that therip hasO(N6) time complexity, we can differ here
from the standard implementation of the RNA folding model. Inspection
of Fig. 13 shows that for aRb(i, j)-parent we have to distinguish the five
cases displayed in the lower panel. LetRm(i, j) be the set of segments
R[i, j] ∈ TR[1,N] containing at least one arc with an outer loop of typeM,
and letRs(i, j) be the set of all segmentsR[i, j] ∈ TR[1,N]. Furthermore,
let Pm

Ri,Rj
andPs

Ri,Rj
be the corresponding probabilities. Note that it is

possible, for (L1) and (L4) in Fig. 13, thath = i andj = ℓ holds. However,
via further backtracking forRs(i, j) and Rm(i, j) we can recursively
calculate the binding probability.

Following the logic of Fig. 13, we obtain

P
b
Ri,Rj

=
X

h,ℓ



P
s
Rh,Rℓ

Qs
h,i−1Qb

i,j

Qs
h,ℓ

+ P
b
Rh,Rℓ

Qb
i,je−GInt

h,ℓ;i,j/kT

Qb
h,ℓ

+P
b
Rh,Rℓ

Qm
h+1,i−1Qb

i,je−(α1+2α2+(ℓ−j−1)α3)/kT

Qb
h,ℓ

+P
m
Rh,Rℓ

Qb
i,je−(α2+(i−h+ℓ−j)α3)/kT

Qm
h,ℓ

+P
m
Rh,Rℓ

Qm
h,i−1Qb

i,je−(α2+(ℓ−j)α3)/kT

Qm
h,ℓ

ff

.

(4.4)

where the lines correspond to the five loop types (L1-L5) in Fig. 13.
Analogously, the recursions for the base pairing probabilities Pm

Ri,Rj
and

Ps
Ri,Rj

are given by

P
m
Ri,Rj

=
X

h,ℓ



P
b
Ri−1,Rℓ

e−(α1+2α2+(ℓ−1−h)α3)/kT

×
Qb

j+1,hQm
i,j

Qb
i−1,ℓ

+ P
m
Ri,Rℓ

Qm
i,jQb

j+1,he−(α2+(ℓ−h)α3)/kT

Qm
i,ℓ

ff

P
s
Ri,Rj

=
X

h,ℓ

P
s
Ri,Rℓ

Qs
i,jQb

j+1,h

Qs
i,ℓ

.

(4.5)

4.3 Base pairing probabilities for joint structures
Set Σ1 = {J | RiRj ∈ J}. We apply the same strategy to the joint
structures appearing in Fig. 7. LetQI denote the partition function which
sums over all the possible joint structuresJ1,N;1,M . Then PRi,Rj

=
P

J∈Σ1
QJ/QI . In order to computePRiRj

we classifyΣ1 according
to the parent ofRiRj in T :

Σ1 = {J | R[i, j] ∈ T, R[i, j] ∈ Rb(i, j)}

∪
[

h,ℓ

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J
▽
i,j;h,ℓ}

∪
[

h,ℓ

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J
�
i,j;h,ℓ},

(4.6)

which translates to

PRiRj
= P

b
Ri,Rj

+
X

h,ℓ

P
▽,{E,M,F,K}
i,j;h,ℓ +

X

h,ℓ

P
�
i,j;h,ℓ, (4.7)
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Forward Recursion
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Backtracking

Fig. 13. Top. Extended version of Procedure (c) showing the productions
for general structures, structures and enclosed by pairs, and multi-loops. The
four types of segments are shown below: InRb(i, j), Ri, Rj is paired,
Ru(i, j) denotes stretches of unpaired bases,Rm(i, j) denotes parts of
multiloops with containing least one arc, andRs(i, j) denotes arbitrary
segments.Below. Backtracking for secondary structures: for a parent of
Rb(i, j) we have five cases according to Procedure (c): external (L1),
interior loop (L2), closing pair of a multi-loop (L3), (L4) and (L5) denote
the scenarios arising from decomposing aRm(h, ℓ)-segment. See equ. (4.4)
for the corresponding recursions.

where P
▽,{E,M,F,K}
i,j;h,ℓ = P▽,E + P▽,M + P▽,F + P▽,K for identical

positionsi, j, h, ℓ. Analogously, we obtain for pairs inS:

Σ2 = {J | S[h, ℓ] ∈ T, S[h, ℓ] ∈ Sb[h, ℓ]}

∪
[

i,j

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J
△
i,j;h,ℓ},

(4.8)

and thereforePSiSj
= Pb

Si,Sj
+

P

h,ℓ P
△
h,ℓ;i,j , with P△ = P△,E +

P△,M + P△,K + P△,F.
Note that the expressions forPRiRj

andPSiSj
are not symmetric. This

is due to the fact that our decomposition routine give preference to arc-
removals inR over those inS. This asymmetry is necessary to ensure that
the decomposition in Fig. 7 is unambiguous.

Finally, we calculate the binding probability of an exterior arc RiSj .
SinceRiSj is a ts of type◦, PRiSj

is directly given by the probability
of this special substructure in equ. (4.1).

In order to compute the binding probabilities of both interior and exterior
arcs, the key is to employ an “inverse” grammar induced by tracing back in
the decomposition tree as displayed in Supplement Materials [SM, Fig. 5].

5 RESULTS AND DISCUSSION
In this contribution we have introduced a framework in which
both the partition function and the base pairing probabilities of
zigzag-free RNA-RNA interactions can be derived in a natural
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way. Our approach is implemented in the software packagerip
using the full standard energy model for RNA secondary structures
together with a multi-loop-like additive parametrizationfor kissing-
loops. In comparision withpiRNA (Chitsazet al., 2009),rip is
based on a different but equivalent decomposition grammar.The
very encouraging data on the accuracy of the predicted interaction
intergies reported by Chitsazet al. (2009) therefore carry over to
rip as well.

The notion of tights, which have a central role in our presentation,
is also implicit in the work of Chitsazet al. (2009). The focus on
the underlying combinatorial aspects, however, leads us tohighlight
in particular the decomposition tree, which provides a natural
framework in which to proceed beyond the algorithmic core ofthe
partition function itself. Indeed, the decomposition treefacilitates
the derivation of the base pairing probabilities. Related questions,
such as that for the probability of complete hybrids (Huanget al.,
2009) can be answered along the same lines. While the current
implmenentation ofpiRNA Chitsazet al. (2009) concentrates on
melting temperature in order to validate the partition function,
rip focusses on a detailed analysis of the interaction structures
themselves. To this end, we also compute the unweighted maximum
expected accuracy structure, which is given as the maximum
matching with weights given by the base pairing probabilites. On
a more technical level,piRNA andrip differ in the decomposition
of tights:piRNA utilizes a4D gap-matrix by means of the Dirks-
Pierce algorithm Dirks and Pierce (2003), whilerip employs two
distinct2D-matrices inspired by Zuker’s recursion. For details, we
refer to the SM.

Back-tracing of the base pairing patterns that underlie thefree
energy of RNA-RNA binding is of great importance in detailed
studies of ncRNA-mRNA interactions. The details of the binding
sites have a crucial impact on the interpretation of the computational
results and on the comparison of the computational prediction and
experimental data. It was shown by Mücksteinet al. (2008), for
instance, that positive and negative regulation of bacterial mRNAs
can be distinguished depending on whether the interaction structure
contains the Shine-Dalgarno sequence in stable stem or exposed in
an predominantly unpaired region.

Only a small number of interaction structures have been
described so far that are more complex than those computable
by RNAup/intaRNA. It is not clear, however, whether complex
interactions are truely rare in nature, or whether multi-point contacts
such as that of thefhlA-OxySinteraction structure (Argaman and
Altuvia, 2000) are rarely observed experimentally becausethey are
typically excluded from candidate lists due to the lack of readily
detectable pairing regions. A survey withrip may be suitable to
provide us with a much more unbiased picture. Fig. 2 shows, that,
modulo two base pairs,rip identifies the two distinct hybrids in
fhlA-OxyS, correctly. Table 1 furthermore establishes, that the latter
are indeed uniquely identified.

Fig. 14 compares the output ofrip with several other,
established, folding algorithms.

Following Chitsazet al. (2009), we stipulate an independent
initialization energy, σ0, for each hybrid, and scaled energies
for its base pairs. Many other RNA-cofolding algorithms, like
RNAcofold (Bernhartet al., 2006) and Dimitrov and Zuker (2004)
assume a single initialization energy,ε. This energy model can
a posteriori be derived fromrip, once the partition function of
the joint structuresQI and the partition functionsQR and QS

I II III IV
58,47: 50.3% 21,69: 56.5% 34,55: 45.7% 83,45: 17.3%
59,46: 54.8% 20,70: 59.5% 35,54: 51.0% 82,46: 18.9%
60,45: 52.9% 19,71: 29.8% 36,53: 49.9% 81,47: 18.5%
61,44: 28.8%

Table 1. The base pairing probabilities of the four alternative hybrids
I, II, III and IV for fhlA-OxyS, predicted byrip, see Fig. 2. Each
entry represents the positions infhlA(R)-OxyS(S) and the base pair
probability. For instance,58, 47 : 50.3% is equivalent toPR58S47 =
0.503.

AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCGGACACUA

UUUUUUUCGCCUAGGACCUCUAGGCGUUUUCAAGUGCAACCGAAAUCAAUAAGCUCAACUCUUUGAGAGCUUUGCCCGUCACUGAAGUUCCCAAUUUUCUCCACGGCGAGGCAAAG

5’-

3’-

-3’

-5’

RNAplex

AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCGGACACUA

UUUUUUUCGCCUAGGACCUCUAGGCGUUUUCAAGUGCAACCGAAAUCAAUAAGCUCAACUCUUUGAGAGCUUUGCCCGUCACUGAAGUUCCCAAUUUUCUCCACGGCGAGGCAAAG

5’-

3’-

-3’

-5’

RNAup

AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCGGACACUA

UUUUUUUCGCCUAGGACCUCUAGGCGUUUUCAAGUGCAACCGAAAUCAAUAAGCUCAACUCUUUGAGAGCUUUGCCCGUCACUGAAGUUCCCAAUUUUCUCCACGGCGAGGCAAAG

5’-

3’-

-3’

-5’

IntaRNA

AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCGGACACUA

UUUUUUUCGCCUAGGACCUCUAGGCGUUUUCAAGUGCAACCGAAAUCAAUAAGCUCAACUCUUUGAGAGCUUUGCCCGUCACUGAAGUUCCCAAUUUUCUCCACGGCGAGGCAAAG

5’-

3’-

-3’

-5’

RNAHybrid

AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCGGACACUA

UUUUUUUCGCCUAGGACCUCUAGGCGUUUUCAAGUGCAACCGAAAUCAAUAAGCUCAACUCUUUGAGAGCUUUGCCCGUCACUGAAGUUCCCAAUUUUCUCCACGGCGAGGCAAAG

5’-

3’-

-3’

-5’

Natural
fhlA

OxyS

OxyS

fhlA

OxyS

fhlA

OxyS

fhlA

OxyS

fhlA

Fig. 14. The natural structure of thefhlA-OxySinteraction and the
results predicted by several algorithms includingRNAplex.

have been computed. LetΩ1 be the set of all joint structures
having at least one external arc and denote byΩ0 the set of all
structures that have none. ThenQrip = Q(Ω1) + Q(Ω0), where
Q(Ω0) = QRQS . Taking the initiation term into account, we
computeQ = Q(Ω1) exp(−ε/kT ) + QRQS , from which we
obtain the corrected value forQ(Ω1). As shown by Bernhartet al.
(2006), the base pairing probabilities can be rescaled via

P
ǫ
ij =

ˆ

P
rip

ij Qrip
− Pij(Ω0)QRQS

˜

e−ε/kT + Pij(Ω0)QRQS

[Qrip
− QRQS]e−ε/kT + QRQS.

(5.1)
We have focussed here on the algorithmic context for computing

detailed models of RNA-RNA interactions in the most general
framework that is computationally feasible at the moment. The
current implementation ofrip may, due to the computational costs
incurred by several dozens of interdependent 4-dimensional arrays,
be viewed “just” as a reference. However, in all computed examples,
rip quite accurately reproduced the interaction regions. We are
here in a similar position as with the Sankoff algorithm (which
addresses the closely related dynamic programming problemof
simultaneous alignment and structure prediction). While the full
implementations are slow and of limited use in particular inlarge-
scale studies, they are instrumental in optimizing the procedure
and in devising efficient nearly exact pruning heuristics that can
dramatically reduce the fraction of array entries that needto be
computed (Havgaardet al., 2007).

The constructions presented here give rise to several variations.
Point in case being the computation of hybrid probabilities, i.e., the
probabilitiesP

Hy

i,j;h,ℓ that R[i, j] and S[h, ℓ] form an “interaction
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stem” or a even an entire uninterrupted interaction region Huang
et al. (2009). Another line of research concerns improved energy
models for more complex types of loops Isambert and Siggia (2000).

The algorithmic approach taken here was motivated by a
combinatorial analysis of zigzag-free interaction structures. From
a mathematical point of view, our approach is centered around the
notions of tight structures and their decomposition trees (the latter
being described in the appendix). A detailed mathematical analysis,
in particular the derivation of the generating function andfurther
enumeration results, will be discussed elsewhere.

In order to store the partition function and the base pairing
probabilities of joint structures inrip, we employ4-dimensional
arrays. For the recursion for the partition function,QI , we use
16 matrices,24 matrices forQRT , 18 matrices forQDT and45
matrices forQT , in the context of taking into account the loop
energy. The complete set of partition function recursions and all
details on the particular implementation ofrip can be found at
http://www.combinatorics.cn/cbpc/rip.html. The
space complexity ofrip is O(N4). Summations in our recursion
equations run over at most two independent indices. Therefore, the
time complexity inrip is O(N6). In order to obtain the pairing
probabilities we trace back in the decomposition tree. Thus, we have
the same space complexity and time complexity as for calculating
the partition function.
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