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Abstract. Andrews recently introduced k-marked Durfee symbols which are connected
to moments of Dyson’s rank. By these connections, Andrews deduced their generating
functions and some combinatorial properties and left their purely combinatorial proofs
as open problems. The primary goal of this article is to provide combinatorial proofs
in answer to Andrews’ request. We obtain a partition identity which gives a relation
between k-marked Durfee symbols and Durfee symbols by constructing bijections, and
all identities on k-marked Durfee symbols given by Andrews could follow from this
identity. In a similar manner, we also prove the identities due to Andrews on k-marked
odd Durfee symbols combinatorially, which resemble ordinary k-marked Durfee symbols
with a modified subscript and with odd numbers as entries.
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1 Introduction

We will adopt the terminology on partitions in Andrews [2]. A partition λ of a positive
integer n is a finite nonincreasing sequence of positive integers (λ1, λ2, . . . , λr) such that
∑r

i=1 λi = n. Then λi are called the parts of λ, λ1 is its largest part. The number of
parts of λ is called the length of λ, denoted by l(λ). The weight of λ is the sum of parts
of λ, denoted by |λ|.

The rank of a partition λ introduced by Dyson [12] is defined as the largest part
minus the number of parts, which is usually denoted by r(λ) = λ1 − l(λ). Let N(m;n)
denote the number of partitions of n with rank m, we have
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Theorem 1.1 (Dyson) The generating function for N(m;n) is given by

+∞
∑

n=0

N(m;n)qn =
1

(q; q)∞

+∞
∑

n=1

(−1)n−1qn(3n−1)/2+|m|n(1 − qn), |q| < 1. (1.1)

where (a; q)n =
∏n−1

j=0 (1 − aqj) and (a; q)∞ = limn→∞(a; q)n. The identity (1.1) was
discovered by Dyson [12] in 1944 and proved by Atkin and Swinnerton-Dyer [5] in 1954.
In 1968, Dyson [13] found a simple combinatorial argument of it. We refer to [7, p.63]
for more details.

Definition 1.2 For a nonnegative integer n, a Durfee symbol of n is a two-rowed array
with a subscript

(α, β)D =

(

α1 α2 . . . αs

β1 β2 . . . βt

)

D

(1.2)

where D ≥ α1 ≥ α2 ≥ · · · ≥ αs > 0, D ≥ β1 ≥ β2 ≥ · · · ≥ βt > 0 and n =
∑s

i=1 αi +
∑t

i=1 βi +D2.

For example, there are 5 Durfee symbols of 4.
(

1 1 1
)

1

(

1 1
1

)

1

(

1
1 1

)

1

(

1 1 1

)

1

( )

2

The difference between the lengths of α and β is called the rank of Durfee symbols
(α, β)D. We use D1(m;n) to denote the number of Durfee symbols of n with rank m.
Andrews [4, Section 3] showed the following theorem by constructing a bijection

Theorem 1.3 (Andrews) The number of ordinary partitions of n with rank m is equal
to the number of Durfee symbols of n with rank m, that is

N(m;n) = D1(m;n). (1.3)

In [4], Andrews constructed the kth symmetrized rank moment ηk(n), defined by

ηk(n) =
+∞
∑

m=−∞

(

m + bk−1
2
c

k

)

N(m,n), (1.4)

which are linear combinations of the kth rank moments Nk(n)

Nk(n) =
+∞
∑

m=−∞

mkN(m,n), (1.5)

considered by Atkin and Garvan [6]. To give a combinatorial explanation of (1.4),
Andrews [4] introduced k-marked Durfee symbols, which can be thought of as the gen-
eralized Durfee symbols.
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Definition 1.4 A k-marked Durfee symbol of n is composed of k pairs of partitions and
a subscript, which is defined as

η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

,

where αi (resp. βi) represents a partition and
∑k

i=1(|α
i|+ |βi|) +D2 = n. Furthermore,

the partitions αi and βi must satisfy the following three conditions where αi
1 (resp. βi

1)
is the largest part of the partition αi (resp. βi) and αi

l(αi) (resp. βi
l(βi)) is the smallest

part of the partition αi (resp. βi).

(1) For 1 ≤ i < k, αi must be non-empty partition, while αk and βi could be empty;

(2) βi−1
1 ≤ αi−1

1 ≤ βi
l(βi) for 2 ≤ i ≤ k;

(3) βk
1 , α

k
1 ≤ D.

Clearly, 1-marked Durfee symbol is just Durfee symbol.

Let η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

be a k-marked Durfee symbol. The pair of

partitions

(

αi

βi

)

is called the ith vector of η. We define ρi(η), the ith rank of η by

ρi(η) =

{

l(αi) − l(βi) − 1 for 1 ≤ i < k,

l(αk) − l(βk) for i = k.

For example,

(

43 43 32 32 22 21

53 32 22 21

)

5

is a 3-marked Durfee symbol of 55 where

α3 = (4, 4), α2 = (3, 3, 2), α1 = (2), and β3 = (5), β2 = (3, 2), β1 = (2). The first rank is
−1, the second rank is 0, and the third rank is 1.

Let Dk(m1, m2, . . . , mk;n) denote the number of k-marked Durfee symbols of n with
ith rank equal to mi and Dk(n) denote the number of k-marked Durfee symbols of n,
it’s clear to see that

Dk(n) =
+∞
∑

m1,...,mk=−∞

Dk(m1, m2, . . . , mk;n). (1.6)

In the recent work [4], Andrews used the connections between k-marked Durfee sym-
bols and the symmetrized rank moments (1.4) to find some identities relating the gener-
ating function for Dk(m1, m2, . . . , mk;n), as well as to deduce some combinatorial prop-
erties and Ramanujan-type congruences for k-marked Durfee symbols. At the end of the
paper, Andrews proposed a variety of serious questions which fall into 3 basic groups:
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combinatorial, asymptotic and congruential. The recent works [9, 10] by Kathrin Bring-
mann, Frank Garvan, and Karl Mahlburg focused on the study relating asymptotical and
congruential properties of k-marked Durfee symbols. They used the automorphic prop-
erties to prove the existence of infinitely many congruences for k-marked Durfee symbols.
Also, William J. Keith did some works on the congruential properties of k-marked Dur-
fee symbols in [15, 16]. He mainly showed that k-marked Durfee symbols of n equally
populate the residue classes a and b (mod 2k+1) if gcd(a, 2k+1) = gcd(b, 2k+1). The
primary goal of this article is to answer Andrews’ request on combinatorics (Problems
1-4 and 6-9 on page 39 of [4]). We will give combinatorial proofs of the identities relat-
ing the generating function for Dk(m1, m2, . . . , mk;n) and combinatorial properties for
k-marked Durfee symbols. To be specific, we first derive the following partition identity
(1.7) by constructing bijections, which gives a relation between k-marked Durfee sym-
bols and Durfee symbols. We then show that all identities on k-marked Durfee symbols
given by Andrews ( [4, Problems 1-4]) could follow from this identity. Finally, we use
the similar method to study the identities of Andrews on k-marked odd Durfee symbols
( [4, Problems 6-9]), which resemble ordinary Durfee symbols with a modified subscript
and with odd numbers as entries.

Theorem 1.5 For k ≥ 2, we have

Dk(m1, m2, . . . , mk;n) =

+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)

. (1.7)

The referee has kindly pointed out that Kagan Kursungoz has also done some study
on the combinatorics of k-marked Durfee symbols in his doctorial thesis [17] and a paper
joint with Boulet [8]. An alternative definition of k-marked Durfee symbols is given
in [17]. Using this alternative characterization, Kursungoz gave alternative proofs of
Corollaries 12, 13 and Theorem 7 in [4] (that is, Problems 2-4 in [4]), but his method
could not be applied to prove Corollary 11 in [4] (that is, Problem 1 in [4]). Moreover,
his method is essentially different from this paper.

We now briefly describe the organization of this paper. In Section 2, we consider the
relation between k-marked Durfee symbols and Durfee symbols and prove Theorem 1.5.
To this end, we introduce a special class of k-marked Durfee symbols, which we call k-
marked strict shifted Durfee symbols since each of their vectors except for the kth vector
is a two-lined strict shifted plane partition. We deduce the desired relation by building
the connections between k-marked strict shifted Durfee symbols, Durfee symbols, and
k-marked Durfee symbols respectively. In Section 3, we give combinatorial proofs of the
identities due to Andrews on k-marked Durfee symbols with the help of Theorem 1.5.
In particular, the symmetry of k-marked Durfee symbols ([4, Corollary 12]) could be
thought of as a direct consequence of Theorem 1.5. Section 4 is devoted to the study of
k-marked odd Durfee symbols.
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2 k-Marked strict shifted Durfee symbols

In this section, we will establish the relations between k-marked strict shifted Durfee
symbols, Durfee symbols, and k-marked Durfee symbols respectively, and then deduce
Theorem 1.5. We begin by defining k-marked strict shifted Durfee symbols.

To define this object, we need first give the definition of two-lined strict shifted plane
partitions which is a special case of strict shifted plane partitions introduced by Andrews
[3]. A two-lined strict shifted plane partition of n is just a pair of partitions (α, β) of n,
where α = (α1, α2, . . . , αr), β = (β1, β2, . . . , βs), r > s, and αi+1 > βi for i = 1, 2, . . . , s.

For example

(

3 3 3 2 2 1
2 1 1 1

)

is a two-lined strict shifted plane partition.

A k-marked Durfee symbol η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

is said to be strict

shifted if all of its vectors except for the kth vector (αk, βk) are two-lined strict shifted
plane partitions. For example, 3-marked Durfee symbol in (2.8) is strict shifted. Let
Dss

k (m1, m2, . . . , mk;n) denote the number of k-marked strict shifted Durfee symbols of
n with ith rank equal to mi.

We now build a connection between k-marked strict shifted Durfee symbols of n and
Durfee symbols of n.

Theorem 2.1 Given k nonnegative integers m1, m2, . . . , mk, there is a bijection Φ be-
tween the set of k-marked strict shifted Durfee symbols of n with ith rank equal to mi

and the set of Durfee symbols of n with rank equal to
∑k

i=1mi + k − 1.

Proof. The map Φ: Let η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

counted by Dss
k (m1, . . . , mk;n),

we now construct a Durfee symbol (γ, δ)D′. First set D′ = D and let γ be the par-
tition composed of all parts of α1, α2, . . . , αk and δ be the partition composed of all
parts of β1, β2, . . . , βk. Obviously, the resulting Durfee symbol (γ, δ)D is enumerated by
D1(
∑k

i=1mi + k − 1;n).

The reverse map Φ−1: Let (γ, δ)D be counted by D1(
∑k

i=1mi + k − 1;n), we

will construct a k-marked strict shifted Durfee symbol η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D′

whose ith rank equals to mi. Let
(

γ
δ

)

D

=

(

γ1 γ2 . . . γl

δ1 δ2 . . . δs

)

D

,

where D ≥ γ1 ≥ γ2 ≥ · · · ≥ γl and D ≥ δ1 ≥ δ2 ≥ · · · ≥ δs, we assume that δj = 0 for

j ≥ s+ 1. Note that l − s =
∑k

i=1mi + k − 1.

We now split (γ, δ) to generate the kth vector (αk, βk) of η. Let j be largest nonneg-
ative integer such that δj ≥ γmk+j+1, that is for any i ≥ j + 1, we have δi < γmk+i+1.
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Let
(

αk

βk

)

=

(

γ1 γ2 . . . γmk+j

δ1 δ2 . . . δj

)

,

and
(

γ′

δ′

)

=

(

γ′1 γ′2 . . . γ′l′

δ′1 δ′2 . . . δ′s′

)

,

where γ′i = γmk+j+i, δ
′
i = δj+i for i ≥ 1. Obviously, l(αk) − l(βk) = mk. Furthermore,

(γ′, δ′) is a two-lined strict shifted plane partition from the fact that for any i ≥ 1,
δi+j < γmk+i+j+1 and l′ − s′ =

∑k−1
i=1 mi + k − 1.

We continue to split (γ ′, δ′) to construct the (k − 1)th vector (αk−1, βk−1) of η. Let
j be largest nonnegative integer such that δ′j ≥ γ′mk−1+j+2, we then let

(

αk−1

βk−1

)

=

(

γ′1 γ′2 . . . γ′mk−1+j+1

δ′1 δ′2 . . . δ′j

)

,

and
(

γ′′

δ′′

)

=

(

γ′′1 γ′′2 . . . γ′′l′′

δ′′1 δ′′2 . . . δ′′s′′

)

,

where γ′′i = γ′mk−1+j+i+1, δ
′′
i = δ′j+i for i ≥ 1. Clearly, l(αk−1) − l(βk−1) = mk−1 + 1

and (αk−1, βk−1) is a two-lined strict shifted plane partition for (γ ′, δ′) is strict shifted.
Observe that δ′j+i < γ′mk−1+i+j+2 for i ≥ 1, so (γ′′, δ′′) is also strict shifted and l′′ − s′′ =
∑k−2

i=1 mi + k − 2.

Repeat the above process to generate (αk−2, βk−2), . . . , (α1, β1) respectively and let

D′ = D, we obtain a k-marked strict shifted Durfee symbol η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D
which is counted by Dss

k (m1, m2, . . . , mk;n).

We now illustrate the reverse map Φ−1 by going through an example in details. Take
m1 = 1, m2 = 1, m3 = 0, and let

(

γ
δ

)

D

=

(

6 6 3 3 3 3 2 2 1 1 1
5 5 4 2 1 1 1

)

6

,

we first split (γ, δ) to get (α3, β3) and (γ′, δ′), note that the divisional part δj is the
smallest part in δ satisfying δj ≥ γj+1.

(

α3

β3

)

=

(

6 6 3
5 5 4

)

,

(

γ′

δ′

)

=

(

3 3 3 2 2 1 1 1
2 1 1 1

)

,

we then split (γ′, δ′) to generate (α2, β2) and (α1, β1), the divisional part δ′j is the smallest
part in δ′ satisfying δ′j ≥ γ′j+3.

(

α2

β2

)

=

(

3 3 3 2 2 1
2 1 1 1

)

,

(

α1

β1

)

=

(

1 1
)

.
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Thus we get

η =

(

63 63 33 32 32 32 22 22 12 11 11

53 53 43 22 12 12 12

)

6

. (2.8)

By Theorems 2.1 and 1.3, we deduce the following partition identity:

Corollary 2.2 For mi ≥ 0 and k ≥ 1, we have

Dss
k (m1, m2, . . . , mk;n) = N

(

k
∑

i=1

mi + k − 1;n

)

. (2.9)

To establish the relation between k-marked strict shifted Durfee symbols and k-
marked Durfee symbols, we need define a statistic on k-marked Durfee symbols. In the
same way, we first define this statistic on a pair of partitions.

For (γ, δ), the part δi is said to be balanced if γi+1 ≤ δi and the number of parts
greater than δi in γ (γ1 is not counted) is equal to the number of unbalanced parts

before δi in δ. For example, let

(

γ
δ

)

=

(

4 3 3 1 1
3 2 2

)

, the first part 3 of δ is

balanced while the third part 2 is not balanced, although it satisfies the first condition
γi+1 ≤ δi, there are two parts greater than 2 (4 is not counted) in γ, while there is only
one unbalanced part (the second part 2) before the third part 2 in δ.

It should be pointed out that for any an unbalanced part δi of (γ, δ), the number of
parts greater than δi in γ (γ1 is not counted) is greater than the number of unbalanced
parts before δi in δ. We will state this in the following proposition:

Proposition 2.3 Let (γ, δ) be a pair of partitions, for any a part δj of δ, let dj denote
the difference between the number of parts greater than δj in γ (except for γ1) and the
number of unbalanced parts before δj in δ, we then have dj ≥ 0.

For the above example, we see that d1 = 0, d2 = 2, d3 = 1.

Proof. If γj+1 > δj, it’s clear to see that dj ≥ 1; If γj+1 ≤ δj, we consider the following
two cases:

Case 1 When δj−1 < γj, and at this time, there are j − 1 parts greater than δj in γ (γ1

is not counted) and the number of unbalanced parts before δj in δ is less than
or equal to j − 1, so dj ≥ 0.

Case 2 When δj−1 ≥ γj, let t be largest nonnegative integer less than j such that
δt < γt+1. Here we assume that δ0 = 0 and then t must exist. From Case 1, we
know that dt+1 ≥ 0. We use induction to prove that di ≥ 0 for t+ 2 ≤ i ≤ j.

We first prove that dt+2 ≥ 0. Note that γt+1 > δt+1 ≥ γt+2. If δt+2 < γt+2, then
dt+2 ≥ dt+1 ≥ 0; If δt+2 ≥ γt+2, then dt+2 ≥ dt+1 − 1. In particular, if dt+1 = 0,
then δt+1 is balanced, thus dt+2 = dt+1 = 0. So dt+2 ≥ 0.
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Assume that di ≥ 0 and γp > δi ≥ γp+1. We will prove that di+1 ≥ 0. If
δi+1 ≥ γp+1, the similar argument on the case for δt+2 could show that di+1 ≥ 0.
If δi+1 < γp+1, and then di+1 ≥ di ≥ 0.

We use b(γ, δ) to denote the number of balanced parts in (γ, δ). Clearly, 0 ≤ b(γ, δ) ≤

l(δ). Let η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

be a k-marked Durfee symbol, we define nbi(η),

called the ith balanced number by

nbi(η) =

{

b(αi, βi) for 1 ≤ i < k,

0 for i = k.

For

(

43 43 32 22 22 21 21 11

53 32 22 21 11

)

5

, we have nb1 = 1, nb2 = 2, nb3 = 0.

We next state a theorem concerning two-lined strict shifted plane partitions.

Theorem 2.4 Given two nonnegative integers r,m, there is a bijection ψ between the
set of pairs of partitions (α, β) of n with β1 ≤ α1 where there are r balanced parts and
the difference between the lengths of α and β equals to m and the set of two-lined strict
shifted plane partitions (ᾱ, β̄) of n where the difference between the lengths of ᾱ and β̄
equals to m+ 2r.

Proof. The map ψ: Let (α, β) be a pair of partitions with r balanced parts and
l(α) − l(β) = m. The two-lined strict shifted plane partition (ᾱ, β̄) is constructed as
follows: ᾱ is composed of all parts of α and all balanced parts of β. β̄ consists of all

unbalanced parts of β. Take an example, let

(

α
β

)

=

(

6 5 5 3 3 2
5 4 4 3

)

, where

the underlined parts in β are balanced. According to the above construction, we get
(

ᾱ
β̄

)

=

(

6 5 5 5 3 3 3 2
4 4

)

. It’s clear to see that |α| + |β| = |ᾱ| + |β̄|,

l(ᾱ) − l(β̄) = l(α) + r − (l(β) − r) = m + 2r. By Proposition 2.3, one can easily know
that (ᾱ, β̄) is strict shifted.

The reverse map ψ−1: Let (ᾱ, β̄) be a two-lined strict shifted plane partition where
the difference between the lengths of ᾱ and β̄ is m + 2r, that is l(ᾱ) − l(β̄) = m + 2r.
We now construct a pair of partitions (α, β) with r balanced parts and l(α)− l(β) = m.

First of all, attach a subscript gi for each part ᾱi of ᾱ, where gi denotes the difference
between the number of parts before ᾱi in ᾱ (ᾱ1 is not counted) and the number of parts
greater than or equal to ᾱi in β̄. We let g1 = 0.

For example, if

(

ᾱ
β̄

)

=

(

6 5 5 5 3 3 3 2 1
4 4 3

)

, attach the subscripts for

all parts of ᾱ to get

(

60 50 51 52 30 31 32 23 14

4 4 3

)

.

8



One could easily know that g2 = 0 and gi ≥ 0 for any 3 ≤ i ≤ l(ᾱ) from the fact that
(ᾱ, β̄) is strict shifted. Let ᾱti be the smallest part in all of parts of ᾱ with subscript i,
we have the following conclusion:

Lemma 2.5 For 0 ≤ i ≤ m+ 2r − 2, ᾱti exists, and ᾱt0 ≥ ᾱt1 ≥ · · · ≥ ᾱtm+2r−2
.

In the above example, m+ 2r = 6 and ᾱt0 = 3, ᾱt1 = 3, ᾱt2 = 3, ᾱt3 = 2, ᾱt4 = 1.

Proof. We use induction to show that the sequence of subscripts {g1, g2, . . . , gl(ᾱ)} consists
of all nonnegative integers less than m+2r−1. Obviously, 0 is in this sequence. Assume
that i is in this sequence, that is there is a part ᾱp such that gp = i, we now prove that
i+ 1 is also in this sequence. By the induction hypothesis, we know the subscript of the
part ᾱp is i, that is β̄p−i−1 < ᾱp ≤ β̄p−i−2. Let l(β̄) = s and note that i ≤ m + 2r − 3,
we have s + i + 3 ≤ s + m + 2r = l(ᾱ). If ᾱs+i+3 ≤ β̄s, then the subscript of ᾱs+i+3 is
i + 1; Otherwise, there must exist p+ 1 ≤ j ≤ s+ i+ 2 such that β̄j−i−2 < ᾱj ≤ β̄j−i−3

this is because that ᾱp+1 ≤ β̄p−i−2 and ᾱs+i+2 > β̄s. Hence, the subscript of ᾱj is i + 1.
Therefore, ᾱti exists for 0 ≤ i ≤ m + 2r − 2 and ᾱt0 ≥ ᾱt1 ≥ · · · ≥ ᾱtm+2r−2

when
note that given a part ᾱp with subscript i, we always could find a part after ᾱp whose
subscript is i+ 1.

Let γ be a partition having r parts whose parts are ᾱt0 , ᾱt2 , . . . , ᾱtr−1
respectively.

Take r = 2 in the above example, γ = (3, 3). We now construct (α, β) with r balanced
parts and l(α)− l(β) = m. The partition α consists of all parts of ᾱ except for the parts
in γ. The partition β is composed of all parts of β̄ and γ. In the above example, we

therefore get

(

α
β

)

=

(

6 5 5 5 3 2 1
4 4 3 3 3

)

.

It’s obvious to see that |ᾱ|+ |β̄| = |α|+ |β|, l(α)− l(β) = l(ᾱ)− l(γ)− [l(β̄)+ l(γ)] =
m. We now show that (α, β) has exactly r balanced parts. From Lemma 2.5 and the
definition of γ, we know that for each part βt from γ in β, the number of parts greater
than βt in α equals the number of parts from β̄ greater than or equal to βt in β. Thus we
just need to prove that the parts from β̄ in β are unbalanced. We use induction on the
part from β̄ in β. We first verify the largest part β̄1 of β̄ is unbalanced in β. Supposed
that there are t parts γ1, γ2, . . . , γt from γ greater than β̄1, then γi = ᾱi+1, i = 1, 2, . . . , t
and α2 = ᾱt+2. We claim that α2 = ᾱt+2 > β̄1. Recall that the part γi is the smallest
part whose subscript is i − 1. If α2 = ᾱt+2 ≤ β̄1, the subscript of ᾱt+2 is less than t,
this contradicts to the definition of γi. Clearly, these t parts from γ are balanced, and
β̄1 is not balanced. We now consider the part β̄j from β̄ in β. Assume that all parts
from β̄ before β̄j in β are not balanced and there are t parts from γ before β̄j. We next
justify αj+1 > β̄j and then by the induction hypothesis, we know that there are j − 1
unbalanced parts before β̄j in β, while there are at least j parts larger than β̄j in α, so
β̄j is unbalanced. Since there are t parts from γ before β̄j, then αj+1 = ᾱt+j+1 and if
ᾱt+j+1 = αj+1 ≤ β̄j, then the subscript of ᾱt+j+1 is less than t, which contradicts to the
definition of the parts of γ, so αj+1 > β̄j. This completes the proof.
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The next theorem gives a relation between k-marked strict shifted Durfee symbols
and k-marked Durfee symbols.

Theorem 2.6 Given 2k nonnegative integers m1, m2, . . . , mk, and t1, t2, . . . , tk where
tk = 0. There is a bijection Ψ between the set of k-marked Durfee symbols of n with
ith rank equal to mi and ith balanced number equal to ti and the set of k-marked strict
shifted Durfee symbols of n with ith rank equal to mi + 2ti.

Proof. Let η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

be a k-marked Durfee symbol with ith rank

equal to mi and ith balanced number equal to ti. We now apply the bijection ψ in
Theorem 2.4 to each vector (αi, βi) of η except for the kth vector (αk, βk), and let
(ᾱi, β̄i) = ψ(αi, βi). From Theorem 2.4, it’s known that (ᾱi, β̄i) is strict shifted and

l(ᾱi) − l(β̄i) = l(αi) − l(βi) + 2ti. Let η̄ =

(

αk, ᾱk−1, . . . , ᾱ1

βk, β̄k−1, . . . , β̄1

)

D

which has the

same subscript and the same kth vector with η. It’s obvious to see that η̄ is a k-marked
strict shifted Durfee symbol with ith rank equal to mi + 2ti.

By Theorem 2.6, one can derive the following identity readily.

Corollary 2.7 For mi ≥ 0 and k ≥ 2, we have

Dk(m1, m2, . . . , mk;n) =

+∞
∑

t1,..., tk−1=0

Dss
k (m1 + 2t1, . . . , mk−1 + 2tk−1, mk;n). (2.10)

Combine Corollaries 2.2 and 2.7 to get:

Theorem 2.8 For mi ≥ 0 and k ≥ 2, we have

Dk(m1, m2, . . . , mk;n) =

+∞
∑

t1,..., tk−1=0

N

(

k
∑

i=1

mi + 2

k−1
∑

i=1

ti + k − 1;n

)

. (2.11)

The following compact form of Theorem 2.8 can be easily obtained upon utilizing the
fact that the number of solutions to t1 + t2 + · · · + tk−1 = j in nonnegative integers is
(

j+k−2
k−2

)

.

Theorem 2.9 For mi ≥ 0 and k ≥ 2, we have

Dk(m1, m2, . . . , mk;n) =
+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

mi + 2j + k − 1;n

)

. (2.12)

We next generalize Theorem 2.9 to give Theorem 1.5 which holds for any integer mi.
To do this, we prove the following conclusion by constructing a simple bijection Θ.
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Theorem 2.10 For k ≥ 1 and 1 ≤ p ≤ k, we have

Dk(m1, . . . , mp, . . .mk;n) = Dk(m1, . . . ,−mp, . . .mk;n). (2.13)

Proof. Let η =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

be a k-marked Durfee symbol with ith rank

equal to mi. We will construct another k-marked Durfee symbol η̄ with ith rank equal
to m̄i such that m̄p = −mp and m̄i = mi for i 6= p.

Define

η̄ =

(

αk, . . . , αp+1 ᾱp, αp−1, . . . , α1

βk, . . . , βp+1, β̄p, βp−1, . . . , β1

)

D

,

where ᾱk = βk and β̄k = αk for p = k; When p 6= k, ᾱp consists of all parts of βp and the
largest part αp

1 of αp. β̄p consists of all parts of αp except for the largest part αp
1. It’s clear

to see that m̄p = l(ᾱp)−l(β̄p)−1 = l(βp)+1−[l(αp)−1]−1 = −[l(αp)−l(βp)−1)] = −mp

for p 6= k and m̄k = l(ᾱk) − l(β̄k) = −[l(αk) − l(βk)] = −mk, so η̄ is desired.

By Theorem 2.10, we could generalize Theorem 2.8 to give the following theorem
which is useful to prove a relationship between k-marked Durfee symbols and the sym-
metrized rank moment given by Andrews (see Theorem 3.3).

Theorem 2.11 For k ≥ 2, we have

Dk(m1, m2, . . . , mk;n) =
+∞
∑

t1,..., tk−1=0

N

(

k
∑

i=1

|mi| + 2
k−1
∑

i=1

ti + k − 1;n

)

. (2.14)

Theorem 1.5 is a compact form of Theorem 2.11 which immediately follows from Theo-
rems 2.9 and 2.10.

3 Andrews’ identities on k-marked Durfee symbols

In this section, we aim to show the identities on k-marked Durfee symbols given by
Andrews with the help of Theorem 1.5. Recall that Dk(m1, m2, . . . , mk;n) denotes the
number of k-marked Durfee symbols of n with ith rank equal to mi. Andrews considered
the following generating function for Dk(m1, m2, . . . , mk;n):

Rk(x1, . . . , xk; q) =
+∞
∑

m1,...,mk=−∞

+∞
∑

n=0

Dk(m1, . . . , mk;n)xm1

1 · · ·xmk

k qn, |q| < 1. (3.15)

By applying the k-fold generalization of Watson’s transformation between a very-well-
poised 8φ7-series and a balanced 4φ3-series [1, p.199, Theorem 4], Andrews gave the
explicit form of the generating function Rk(x1, x2, . . . , xk; q) in the following theorem.
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Theorem 3.1 (Corollary 11, Andrews [4])

Rk(x1, x2, . . . , xk; q) =
1

(q; q)∞

+∞
∑

n=1

(−1)n−1q3n(n−1)/2+kn (1 + qn)(1 − qn)2

∏k
j=1(1 − xjqn)(1 − qn

xj
)
. (3.16)

Proof. We will reformulate this identity as the partition identity (1.7) in Theorem 1.5.
The key step is to give a partition interpretation of the right hand side of (3.16). We
will show that it is the generating function for the summation on the right hand side of
(1.7).

First, the right hand side of (3.16) can be written as the difference between the
following two terms:

1

(q; q)∞

+∞
∑

n=1

(−1)nqn(3n−1)/2+kn (1 − x1)(1 − x−1
1 )(1 + qn)

(1 − x1qn)(1 − x−1
1 qn)

×
1

∏k
j=2(1 − xjqn)(1 − qn

xj
)

−
1

(q; q)∞

+∞
∑

n=1

(−1)nqn(3n−1)/2+(k−1)n 1 + qn

∏k
j=2(1 − xjqn)(1 − qn

xj
)
.

We next expand each term of the above two terms, note that

(1 − x1)(1 − x−1
1 )(1 + qn)

(1 − x1qn)(1 − x−1
1 qn)

=
(1 − x1)

(1 − x1qn)
+

(1 − x−1
1 )

(1 − x−1
1 qn)

= 2 +

+∞
∑

m1=−∞

m1 6=0

xm1

1 [qn|m1| − qn(|m1|−1)],

1

(1 − xjqn)(1 − x−1
j qn)

=
+∞
∑

a=0

xa
j q

na
+∞
∑

b=0

x−b
j qnb =

+∞
∑

mj=−∞

x
mj

j

+∞
∑

tj=0

qn(|mj |+2tj).

Given k integers m1 . . . , mk, it’s clear to see that the coefficients of xm1

1 xm2

2 · · ·xmk

k on
the series expansion of the right hand side of (3.16) are

1

(q; q)∞

+∞
∑

n=1

(−1)nqn(3n−1)/2+kn[qn|m1| − qn(|m1|−1)]

+∞
∑

t2,...,tk=0

qn(
∑k

i=2 |mi|+2
∑k

i=2 ti)

=
1

(q; q)∞

+∞
∑

n=1

(−1)n−1qn(3n−1)/2+kn(1 − qn)qn(|m1|−1)

+∞
∑

j=0

(

j + k − 2

k − 2

)

qn(
∑k

i=2
|mi|+2j)

=
+∞
∑

j=0

(

j + k − 2

k − 2

)

1

(q; q)∞

+∞
∑

n=1

(−1)n−1qn(3n−1)/2(1 − qn)qn(
∑k

i=1
|mi|+2j+k−1)

=
+∞
∑

j=0

(

j + k − 2

k − 2

) +∞
∑

n=0

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)

qn

=
+∞
∑

n=0

qn

[

+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)]

,
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where the penultimate identity follows from Theorem 1.1 and we then obtain the follow-
ing combinatorial interpretation:

1

(q; q)∞

+∞
∑

n=1

(−1)n−1q3n(n−1)/2+kn (1 + qn)(1 − qn)2

∏k
j=1(1 − xjqn)(1 − qn

xj
)

=
+∞
∑

m1,...,mk=−∞

+∞
∑

n=0

[

+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)]

xm1

1 · · ·xmk

k qn. (3.17)

Combining (3.15) and (3.17), we reach our conclusion that the identity (3.16) can be
restated as the partition identity (1.7). Thus, we have obtained a combinatorial proof of
(3.16) based on Theorem 1.5.

Recently, Bringmann, Lovejoy, and Osbur defined a two-parameter generalization of
k-marked Durfee symbols in [11]. They deduced the generating function [11, Theorem
2.2] for the two-parameter generalization of k-marked Durfee symbols using the similar
argument of Andrews, which reduces to the identity (3.16) when d = e = 0.

From the generating function Rk(x1, x2, . . . , xk; q) in Theorem 3.1, Andrews immedi-
ately found the following symmetry of k-marked Durfee symbols.

Theorem 3.2 (Corollary 12, Andrews [4]) Dk(m1, m2, . . . , mk;n) is symmetric in
m1, m2, . . . , mk.

Proof. This symmetry can also immediately follow from Theorem 1.5.

In fact, the composite of the bijections in Section 2 provides a bijection for this
symmetry. We take an example to explain this process. Let

η =

(

63 32 32 22 22 12 11

53 32 32 12 11 11

)

6

counted by D3(−2, 1, 0; 68),

we aim to construct a 3-marked Durfee symbol η̄ counted by D3(1,−2, 0; 68). We will
first combine all subscripts of 3-marked Durfee symbol η to get a Durfee symbol, and
then split this Durfee symbol over again to get our desired 3-marked Durfee symbol η̄.

First, applying the bijection Θ in Theorem 2.10 to η, we get a 3-marked Durfee
symbol η′ which is enumerated by D3(2, 1, 0; 68),

η′ =

(

63 32 32 22 22 12 11 11 11

53 32 32 12

)

6

,

Next, utilize the bijection Ψ in Theorem 2.6 to get a 3-marked strict shifted Durfee
symbol η′′. Observe that there are two balanced parts in the second vector of η ′, and
there is no balanced part in other vectors of η′. So we will get a 3-marked strict shifted
Durfee symbol η′′ which is counted by Dss

3 (2, 1 + 2 × 2, 0; 68),

η′′ =

(

63 32 32 32 32 22 22 12 11 11 11

53 12

)

6

,
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we then apply the bijection Φ in Theorem 2.1 to get a Durfee symbol η ′′′ which is counted
by D1(9; 68)

η′′′ =

(

6 3 3 3 3 2 2 1 1 1 1
5 1

)

6

.

Thus we complete the first step. We next split the Durfee symbol η ′′′ over again.

First, apply the reverse map Φ−1 in Theorem 2.1 to get a 3-marked strict shifted
Durfee symbol η̄′′ which is counted by Dss

3 (1, 2 + 2 × 2, 0; 68),

η̄′′ =

(

63 32 32 32 32 22 22 12 12 11 11

53 12

)

6

,

using the reverse map Ψ−1 in Theorem 2.6, we get a 3-marked Durfee symbol η̄ ′ counted
by D3(1, 2, 0; 68)

η̄′ =

(

63 32 32 22 22 12 12 11 11

53 32 32 12

)

6

,

Finally, the desired 3-marked Durfee symbol η̄ counted by D3(1,−2, 0; 68) is obtained
when we apply the bijection Θ in Theorem 2.10 to η̄ ′.

η̄ =

(

63 32 32 32 12 11 11

53 32 22 22 12 12

)

6

.

By the generating functionRk(x1, x2, . . . , xk; q) and the generating function for η2k(n),
Andrews showed that the number of (k+1)-marked Durfee symbols of n equals the sym-
metrized (2k)-th moment function at n in [4], that is

Theorem 3.3 (Corollary 13, Andrews [4]) For k ≥ 1,

Dk+1(n) = η2k(n). (3.18)

Proof. Recall that

η2k(n) =

+∞
∑

m=−∞

(

m+ k − 1

2k

)

N(m;n) =

+∞
∑

m=1

[(

m + k − 1

2k

)

+

(

m + k

2k

)]

N(m;n),

where the second equality follows from the rank symmetry N(−m;n) = N(m;n) and
the fact

(

−m+k−1
2k

)

=
(

m+k
2k

)

. While,

Dk+1(n) =
+∞
∑

m1,...,mk+1=−∞

Dk+1(m1, m2, . . . , mk+1;n)

=
+∞
∑

m1,...,mk+1=−∞

+∞
∑

t1,..., tk=0

N

(

k+1
∑

i=1

|mi| + 2
k
∑

i=1

ti + k;n

)

,
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where the second equality follows from Theorem 2.11. So it suffices to show that the
number of solutions to |m1|+ · · ·+ |mk+1|+2t1 ++ · · ·+2tk = m−k where mi is integer,
and ti is nonnegative integer equals to

(

m+k−1
2k

)

+
(

m+k
2k

)

.

Let c(n) denote the number of solutions to |m1| + |m2| + · · · + |mk+1| + 2t1 + 2t2 +
· · · + 2tk = n where mi is integer and ti is nonnegative integer. It’s easy to know that
the generating function for c(n) is

+∞
∑

n=0

c(n)qn = (1 + 2q + 2q2 + 2q3 + · · · )k+1(1 + q2 + q4 + q6 + · · · )k

=
(1 + q)k+1

(1 − q)k+1
×

1

(1 − q2)k

= (1 + q) ×
1

(1 − q)2k+1

= (1 + q)

+∞
∑

n=0

(

2k + n

n

)

qn

=
+∞
∑

n=0

(

2k + n

2k

)

qn +
+∞
∑

n=1

(

2k + n− 1

2k

)

qn.

Comparing the coefficients of qn in the above expression, we obtain

c(n) =

(

2k + n

2k

)

+

(

2k + n− 1

2k

)

.

Thus we reach our conclusion.

By partial fraction expansion, Andrews [4] also gave the following relationship be-
tween the generating function for k-marked Durfee symbols and the generating function
for Durfee symbols, which plays an important role in the study of Ramanujan-type con-
gruences for k-marked Durfee symbols.

Theorem 3.4 (Theorem 7, Andrews [4])

Rk(x1, x2, . . . , xk; q) =
k
∑

i=1

R1(xi; q)
∏k

j=1

j 6=i
(xi − xj)(1 − 1

xixj
)
. (3.19)

Proof. Similarly, we will restate this identity as the partition identity (1.7) in The-
orem 1.5. We first consider the series expansion of the right hand side of (3.19).
To do this, we need to work in a larger ring: the field of iterated Laurent series
K � xk, xk−1, . . . , x1 �= K((xk))((xk−1)) · · · ((x1)) where K = C(q), in which all series
are regarded first as Laurent series in x1, then as Laurent series in x2, and so on. For
more detailed account of the properties of this field, with other applications, see [18] and
[19].
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Every element of K � xk, xk−1, . . . , x1 � has a unique iterated Laurent series ex-
pansion. In particular, the series expansion of 1/(1 − 1

xixj
) is:

1

1 − 1
xixj

= −
xixj

1 − xixj
= −

+∞
∑

l=1

xl
ix

l
j. (3.20)

The series expansion of 1/(xi − xj) will be especially important. If j < i, then

1

xi − xj

=
x−1

i

1 −
xj

xi

=
+∞
∑

l=0

x−l−1
i xl

j.

However, if j > i then this expansion is not valid and instead we have the expansion:

1

xi − xj
=

−x−1
j

1 − xi

xj

= −

+∞
∑

l=0

xl
ix

−l−1
j .

Thus for j < i, the series expansion of 1
(xi−xj)(1−x−1

i x−1

j )
is

1

(xi − xj)(1 − x−1
i x−1

j )
= −

+∞
∑

l=1

xl
ix

l
j

+∞
∑

m=0

x−m−1
i xm

j = −
+∞
∑

mj=1

x
mj

j

mj−1
∑

tj=0

x
2tj−mj+1
i , (3.21)

and for j > i, we have the following expansion:

1

(xi − xj)(1 − x−1
i x−1

j )
=

+∞
∑

l=1

xl
ix

l
j

+∞
∑

m=0

xm
i x

−m−1
j =

+∞
∑

mj=−∞

x
mj

j

+∞
∑

tj=0

x
|mj |+2tj+1
i . (3.22)

We now consider the series expansion of the ith term of the right hand side of (3.19).

R1(xi; q)
∏k

j=1

j 6=i
(xi − xj)(1 −

1
xixj

)
=

∑+∞
n=0

∑+∞
mi=−∞D1(mi;n)xmi

i qn

∏k
j=1

j 6=i
(xi − xj)(1 − 1

xixj
)

. (3.23)

By (3.21) and (3.22), we obtain a series expansion of (3.23), in which the exponents of
x1, x2, . . . , xi−1 must be positive and the coefficients of xm1

1 · · ·xmk

k qn form1, . . . , mi−1 ≥ 1
are

(−1)i−1
∑

ti

D1

(

i−1
∑

j=1

mj +mi −

k
∑

j=i+1

|mj| − 2|ti| − (k − 1);n

)

,

where the sum ranges over all sequences ti = (t1, . . . , t̂i, . . . , tk) (omitting ti) where
0 ≤ tj < |mj| for j < i and tj could be arbitrary nonnegative integer for j > i. Define

|ti| =
∑k

j=1

j 6=i
tj.
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Thus, the right hand side of (3.19) has the following series expansion:

k
∑

i=1

R1(xi; q)
∏k

j=1

j 6=i
(xi − xj)(1 −

1
xixj

)
=

k
∑

i=1

+∞
∑

m1,...,mi−1=1

+∞
∑

mi,...,mk=−∞

+∞
∑

n=0

xm1

1 · · ·xmk

k qn (3.24)

×

[

(−1)i−1
∑

ti

D1

(

i−1
∑

j=1

mj +mi −

k
∑

j=i+1

|mj| − 2|ti| − (k − 1);n

)]

.

Let mi = (m1, . . . , mk) where mj ≥ 1 for j < i, mi ≤ 0, and others could be arbitrary
integers. Define xmi = xm1

1 · · ·xmk

k . Obviously, the term xmiqn would be appeared in
the first i terms of (3.24). We next use induction to prove that the sum of coefficients
of xmiqn in (3.24) equals to

+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)

. (3.25)

We first consider the coefficients of xm1qn in (3.24). It’s known that only the first term
of (3.24) contains the term xm1qn, and the coefficients of xm1qn are

∑

t1

D1

(

m1 −

k
∑

i=2

|mi| − 2|t1| − (k − 1);n

)

=
+∞
∑

j=0

(

j + k − 2

k − 2

)

N

(

k
∑

i=1

|mi| + 2j + k − 1;n

)

,

where the equality follows from the fact that m1 ≤ 0, D1(−m;n) = N(m;n) and the
number of solutions to t2 + t3 + · · ·+ tk = j in nonnegative integers is

(

j+k−2
k−2

)

.

Assume that the sum of coefficients of xmpqn in (3.24) equals to (3.25), we now
show that the sum of coefficients of xmp+1qn is also equal to (3.25). Observe that xmpqn

appears in the first p terms of (3.24) and the term xmp+1qn appears in the first (p + 1)
terms. Furthermore, the coefficients of xmpqn and xmp+1qn are the same in the first
(p − 1) terms. Therefore, if we verify the sum of the coefficients of xmp+1qn in the pth
term and (p+ 1)th term of (3.24) equals to the coefficients of xmpqn in the pth term, we
could reach our conclusion by the induction hypothesis.

The coefficients of xmpqn (where mp ≤ 0) in the pth term of (3.24) are

(−1)p−1
∑

tp

D1

(

p−1
∑

j=1

mj −
k
∑

j=p

|mj| − 2|tp| − (k − 1);n

)

, (3.26)
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and the sum of the coefficients of xmp+1qn (where mp ≥ 1 ) in the pth term and (p+1)th
term of (3.24) is

(−1)p−1
∑

tp

D1

(

p
∑

j=1

mj −

k
∑

j=p+1

|mj| − 2|tp| − (k − 1);n

)

+ (−1)p
∑

tp+1

D1

(

p
∑

j=1

mj −

k
∑

j=p+1

|mj| − 2|tp+1| − (k − 1);n

)

, (3.27)

In order to prove the sum (3.27) is equal to (3.26), we need the following lemma.

Lemma 3.5 Given a positive integer k and p (< k) positive integers m1, m2, . . . , mp,
define k

p
k(m1, . . . , mp−1) to be the set of all sequences tp = (t1, . . . , t̂p, . . . , tk) of length

k − 1 in nonnegative integers (omitting the pth vector tp) such that tj less than |mj| for

j < p. Let |tp| =
∑k

j=1

j 6=p
tj. We have the following two results:

(1) The number of sequences tp ∈ k
p
k(m1, . . . , mp−1) where the (p+ 1)th vector tp+1 <

|mp| is equal to the number of sequences t′p+1 ∈ k
p+1
k (m1, . . . , mp) such that |tp| =

|t′p+1|.

(2) The number of sequences tp ∈ k
p
k(m1, . . . , mp−1) where the (p+ 1)th vector tp+1 ≥

|mp| is equal to the number of sequences t′p ∈ k
p
k(m1, . . . , mp−1) such that |tp| =

|t′p| + |mp|.

Proof. Given a sequence tp = (t1, . . . , t̂p, . . . , tk) (omitting tp) where 0 ≤ tj < |mj| for
j < i and others could be arbitrary nonnegative integers.

(1) If tp+1 < |mp|, we define t′p+1 = (t′1, . . . , t̂
′
p+1, . . . , t

′
k) where t′j = tj for j 6= p, p+ 1

and t′p = tp+1. Obviously, t′p+1 ∈ k
p+1
k (m1, . . . , mp) and |t′p| = |t′p+1|.

(2) If tp+1 ≥ |mp|, we define t′p = (t′1, . . . , t̂
′
p, . . . , t

′
k) where t′j = tj for j 6= p + 1 and

t′p+1 = tp+1−|mp|, it’s clear to see that t′p ∈ k
p
k(m1, . . . , mp−1) and |tp| = |t′p|+|mp|.

Furthermore, one can easily see that the above two processes are reservable.

By Lemma 3.5, the sum (3.27) is clearly equal to (3.26). Thus we get our conclusion,
and by the definition of Rk(x1, x2, . . . , xk; q) , we could recast (3.19) as the partition
identity (1.7).
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4 k-Marked odd Durfee symbols

This section is devoted to solve the problems raised by Andrews ([4, Problems 6-9]) on
k-marked odd Durfee symbols. We begin this section by defining odd Durfee symbols
which resemble ordinary Durfee symbols with a modified subscript and with odd numbers
as entries.

Definition 4.1 An odd Durfee symbol of n is a two-rowed array with a subscript

(α, β)D =

(

α1 α2 . . . αs

β1 β2 . . . βt

)

D

(4.28)

where αi and βi are all odd numbers, 2D + 1 ≥ α1 ≥ α2 ≥ · · · ≥ αs > 0, 2D + 1 ≥ β1 ≥
β2 ≥ · · · ≥ βt > 0, and n =

∑s
i=1 αi +

∑t
i=1 βi + 2D2 + 2D + 1.

The odd rank of an odd Durfee symbol is defined as the number of parts of α minus
the number of parts of β, let D0

1(m;n) denote the number of odd Durfee symbols of n
with odd rank m, we then have

Theorem 4.2 The generating function for D0
1(m;n) is given by

+∞
∑

n=0

D0
1(m;n)qn =

1

(q2; q2)∞

+∞
∑

n=0

(−1)nq3n2+3n+1+|m|(2n+1). (4.29)

This result can easily follow by comparing the coefficients of zm in (4.30) given by
Andrews [4, (8.4)-(8.5)]:

+∞
∑

n=1

+∞
∑

m=−∞

D0
1(m;n)zmqn =

∑

n≥0

q2n(n+1)+1

(zq; q2)n+1(z−1q; q2)n+1

=
1

(q2; q2)∞

+∞
∑

n=−∞

(−1)nq3n2+3n+1

1 − zq2n+1
, (4.30)

where the first equality follows by direct combinatorial argument and the second equality
is given by [20, p.66].

Andrews [4] also defined the kth symmetrized odd rank moment by

η0
k(n) =

+∞
∑

m=−∞

(

m + bk−1
2
c

k

)

D0
1(m;n), (4.31)

and introduced k-marked odd Durfee symbols, whose definition is almost identical to
that of k-marked Durfee symbols (Definition 1.4).
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Definition 4.3 A k-marked odd Durfee symbol of n is composed of k pairs of partitions
into odd parts with a subscript, which is defined as

η0 =

(

αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)

D

,

where αi (resp. βi) are all partitions with odd parts and
∑k

i=1(|α
i|+|βi|)+2D2+2D+1 =

n. Furthermore, the partitions αi and βi must satisfy almost the same conditions with
k-marked Durfee symbols expect for the third term in Definition 1.4 where for the kth
vector (αk, βk) of k-marked odd Durfee symbol, βk

1 , α
k
1 ≤ 2D + 1.

Following k-marked Durfee symbol, Andrews defined the ith odd rank for k-marked odd
Durfee symbol. For a k-marked odd Durfee symbol η0, we define ρi(η

0), the ith odd rank
of η0 by

ρi(η
0) =

{

l(αi) − l(βi) − 1 for 1 ≤ i < k,

l(αk) − l(βk) for i = k.

Let D0
k(m1, m2, . . . , mk;n) denote the number of k-marked odd Durfee symbols of n

with ith odd rank equal to mi and D0
k(n) denote the number of k-marked odd Durfee

symbols of n. Define R0
k(x1, x2, . . . , xk; q) by

R0
k(x1, x2, . . . , xk; q) =

+∞
∑

m1,...,mk=−∞

+∞
∑

n=0

D0
k(m1, m2, . . . , mk;n)xm1

1 xm2

2 · · ·xmk

k qn.

Andrews deduced the following four identities on k-marked odd Durfee symbols which
are much similar with k-marked Durfee symbols.

Theorem 4.4 (Corollary 27, Andrews [4])

R0
k(x1, x2, . . . , xk; q) =

1

(q2; q2)∞

+∞
∑

n=0

(−1)nq3n2+(2k+1)n+k 1 − q4n+2

∏k
j=1(1 − xjqn)(1 − qn

xj
)
. (4.32)

Theorem 4.5 (Corollary 28, Andrews [4]) D0
k(m1, m2, . . . , mk;n) is symmetric in

m1, m2, . . . , mk.

Theorem 4.6 (Corollary 29, Andrews [4]) For k ≥ 1,

D0
k+1(n) = η0

2k(n). (4.33)

Theorem 4.7 (Theorem 25, Andrews [4])

R0
k(x1, x2, . . . , xk; q) =

k
∑

i=1

R0
1(xi; q)

∏k
j=1

j 6=i
(xi − xj)(1 − 1

xixj
)
. (4.34)
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We now give a brief expository of how to prove these four conclusions combinatorially.
First of all, it’s straightforward to see that the bijection Φ in Theorem 2.1, the bijection
Ψ in Theorem 2.6 and the bijection Θ in Theorem 2.10 in Section 2 are valid for k-marked
odd Durfee symbols, one then easily deduces the same result for k-marked odd Durfee
symbols as Theorem 1.5.

Theorem 4.8 For k ≥ 2, we have

D0
k(m1, m2, . . . , mk;n) =

+∞
∑

j=0

(

j + k − 2

k − 2

)

D0
1

(

k
∑

i=1

|mi| + 2j + k − 1;n

)

. (4.35)

Thus, Theorems 4.5, 4.6, and 4.7 can be deduced from Theorem 4.8 by the precisely
same progressions as Theorems 3.2, 3.3, and 3.4 in Section 3. To prove Theorem 4.4,
it suffices to prove that the right hand side of (4.32) is the generating function for the
summation on the right hand side of (4.35), which can be easily derived by Theorem
4.2, following the same progression as Theorem 3.1.
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