Complete solution to a conjecture on Randić index*

Xueliang Li^{1}, Bolian Liu^{2}, Jianxi Liu ${ }^{1}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
${ }^{2}$ School of Mathematical Science
South China Normal University, Guangzhou 510631, P.R. China

Abstract

For a graph G, the Randić index $R(G)$ of G is defined by $R(G)=\sum_{u, v} \frac{1}{\sqrt{d(u) d(v)}}$, where $d(u)$ is the degree of a vertex u and the summation runs over all edges $u v$ of G. Let $G(k, n)$ be the set of connected simple graphs of order n with minimum degree k. Bollobás and Erdős once asked for finding the minimum value of the Randić index among the graphs in $G(k, n)$. There have been many partial solutions for this question. In this paper we give a complete solution to the question.

Key words: simple graph; minimum degree; Randić index; minimum value
MR Subject Classification: 05C35, 90C35, 92E10

1 Introduction

The Randić index $R=R(G)$ of a graph G is defined as follows:

$$
\begin{equation*}
R=R(G)=\sum_{u, v} \frac{1}{\sqrt{d(u) d(v)}}, \tag{1.1}
\end{equation*}
$$

where $d(u)$ denotes the degree of a vertex u and the summation runs over all edges $u v$ of G. This topological index was first proposed by Randić [19] in 1975, suitable for measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. Randić himself demonstrated [19] that his index is well correlated with a variety of physico-chemical

[^0]properties of alkanes. The R became one of the most popular molecular descriptors to which three books are devoted [10, 12, 13]. Initially, the Randić index was studied only by chemists [10, 11], but recently it attracted much attention also of mathematicians [13]. One of the mathematical questions asked in connection with R is which graphs in a given class of graphs have maximum and minimum R values [2]. Let $G(k, n)$ be the set of connected simple graphs of order n with minimum degree k. In [6] Fajtlowitcz mentioned that Bollobás and Erdős asked for finding the minimum value of the Randić index among the graphs in $G(k, n)$. The solution of such problem turned out to be difficult, and only a few partial results have been achieved so far. In [2] Bollobás and Erdős found that for a connected graph G
\[

$$
\begin{equation*}
R(G) \geq \sqrt{n-1} \tag{1.2}
\end{equation*}
$$

\]

and the bound is tight if and only if G is a star. The problem for $k=2$ was solved in [5], which gave a stronger result, say, if the minimum degree is greater or equal to 2 , then

$$
\begin{equation*}
R(G) \geq \frac{2 n-4}{\sqrt{2 n-2}}+\frac{1}{n-1} \tag{1.3}
\end{equation*}
$$

and the bound is tight if and only if $G=K_{2, n-2}^{\star}$ which arises from the complete bipartite graph $K_{2, n-2}$ by joining the vertices in the partite set with 2 vertices by a new edge. In these papers a graph theoretical approach has been used. In other papers [3, 4, 7, 8, 9], a linear programming and a quadratic programming technique [14] for finding extremal graphs has been used.

In [15] the problem was solved for $k=1$ and $k=2$, respectively, by using linear programming. Delorme, Favaron and Rautenbach [10] gave a conjecture about this problem. The conjecture in [5] is that the Randić index for graphs in $G(k, n)$, where $1 \leq k \leq n-2$, attains its minimum value for the graph $K_{k, n-k}^{\star}$ which arises from the complete bipartite graph $K_{k, n-k}$ by joining every pair of vertices in the partite set with k vertices by a new edge.

Conjecture $1([5])$. Let $G=(V, E)$ be a graph of order n with minimum degree k. Then

$$
\begin{equation*}
R(G) \geq \frac{k(n-k)}{\sqrt{k(n-1)}}+\binom{k}{2} \frac{1}{n-1} \tag{1.4}
\end{equation*}
$$

where equality holds if and only if $G=K_{k, n-k}^{\star}$.
Using again linear programming, Pavlović [16] proved that Conjecture 1 holds when $k=$ $(n-1) / 2$ or $k=n / 2$. See also [14] for further results proved by using quadratic programming.

Divnic and Pavlović [17] proved that Conjecture 1 holds when $k \leq n / 2$ and $n_{k} \geq n-k$, where n_{k} denotes the number of vertices of degree k.

Recently in [1], however, Aouchiche and Hansen showed that Conjecture 1 does not hold in general and proposed a modified conjecture as follows.

Let the graph $\bar{G}_{n, p, k}$ be the complement of a graph $G_{n, p, k}$ composed of a $(n-k-1)$-regular graph on p vertices together with $n-p$ isolated vertices. The minimal counterexample of Conjecture 1 is the graph $\bar{G}_{7,4,5}$, which was given in [1], see Figure 1.

$$
\bar{G}_{7,4,5}
$$

$G_{7,4,5}$

Figure 1

Let

$$
k_{n}=\left\{\begin{array}{ll}
\frac{n+2}{2} & \text { if } n \equiv 0(\bmod 4) \tag{1.5}\\
\frac{n+3}{2} & \text { if } n \equiv 1(\bmod 4) \\
\frac{n+4}{2} & \text { if } n \equiv 2(\bmod 4) \\
\frac{n+3}{2} & \text { if } n \equiv 3(\bmod 4)
\end{array} \quad p= \begin{cases}\frac{n-2}{2} & \text { if } n \equiv 2(\bmod 4) \text { and } k \text { is even } \\
\left\lceil\frac{n}{2}\right\rceil & \text { if } n \equiv 3(\bmod 4) \\
\left\lfloor\frac{n}{2}\right\rfloor & \text { otherwise }\end{cases}\right.
$$

For such a graph $G=\bar{G}_{n, p, k}$,

$$
R(G)=\frac{(n-p)(n-p-1)}{2(n-1)}+\frac{p(p+k-n)}{2 k}+\frac{p(n-p)}{\sqrt{k(n-1)}}
$$

Using these results, the authors of [1] gave the following Conjecture 2 as a modification of Conjecture 1.

Conjecture $2([1])$. Let $G=(V, E)$ be a graph of order n with minimum degree k, and k_{n} and p be given in (1.5). Then

$$
R(G) \geq \begin{cases}\frac{k(k-1)}{2(n-1)}+\frac{k(n-k)}{\sqrt{k(n-1)}} & \text { if } k<k_{n} \\ \frac{(n-p)(n-p-1)}{2(n-1)}+\frac{p(p+k-n)}{2 k}+\frac{p(n-p)}{\sqrt{k(n-1)}} & \text { if } k_{n} \leq k \leq n-2,\end{cases}
$$

where equality holds if and only if G is $K_{k, n-k}^{\star}$ for $k<k_{n}$, and $\bar{G}_{n, p, k}$ for $k \geq k_{n}$.

In this paper, we want to completely solve the Bollobás and Erdős' question of finding the minimum value of the Randić index for the graphs in $G(k, n)$. As usual, we formulate the question into a mathematical programming problem. Denote by n_{i} the number of vertices of degree i in G, and by $x_{i, j}\left(x_{i, j} \geq 0\right)$ the number of edges joining the vertices of degrees i and j in G. The mathematical description of our problem is as follows:

$$
\min R(G)=\sum_{\substack{k \leq i \leq n-1 \\ i \leq j \leq n-1}} \frac{x_{i, j}}{\sqrt{i j}}
$$

subject to:

$$
\begin{align*}
& \sum_{\substack{j=k \\
j \neq i}}^{n-1} x_{i, j}+2 x_{i, i}=i n_{i} \quad \text { for } \quad k \leq i \leq n-1 ; \tag{1.6}\\
& n_{k}+n_{k+1}+\cdots+n_{n-1}=n ; \tag{1.7}\\
& x_{i, j} \leq n_{i} n_{j} \quad \text { for } \quad k \leq i \leq n-1 \quad i<j \leq n-1 ; \tag{1.8}\\
& x_{i, i} \leq\binom{ n_{i}}{2} \quad \text { for } \quad k \leq i \leq n-1 ; \tag{1.9}\\
& x_{i, j}, n_{i} \text { are nonnegative integers, for } k \leq i \leq j \leq n-1 . \tag{1.10}
\end{align*}
$$

Obviously, (1.6)-(1.10) define a nonlinearly constrained optimization problem.

2 Main result

Denote

$$
p= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 4) \tag{2.11}\\ \left\lfloor\frac{n}{2}\right\rfloor \text { or }\left\lceil\frac{n}{2}\right\rceil & \text { if } n \equiv 1(\bmod 4) \text { and } k \text { is even } \\ \left\lfloor\frac{n}{2}\right\rfloor & \text { if } n \equiv 1(\bmod 4) \text { and } k \text { is odd } \\ \frac{n-2}{2} \text { or } \frac{n+2}{2} & \text { if } n \equiv 2(\bmod 4) \text { and } k \text { is even } \\ \frac{n}{2} & \text { if } n \equiv 2(\bmod 4) \text { and } k \text { is odd } \\ \left\lfloor\frac{n}{2}\right\rfloor \text { or }\left\lceil\frac{n}{2}\right\rceil & \text { if } n \equiv 3(\bmod 4) \text { and } k \text { is even } \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } n \equiv 3(\bmod 4) \text { and } k \text { is odd. }\end{cases}
$$

Theorem 2.1 Let $G=(V, E)$ be a graph of order n with minimum degree k, and p be given in (2.11). Then we have

$$
R(G) \geq \begin{cases}\frac{k(k-1)}{2(n-1)}+\frac{k(n-k)}{\sqrt{k(n-1)}} & \text { if } k \leq n / 2 \\ \frac{(n-p)(n-p-1)}{2(n-1)}+\frac{p(p+k-n)}{2 k}+\frac{p(n-p)}{\sqrt{k(n-1)}} & \text { if } k>n / 2\end{cases}
$$

where equality holds if and only if G is $K_{k, n-k}^{\star}$ for $k \leq n / 2$, and $\bar{G}_{n, p, k}$ for $k>n / 2$.

Proof. It is easy to see that $n_{n-1} \leq k$, or the minimum degree of a graph in $G(k, n)$ would be larger than k. Therefore we only need to consider the case when $n_{n-1} \leq k$. Let $n_{n-1}=k-t$ for some integer t such that $0 \leq t \leq k$, and let R_{k-t} denote the Randić index for any graph in $G(k, n)$ with $n_{n-1}=k-t(0 \leq t \leq k)$. Since $x_{i, n-1}=n_{i} n_{n-1}$ for $k \leq i \leq n-2$ and $x_{n-1, n-1}=n_{n-1}\left(n_{n-1}-1\right) / 2$, we have

$$
\begin{align*}
R_{k-t}= & \sum_{\substack{k \leq j \leq n-1 \\
i \leq j \leq n-1}} \frac{x_{i, j}}{\sqrt{i j}}=\sum_{i=k}^{n-2} \frac{n_{i} n_{n-1}}{\sqrt{i(n-1)}}+\frac{n_{n-1}\left(n_{n-1}-1\right)}{2(n-1)} \\
& +\frac{1}{2} \sum_{j=k}^{n-2}\left(\frac{x_{k, j}}{\sqrt{k j}}+\cdots+\frac{x_{j-1, j}}{\sqrt{(j-1) j}}+2 \frac{x_{j, j}}{\sqrt{j j}}+\frac{x_{j+1, j}}{\sqrt{j(j+1)}}+\cdots+\frac{x_{j, n-2}}{\sqrt{j(n-2)}}\right) \\
\geq & \sum_{i=k}^{n-2} \frac{n_{i} n_{n-1}}{\sqrt{i(n-1)}}+\frac{n_{n-1}\left(n_{n-1}-1\right)}{2(n-1)}+\frac{1}{2}\left(\frac{2 x_{k, k}}{\sqrt{k k}}+\frac{x_{k, k+1}}{\sqrt{k(k+1)}}+\cdots+\frac{x_{k, n-2}}{\sqrt{k(n-2)}}\right) \\
& +\frac{1}{2} \sum_{j=k+1}^{n-2} \frac{x_{k, j}+\cdots+x_{j-1, j}+2 x_{j, j}+x_{j, j+1}+\cdots+x_{j, n-2}}{\sqrt{j(n-1)}} \tag{2.12}\\
= & \sum_{i=k}^{n-2} \frac{n_{i} n_{n-1}}{\sqrt{i(n-1)}}+\frac{n_{n-1}\left(n_{n-1}-1\right)}{2(n-1)}+\frac{1}{2}\left(\frac{2 x_{k, k}}{\sqrt{k k}}+\frac{x_{k, k+1}}{\sqrt{k(k+1)}}+\cdots+\frac{x_{k, n-2}}{\sqrt{k(n-2)}}\right) \\
& +\frac{1}{2} \sum_{j=k+1}^{n-2} \frac{j n_{j}-n_{j} n_{n-1}}{\sqrt{j(n-1)}} \tag{2.13}\\
= & \frac{1}{2 \sqrt{n-1}} \sum_{j=k+1}^{n-2} \sqrt{j n_{j}+\frac{n_{n-1}}{2 \sqrt{n-1}} \sum_{j=k+1}^{n-2} \frac{n_{j}}{\sqrt{j}}+\frac{n_{n-1}\left(n_{n-1}-1\right)}{2(n-1)}} \\
& +\frac{1}{2}\left(\frac{2 x_{k, k}}{\sqrt{k k}}+\frac{x_{k, k+1}}{\sqrt{k(k+1)}}+\cdots+\frac{x_{k, n-2}}{\sqrt{k(n-2)}}\right)+\frac{n_{k} n_{n-1}}{\sqrt{k(n-1)}},
\end{align*}
$$

where inequality (2.12) holds because $\frac{1}{\sqrt{i}} \geq \frac{1}{\sqrt{n-1}}$ for $k+1 \leq i \leq n-2$, and equality (2.13) holds because of (1.6). After substitution of $n_{n-1}=k-t$ and $n_{k}=n-k+t-n_{k+1}-n_{k+2}-$ $\cdots-n_{n-2}$ into the last equality, we have

$$
\begin{aligned}
R_{k-t} & \geq \frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}} \\
& +\sum_{j=k+1}^{n-2}\left(\sqrt{j}-\sqrt{k}-(k-t)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{j}}\right)+\frac{t}{\sqrt{k}}\right) \frac{n_{j}}{2 \sqrt{n-1}} \\
& +\frac{1}{2}\left(\frac{2 x_{k, k}}{\sqrt{k k}}+\frac{x_{k, k+1}}{\sqrt{k(k+1)}}+\cdots+\frac{x_{k, n-2}}{\sqrt{k(n-2)}}\right) .
\end{aligned}
$$

Since $\sqrt{k j}>k-t$ for $k+1 \leq j \leq n-2$, we have $\sqrt{j}-\sqrt{k}>(k-t) \frac{\sqrt{j}-\sqrt{k}}{\sqrt{k j}}$, i.e., $\sqrt{j}-\sqrt{k}>$ $(k-t)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{j}}\right)$. Thus $\sqrt{j}-\sqrt{k}-(k-t)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{j}}\right)+\frac{t}{\sqrt{k}}>0$. Since if $n_{j}=0$ then $x_{i, j}=0$
for $k \leq i \leq j \leq n-2$, we then have

$$
\begin{aligned}
& \frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}}+\sum_{j=k+1}^{n-2}\left(\sqrt{j}-\sqrt{k}-(k-t)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{j}}\right)+\frac{t}{\sqrt{k}}\right) \frac{n_{j}}{2 \sqrt{n-1}} \\
& +\frac{1}{2}\left(\frac{2 x_{k, k}}{\sqrt{k k}}+\frac{x_{k, k+1}}{\sqrt{k(k+1)}}+\cdots+\frac{x_{k, n-2}}{\sqrt{k(n-2)}}\right) \\
& \geq \frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}}+\frac{x_{k, k}}{k} .
\end{aligned}
$$

Notice that equalities hold in all the above inequalities if and only if $n_{j}=0, j=k+$ $1, k+2, \cdots, n-2$. Thus,

$$
R_{k-t} \geq \frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}}+\frac{x_{k, k}}{k}
$$

where equality holds if and only if $n_{j}=0, j=k+1, k+2, \cdots, n-2$.
We know that if $n_{j}=0, j=k+1, k+2, \cdots, n-2$, then $n_{k}=n-k+t, n_{n-1}=k-t$, $x_{k, k}=(n-k+t) t / 2, x_{n-1, n-1}=(k-t)(k-t-1) / 2$ and all other $x_{i, j}$ and $x_{i, i}$ are equal to zero. Therefore,

$$
R_{k-t} \geq \frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}}+\frac{(n-k+t) t}{2 k},
$$

where equality holds if and only if $n_{j}=0, j=k+1, k+2, \cdots, n-2$.
Let

$$
f(k, t)=\frac{(k-t)(n-k+t)}{\sqrt{k(n-1)}}+\frac{(k-t)(k-t-1)}{2(n-1)}+\frac{(n-k+t) t}{2 k} .
$$

We only need to get the minimum value of $f(k, t)$, by distinguishing two cases.
Case 1. $k \leq n / 2$.
Since $\partial f(k, t) / \partial t=\frac{n+2 t-2 k}{2}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2} \geq 0$, and $\partial f(k, t) / \partial t>0$ strictly holds except for $k-t=n / 2$, i.e., $k=n / 2+t$, we know that $f(k, t)$ attains its minimum if and only if $t=0$ since $k \leq n / 2$ in this case.

So, in this case we can conclude that the Randić index attains its minimum in $G(k, n)$ if and only if all the above equalities hold, which means that $n_{k}=n-k, n_{n-1}=k, n_{j}=$ $0, j=k+1, \cdots, n-2, x_{n-1, n-1}=\binom{k}{2}$ and all other $x_{i, j}, x_{i, i}$ are equal to zero. Therefore, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if $G=K_{k, n-k}^{*}$ for $k \leq n / 2$.

Case 2. $n-2 \geq k>n / 2$.
Let $\partial f(k, t) / \partial t=\frac{n+2 t-2 k}{2}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}=0$. Then $t=k-n / 2$. Since $\partial^{2} f(k, t) / \partial t^{2}=$ $\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{n-1}}\right)^{2}>0, f(k, t)$ attain its minimum if and only if $t=k-n / 2$. Then we have $n_{k}=n / 2, x_{k, k}=n(2 k-n) / 2$ and $x_{n-1, n-1}=n(n-2) / 8$. Next, we need to check whether they are integers or not, since the obtained solutions have no graph theoretical meaning when one of the three values, namely, $x_{k, k}=(n-k+t) t / 2, x_{n-1, n-1}=(k-t)(k-t-1) / 2$ and t, is not an integer.

Subcase 2.1. $n \equiv 0(\bmod 4)$.
We can easily check that $t=k-n / 2, x_{k, k}=n / 2$ and $x_{n-1, n-1}=n(n-2) / 8$ are integers in this case. Therefore, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if $G=\bar{G}_{n, n / 2, k}$ in the case $n \equiv 0(\bmod 4)$.

Subcase 2.2. $n \equiv 1(\bmod 4)$.
We see first that $t=k-n / 2$ is not an integer in this case. Therefore, the obtained solutions have no graph theoretical meaning. Then t can not attain $k-n / 2$ if we want to get the minimum value of the Randić index in $G(k, n)$. We then let $t \leq k-\frac{n+1}{2}$ or $t \geq k-\frac{n-1}{2}$.

For $t \leq k-\frac{n+1}{2}$, we have $n+2 t-2 k \leq-1<0$. Thus $\partial f(k, t) / \partial t<0$. Therefore, $f(k, t)$ attains its minimum if and only if $t=k-\frac{n+1}{2}$ in this case. And then $n_{k}=(n-1) / 2, n_{n-1}=$ $(n+1) / 2, x_{k, k}=(n-1)(2 k-n-1) / 8, x_{n-1, n-1}=(n+1)(n-1) / 2$ all are integers. So, $\min f(k, t)=\frac{(n-1)(2 k-n-1)}{8 k}+\frac{(n+1)(n-1)}{4 \sqrt{k(n-1)}}+\frac{(n+1)(n-1)}{8(n-1)}$.

For $t \geq k-\frac{n-1}{2}$, we have $n+2 t-2 k \geq 1>0$. Thus $\partial f(k, t) / \partial t>0$. Therefore, $f(k, t)$ attains its minimum if and only if $t=k-\frac{n-1}{2}$ in this case. And then $n_{k}=(n+1) / 2$, $n_{n-1}^{*}=(n-1) / 2, x_{k, k}=(n+1)(2 k-n+1) / 8, x_{n-1, n-1}^{*}=(n-1)(n-3) / 2$ all are integers if k is even. So, $\min f(k, t)=\frac{(n+1)(2 k-n+1)}{8 k}+\frac{(n+1)(n-1)}{4 \sqrt{k(n-1)}}+\frac{(n-1)(n-3)}{8(n-1)}=\frac{(n-1)(2 k-n-1)}{8 k}+$ $\frac{(n+1)(n-1)}{4 \sqrt{k(n-1)}}+\frac{(n+1)(n-1)}{8(n-1)}$, which is the same as the minimum value for the above case when $t \leq k-\frac{n+1}{2}$.

Therefore, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if G is $\bar{G}_{n,\left\lfloor\frac{n}{2}\right\rfloor, k}$ for k both even and odd, or $\bar{G}_{n,\left\lceil\frac{n}{2}\right\rceil, k}$ for k even in the case $n \equiv 1(\bmod 4)$.

Subcase 2.3. $n \equiv 2(\bmod 4)$.

We can easily check that $t=k-n / 2, x_{k, k}=n(2 k-n) / 8$ and $x_{n-1, n-1}=n(n-2) / 8$ are integers if k is odd in this case. Therefore, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if G is $\bar{G}_{n, n / 2, k}$ for k odd in the case $n \equiv 1(\bmod 4)$.

If k is even, then $x_{k, k}=n(2 k-n) / 8$ is not an integer in this case, which means that t can not attain $k-n / 2$ if we want to get the minimum value of the Randić index in $G(k, n)$. We then let $t \leq k-\frac{n+2}{2}$ or $t \geq k-\frac{n-2}{2}$.

For $t \leq k-\frac{n+2}{2}$, we have $n+2 t-2 k \leq-2<0$. Thus $\partial f(k, t) / \partial t<0$. Therefore, $f(k, t)$ attains its minimum if and only if $t=k-\frac{n+2}{2}$ in this case. And then $n_{k}=(n-2) / 2, n_{n-1}=$ $(n+2) / 2, x_{k, k}=(n-2)(2 k-n-2) / 8, x_{n-1, n-1}=n(n+2) / 2$ all are integers. So, $\min f(k, t)=\frac{(n-2)(2 k-n-2)}{8 k}+\frac{(n-2)(n+2)}{4 \sqrt{k(n-1)}}+\frac{n(n+2)}{8(n-1)}$.

For $t \geq k-\frac{n-2}{2}$, we have $n+2 t-2 k \geq 2>0$. Thus $\partial f(k, t) / \partial t>0$. Therefore, $f(k, t)$ attains its minimum if and only if $t=k-\frac{n-2}{2}$ in this case. And then $n_{k}=(n+2) / 2, n_{n-1}^{*}=$ $(n-2) / 2, x_{k, k}=(n+2)(2 k-n+2) / 8, x_{n-1, n-1}=(n-2)(n-4) / 2$ all are integers. So, $\min f(k, t)=\frac{(n+2)(2 k-n+2)}{8 k}+\frac{(n-2)(n+2)}{4 \sqrt{k(n-1)}}+\frac{(n-2)(n-4)}{8(n-1)}=\frac{(n-2)(2 k-n-2)}{8 k}+\frac{(n-2)(n+2)}{4 \sqrt{k(n-1)}}+\frac{n(n+2)}{8(n-1)}$, which is the same as the minimum value for the above case when $t \leq k-\frac{n+2}{2}$.

Therefore, in the case $n \equiv 2(\bmod 4)$ and k is odd, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if $G=\bar{G}_{n, \frac{n}{2}, k}$.

In the case $n \equiv 2(\bmod 4)$ and k is even, a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if $G=\bar{G}_{n, \frac{n-2}{2}, k}$ or $\bar{G}_{n, \frac{n+2}{2}, k}$.

Subcase 2.4. $n \equiv 3(\bmod 4)$.
Similar to the proof of Subcase 2.2, we can get that a graph G in $G(k, n)$ attains the minimum value of the Randić index if and only if G is $\bar{G}_{n,\left\lceil\frac{n}{2}\right\rceil, k}$ for k both even and odd, or $\bar{G}_{n,\left\lfloor\frac{n}{2}\right\rfloor, k}$ for k even.

The proof is now complete.

References

[1] M. Aouchiche, P. Hansen, On a conjecture about the Randić index, Discrete Math. 307(2)(2007), 262-265.
[2] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50(1998), 225-233.
[3] G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs IV: Chemical trees with extremal connectivity index, Computers and Chemistry 23(1999), 469-477.
[4] G. Caporossi, I. Gutman, P. Hansen, Lj. Pavlović, Graph with maximum connectively index, Computational Biology \& Chemistry 27(2003), 85-90.
[5] C. Delorme, O. Favaron, D. Rautenbach, On the Randić index, Discrete Math. 257(1)(2002), 29-38.
[6] S. Fajtlowicz, Written on the wall: Conjectures derived on the basis of the program Galatea Gabriella Graffiti, University of Houston, 1998.
[7] M. Fischermann, A. Hoffmann, D. Rautenbach, L. Volkmann, A linear-programming approach to the generalized Randić index, Discrete Appl. Math. 128(2003), 375-385.
[8] I. Gutman, O. Miljkovic, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, Chem. Phys. Lett. 306(1999), 366-372.
[9] I. Gutman, Lj. Pavlović, O. Miljkovic, On graphs with extremal connectivity indices, Bulletin de l'Academie Serbe des Sciences er des Arts 25(2000), 1-14.
[10] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[11] L.B. Kier, L.H. Hall, The nature of structure-Activity relationships and their relation to molecular connectivity, European J. Med. Chem. 12(1977), 307-312.
[12] L.B. Kier, L.H. Hall, Molecular Connectivity in structure-Activity Analysis, Research Studies Press-Wiley, Chichester(UK), 1986.
[13] X. Li, I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006, pp.VI+330.
[14] N. Limic, H. Psasgic, C. Rnjak, Linearno i nelinearno programiranje, Informator, Zagreb(HR), 1978.
[15] Lj. Pavlović, Graphs with extremal Randić index when the minimum degree of vertices is two, Kragujevac J. Math. 25(2003), 55-63.
[16] Lj. Pavlović, On the conjecture of Delorme, Favaron and Rautenbach about the Randić index, European J. Operational Research 180(2007), 369-377.
[17] Lj. Pavlović, T. Divnic, A quadratic programming approach to the Randić index. European J. Operational Research 176(2007), 435-444.
[18] Lj. Pavlović, I. Gutman, Graph with extremal connectivity index, Novi Sad J. Math. 31(2)(2001), 53-58.
[19] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975), 6609-6615.

[^0]: *Supported by NSFC No.10831001, PCSIRT and the " 973 " program.

