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Abstract

For a graph G, the Randi¢ index R(G) of G is defined by R(G) = }_, |, ﬁ,

where d(u) is the degree of a vertex u and the summation runs over all edges uv of G.
Let G(k,n) be the set of connected simple graphs of order n with minimum degree k.
Bollobas and Erdés once asked for finding the minimum value of the Randi¢ index among
the graphs in G(k,n). There have been many partial solutions for this question. In this

paper we give a complete solution to the question.
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1 Introduction

The Randi¢ index R = R(G) of a graph G is defined as follows:

(1.1)

1
R=RE) =2 ey

where d(u) denotes the degree of a vertex w and the summation runs over all edges uv of
G. This topological index was first proposed by Randié¢ [19] in 1975, suitable for measuring
the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. Randi¢

himself demonstrated [19] that his index is well correlated with a variety of physico-chemical
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properties of alkanes. The R became one of the most popular molecular descriptors to which
three books are devoted [10, 12, 13]. Initially, the Randi¢ index was studied only by chemists
[10, 11], but recently it attracted much attention also of mathematicians [13]. One of the
mathematical questions asked in connection with R is which graphs in a given class of graphs
have maximum and minimum R values [2]. Let G(k,n) be the set of connected simple graphs
of order n with minimum degree k. In [6] Fajtlowitcz mentioned that Bollobas and Erdés
asked for finding the minimum value of the Randi¢ index among the graphs in G(k,n). The
solution of such problem turned out to be difficult, and only a few partial results have been

achieved so far. In [2] Bollobéds and Erdés found that for a connected graph G

R(@G) > vn—1, (1.2)

and the bound is tight if and only if G is a star. The problem for k = 2 was solved in [5],

which gave a stronger result, say, if the minimum degree is greater or equal to 2, then

2n —4 1
R(G) > )
( )_\/2n—2+n—1

and the bound is tight if and only if G = K3,,_, which arises from the complete bipartite

(1.3)

graph Ks,,_2 by joining the vertices in the partite set with 2 vertices by a new edge. In these
papers a graph theoretical approach has been used. In other papers [3, 4, 7, 8, 9], a linear
programming and a quadratic programming technique [14] for finding extremal graphs has

been used.

In [15] the problem was solved for £k = 1 and k& = 2, respectively, by using linear pro-
gramming. Delorme, Favaron and Rautenbach [10] gave a conjecture about this problem.
The conjecture in [5] is that the Randié¢ index for graphs in G(k,n), where 1 < k < n — 2,
attains its minimum value for the graph K,;n_k which arises from the complete bipartite
graph Kj, ,_ by joining every pair of vertices in the partite set with k vertices by a new

edge.

Conjecture 1 ([5]). Let G = (V, E) be a graph of order n with minimum degree k. Then

k(n — k) K\ 1
R(G) > N <2> — (1.4)

where equality holds if and only if G = K}, ;.

Using again linear programming, Pavlovié¢ [16] proved that Conjecture 1 holds when k =

(n—1)/2 or k = n/2. See also [14] for further results proved by using quadratic programming.



Divnic and Pavlovié¢ [17] proved that Conjecture 1 holds when k& < n/2 and ny > n—k, where

ny denotes the number of vertices of degree k.

Recently in [1], however, Aouchiche and Hansen showed that Conjecture 1 does not hold

in general and proposed a modified conjecture as follows.

Let the graph aw,’k be the complement of a graph G, , ;, composed of a (n—k—1)-regular
graph on p vertices together with n — p isolated vertices. The minimal counterexample of

Conjecture 1 is the graph G745, which was given in [1], see Figure 1.

G7,475 G774,5
Figure 1
Let
242 if p = 0(mod 4)
2=2 if p = 2(mod 4) and k is even
2£3if n = 1(mod 4)
k, = p=1q 2] ifn=3(mod 4) (1.5)
24 if = 2(mod 4)
5] otherwise
2E3if p = 3(mod 4)

For such a graph G = @n,p,k,

(n—p)(n—p—l)er(erkr—n)Jr p(n —p)

B = "5 —) 2k k(n— 1)

Using these results, the authors of [1] gave the following Conjecture 2 as a modification of
Conjecture 1.

Conjecture 2 ([1]). Let G = (V, E) be a graph of order n with minimum degree k, and k,
and p be given in (1.5). Then

k(k—1 k(n—k .
St \/li - it k < ky
(n=p)(n—p—1) + p(:nJ;k—n) + p(n—p) ;¢ ky, <k<mn-—2

2(n—1) k Vkn-1)

where equality holds if and only if G is K,:’n_ p for k < ky, and G, 1 for k > ki,.

R(G) >




In this paper, we want to completely solve the Bollobds and Erdds’ question of finding
the minimum value of the Randi¢ index for the graphs in G(k,n). As usual, we formulate the
question into a mathematical programming problem. Denote by n; the number of vertices of
degree i in G, and by x; ; (x;; > 0) the number of edges joining the vertices of degrees i and

j in G. The mathematical description of our problem is as follows:

T
min R(G) = =L

i<j<n—1
subject to:
n—1
Zﬂfi,j +2x;; =1in; for kE<i<n-—1; (1.6)
j=k
I
N+ N1+ 0+ Ny =1 (1.7)
zij<nmn; for k<i<n—1 i<j<n-—1; (1.8)
Tig < (T;Z> for k<i<n-1 (1.9)
x; j, n; are nonnegative integers, for k <i < j <mn —1. (1.10)

Obviously, (1.6)-(1.10) define a nonlinearly constrained optimization problem.

2 Main result

Denote

5 if n = 0(mod 4)

5] or [§] if n=1(mod 4)and k is even
5] if n = 1(mod 4)and k is odd

p= "T_2 or "TZ if n = 2(mod 4)and k is even (2.11)

5 if n = 2(mod 4)and k is odd
5] or [§] if n=3(mod 4)and k is even
[5] if n = 3(mod 4)and k is odd.

Theorem 2.1 Let G = (V, E) be a graph of order n with minimum degree k, and p be given
in (2.11). Then we have

k(k—1) k(n—k) '
@) > 2(n—1) T Vk(n—1) ifk<n/2

R(G) > n—p)(n—p—1 +k—n n— ;
( §2n_§ ) g plothon) | ji(nf)n if k> n/2



where equality holds if and only if G is K,;n_k for k <n/2, and Gy pi for k > n/2.

Proof. It is easy to see that n,,_1 < k, or the minimum degree of a graph in G(k,n) would be
larger than k. Therefore we only need to consider the case when n, 1 < k. Let n,,_ 1 =k —t
for some integer ¢ such that 0 < ¢ < k, and let R;_; denote the Randi¢ index for any graph
in G(k,n) with n,_; =k —1t (0 <t < k). Since z;,—1 = nin,—1 for k < i < n —2 and

Tp—1n-1 = Np—1(Np—1 —1)/2, we have

L, 5 — NNy nn—l(nn—l - 1)
Ry =
P T
i<j<n—1
—2
CINSER L T S e
2 0V G-Di Vi iGtD i —2)
—2
N nz: Miftn1 Np—1(Mp—1 — 1) 1(2wkk Th k1 cp Tkme2 )
o Viln—1) 2(n—1) VEE+1) ke(n — 2)
41 nz_:z T+ F i1 + 2255+ Tjjr+ o+ T2 (2.12)
2 j=k+1 j(n—=1)
—2
_ nz: niMp—1 nn—l(nn—l - 1) 1(21']6 k Tk k+1 + Tk n—2 )
= \fi(n—1) 2(n—1) VEk(k+1) k(n —2)
-2 .
LSS g s (2.13)
2 j=k+1 jn—1)
1 nn—l(nn—l - 1)
Ving + A==
s 3, R %M 2=
n 1(233kk Tk k41 Thn—2 )+ N Mn—1
VE(k+1) \/ (n—2) VEk n—l
where inequality (2.12) holds because \Lf > \/_ for k+1 <i<n—2, and equality (2.13)

holds because of (1.6). After substitution of n,,_1 =k—tand ny =n—k+t—ngs1 —ngro —

-+ —n,_9 into the last equality, we have

k= tk—t=1) (k- —k+1)

Riv 2 2(n— 1) k;(n_1)
b5 (Vi Vi - by L)
Pt f Vit Vk)2vn—1
1(2$kk Th k41 Tkn—2

N e

Since\/F>k—tf0rk+1§j§n—2,wehave\/_'—\/E>(k—t)ﬁ_\./E ie., vj—Vk>

\/E b
(k—t)(T—%). Thus /7 — Vk — (k —t)(%—%)+ﬁ>0. Since if n; = 0 then z; ; =0
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for kK <i<j<n-—2, we then have

k=tk—t-1) (h-On—k+t) ([ ~ ~ . 1 1. t\ n
2(n — 1) * kE(n —1) %}3;1<¢_ Vi -k tﬂ¢% \6)+ k>2¢n—1
1 2%k Tk k1 Thn—2
+5(ﬂ%_FMMk+U+””+M%M—2ﬂ

(k—t)k—t—1) (k—t)n—k+t) zpi

> .
- 2(71 — 1) k(n — 1) k

Notice that equalities hold in all the above inequalities if and only if n; = 0, j = k +
1,k+2,--- ,n—2. Thus,

(k—t)(k—t—1) (E—t)(n—k+1) Tk k

Ri_; > )
kot = 2(n —1) k(n 1) k

where equality holds if and only if n; =0, j=k+1,k+2,--- ,n—2.

We know that if n; =0, j=k+1,k+2,--- ,n—2,thenng=n—-k+1t, n,_1 =k —t,
T =Mm—k+1t)t/2, p_1,-1 = (k—1t)(k—t—1)/2 and all other z; ; and x;; are equal to
zero. Therefore,

k—t)k—t—1) (k—t)n—k+t) (n—Fk+t)

Ryt > ,
=T (1) Kn 1) 2k

where equality holds if and only if n; =0, j=k+1,k+2,--- ,n—2.

Let
(k—t)(n—Fk+t) (k—t)(k—t—1)+(n—k+t)t
k(n—1) 2(n—1) 2k '

We only need to get the minimum value of f(k,t), by distinguishing two cases.

f(kvt) =

Case 1. k < n/2.

Since Of (k,t)/0t = W(ﬁ - nl_l)2 > 0, and Of (k,t)/0t > 0 strictly holds except
for k —t = n/2, ie., k = n/2 +t, we know that f(k,t) attains its minimum if and only if

t = 0 since k < n/2 in this case.

So, in this case we can conclude that the Randi¢ index attains its minimum in G(k,n)
if and only if all the above equalities hold, which means that ny, =n —k, n,_1 =k, n; =
0, j=k+1,-- ,n—2, Tp_1p-1= (g) and all other z; ;, x; ; are equal to zero. Therefore, a
graph G in G(k,n) attains the minimum value of the Randi¢ index if and only if G = K}, |,

for k <mn/2.



Case 2. n—2>k>n/2.

Let Of (k,t)/0t = W(ﬁ - \/%)2 = 0. Then t = k — n/2. Since 0?f(k,t)/0t* =

L_)2 > 0, f(k,t) attain its minimum if and only if t = k — n/2. Then we have

1
(7?-_ n—1
ng =n/2, xpr =n(2k —n)/2 and x,_1,—1 = n(n — 2)/8. Next, we need to check whether

they are integers or not, since the obtained solutions have no graph theoretical meaning when
one of the three values, namely, zy, = (n —k+t)t/2, £p_1n—1 = (kK —t)(k —t —1)/2 and ¢,

is not an integer.
Subcase 2.1. n =0 (mod 4).

We can easily check that t =k —n/2, xp; =n/2 and 1 n—1 = n(n —2)/8 are integers
in this case. Therefore, a graph G in G(k,n) attains the minimum value of the Randi¢ index

if and only if G = an7n/2’k in the case n =0 (mod 4).
Subcase 2.2. n =1 (mod 4).

We see first that ¢ = k — n/2 is not an integer in this case. Therefore, the obtained
solutions have no graph theoretical meaning. Then ¢ can not attain k —n /2 if we want to get

the minimum value of the Randié¢ index in G(k,n). We then let t < k — "TH ort>k— "T_l

For t < k — 2, we have n + 2t — 2k < —1 < 0. Thus 0f(k,t)/0t < 0. Therefore, f(k,t)

attains its minimum if and only if ¢ = k — 2 in this case. And then ng = (n—1)/2, ny_q =

(n+1)/2, zpp=n—-1)2k —n—1)/8, zp_1p-1 = (n+1)(n — 1)/2 all are integers. So,

. n—1)(2k—n—1 n+1)(n—1 n+1)(n—1
min f(k,t) = (n=1)(Zk=n-1) )(Sk ) 4 (4\/k)(;_1)) + 8(,2(_1) ),

For t > k — %51, we have n + 2t — 2k > 1 > 0. Thus df(k,t)/0t > 0. Therefore, f(k,t)
attains its minimum if and only if ¢ = k — 25! in this case. And then ny = (n + 1)/2,

ny_1=n-1)/2, app=Mn+1)2k—n+1)/8, x}_1, 1 = (n—1)(n—3)/2 all are integers

if k is even. So, min f(k,t) = ("H)(éz_nﬂ) + (:\7?(::1)) + ("g(lrz(_’;f) = (n_l)(éi_n_l) +

(ntl)(n-1) + (ngl)(_"_l), which is the same as the minimum value for the above case when
4y/k(n—1) (n—1)

+1
t<k-—"-.

Therefore, a graph G in G(k,n) attains the minimum value of the Randi¢ index if and

only if G is GML%JJ@ for k both even and odd, or EnJ%Lk for k even in the case n = 1 (mod 4).

Subcase 2.3. n = 2(mod 4).



We can easily check that t =k —n/2, zj 1 =n(2k —n)/8 and 2,,_1,n—1 = n(n —2)/8 are
integers if k is odd in this case. Therefore, a graph G in G(k,n) attains the minimum value

of the Randi¢ index if and only if G is G, ,, /2 for k odd in the case n =1 (mod 4).

If k is even, then z;, = n(2k —n)/8 is not an integer in this case, which means that ¢
can not attain k — n/2 if we want to get the minimum value of the Randi¢ index in G(k,n).

Wethenlettﬁk:—"THortzk’—"Tﬁ.

For t < k — 242, we have n + 2t — 2k < —2 < 0. Thus 0f(k,t)/0t < 0. Therefore, f(k,t)

attains its minimum if and only if t = k — "‘52 in this case. And then ny = (n—2)/2, n,_1 =

(n+2)/2, v = (n—2)(2k —n —2)/8, Tp_1n-1 = n(n + 2)/2 all are integers. So,

min f(k,t) = % 4 (Z\—/i)(:zjlz) n ;L((n+2))

For t > k — %52, we have n + 2t — 2k > 2 > 0. Thus 9f(k,t)/0t > 0. Therefore, f(k,t)

attains its minimum if and only if ¢ = k — 252 in this case. And then ny = (n+2)/2, n*_, =
y 2 n—1

(n—2)/2, zpp=n+2)2k —n+2)/8, vp_1n-1 = (n—2)(n—4)/2 all are integers. So,

n+2)(2k—n+2 n—2)(n—+2 n—2)(n—4 n—2)(2k—n—2 n—2)(n+2 n(n+2
min f(k,1) = 22k )+(4\/k>(51 2 o) _ o2k >+(4\/k>(51_1>+8(( 3

which is the same as the minimum value for the above case when ¢t < k — "TH

Therefore, in the case n = 2 (mod 4) and k is odd, a graph G in G(k,n) attains the
minimum value of the Randié¢ index if and only if G = Gm%k

In the case n = 2 (mod 4) and k is even, a graph G in G(k,n) attains the minimum value
of the Randi¢ index if and only if G = Enﬁ%”@ or én%k

Subcase 2.4. n =3 (mod 4).

Similar to the proof of Subcase 2.2, we can get that a graph G in G(k,n) attains the
minimum value of the Randi¢ index if and only if G is énﬁ[%w for k both even and odd, or

anvL%J,k for k even.

The proof is now complete. 1
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