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Abstract. In graph 𝐺 = (𝑉,𝐸), a vertex set 𝐷 ⊆ 𝑉 is called a domination set if any
vertex 𝑢 ∈ 𝑉 ∖𝐷 is connected to at least one vertex in 𝐷. Generally, for any natural number
𝑘, the 𝑘-tuple domination set 𝐷 is a vertex set such that any vertex 𝑢 ∈ 𝑉 ∖𝐷 is connected
to at least 𝑘 vertices in 𝐷. The 𝑘-tuple domination number is the minimum size of 𝑘-tuple
domination sets. It is known the 1-tuple domination number (i.e. domination number) of
classical random graphs 𝐺(𝑛, 𝑝) with fixed 𝑝 ∈ (0, 1) asymptotically almost surely (𝑎.𝑎.𝑠.)
has a two point concentration (Wieland and Godbole [11]). In this paper, we prove the 2-
tuple domination number of 𝐺(𝑛, 𝑝) with fixed 𝑝 ∈ (0, 1) 𝑎.𝑎.𝑠. has a two-point concentration.
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1. Introduction and main result

In a graph 𝐺 = (𝑉,𝐸), a vertex is said to dominate itself and its neighbors. A dominating
set of 𝐺 is a subset 𝐷 ⊆ 𝑉 such that any vertex in 𝑉 ∖𝐷 is dominated by at least one vertex
in 𝐷. The domination number 𝛾(𝐺) is the minimum cardinality of dominating sets of 𝐺. In
general, for any natural number 𝑘, Harary and Haynes [5] introduced the following 𝑘-tuple
dominating set: a 𝑘-tuple dominating set of 𝐺 is a subset 𝐷 of 𝑉 such that any vertex
outside 𝐷 is connected to at least 𝑘 vertices in 𝐷 (in this case, we say every vertex in 𝑉 ∖𝐷
is dominated by at least 𝑘 vertices of 𝐷). Define 𝑘-tuple domination number 𝛾𝑘(𝐺) as the
minimum cardinality of 𝑘-tuple dominating sets of 𝐺. Obviously, 𝛾𝑘(𝐺) ≥ 𝛾(𝐺) = 𝛾1(𝐺).

Liao and Chang [8] studied 𝑘-tuple domination in graphs from an algorithmic point of
view. They obtained a linear-time algorithm on the 𝑘-tuple domination problem for some
graphs and proved the mentioned problem is NP-complete for others. Note the following type
upper bounds on 𝑘-tuple domination for graphs 𝐺 = (𝑉,𝐸) were obtained in [2], [3], [4], [8]
and [12] (under a certain condition):

𝛾𝑘(𝐺) ≤ 𝑐∣𝑉 ∣ for some constant 𝑐 ∈ (0, 1).

As mentioned before, 𝑘-tuple domination problem is NP-complete for some graphs, it is
interesting to study it in random graphs. Wieland and Godbole [11] studied the domination
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number of classical random graphs 𝐺(𝑛, 𝑝), and verified that 𝛾1(𝐺(𝑛, 𝑝)) is concentrated at
two-point asymptotically almost surely (𝑎.𝑎.𝑠.) if 𝑝 ∈ (0, 1) is fixed or 𝑝 = 𝑝(𝑛) approaches
zero sufficiently slowly, namely, 𝑎.𝑎.𝑠.,

⌊log𝑏 𝑛− log𝑏(log𝑏 𝑛 ⋅ log 𝑛)⌋+ 1 ≤ 𝛾1(𝐺(𝑛, 𝑝)) ≤ ⌊log𝑏 𝑛− log𝑏(log𝑏 𝑛 ⋅ log𝑛)⌋+ 2,

where 𝑏 = 1/(1− 𝑝), and ⌊𝑥⌋ is the largest integer which is no more than 𝑥 for any 𝑥 ∈ ℝ.
In this paper we study the 2-tuple domination number (namely double domination num-

ber in [6]) of 𝐺(𝑛, 𝑝). Our main result is stated as follows.

Theorem 1.1. Let 𝑝 ∈ (0, 1) be a constant and 𝑏 = 1/(1− 𝑝). In 𝐺(𝑛, 𝑝), 𝑎.𝑎.𝑠.,⌊
log𝑏 𝑛− log𝑏 log 𝑛+ log𝑏

𝑝

1− 𝑝

⌋
+ 1 ≤ 𝛾2(𝐺(𝑛, 𝑝)) ≤

⌊
log𝑏 𝑛− log𝑏 log 𝑛+ log𝑏

𝑝

1− 𝑝

⌋
+ 2.

Write P(⋅), E(⋅) and V(⋅) for the probability, expected value and variance of a ran-
dom variable respectively. Denote by COV(⋅, ⋅) the covariance of two random variables.
For two functions 𝑓(𝑛), 𝑔(𝑛) of a natural valued parameter 𝑛, 𝑓(𝑛) = 𝑜(𝑔(𝑛)) means
lim
𝑛→∞ 𝑓(𝑛)/𝑔(𝑛) = 0, and 𝑓(𝑛) = Ω(𝑔(𝑛)) means that for some constant 𝑐 > 0, 𝑓(𝑛) ≥ 𝑐𝑔(𝑛)

for sufficiently large 𝑛.

Remark 1.2. (i) Similarly to Theorem 1.1, one can prove that for any 𝑝 ∈ (0, 1) and natural
number 𝑘, the following 𝑎.𝑎.𝑠 holds:

𝑎 ≤ 𝛾𝑘(𝐺(𝑛, 𝑝))− {log𝑏 𝑛− log𝑏 log 𝑛+ (𝑘 − 2) log𝑏 log𝑏 𝑛} ≤ 𝑐,

where 𝑎 = 𝑎(𝑘, 𝑝) and 𝑐 = 𝑐(𝑘, 𝑝) are two constants. This is left to the interested readers.
The magnitude log𝑏 𝑛 − log𝑏 log 𝑛 + (𝑘 − 2) log𝑏 log𝑏 𝑛 comes from computing E

(
𝑋𝑘

𝑟

)
for a

suitable 𝑟, where 𝑋𝑘
𝑟 is the number of 𝑘-tuple dominating sets of size 𝑟. For instance, for

𝑝 = 1/2,

E
(
𝑋𝑘

𝑟

)
=

(
𝑛

𝑟

){
1−

(
𝑟

0

)(
1

2

)𝑟

−
(
𝑟

1

)(
1

2

)𝑟

− ⋅ ⋅ ⋅ −
(

𝑟

𝑘 − 1

)(
1

2

)𝑟}𝑛−𝑟

;

and E
(
𝑋𝑘

𝑟

)→ 0 or ∞ depends on (𝑛− 𝑟)
(

𝑟
𝑘−1

) (
1
2

)𝑟 ≥ 𝑟 log𝑛 or not, V
(
𝑋𝑘

𝑟

)
= 𝑜

(
E2
(
𝑋𝑘

𝑟

))
if E

(
𝑋𝑘

𝑟

)→ ∞; and roughly, 𝑟 is chosen satisfying (𝑛− 𝑟)
(

𝑟
𝑘−1

) (
1
2

)𝑟 ≈ 𝑟 log 𝑛.
(ii) Theorem 1.1 also holds when 𝑝 = 𝑝(𝑛) approaches zero sufficiently slowly, which is

left to the interested readers.

2. Proof of Theorem 1.1

Due to similarity, we only prove Theorem 1.1 for 𝑝 = 1/2 for simplicity. The lower bound
is proven in subsection 2.1 by the Markov inequality, and the upper bound is verified in
subsection 2.2 by the Chebyschev inequality.
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2.1. The lower bound

For 𝑟 > 1, let 𝑋𝑟 denote the number of 2-tuple dominating sets of size 𝑟. To get the lower
bound, we only need to show that E(𝑋𝑟) → 0 when 𝑟 = ⌊log2 𝑛− log2 log 𝑛⌋ by the Markov
inequality.

Let 𝑆1, ⋅ ⋅ ⋅ , 𝑆(𝑛𝑟) be all subsets of vertices with size 𝑟, and each 𝐴𝑘 the event that 𝑆𝑘 is a

2-tuple dominating set, and each 𝐼𝑘 the indicator random variable of 𝐴𝑘. Clearly,

𝑋𝑟 =

(𝑛𝑟)∑
𝑘=1

𝐼𝑘.

It is easy to see that

E(𝑋𝑟) =

(
𝑛

𝑟

){
1−

(
1− 1

2

)𝑟

− 𝑟 ⋅
(
1− 1

2

)𝑟−1

⋅
(
1

2

)}𝑛−𝑟

,

where
(
1− 1

2

)𝑟
is the probability of a vertex outside 𝐷 is not connected to any vertex in 𝐷,

and 𝑟
(
1− 1

2

)𝑟−1 (1
2

)
is the probability of a vertex outside 𝐷 is connected to only one vertex

in 𝐷. Thus

E(𝑋𝑟) =

(
𝑛

𝑟

){
1− (𝑟 + 1) ⋅

(
1

2

)𝑟}𝑛−𝑟

≤
(
𝑛

𝑟

)
exp

{
−(𝑛− 𝑟)(𝑟 + 1) ⋅

(
1

2

)𝑟}
= exp

{
−(𝑛− 𝑟)(𝑟 + 1) ⋅

(
1

2

)𝑟

+ 𝑟 + 𝑟 log 𝑛− 𝑟 log 𝑟

}
≤ exp

{
−𝑛 ⋅ 𝑟 ⋅

(
1

2

)𝑟

+ 𝑟 ⋅ (𝑟 + 1) ⋅
(
1

2

)𝑟

+ 𝑟 + 𝑟 log 𝑛− 𝑟 log 𝑟

}
= exp

{
log2 𝑛(log2 𝑛+ 1) ⋅ log𝑛

𝑛
+ (1− 𝑜(1)) log2 𝑛− log2 𝑛 ⋅ log log2 𝑛

}
→ 0.

By the Markov inequality,
P(𝑋𝑟 > 0) ≤ E(𝑋𝑟) → 0,

which implies 𝑎.𝑎.𝑠.,
𝛾2(𝐺(𝑛, 1/2)) ≥ ⌊log2 𝑛− log2 log 𝑛⌋+ 1.

2.2. The upper bound

To obtain the upper bound, we need to show that if 𝑟 = ⌊log2 𝑛− log2 log 𝑛⌋+ 2, then

E(𝑋𝑟) → ∞ and V(𝑋𝑟) = 𝑜(E2(𝑋𝑟)).
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Notice for 0 < 𝑥 < 1,

1− 𝑥 ≥ exp{−𝑥/(1− 𝑥)}.
It is easy to see that

E(𝑋𝑟) =

(
𝑛

𝑟

){
1− (𝑟 + 1) ⋅

(
1

2

)𝑟}𝑛−𝑟

≥
(
𝑛

𝑟

)
exp

{
−(𝑛− 𝑟)(𝑟 + 1) ⋅ (12)𝑟

1− (𝑟 + 1) ⋅ (12)𝑟
}

≥ (1− 𝑜(1))
(𝑒𝑛

𝑟

)𝑟 1√
2𝜋𝑟

exp

{
−(𝑛− 𝑟)(𝑟 + 1) ⋅ (12)𝑟

1− (𝑟 + 1) ⋅ (12)𝑟
}

≥ exp

{
−(𝑛− 𝑟)(𝑟 + 1) ⋅ (12)𝑟

1− (𝑟 + 1) ⋅ (12)𝑟 + 𝑟 + 𝑟 log 𝑛− (𝑟 + 1/2) log 𝑟 − log
√
2𝜋

}
.

Since

−(𝑛− 𝑟)(𝑟 + 1) ⋅ (12)𝑟
1− (𝑟 + 1) ⋅ (12)𝑟 = − 𝑛(𝑟 + 1) ⋅ (12)𝑟

1− (𝑟 + 1) ⋅ (12)𝑟 +
𝑟(𝑟 + 1) ⋅ (12)𝑟

1− (𝑟 + 1) ⋅ (12)𝑟
= −(1− 𝑜(1))

𝑛 log2 𝑛 ⋅ log𝑛
4𝑛

1− log𝑛
4𝑛 ⋅ log 𝑛 = −(1/4− 𝑜(1)) log2 𝑛 log 𝑛,

we have

E(𝑋𝑟) ≥ exp
{
−(1/4− 𝑜(1)) log2 𝑛 log 𝑛+ 𝑟 + 𝑟 log 𝑛− (𝑟 + 1/2) log 𝑟 − log

√
2𝜋
}
.

Clearly, 𝑟 = (1− 𝑜(1)) log2 𝑛; and the significant factor in

𝑟 + 𝑟 log 𝑛− (𝑟 + 1/2) log 𝑟 − log
√
2𝜋

is 𝑟 log 𝑛, which is (1− 𝑜(1)) log2 𝑛 ⋅ log 𝑛. Therefore,

E(𝑋𝑟) ≥ exp
{
(3/4 + 𝑜(1)) log2 𝑛 log 𝑛+ 𝑟 − (𝑟 + 1/2) log 𝑟 − log

√
2𝜋
}
→ ∞.

Now we estimate V(𝑋𝑟). Note

V(𝑋𝑟) =

(𝑛𝑟)∑
𝑗=1

V(𝐼𝑖) +
∑
𝑖∕=𝑗

COV[𝐼𝑖, 𝐼𝑗 ]

=

(𝑛𝑟)∑
𝑖=1

E(𝐼𝑖)(1−E(𝐼𝑖)) + 2

(𝑛𝑟)∑
𝑖=1

∑
𝑗<𝑖

[E(𝐼𝑖)(𝐼𝑗)−E(𝐼𝑖)E(𝐼𝑗)]

= E(𝑋𝑟) +

(
𝑛

𝑟

) 𝑟−1∑
𝑠=0

(
𝑟

𝑠

)(
𝑛− 𝑟

𝑟 − 𝑠

)
E(𝐼𝑖𝐼𝑗)−E2(𝑋𝑟),
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where 𝑠 = ∣𝑆𝑖 ∩ 𝑆𝑗 ∣ (see 𝑆𝑖 in subsection 2.1); and

E(𝐼𝑖𝐼𝑗) = P{𝑆𝑖 and 𝑆𝑗 are 2-tuple domination sets}
≤ P

{
𝑆𝑖 and 𝑆𝑗 2-tuple dominate 𝑆𝑖 ∪ 𝑆𝑗

}
= P

{
each 𝑥 ∈ 𝑆𝑖 ∪ 𝑆𝑗 has at least two neighbors both in 𝑆𝑖 and in 𝑆𝑗

}
,

where 𝑆𝑖 ∪ 𝑆𝑗 is the set of all vertices outside 𝑆𝑖∪𝑆𝑗 . For 𝑥 ∈ 𝑆𝑖 ∪ 𝑆𝑗 , let 𝐵𝑖𝑗(𝑥) be the event
that 𝑥 has exactly 1 neighbor both in 𝑆𝑖∖𝑆𝑗 and in 𝑆𝑗∖𝑆𝑖; 𝐶𝑖𝑗(𝑥) the event that 𝑥 has at
most 1 neighbor in 𝑆𝑖 ∪𝑆𝑗 , and 𝐷𝑖𝑗(𝑥) the event that 𝑥 has at most 1 neighbor in 𝑆𝑖 but has
at least 2 neighbors in 𝑆𝑗∖𝑆𝑖. Then

P(𝐵𝑖𝑗(𝑥)) = (𝑟 − 𝑠)

(
1

2

)𝑟−𝑠

(𝑟 − 𝑠)

(
1

2

)𝑟−𝑠(
1− 1

2

)𝑠

= (𝑟 − 𝑠)2
(
1

2

)2𝑟−𝑠

;

P(𝐶𝑖𝑗(𝑥)) =

(
1− 1

2

)2𝑟−𝑠

+ (2𝑟 − 𝑠)

(
1− 1

2

)2𝑟−𝑠−1(1

2

)
= (2𝑟 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠

;

P(𝐷𝑖𝑗(𝑥)) =

{
1−

(
1− 1

2

)𝑟−𝑠

− (𝑟 − 𝑠)

(
1− 1

2

)𝑟−𝑠−1(1

2

)}

×
{(

1− 1

2

)𝑟

+ 𝑟

(
1− 1

2

)𝑟−1(1

2

)}

= (𝑟 + 1)

(
1

2

)𝑟

− (𝑟 + 1)(𝑟 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠

.

Thus

E(𝐼𝑖𝐼𝑗) ≤
∏

𝑥∕∈𝑆𝑖∪𝑆𝑗

(1−P(𝐵𝑖𝑗(𝑥))−P(𝐶𝑖𝑗(𝑥))−P(𝐷𝑖𝑗(𝑥))−P(𝐷𝑗𝑖(𝑥)))

=

(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠
)𝑛−2𝑟+𝑠

.

Let

𝐽1 =

(
𝑛

𝑟

) 𝑟−1∑
𝑠=1

(
𝑟

𝑠

)(
𝑛− 𝑟

𝑟 − 𝑠

)(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠
)𝑛−2𝑟+𝑠

,

𝐽2 =

(
𝑛

𝑟

)(
𝑟

0

)(
𝑛− 𝑟

𝑟

)(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 + 1)

(
1

2

)2𝑟
)𝑛−2𝑟

−E2(𝑋𝑟) +E(𝑋𝑟).

Then

V(𝑋𝑟) ≤ 𝐽1 + 𝐽2.
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Notice

𝑓(𝑠) :=

(
𝑟

𝑠

)(
𝑛− 𝑟

𝑟 − 𝑠

)(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠
)𝑛−2𝑟+𝑠

≤
(
𝑟

𝑠

)
𝑛𝑟−𝑠

(𝑟 − 𝑠)!

(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠
)𝑛−2𝑟+𝑠

≤ 2

(
𝑟

𝑠

)
𝑛𝑟−𝑠

(𝑟 − 𝑠)!

(
1− 2(𝑟 + 1)

(
1

2

)𝑟

+ (𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠
)𝑛

≤ 2

(
𝑟

𝑠

)
𝑛𝑟−𝑠

(𝑟 − 𝑠)!
exp

{
𝑛

(
(𝑟2 + 2𝑟 − 𝑠2 − 𝑠+ 1)

(
1

2

)2𝑟−𝑠

− 2(𝑟 + 1)

(
1

2

)𝑟
)}

:= 𝑔(𝑠);

and for 𝑠 = Ω(𝑟),

𝑔(𝑠+ 1)/𝑔(𝑠) =
(𝑟 − 𝑠)2

𝑛(𝑠+ 1)
exp

{(
1

2

)2𝑟−𝑠

𝑛(𝑟2 + 2𝑟 − 𝑠2 − 5𝑠− 3)

}
> 1;

and for 𝑠 = 𝑜(𝑟), 𝑔(𝑠+ 1)/𝑔(𝑠) < 1. So 𝑔(𝑠) is first decreasing then increasing.
Since for large enough 𝑛,

𝑔(1)/𝑔(𝑟 − 1) =
𝑛𝑟−2

(𝑟 − 1)!
exp

{
−𝑛

(
3𝑟 + 1

2

)(
1

2

)𝑟

+ 𝑛(2𝑟2 + 4𝑟 − 2)

(
1

2

)2𝑟
}

=
𝑛𝑟−2

(𝑟 − 1)!
exp {−3/8𝑟 log 𝑛(1 + 𝑜(1))} =

𝑛5/8𝑟(1+𝑜(1)

(𝑟 − 1)!
> 1,

we have that

𝑓(𝑠) ≤ 𝑔(1),
𝑟−1∑
𝑠=1

𝑓(𝑠) ≤ 𝑟𝑔(1).

Now we can estimate 𝐽1.

𝐽1

E2(𝑋𝑟)
=

(
𝑛
𝑟

)∑𝑟−1
𝑠=1 𝑓(𝑠)

E2(𝑋𝑟)
≤
(
𝑛
𝑟

)
𝑟𝑔(1)

E2(𝑋𝑟)

≤ (1 + 𝑜(1))2 ⋅ 𝑟
3

𝑛
⋅ exp

{
𝑛(2𝑟2 + 4𝑟 − 2)

(
1

2

)2𝑟

− 2𝑛(𝑟 + 1)

(
1

2

)𝑟

− 2(𝑛− 𝑟)(𝑟 + 1) ⋅ (12)𝑟
1− (𝑟 + 1) ⋅ (12)𝑟

}

≤ (1 + 𝑜(1))2 ⋅ 𝑟
3

𝑛
⋅ exp{(1 + 𝑜(1))𝑟2 log2 𝑛/(8𝑛)− 𝑟 log𝑛/2− 𝑟 log 𝑛/2(1− 𝑜(1))

}→ 0.

6



Combining with

𝐽2 =

(
𝑛

𝑟

)(
𝑛− 𝑟

𝑟

)(
1− 2(𝑟 + 1)(1/2)𝑟 + (𝑟2 + 2𝑟 + 1) (1/2)2𝑟

)𝑛−2𝑟

−
((

𝑛

𝑟

)
(1− (𝑟 + 1) ⋅ (1/2)𝑟)𝑛−𝑟

)2

+E(𝑋𝑟)

= E2(𝑋𝑟)

{(
𝑛−𝑟
𝑟

)(
𝑛
𝑟

) [1− 2(𝑟 + 1)
(
1
2

)𝑟
+ (𝑟2 + 2𝑟 + 1)

(
1
2

)2𝑟
]𝑛−2𝑟

[1− (𝑟 + 1) ⋅ (12)𝑟]2𝑛−2𝑟
− 1 + 𝑜(1)

}

≤ E2(𝑋𝑟)

{(
𝑛−𝑟
𝑟

)(
𝑛
𝑟

) 𝑒−2𝑛(𝑟+1)(1/2)𝑟+4𝑟(𝑟+1)(1/2)𝑟+𝑛𝑟2(1/2)2𝑟(1+𝑜(1))

𝑒−2(𝑛−𝑟)(𝑟+1)(1/2)𝑟/(1−(𝑟+1)(1/2)𝑟)
− 1 + 𝑜(1)

}

≤ E2(𝑋𝑟)

{
(1− 𝑜(1)) ⋅ 𝑒

−2𝑛(𝑟+1)(1/2)𝑟+4𝑟(𝑟+1)(1/2)𝑟+𝑛𝑟2(1/2)2𝑟(1+𝑜(1))

𝑒−2(𝑛−𝑟)(𝑟+1)(1/2)𝑟(1+(𝑟+1)(1/2)𝑟)
− 1 + 𝑜(1)

}
= E2(𝑋𝑟)[(1− 𝑜(1))(1 + 𝑜(1))− 1 + 𝑜(1)] = 𝑜

(
E2(𝑋𝑟)

)
,

we see that
V(𝑋𝑟) = 𝐽1 + 𝐽2 = 𝑜

(
E2(𝑋𝑟)

)
.

By the Chebychev’s inequality,

P[𝛾2(𝐺(𝑛, 1/2)) > 𝑟] ≤ P[𝑋𝑟 = 0] ≤ P[∣𝑋𝑟 −E𝑋𝑟∣ > E𝑋𝑟] ≤ V(𝑋𝑟)/E
2(𝑋𝑟) → 0.

So 𝑎.𝑎.𝑠.,
𝛾2(𝐺(𝑛, 1/2)) ≤ ⌊log2 𝑛− log2 log 𝑛⌋+ 2.

□
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