On k-tuple domination of random graphs*

Wang Bin^{\dagger} and Xiang Kai-Nan
Center for Combinatorics, Nankai University
Tianjin City, 300071, P. R. China

Abstract

In graph $G=(V, E)$, a vertex set $D \subseteq V$ is called a domination set if any vertex $u \in V \backslash D$ is connected to at least one vertex in D. Generally, for any natural number k, the k-tuple domination set D is a vertex set such that any vertex $u \in V \backslash D$ is connected to at least k vertices in D. The k-tuple domination number is the minimum size of k-tuple domination sets. It is known the 1-tuple domination number (i.e. domination number) of classical random graphs $G(n, p)$ with fixed $p \in(0,1)$ asymptotically almost surely (a.a.s.) has a two point concentration (Wieland and Godbole [11]). In this paper, we prove the 2tuple domination number of $G(n, p)$ with fixed $p \in(0,1)$ a.a.s. has a two-point concentration.

Keywords: Domination; random graph; k-tuple domination.
AMS 2000 subject classifications. 05C80, 05C69, 60C05.

1. Introduction and main result

In a graph $G=(V, E)$, a vertex is said to dominate itself and its neighbors. A dominating set of G is a subset $D \subseteq V$ such that any vertex in $V \backslash D$ is dominated by at least one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of dominating sets of G. In general, for any natural number k, Harary and Haynes [5] introduced the following k-tuple dominating set: a k-tuple dominating set of G is a subset D of V such that any vertex outside D is connected to at least k vertices in D (in this case, we say every vertex in $V \backslash D$ is dominated by at least k vertices of D). Define k-tuple domination number $\gamma_{k}(G)$ as the minimum cardinality of k-tuple dominating sets of G. Obviously, $\gamma_{k}(G) \geq \gamma(G)=\gamma_{1}(G)$.

Liao and Chang [8] studied k-tuple domination in graphs from an algorithmic point of view. They obtained a linear-time algorithm on the k-tuple domination problem for some graphs and proved the mentioned problem is NP-complete for others. Note the following type upper bounds on k-tuple domination for graphs $G=(V, E)$ were obtained in [2], [3], [4], [8] and [12] (under a certain condition):

$$
\gamma_{k}(G) \leq c|V| \text { for some constant } c \in(0,1) .
$$

As mentioned before, k-tuple domination problem is NP-complete for some graphs, it is interesting to study it in random graphs. Wieland and Godbole [11] studied the domination

[^0]number of classical random graphs $G(n, p)$, and verified that $\gamma_{1}(G(n, p))$ is concentrated at two-point asymptotically almost surely (a.a.s.) if $p \in(0,1)$ is fixed or $p=p(n)$ approaches zero sufficiently slowly, namely, a.a.s.,
$$
\left\lfloor\log _{b} n-\log _{b}\left(\log _{b} n \cdot \log n\right)\right\rfloor+1 \leq \gamma_{1}(G(n, p)) \leq\left\lfloor\log _{b} n-\log _{b}\left(\log _{b} n \cdot \log n\right)\right\rfloor+2,
$$
where $b=1 /(1-p)$, and $\lfloor x\rfloor$ is the largest integer which is no more than x for any $x \in \mathbb{R}$.
In this paper we study the 2-tuple domination number (namely double domination number in [6]) of $G(n, p)$. Our main result is stated as follows.

Theorem 1.1. Let $p \in(0,1)$ be a constant and $b=1 /(1-p)$. In $G(n, p)$, a.a.s.,

$$
\left\lfloor\log _{b} n-\log _{b} \log n+\log _{b} \frac{p}{1-p}\right\rfloor+1 \leq \gamma_{2}(G(n, p)) \leq\left\lfloor\log _{b} n-\log _{b} \log n+\log _{b} \frac{p}{1-p}\right\rfloor+2
$$

Write $\mathbf{P}(\cdot), \mathbf{E}(\cdot)$ and $\mathbf{V}(\cdot)$ for the probability, expected value and variance of a random variable respectively. Denote by $\mathbf{C O V}(\cdot, \cdot)$ the covariance of two random variables. For two functions $f(n), g(n)$ of a natural valued parameter $n, f(n)=o(g(n))$ means $\lim _{n \rightarrow \infty} f(n) / g(n)=0$, and $f(n)=\Omega(g(n))$ means that for some constant $c>0, f(n) \geq c g(n)$ for sufficiently large n.

Remark 1.2. (i) Similarly to Theorem 1.1, one can prove that for any $p \in(0,1)$ and natural number k, the following a.a.s holds:

$$
a \leq \gamma_{k}(G(n, p))-\left\{\log _{b} n-\log _{b} \log n+(k-2) \log _{b} \log _{b} n\right\} \leq c
$$

where $a=a(k, p)$ and $c=c(k, p)$ are two constants. This is left to the interested readers. The magnitude $\log _{b} n-\log _{b} \log n+(k-2) \log _{b} \log _{b} n$ comes from computing $\mathbf{E}\left(X_{r}^{k}\right)$ for a suitable r, where X_{r}^{k} is the number of k-tuple dominating sets of size r. For instance, for $p=1 / 2$,

$$
\mathbf{E}\left(X_{r}^{k}\right)=\binom{n}{r}\left\{1-\binom{r}{0}\left(\frac{1}{2}\right)^{r}-\binom{r}{1}\left(\frac{1}{2}\right)^{r}-\cdots-\binom{r}{k-1}\left(\frac{1}{2}\right)^{r}\right\}^{n-r}
$$

and $\mathbf{E}\left(X_{r}^{k}\right) \rightarrow 0$ or ∞ depends on $(n-r)\binom{r}{k-1}\left(\frac{1}{2}\right)^{r} \geq r \log n$ or not, $\mathbf{V}\left(X_{r}^{k}\right)=o\left(\mathbf{E}^{2}\left(X_{r}^{k}\right)\right)$ if $\mathbf{E}\left(X_{r}^{k}\right) \rightarrow \infty$; and roughly, r is chosen satisfying $(n-r)\binom{r}{k-1}\left(\frac{1}{2}\right)^{r} \approx r \log n$.
(ii) Theorem 1.1 also holds when $p=p(n)$ approaches zero sufficiently slowly, which is left to the interested readers.

2. Proof of Theorem 1.1

Due to similarity, we only prove Theorem 1.1 for $p=1 / 2$ for simplicity. The lower bound is proven in subsection 2.1 by the Markov inequality, and the upper bound is verified in subsection 2.2 by the Chebyschev inequality.

2.1. The lower bound

For $r>1$, let X_{r} denote the number of 2-tuple dominating sets of size r. To get the lower bound, we only need to show that $\mathbf{E}\left(X_{r}\right) \rightarrow 0$ when $r=\left\lfloor\log _{2} n-\log _{2} \log n\right\rfloor$ by the Markov inequality.

Let $S_{1}, \cdots, S_{\binom{n}{r}}$ be all subsets of vertices with size r, and each A_{k} the event that S_{k} is a 2-tuple dominating set, and each I_{k} the indicator random variable of A_{k}. Clearly,

$$
X_{r}=\sum_{k=1}^{\binom{n}{r}} I_{k}
$$

It is easy to see that

$$
\mathbf{E}\left(X_{r}\right)=\binom{n}{r}\left\{1-\left(1-\frac{1}{2}\right)^{r}-r \cdot\left(1-\frac{1}{2}\right)^{r-1} \cdot\left(\frac{1}{2}\right)\right\}^{n-r}
$$

where $\left(1-\frac{1}{2}\right)^{r}$ is the probability of a vertex outside D is not connected to any vertex in D, and $r\left(1-\frac{1}{2}\right)^{r-1}\left(\frac{1}{2}\right)$ is the probability of a vertex outside D is connected to only one vertex in D. Thus

$$
\begin{aligned}
\mathbf{E}\left(X_{r}\right) & =\binom{n}{r}\left\{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}\right\}^{n-r} \\
& \leq\binom{ n}{r} \exp \left\{-(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}\right\} \\
& =\exp \left\{-(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}+r+r \log n-r \log r\right\} \\
& \leq \exp \left\{-n \cdot r \cdot\left(\frac{1}{2}\right)^{r}+r \cdot(r+1) \cdot\left(\frac{1}{2}\right)^{r}+r+r \log n-r \log r\right\} \\
& =\exp \left\{\frac{\log _{2} n\left(\log _{2} n+1\right) \cdot \log n}{n}+(1-o(1)) \log _{2} n-\log _{2} n \cdot \log \log _{2} n\right\} \rightarrow 0 .
\end{aligned}
$$

By the Markov inequality,

$$
\mathbf{P}\left(X_{r}>0\right) \leq \mathbf{E}\left(X_{r}\right) \rightarrow 0
$$

which implies a.a.s.,

$$
\gamma_{2}(G(n, 1 / 2)) \geq\left\lfloor\log _{2} n-\log _{2} \log n\right\rfloor+1
$$

2.2. The upper bound

To obtain the upper bound, we need to show that if $r=\left\lfloor\log _{2} n-\log _{2} \log n\right\rfloor+2$, then

$$
\mathbf{E}\left(X_{r}\right) \rightarrow \infty \text { and } \mathbf{V}\left(X_{r}\right)=o\left(\mathbf{E}^{2}\left(X_{r}\right)\right)
$$

Notice for $0<x<1$,

$$
1-x \geq \exp \{-x /(1-x)\}
$$

It is easy to see that

$$
\begin{aligned}
\mathbf{E}\left(X_{r}\right) & =\binom{n}{r}\left\{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}\right\}^{n-r} \\
& \geq\binom{ n}{r} \exp \left\{-\frac{(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}\right\} \\
& \geq(1-o(1))\left(\frac{e n}{r}\right)^{r} \frac{1}{\sqrt{2 \pi r}} \exp \left\{-\frac{(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}\right\} \\
& \geq \exp \left\{-\frac{(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}+r+r \log n-(r+1 / 2) \log r-\log \sqrt{2 \pi}\right\}
\end{aligned}
$$

Since

$$
\begin{array}{r}
-\frac{(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}=-\frac{n(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}+\frac{r(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}} \\
=-(1-o(1)) \frac{n \log _{2} n \cdot \frac{\log n}{4 n}}{1-\frac{\log n}{4 n} \cdot \log n}=-(1 / 4-o(1)) \log _{2} n \log n
\end{array}
$$

we have

$$
\mathbf{E}\left(X_{r}\right) \geq \exp \left\{-(1 / 4-o(1)) \log _{2} n \log n+r+r \log n-(r+1 / 2) \log r-\log \sqrt{2 \pi}\right\}
$$

Clearly, $r=(1-o(1)) \log _{2} n$; and the significant factor in

$$
r+r \log n-(r+1 / 2) \log r-\log \sqrt{2 \pi}
$$

is $r \log n$, which is $(1-o(1)) \log _{2} n \cdot \log n$. Therefore,

$$
\mathbf{E}\left(X_{r}\right) \geq \exp \left\{(3 / 4+o(1)) \log _{2} n \log n+r-(r+1 / 2) \log r-\log \sqrt{2 \pi}\right\} \rightarrow \infty
$$

Now we estimate $\mathbf{V}\left(X_{r}\right)$. Note

$$
\begin{aligned}
\mathbf{V}\left(X_{r}\right) & =\sum_{j=1}^{\binom{n}{r}} \mathbf{V}\left(I_{i}\right)+\sum_{i \neq j} \mathbf{C O V}\left[I_{i}, I_{j}\right] \\
& =\sum_{i=1}^{\binom{n}{r}} \mathbf{E}\left(I_{i}\right)\left(1-\mathbf{E}\left(I_{i}\right)\right)+2 \sum_{i=1} \sum_{j<i}\left[\mathbf{E}\left(I_{i}\right)\left(I_{j}\right)-\mathbf{E}\left(I_{i}\right) \mathbf{E}\left(I_{j}\right)\right] \\
& =\mathbf{E}\left(X_{r}\right)+\binom{n}{r} \sum_{s=0}^{r-1}\binom{r}{s}\binom{n-r}{r-s} \mathbf{E}\left(I_{i} I_{j}\right)-\mathbf{E}^{2}\left(X_{r}\right)
\end{aligned}
$$

where $s=\left|S_{i} \cap S_{j}\right|$ (see S_{i} in subsection 2.1); and

$$
\begin{aligned}
\mathbf{E}\left(I_{i} I_{j}\right) & =\mathbf{P}\left\{S_{i} \text { and } S_{j} \text { are 2-tuple domination sets }\right\} \\
& \leq \mathbf{P}\left\{S_{i} \text { and } S_{j} 2 \text {-tuple dominate } \overline{S_{i} \cup S_{j}}\right\} \\
& =\mathbf{P}\left\{\text { each } x \in \overline{S_{i} \cup S_{j}} \text { has at least two neighbors both in } S_{i} \text { and in } S_{j}\right\},
\end{aligned}
$$

where $\overline{S_{i} \cup S_{j}}$ is the set of all vertices outside $S_{i} \cup S_{j}$. For $x \in \overline{S_{i} \cup S_{j}}$, let $B_{i j}(x)$ be the event that x has exactly 1 neighbor both in $S_{i} \backslash S_{j}$ and in $S_{j} \backslash S_{i} ; C_{i j}(x)$ the event that x has at most 1 neighbor in $S_{i} \cup S_{j}$, and $D_{i j}(x)$ the event that x has at most 1 neighbor in S_{i} but has at least 2 neighbors in $S_{j} \backslash S_{i}$. Then

$$
\begin{aligned}
\mathbf{P}\left(B_{i j}(x)\right)= & (r-s)\left(\frac{1}{2}\right)^{r-s}(r-s)\left(\frac{1}{2}\right)^{r-s}\left(1-\frac{1}{2}\right)^{s}=(r-s)^{2}\left(\frac{1}{2}\right)^{2 r-s} ; \\
\mathbf{P}\left(C_{i j}(x)\right)= & \left(1-\frac{1}{2}\right)^{2 r-s}+(2 r-s)\left(1-\frac{1}{2}\right)^{2 r-s-1}\left(\frac{1}{2}\right)=(2 r-s+1)\left(\frac{1}{2}\right)^{2 r-s} ; \\
\mathbf{P}\left(D_{i j}(x)\right)= & \left\{1-\left(1-\frac{1}{2}\right)^{r-s}-(r-s)\left(1-\frac{1}{2}\right)^{r-s-1}\left(\frac{1}{2}\right)\right\} \\
& \times\left\{\left(1-\frac{1}{2}\right)^{r}+r\left(1-\frac{1}{2}\right)^{r-1}\left(\frac{1}{2}\right)\right\} \\
= & (r+1)\left(\frac{1}{2}\right)^{r}-(r+1)(r-s+1)\left(\frac{1}{2}\right)^{2 r-s}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbf{E}\left(I_{i} I_{j}\right) & \leq \prod_{x \notin S_{i} \cup S_{j}}\left(1-\mathbf{P}\left(B_{i j}(x)\right)-\mathbf{P}\left(C_{i j}(x)\right)-\mathbf{P}\left(D_{i j}(x)\right)-\mathbf{P}\left(D_{j i}(x)\right)\right) \\
& =\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}\right)^{n-2 r+s} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& J_{1}=\binom{n}{r} \sum_{s=1}^{r-1}\binom{r}{s}\binom{n-r}{r-s}\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}\right)^{n-2 r+s}, \\
& J_{2}=\binom{n}{r}\binom{r}{0}\binom{n-r}{r}\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r+1\right)\left(\frac{1}{2}\right)^{2 r}\right)^{n-2 r}-\mathbf{E}^{2}\left(X_{r}\right)+\mathbf{E}\left(X_{r}\right) .
\end{aligned}
$$

Then

$$
\mathbf{V}\left(X_{r}\right) \leq J_{1}+J_{2}
$$

Notice

$$
\begin{aligned}
f(s) & :=\binom{r}{s}\binom{n-r}{r-s}\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}\right)^{n-2 r+s} \\
& \leq\binom{ r}{s} \frac{n^{r-s}}{(r-s)!}\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}\right)^{n-2 r+s} \\
& \leq 2\binom{r}{s} \frac{n^{r-s}}{(r-s)!}\left(1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}\right)^{n} \\
& \leq 2\binom{r}{s} \frac{n^{r-s}}{(r-s)!} \exp \left\{n\left(\left(r^{2}+2 r-s^{2}-s+1\right)\left(\frac{1}{2}\right)^{2 r-s}-2(r+1)\left(\frac{1}{2}\right)^{r}\right)\right\} \\
& :=g(s)
\end{aligned}
$$

and for $s=\Omega(r)$,

$$
g(s+1) / g(s)=\frac{(r-s)^{2}}{n(s+1)} \exp \left\{\left(\frac{1}{2}\right)^{2 r-s} n\left(r^{2}+2 r-s^{2}-5 s-3\right)\right\}>1
$$

and for $s=o(r), g(s+1) / g(s)<1$. So $g(s)$ is first decreasing then increasing.
Since for large enough n,

$$
\begin{aligned}
g(1) / g(r-1) & =\frac{n^{r-2}}{(r-1)!} \exp \left\{-n\left(\frac{3 r+1}{2}\right)\left(\frac{1}{2}\right)^{r}+n\left(2 r^{2}+4 r-2\right)\left(\frac{1}{2}\right)^{2 r}\right\} \\
& =\frac{n^{r-2}}{(r-1)!} \exp \{-3 / 8 r \log n(1+o(1))\}=\frac{n^{5 / 8 r(1+o(1)}}{(r-1)!}>1
\end{aligned}
$$

we have that

$$
f(s) \leq g(1), \sum_{s=1}^{r-1} f(s) \leq r g(1)
$$

Now we can estimate J_{1}.

$$
\begin{aligned}
& \frac{J_{1}}{\mathbf{E}^{2}\left(X_{r}\right)}=\frac{\binom{n}{r} \sum_{s=1}^{r-1} f(s)}{\mathbf{E}^{2}\left(X_{r}\right)} \leq \frac{\binom{n}{r} r g(1)}{\mathbf{E}^{2}\left(X_{r}\right)} \\
& \leq(1+o(1)) 2 \cdot \frac{r^{3}}{n} \cdot \exp \left\{n\left(2 r^{2}+4 r-2\right)\left(\frac{1}{2}\right)^{2 r}-2 n(r+1)\left(\frac{1}{2}\right)^{r}-\frac{2(n-r)(r+1) \cdot\left(\frac{1}{2}\right)^{r}}{1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}}\right\} \\
& \leq(1+o(1)) 2 \cdot \frac{r^{3}}{n} \cdot \exp \left\{(1+o(1)) r^{2} \log ^{2} n /(8 n)-r \log n / 2-r \log n / 2(1-o(1))\right\} \rightarrow 0
\end{aligned}
$$

Combining with

$$
\begin{aligned}
J_{2}= & \binom{n}{r}\binom{n-r}{r}\left(1-2(r+1)(1 / 2)^{r}+\left(r^{2}+2 r+1\right)(1 / 2)^{2 r}\right)^{n-2 r} \\
& -\left(\binom{n}{r}\left(1-(r+1) \cdot(1 / 2)^{r}\right)^{n-r}\right)^{2}+\mathbf{E}\left(X_{r}\right) \\
= & \mathbf{E}^{2}\left(X_{r}\right)\left\{\frac{\binom{n-r}{r}}{\binom{n}{r}} \frac{\left[1-2(r+1)\left(\frac{1}{2}\right)^{r}+\left(r^{2}+2 r+1\right)\left(\frac{1}{2}\right)^{2 r}\right]^{n-2 r}}{\left[1-(r+1) \cdot\left(\frac{1}{2}\right)^{r}\right]^{2 n-2 r}}-1+o(1)\right\} \\
\leq & \mathbf{E}^{2}\left(X_{r}\right)\left\{\frac{\binom{n-r}{r}}{\binom{n}{r}} \frac{e^{-2 n(r+1)(1 / 2)^{r}+4 r(r+1)(1 / 2)^{r}+n r^{2}(1 / 2)^{2 r}(1+o(1))}}{e^{-2(n-r)(r+1)(1 / 2)^{r} /\left(1-(r+1)(1 / 2)^{r}\right)}}-1+o(1)\right\} \\
\leq & \mathbf{E}^{2}\left(X_{r}\right)\left\{(1-o(1)) \cdot \frac{e^{-2 n(r+1)(1 / 2)^{r}+4 r(r+1)(1 / 2)^{r}+n r^{2}(1 / 2)^{2 r}(1+o(1))}}{e^{-2(n-r)(r+1)(1 / 2)^{r}\left(1+(r+1)(1 / 2)^{r}\right)}}-1+o(1)\right\} \\
= & \mathbf{E}^{2}\left(X_{r}\right)[(1-o(1))(1+o(1))-1+o(1)]=o\left(\mathbf{E}^{2}\left(X_{r}\right)\right)
\end{aligned}
$$

we see that

$$
\mathbf{V}\left(X_{r}\right)=J_{1}+J_{2}=o\left(\mathbf{E}^{2}\left(X_{r}\right)\right)
$$

By the Chebychev's inequality,

$$
\mathbf{P}\left[\gamma_{2}(G(n, 1 / 2))>r\right] \leq \mathbf{P}\left[X_{r}=0\right] \leq \mathbf{P}\left[\left|X_{r}-\mathbf{E} X_{r}\right|>\mathbf{E} X_{r}\right] \leq \mathbf{V}\left(X_{r}\right) / \mathbf{E}^{2}\left(X_{r}\right) \rightarrow 0
$$

So a.a.s.,

$$
\gamma_{2}(G(n, 1 / 2)) \leq\left\lfloor\log _{2} n-\log _{2} \log n\right\rfloor+2
$$

References

[1] N. Alon, J. Spencer, The Probabilistic Method, John Wiley, New Jersey, 2008.
[2] G. J. Chang, The upper bound on k-tuple domination numbers of graphs, European J. Combin. 29 (2008) 1333-1336.
[3] A. Gagarin, V. E. Zverovich, A generalized upper bound for the k-tuple domination number, Discrete Math. 308 (2008) 880-885.
[4] A. Gagarin, A. Poghosyan and V. E. Zverovich, Upper bounds for α-domination parameters, arXiv:0805.0612v1.
[5] F. Harary, T. W. Haynes, The k-tuple domatic number of a graph, Math. Slovaca 48 (1998) 161-166.
[6] F. Harary, T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[7] S. Janson, T. Luczak and A. Rucinski, Random Graphs, John Wiley, New York, 2000.
[8] C. S. Liao, G. J. Chang, k-Tuple domination in graphs, Inform. Process. Lett. 87 (2003) 45-50.
[9] D. Rautenbach, L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102.
[10] C. P. Wang, Independent domination number of a random graph, Utilitas Math. (2009, To appear).
[11] B. Wieland, A. P. Godbole, On the domination number of a random graph, Electron. J. Combin. 8 (2001) R37.
[12] G. J. Xu, L. Y. Kang, E. F. Shan and H. Yan, Proof of a conjecture on k-tuple domination in graphs, Appl. Math. Lett. 21 (2008) 287-290.

[^0]: ${ }^{*}$ The Project-sponsored by Fok Ying Tung Education Foundation (No.101002), by CNNSF and by PCSIRT.
 ${ }^{\dagger}$ Email: wang_math@yahoo.com

