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Abstract

We give non-symmetric versions of the Cauchy kernel and Littlewood’s kernels,
corresponding to the types A, B, C and D, of the classical groups. Defining two
families of key polynomials (one of them being the Demazure characters), we show
that these new kernels are diagonal in the basis of key polynomials. We define
scalar products such that the two families of key polynomials are adjoint to each
other.
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1 Introduction

Key polynomials occur naturally in geometry and representation theory. They were
defined by Demazure [3] as characters of the action of a complex torus on spaces of
sections of ample line bundles over Schubert subvarieties of a flag variety (the case
where the Schubert variety is the full flag variety give the irreducible characters of the
linear, symplectic and orthogonal groups over C). In this text, we shall adopt a purely
combinatorial point of view, keeping only from the work of Demazure the definition of
isobaric divided differences.

Given two sets of indeterminates x = {x1, . . . , xn}, y = {y1, . . . , yn}, the classical
Cauchy kernel Ω̃A diagonalizes in the basis of Schur functions :

Ω̃A =
n∏

i,j=1

(1− xiyj)−1 =
∑

λ

sλ(x) sλ(y). (1)
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The Cauchy kernel may be considered as the generating function of all characters
of the symmetric groups. Multiplying the kernel Ω̃A by the factor

∏

1≤i<j≤n

(1− xixj)
n∏

i,j=1

(1− xi/yj)−1 or
∏

1≤i≤j≤n

(1− xixj)
n∏

i,j=1

(1− xi/yj)−1,

Littlewood [11] obtained expansions for the following kernels Ω̃C and Ω̃D, in terms of
symplectic Schur functions and orthogonal Schur functions (see below for the precise
definitions):

Ω̃C =

∏
1≤i<j≤n(1− xixj)∏n

i,j=1(1− xiyj)(1− xi/yj)
=

∑

λ

sλ(x) Spλ(y′), (2)

Ω̃D =

∏
1≤i≤j≤n(1− xixj)∏n

i,j=1(1− xiyj)(1− xi/yj)
=

∑

λ

sλ(x)Oλ(y′) , (3)

where y′ = {y1, . . . , yn, y−1
1 , . . . , y−1

n }.
In this paper, we shall study the following non-symmetric versions of the kernels

Ω̃A, Ω̃C and Ω̃D :

ΩA :=
1∏

i+j≤n+1(1− xiyj)
,

ΩB :=

∏
1≤i<j≤n(1− xixj)

∏n
i=1(1 + xi)∏n

i,j=1(1− xiyj)
∏n

i=1

∏n
j=i(1− xi/yj)

,

ΩC :=

∏
1≤i<j≤n(1− xixj)∏n

i,j=1(1− xiyj)
∏n

i=1

∏n
j=i(1− xi/yj)

,

ΩD :=

∏
1≤i≤j≤n−1(1− xixj)∏n−1

i=1

∏n
j=1(1− xiyj)

∏n−1
i=1

∏n
j=i(1− xi/yj)

.

It will be convenient to interpolate between ΩB and ΩC , choosing an arbitrary
parameter β, and defining :

ΩBC =

∏
1≤i<j≤n(1− xixj)

∏n
i=1(1 + βxi)∏n

i,j=1(1− xiyj)
∏n

i=1

∏n
j=i(1− xi/yj)

.

For each type A,B, C, D, BC, there exist two families of isobaric divided differ-
ences, which allow, starting from all dominant monomials, to define two families of key
polynomials, one of them being the Demazure characters. Our main result (Th. 6) is
that all kernels ΩA, . . . ,ΩBC diagonalize in the corresponding basis of key polynomials.
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Notice that in type A, one also has a polynomial kernel, which is the resultant∏
i

∏
j(xi − yj) of two z-polynomials

∏
i(z − xi) and

∏
j(z − yj). It still decomposes

without multiplicity in the basis of products of Schur functions in x and y. The
non-symmetric version of the resultant,

∏
i+j≤n+1(xi − yj), decomposes in the basis

of products of Schubert polynomials in x and y, and the main properties of Schubert
polynomials are easy consequences of the fact that

∏
i+j≤n+1(xi − yj) is a reproducing

kernel [7].

In the present article, we have rather taken in the case of type A the inverse function∏
i+j≤n+1(1−xiyj)−1. The corresponding polynomials are no more the Schubert poly-

nomials, though there are interesting relationships between them and the Demazure
characters.

The Cauchy kernel may be used to define a scalar product on the ring of symmetric
polynomials with coefficients in Z, with respect to which Schur functions constitute
an orthonormal basis [12]. Starting from Weyl’s denominators, we also define scalar
products with respect to which, for all classical types, the basis of key polynomials
are adjoint of each other (Th. 15). However, Bogdan Ion [5, 6] has shown that key
polynomials can be obtained as a limit case of Macdonald polynomials. Thus the
definition of the scalar product and the orthogonality property of key polynomials result
from the theory of Macdonald polynomials. Nevertheless, we are giving an independent
derivation in sections 6, 7, because this approach relies only on simple properties of
divided differences and does not require double affine Hecke algebras.

2 Weyl Groups

We shall realize the classical groups as groups operating on vectors, or, equivalently,
on Laurent polynomials, when considering the vectors to be exponents of monomials.
For more informations about Coxeter groups, see [1].

Fixing a positive integer n, we define the operators si (1 ≤ i ≤ n), and τn acting
on vectors v ∈ Zn as follows (operators are noted on the right):

vsi = [. . . , vi+1, vi, . . .] , 1 ≤ i < n,

vsn = [. . . , vn−1,−vn],
vτn = [. . . ,−vn, −vn−1] .

Denoting a Laurent monomial xv1
1 · · ·xvn

n by xv, we extend by linearity the preceding
operators to operators on Laurent polynomials in indeterminates x1, . . . , xn. The simple
transpositions si (i = 1, . . . , n−1) interchanges xi and xi+1, sn transforms xn into x−1

n ,
and τn sends xn−1 onto x−1

n , xn onto x−1
n−1.
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The group generated by s1, . . . , sn−1 is isomorphic to the symmetric group Sn (type
An−1). Adding the generator sn gives the Weyl group of type Bn or Cn (which will be
distinguished later), while s1, . . . , sn−1, τn induce a faithful representation of the type
Dn.

An element w of any of these groups can be identified with the image under w of
the vector v = [1, 2, . . . , n]. For type An−1, one gets permutations; for type Bn, Cn,
one gets the bar-permutations, writing r̄ rather than −r; and for type Dn, one gets the
bar-permutations with an even number of bars. The length `(w) of w is the length of a
reduced decomposition of w.

There is a unique element of maximal length for each type, usually denoted w0.
For An−1, it is ωA := [n, . . . , 1]. For Bn, Cn, it is ωB = ωC := [−1, . . . ,−n]. For Dn,
it is ωD := [−1, . . . ,−n] if n is even, and otherwise, it is ωD := [−1, . . . ,−n + 1, n].
Reduced decompositions for these elements are

ωA = (s1) (s2s1) · · · (sn−1 · · · s1) ,

ωB = ωC = (sn) (sn−1snsn−1) · · · (s1 · · · sn−1snsn−1 · · · s1) ,

ωD = (sn−1τn) (sn−2sn−1τnsn−2) · · · (s1 · · · sn−2sn−1τnsn−2 · · · s1) .

A partition λ is a decreasing element of Nn: λ1 ≥ · · · ≥ λn ≥ 0. In the case of
type An−1, Bn, Cn, a vector v is dominant (resp. a monomial xv is dominant) if v
is a partition. In the case of type Dn a vector v is dominant if it is a partition, or if
[v1, . . . , vn−1,−vn] is a partition. For a given type, we define the length `(v) of v ∈ Zn

to be the minimum number of generators of the group that must be applied to pass
from v to a dominant vector. Thus dominant vectors have length 0.

3 The Weyl character formula

In this section, we give a brief review of the Weyl character formula, from an algebraic
point of view only.

Let ρA = ρD := [n− 1, . . . , 1, 0], ρB := [n− 1
2 , . . . , 2− 1

2 , 1− 1
2 ], ρC := [n, . . . , 2, 1].

The sums ∑
w

(−1)`(w)
(
xρ♥

)w
,
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♥ = A,B, C, D, under the appropriate group, can be written as determinants :

∆A = det
(
xn−j

i

)
1≤i,j≤n

,

∆B = det
(
x

n+1/2−j
i − x

j−n−1/2
i

)
1≤i,j≤n

,

∆C = = det
(
xn+1−j

i − xj−n−1
i

)
1≤i,j≤n

,

2∆D = det
(
xn−j

i + xj−n
i

)
1≤i,j≤n

.

These determinants are easily factorized :

∆A =
∏

1≤i<j≤n

(xi − xj) , (4)

∆B =
n∏

i=1

(
x

1/2
i − x

−1/2
i

) ∏

1≤i<j≤n

(xi − xj)(1− 1
xixj

) , (5)

∆C =
n∏

i=1

(
xi − x−1

i

) ∏

1≤i<j≤n

(xi − xj)(1− 1
xixj

) , (6)

∆D =
∏

1≤i<j≤n

(xi − xj)(1− 1
xixj

) . (7)

Taking now the images of general dominant monomials, one obtains Weyl’s ex-
pressions of the characters of the linear, symplectic or orthogonal groups [15] . For a
partition λ ∈ Nn, (with λn = 0 in type D) the quotient

(∑
w

(−1)`(w)x(λ+ρ)w

)(∑
w

(−1)`(w)xρw

)−1

is equal to

sλ(x) , type A , (8)
Spλ(x′) , type C , (9)
Oλ(x′′) , type B , (10)
Oλ(x′) , type D , (11)

where x′ = {x1, . . . , xn, x−1
1 , . . . , x−1

n }, x′′ = {x1, . . . , xn, 1, x−1
1 , . . . , x−1

n }.
For a combinatorial interpretation in terms of lattice paths, we refer to Chen, Li

and Louck [4].

In the remainder of this text, we shall be concerned with the generalization of these
characters by Demazure.
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4 Divided differences and key polynomials

Restricting to n = 1, 2, one can interpret Weyl’s formulas as operators on the ring of
polynomials in one or two variables. These operators are similar to Newton’s divided
differences. They are called Demazure operators [3], or isobaric divided differences [7].

More specifically, for each type A,B, C, D, one defines two families of divided dif-
ferences acting on functions of x1, . . . , xn, and written on the right.

The first family is

πi : f 7−→ f πi :=
xif − xi+1f

si

xi − xi+1
, 1 ≤ i < n ,

πC
n : f 7−→ f πC

n :=
xnf − x−1

n fsn

xn − x−1
n

,

πB
n : f 7−→ f πB

n :=
xnf − fsn

xn − 1
,

πD
n : f 7−→ f πD

n :=
f − x−1

n−1x
−1
n f τn

1− x−1
n−1x

−1
n

.

It is convenient to interpolate between the operators πB
n and πC

n and define

πBC
n : f(x1, . . . , xn) 7−→ (xn + β)f − (x−1

n + β)fsn

xn − x−1
n

.

One sees that πC
n is recovered by putting β = 0, while πB

n corresponds to β = 1. This
operator results from the representation of the Hecke algebra of type C̃n, defined by
Noumi (cf. Sahi [14, 2.4]).

The second family is

π̂♥i = π̂i := πi − 1 , 1 ≤ i < n ,

and
π̂♥n = π♥n − 1 ,♥ = B,C, D,BC .

Each family satisfies the braid relations for type A,B, C, D respectively [3]. Notice
that the operators πi (resp. π̂i) , 1 ≤ i ≤ n, commute with the multiplication by
functions invariant under si, and that πD

n (resp. π̂D
n ) commutes with the multiplication

by functions invariant under τn. Thus, computations with a single πi, i ≤ n are reduced
to an action on the linear span of 1, xi. In particular, it is immediate to obtain that
each operator satisfies the following quadratic relations (which are degenerate cases of
the Hecke relations).
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Lemma 1 The squares of the isobaric divided differences satisfy

πiπi = πi , π̂iπ̂i = −π̂i , 1 ≤ i < n ,

π♥n π♥n = π♥n , π̂♥n π̂♥n = −π̂♥n ,♥ = B,C, D,BC .

We define the key polynomials of type ♥, for ♥ = A,B, C, D, BC, to be the im-
ages of dominant monomials under products of isobaric divided differences. For type
A,B, C, D, these are the Demazure characters. Using the divided differences π̂i instead
of πi, one obtains a second family of key polynomials.

In more details, we start with all dominant monomials xv and put

xv = K♥
v = K̂♥

v .

The other polynomials are defined recursively by

K♥
v πi = K♥

v si
& K̂♥

v π̂i = K̂♥
v si

, when vi > vi+1 , i < n . (12)

K♥
v π♥n = K♥

v sn
& K̂♥

v π̂♥n = K̂♥
v sn

, when vn > 0 , for ♥ = B,C, BC . (13)

KD
v πD

n = KD
v τn

& K̂D
v π̂D

n = K̂D
v τn

, vn−1 + vn > 0 . (14)

The definition is consistent since the operators satisfy the braid relations. Notice
that, when v ∈ Nn, then all K♥

v (resp. K̂♥
v ), ♥ = A,B, C, D, BC coincide with each

other, since the exceptional generators sn or τn are not used in the computation. In
that case, we shall write Kv, K̂v, ignoring the types. We shall also need to use at the
same time operators acting on x1, . . . , xn, and operators acting on y1, . . . , yn. In that
case, we use superscripts.

The images of a dominant monomial xv under the maximal divided difference π♥ω ,
for ♥ = A,C, B, D, are respectively the RHS of Eq. (8), (9), (10), (11).

For ♥ = BC, and β = −1, one recovers the odd symplectic characters of Proctor
[13, Prop. 7.3].

Divided differences can be extended to operators on paths. We refer specially to
the work of Littelmann [9, 10].

5 Cauchy-type Kernels

In this section, we shall show that all the kernels Ω♥, ♥ = A,B, C, D, BC, are diagonal
in the basis of key polynomials. In fact, our computations will essentially be reduced
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to the following cases, the verifications of which are immediate.

(1− axi)−1 πi = (1− axi)−1(1− axi+1)−1 (15)

(1− axi)−1 π̂i = axi+1(1− axi)−1(1− axi+1)−1 (16)

(1− axi+1) πi = (1− a/xi) πi = 1 , 1 ≤ i < n , (17)

(1− axi+1)(1− b/xi) πi = 1− ab , 1 ≤ i < n , (18)

(1− b/xn) πBC
n = 1 + βb , (19)

(1− b/xn−1)(1− b/xn) πD
n = 1− b2. (20)

We introduce the operator

Ξn :=
∑

σ∈Sn

π̂x
σ πy

σω ,

where ω is the maximal element in Sn. Filtering the set of permutations according to
the position of n, one gets the following factorization.

Lemma 2 We have

Ξn = Ξn−1

(
n−1∑

i=0

π̂x
[n−1:i] π

y
[n−1:n−1−i]

)
, (21)

where
π[n−1:i] := πn−1 πn−2 · · ·πn−i .

For example, the element Ξ4 factorizes as

Ξ4 = Ξ3 (πy
3πy

2πy
1 + π̂x

3πy
3πy

2 + π̂x
3 π̂x

2πy
3 + π̂x

3 π̂x
2 π̂x

1 ) .

The next proposition shows that the operator Ξn allows to obtain the kernel ΩA

from the generating function of dominant monomials.

Proposition 3 We have

1
(1− x1y1)(1− x1x2y1y2) · · · (1− x1 · · ·xny1 · · · yn)

Ξn

=
1∏

i+j≤n+1 1− xiyj
= ΩA . (22)
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Proof. The factor (1−x1 · · ·xny1 · · · yn)−1 commutes with all the divided differences π̂x
i ,

πy
i , 1 ≤ i ≤ n− 1. Using the above factorization of Ξn, and supposing the proposition

true for n− 1, one has to compute the image of
∏

i+j≤n(1− xiyj)−1 under the sum

n−1∑

i=0

π̂x
[n−1:i] π

y
[n−1:n−1−i].

By (16), one obtains
∏

i+j≤n

(1− xiyj)−1 π̂x
n−1 · · · π̂x

k =
∏

i+j≤n

(1− xiyj)−1 xny1

1− xny1
· · · xk+1yn−k

1− xk+1yn−k
.

Thanks to (15), the action of πy
n−1 · · ·πy

n−k+1 on this last function reduces to multipli-
cation by

1
1− x1yn

1
1− x2yn−1

· · · 1
1− xk−1yn−k+2

.

Reducing now the sum to a common denominator, it can be rewritten as the product
of ΩA times the factor

n−1∑

k=1

xn . . . xk+1y1 . . . yn−k(1− xkyn−k+1) + (1− xny1).

This last factor is equal to (1− x1 · · ·xny1 · · · yn) which commutes with all the divided
differences. This completes the proof.

Lemma 4 Let ΦBC be the following operator acting on the variables y1, . . . , yn :

ΦBC :=
(
πBC

n πn−1 · · ·π1

) (
πBC

n πn−1 · · ·π2

) · · · (πBC
n πn−1

) (
πBC

n

)
.

Then
ΩA ΦBC = ΩBC .

Proof. Thanks to (18) and (19), one has

f

(1− x′yi)(1− x/yi+1)
πi =

(1− x′yi+1)(1− x/yi)πi f

(1− x′yi)(1− x′yi+1)(1− x/yi+1)(1− x/yi)

=
(1− xx′) f

(1− x′yi)(1− x′yi+1)(1− x/yi+1)(1− x/yi)
,
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where i < n, and f = fsi , and

f

1− xyn
πBC

n = (1− x/yn) πBC
n

f

(1− xyn)(1− x/yn)

= (1 + βx)
f

(1− xyn)(1− x/yn)

where f = fsn .

By above two types of computations, we have

ΩA
(
πBC

n πn−1 · · ·π1

)
=

(
1

1− x1yn
πBC

n

)
1− x1yn∏

i+j≤n+1(1− xiyj)
(
πn−1 · · ·π1

)

= ΩA (1 + βx1)
(1− x1/yn)

(
πn−1 · · ·π1

)

=
(

1
(1− x1/yn)(1− x2yn−1)

πn−1

)
(1− x2yn−1)(1 + βx1)∏

i+j≤n+1(1− xiyj)
(
πn−2 · · ·π1

)

= ΩA (1 + βx1)(1− x1x2)
(1− x1/yn)(1− x1/yn−1)(1− x2yn)

(
πn−2 · · ·π1

)

=
(

1
(1− x1/yn−1)(1− x3yn−2)

πn−2

)

· (1− x3yn−2)(1 + βx1)(1− x1x2)∏
i+j≤n+1(1− xiyj)(1− x1/yn)(1− x2yn)

(
πn−3 · · ·π1

)

= · · ·

= ΩA (1 + βx1)
∏n−1

i=2 (1− x1xi)∏n
i=2(1− x1/yi)

∏n−1
i=2 (1− xiyn−i+2)

(π1)

=
(

1
(1− xny1)(1− x1/y2)

π1

)
1− xny1∏

i+j≤n+1(1− xiyj)

· (1 + βx1)
∏n−1

i=2 (1− x1xi)∏n
i=3(1− x1/yi)

∏n−1
i=2 (1− xiyn−i+2)

= ΩA (1 + βx1)
∏n

i=2(1− x1xi)∏n
i=1(1− x1/yi)

∏n
i=2(1− xiyn−i+2)

,

which implies that

ΩA
(
πBC

n πn−1 · · ·π1

)
=

(
1∏n

i=1(1− xiyn−i+1)
πBC

n πn−1 · · ·π1

)
1∏

i+j≤n(1− xiyj)
.
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Therefore, we have

ΩA ΦBC =
1∏n

i=2(1− xiyn−i+2)
(
πBC

n πn−1 · · ·π2

) · · · (πBC
n

)

·ΩA (1 + βx1)
∏n

i=2(1− x1xi)∏n
i=1(1− x1/yi)

=
(1 + βx2)

∏n
i=3(1− x2xi)∏n

i=2(1− x2/yi)
∏n

i=3(1− xiyn−i+3)
(πBC

n πn−1 · · ·π3

) · · · (
πBC

n

)

·ΩA (1 + βx1)
∏n

i=2(1− x1xi)∏n
i=1(1− x1/yi)

∏n
i=2(1− xiyn−i+2)

=
1∏n

i=3(1− xiyn−i+3)
(
πBC

n πn−1 · · ·π3

) · · · (πBC
n

)

·ΩA

∏2
i=1(1 + βxi)

∏2
i=1

∏n
j=i+1(1− xixj)∏n

i=2(1− xiyn−i+2)
∏2

i=1

∏n
j=i(1− xi/yj)

= · · ·

=
(

1
1− xnyn

πBC
n

)
ΩA

∏n−1
i=1 (1 + βxi)

∏
1≤i<j≤n(1− xixj)∏n−1

i=2

∏n
j=i(1− xjyn−j+i)

∏
1≤i≤j≤n

i6=n
(1− xi/yj)

= ΩA

∏n
i=1(1 + βxi)

∏
1≤i<j≤n(1− xixj)∏n

i=2

∏n
j=i(1− xjyn−j+i)

∏
1≤i≤j≤n(1− xi/yj)

= ΩBC .

To treat the type D, we define recursively the following operators (still acting on
y1, . . . , yn only) :

ΦD
2 = π1π

D
2 , ΦD

3 =
(
π2π

D
3

)
π1π2π

D
3 , . . . ,

ΦD
n =

(
ΦD

n−1

)+
π1π2 · · ·πn−1π

D
n , (23)

where the symbol ( )+ denotes the shift i → i + 1 of all indices inside the parentheses.
For example, taking n = 4, we have

ΦD
4 =

(
π3π

D
4

) (
π2π3π

D
4

) (
π1π2π3π

D
4

)
.

Lemma 5 Let
ΩA

n−1 =
∏

i+j≤n

(1− xiyj)−1.

Then
ΩA

n−1 ΦD
n = ΩD .
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Proof. The computation is similar to Lemma 4 except that the successive steps in the
computation of the image of ΩA

n−1 are of three possible types.

Step πn−1. The current function is (1 − xyn−1)−1f , where f is symmetrical in yn

and yn−1. Thanks to (15), we have

f

1− xyn−1
πn−1 =

f

(1− xyn)(1− xyn−1)
.

We have just created a factor (1− xyn)−1.

Step πD
n . The current function is (1− xyn−1)−1(1− xyn)−1f , where f is invariant

under τn. Thanks to (20), we have

f

(1− xyn−1)(1− xyn)
πD

n =
(1− x/yn−1)(1− x/yn)πD

n f

(1− xyn−1)(1− xyn)(1− x/yn−1)(1− x/yn)

=
(1− x2) f

(1− xyn−1)(1− xyn)(1− x/yn−1)(1− x/yn)

and the transformation is just multiplication by

(1− x2) (1− x/yn−1)−1(1− x/yn)−1 .

Step πi, i < n − 1. The current function is (1 − x′yi)−1(1 − x/yi+1)−1 f , where
f = fsi . Thanks to (18), one has

f

(1− x′yi)(1− x/yi+1)
πi =

(1− x′yi+1)(1− x/yi)πi f

(1− x′yi)(1− x′yi+1)(1− x/yi)(1− x/yi+1)

=
(1− xx′) f

(1− x′yi)(1− x′yi+1)(1− x/yi)(1− x/yi+1)
.

The function has been multiplied by

(1− xx′) (1− x′yi+1)−1(1− x/yi)−1 .

Finally, the product of all the above factors is

∏

1≤i≤j≤n−1

(1− xixj)
n−1∏

i=1

n−1∏

j=i

(1− xjyn−j+i)−1
n−1∏

i=1

n∏

j=i

(1− xi/yj)−1 ,

which is indeed equal to the quotient to ΩD/ΩA
n−1.

The preceding relations between the different kernels, and the function (1−x1y1)−1(1−
x1x2y1y2)−1 · · · allow to expand these kernels.
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Theorem 6 We have

ΩA =
∑

v∈Nn

K̂v(x) Kvω(y), (24)

ΩBC =
∑

v∈Nn

K̂v(x) KBC
−v (y), (25)

ΩD =
∑

v∈Nn: vn=0

K̂v(x) KD
−v(y), (26)

where xn is specialized to 0 in the last equation.

Proof. Note that

1
(1− x1y1)(1− x1x2y1y2) · · · (1− x1 · · ·xny1 · · · yn)

is the generating function of dominant monomials xλyλ in n indeterminates x1y1, . . . , xnyn.

From the definitions of Ξn and of key polynomials, one has
∑

λ

xλyλ Ξn =
∑

v∈Nn

K̂v(x) Kvω(y) ,

where the sum ranges over all partitions λ of length at most n. Thus, Proposition 3
entails (24).

The image of a key polynomial Kvn,...,v1(y) , v ∈ Nn under ΦBC is K−v(y). There-
fore, the image of the RHS of (24) under ΦBC is the RHS of (25), and Lemma 4 gives
(25).

Similarly, the image of Kvn−1,...,v1,0(y) under ΦD
n is K−v1,−v2,...,−vn−1,0(y). Therefore,

the image of the expansion of ΩA
n−1 under ΦD

n is the RHS of (26), and Lemma (5)
completes the proof of (26) and of the theorem.

Note that (24) has been established combinatorially in [8], using the Schensted
bijection and double crystal graphs.

Let us conclude this section by showing that the identities (24), (25) and (26)
imply the Cauchy formula and Littlewood’s formulas respectively. Indeed, π̂iπi = 0,
1 ≤ i < n, a fortiori, π̂iπω = 0, where ω is the maximal element of Sn. Therefore all
the summands in the right hand sides of (24), (25) and (26) are sent to 0 under πx

ω,
except the terms

K̂λ(x) πx
ω = Kλω(x) = sλ(x).

13



On the other hand,

∏

i+j≤n+1

(1− xiyj)−1 πx
ω =

n∏

i,j=1

(1− xiyj)−1

∏

1≤i≤j≤n

(1− xi/yj)−1 πx
ω =

n∏

i,j=1

(1− xi/yj)−1

Specializing β, we get Cauchy’s formula (1) and Littlewood’s identities (2), (3), as
images of (24), (25) and (26) respectively.

6 Scalar products

Bogdan Ion [5, 6] has shown how to obtain the two families of Demazure characters
K♥

v , K̂♥
v , ♥ = A,B, C, D, by degeneration of Macdonald polynomials. Degenerating

Cherednik’s scalar product [2], one gets a scalar product for each of the types ♥, with
respect to which the bases {K♥

v }, {K̂♥
v } are adjoint of each other. But instead of having

recourse to the elaborate theory of non symmetric Macdonald polynomials, we shall
directly define scalar products on polynomials, and check orthogonality properties by
simple recursions.

Recall that in the theory of Schubert polynomials [7], one defines a scalar product
by using the maximal divided difference; as a consequence divided differences are self-
adjoint. This scalar product can also be written as

(f, g) = CT


fg

∏

1≤i,j≤n

(x−1
i − x−1

j )


 ,

where CT means “constant term”.

It is easy to adapt this definition to our present needs, keeping the compatibility of
the scalar product with the isobaric divided differences.

One first replaces the Vandermonde determinant by Weyl’s denominators ∆B, ∆C

and ∆D multiplied by xρ. We add to their list

∆BC := ∆C
∏n

i=1
(1 + βxi)−1 , (27)

keeping ρBC = ρC = [n, . . . , 1].

14



Definition 7 For ♥ = B,C, BC, and for Laurent polynomials f, g in x1, . . . , xn, let

(f, g)♥ = CT
(
fg (−1)nxρ♥ ∆♥

)
, (28)

(f, g)D = CT
(
fg xρD

∆D
)

, (29)

(f, g)A = CT
(
f(x1, . . . , xn)g(x−1

n , . . . , x−1
1 )

∏

1≤i<j≤n

(1− xix
−1
j )

)
, (30)

where one expands (1 + βxi)−1 as a formal series in the variable xiβ.

For example, taking n = 2, one has

(f, g)A = CT
(
f(x1, x2) g(x−1

2 , x−1
1 ) (1− x1x

−1
2 )

)
,

(f, g)BC = CT

(
fg x2

1x2 (x1 − x−1
1 )(x2 − x−1

2 )(x1 − x2)(1− x−1
1 x−1

2 )
(1 + x1β)(1 + x2β)

)
,

(f, g)D = CT
(
fg x1 (x1 − x2)(1− 1

x1x2
)
)
.

Notice that the scalar product (f, g)BC does specialize to (f, g)B for β = 1, and to
(f, g)C for β = 0:

(f, g)B = CT
(
fgx

3/2
1 x

1/2
2 (x1/2

1 − x
−1/2
1 )(x1/2

2 − x
−1/2
2 )(x1 − x2)(1− 1

x1x2
)
)

= CT
(
fg x1(x1 − 1)(x2 − 1)(x1 − x2)(1− 1

x1x2
)
)
,

(f, g)C = CT

(
fg x2

1x2 (x1 − 1
x1

)(x2 − 1
x2

)(x1 − x2)(1− 1
x1x2

)
)

.

The crucial property of the scalar products (28) and (29) is the following compati-
bility with isobaric divided differences.

Theorem 8 Write πn = π♥n , π̂n = π̂♥n , for ♥ = B,C, BC, D. Then the operators πi

and π̂i (1 ≤ i ≤ n) are self-adjoint with respect to ( , )♥, i.e. for every pair of Laurent
polynomials f, g, one has

(
fπi , g

)♥ =
(
f , gπi

)♥
,

(
fπ̂i , g

)♥ =
(
f , gπ̂i

)♥
.
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In the case of type A, for 1 ≤ i ≤ n − 1, πi (resp. π̂i) is adjoint to πn−i (resp.
π̂n−i), i.e. for every pair of Laurent polynomials f, h, one has

(
fπi , h

)A =
(
f , hπn−i

)A
,

(
fπ̂i , h

)A =
(
f , hπ̂n−i

)A
.

Proof. To treat all types in a uniform way, we write h(x−1
n , . . . , x−1

1 ) = g(x1, . . . , xn).
Then (hπn−i)(x−1

n , . . . , x−1
1 ) = (gπi)(x1, . . . , xn), 1 ≤ i < n, and

(f, hπn−i)A = CT
(
f (gπi)

∏

1≤i<j≤n

(1− xix
−1
j )

)
.

For all types, and i < n, the scalar product can be written as

CT
(
CTxi,xi+1 (fg(1− xi/xi+1)♣)

)
,

where ♣ is a function symmetrical in xi, xi+1 and CTxi,xi+1 is the constant term in the
variables xi, xi+1 only.

Let us write f, g as f = f1 + xi+1f2, g = g1 + xi+1g2, with f1, f2, g1, g2 invariant
under si. The difference fπig − gπif = fπ̂ig − gπ̂if is equal to (f1g2 − g1f2)xi+1.
Therefore the constant term

CTxi,xi+1

(
(fπig − gπif) (1− xi/xi+1)♣

)

= CTxi,xi+1

(
(fπ̂ig − gπ̂if) (1− xi/xi+1)♣

)

= CTxi,xi+1

(
(xi+1 − xi) (f1g2 − g1f2)♣

)

is null, because the function inside parentheses is antisymmetrical in xi, xi+1.

In the case i = n, ♥ = BC, one writes

(f , g)BC = CT
(
CTxn

(
fg

xn

1 + βxn
(xn − xn

−1)♣
))

,

where♣ is a function invariant under sn. Therefore, to evaluate (fπ̂n , g)BC−(f , gπ̂n)BC =
(fπn , g)BC − (f , gπn)BC one can first compute

CTxn

(
(fπ̂ng − gπ̂nf)

xn

1 + βxn
(xn − x−1

n )♣
)

= CTxn

(
(gsnf − fsng)♣

)

which is null, because the function under parentheses is alternating under sn.

Similarly, for ♥ = D, neglecting a function invariant under τn, to determine
(fπ̂n , g)D − (f , gπ̂n)D = (fπn , g)D − (f , gπn)D, one can first compute

CTxn−1,xn

(
(fπ̂ng − gπ̂nf)(1− xn−1xn)

)
= CTxn−1,xn

(
f τng − gτnf

)

which is also null, because the function f τng − gτnf is alternating under τn. This
completes the proof.
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7 Orthogonality

Let us extend the usual dominance order on partitions [12] to an order on vectors in
Zn. Given two vectors u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn] in Zn, u ≤ v means
the following inequalities

u1 ≤ v1, u1 + u2 ≤ v1 + v2, u1 + u2 + u3 ≤ v1 + v2 + v3, . . . .

One also extends the notation |λ| to vectors: |v| := v1 + · · ·+ vn.

We give in the following lemmas some easy properties of the scalar products.

Lemma 9 For every dominant vector λ, for every group element w, then every mono-
mial xu appearing in the expansion of xλ πw is such that u ≥ λω♥.

Proof. By recursion on length, one sees that K♥
v is equal to xv +

∑
cv
uxu, with v < u.

Notice that for type B,C, D with n even, then λω♥ = −λ. When n is odd, then
λωD = [−λ1, . . . ,−λn−1, λn].

Lemma 10 For u, v ∈ Zn, ♥ 6= A,

(xv, xu)♥ 6= 0 implies that v ≤ −u .

For v, u ∈ Nn,

(xv, xu)A 6= 0 implies that v ≤ uω, and |v| = |u| .

Proof. Rewrite xρ∆C as the determinant

det
(
xj−i

i (x2n−2j+2
i − 1)

)n

i,j=1
.

If one expands the determinant by rows, then the powers of x1 are nonnegative, the
term x−1

2 is multiplied by strictly positive powers of x1, the term x−2
3 is mutliplied by

monomials in x1, x2 of degree at least 2, · · · . Therefore, the scalar product (xv, xu)C

can have a constant term only if

v1 + u1 ≤ 0, v1 + v2 + u1 + u2 ≤ 0, v1 + v2 + v3 + u1 + u2 + u3 ≤ 0, . . . ,

i.e. v ≤ −u.

For (xv, xu)♥, ♥ = B,D, the proof is similar. For (xv, xu)BC , we have multiplied
(xv, xu)C by formal series in x1, x2, . . . with positive exponents. Therefore (xv, xu)BC 6=
0 still implies v ≤ −u.
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For (xv, xu)A, rewrite the product
∏

1≤i<j≤n(1−xix
−1
j ) as the determinant det(xj−i

i )n
i,j=1.

One obtains that the scalar product (xv, xu)A has a constant term only if

v1 − un ≤ 0, v1 + v2 − un − un−1 ≤ 0, . . . ,

i.e. v ≤ uω. Moreover, to have a non-zero constant term, the total degree must be 0,
i.e. |v| = |u|.

Lemma 11 Let λ and µ be two dominant vectors, such that there exists w such that
(xλ πw , xµ)♥ 6= 0.

Then if ♥ = D and n is odd, one has λ1 = µ1, . . . , λn−1 = µn−1 and λn = −µn. In
all the other cases (♥ = D and n even, or ♥ = A,B, C, BC), one has λ = µ.

Proof. In case that (xλ πw , xµ)♥ 6= 0, there exists at least one monomial xv in xλ πw

such that (xv, xµ)♥ 6= 0. When ♥ 6= A, Lemma 10 implies that v ≤ −µ, and Lemma
9 implies that v ≥ λω♥. In final λω♥ ≤ −µ. Reversing the role λ and µ thanks to
Th. 8, one also has µω♥ ≤ −λ, hence µ = λ when ♥ = B,C, BC, D with even n. For
type D with n odd, the inequalities give λ1 = µ1 = −v1, . . . , λn−1 = µn−1 = −vn−1,
λn ≤ vn ≤ −µn. Such v can occur as an exponent in xλ πw only if vn = λn. However
the scalar product (xv, xµ)D = (xλn

n , xµn
n )D is non-zero only for λn + µn = 0, and this

gives the required relation between λ and µ for type D, n odd. The proof for type A
is similar to the proof for types B,C.

Notce that if all the components of λ are different, then w must be the maximal
element of the group.

Corollary 12 Let µ be a dominant vector, then

♥ 6= A , (Kv , xµ)♥ 6= 0 implies that v = −µ . (31)

In that case (K−µ , xµ)♥ = 1.

(Kv , xµ)A 6= 0 implies that v = µω . (32)

In that case (Kµω , xµ)A = 1.

For example, [2, 1, 1]ωD = [−2,−1, 1] = −[2, 1,−1],
(
KD
−2,−1,1, x

2,1,−1
)

= 1, and
[2, 1]ωD = [−2,−1],

(
KD
−2,−1, x

2,1
)

= 1.
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Lemma 13 Let ♥ 6= A and i : 1 ≤ i ≤ n. Given four polynomials f1, f2 = f1πi, g1,
g2 = g1π̂i, then (f1, g1)♥ = 0 & (f2, g1)♥ = 1, implies that

(f1, g2)♥ = 1 & (f2, g2)♥ = 0 .

Moreover, any space V stable under πi which is orthogonal to g1 is orthogonal to g2.

Proof. We have
(f2, g2)♥ = (f1πi , g1π̂i)♥ = (f1πiπ̂i, g1)♥ = 0 ,

and

(f1, g2)♥ = (f1, g1π̂i)♥ = (f1, g1πi − g1)♥ = (f1πi, g1)♥ = (f2, g1)♥ = 1 .

The last statement is immediate.

The next lemma has a similar proof.

Lemma 14 Given an integer i (1 ≤ i ≤ n− 1) and four polynomials f1, f2 = f1πn−i,
g1, g2 = g1π̂i, then (f1, g1)A = 0 & (f2, g1)A = 1 implies that

(f1, g2)A = 1 & (f2, g2)A = 0 .

Moreover, any space V stable under πn−i which is orthogonal to g1 is orthogonal to g2.

We are now ready to conclude.

Theorem 15 Let u, v ∈ Zn, and ♥ 6= A. Then

(Kv , K̂u)♥ = δ−v,u , (33)

where, as usual, δ−v,u is the Kronecker delta.

In the case of type A, for u, v ∈ Nn, we have

(Kv , K̂u)A = δvω,u . (34)

Proof. When u is dominant, (31) implies that (Kv , xu)♥ = δ−v,u. By induction on
length, suppose that u is such that K̂u is orthogonal to every Kv, except (K−u, K̂u)♥ =
1. Take i such that the linear span of K̂u, K̂uπ̂i is two-dimensional. Then one uses
Lemma 13, with f1 = K−usi , f2 = K−u = f1πi, g1 = K̂u, g2 = K̂usi = g1π̂i, and
V generated by all Kv, v 6= −u,−usi, to conclude that K̂usi is orthogonal to all Kv,
except for (K−usi , K̂usi)

♥ = 1.
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For type A, one replaces Lemma 13 by Lemma 14 to arrive to a similar conclusion.
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