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Abstract

Let G be an additive, finite abelian group. The critical number cr(G) of G is the
smallest positive integer ℓ such that for every subset S ⊂ G \ {0} with |S| ≥ ℓ
the following holds: Every element of G can be written as a nonempty sum of
distinct elements from S. The critical number was first studied by P. Erdős
and H. Heilbronn in 1964, and due to the contributions of many authors the
value of cr(G) is known for all finite abelian groups G except for G ∼= Z/pqZ

where p, q are primes such that p+ ⌊2√p − 2⌋+1 < q < 2p. We determine that
cr(G) = p + q − 2 for such groups.
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1. Introduction and Main Results

Let G be an additive, finite abelian group. The critical number cr(G) of G
is the smallest positive integer ℓ such that every subset S ⊂ G\{0} with |S| ≥ ℓ
has the following property: every element of G can be written as a nonempty
sum of distinct elements from S.
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The critical number was first studied by P. Erdős and H. Heilbronn (see [4])
for cyclic groups of prime order in 1964. After main contributions by H.B. Mann,
J.E. Olson, G.T. Diderrich, Y.F. Wou, J.A. Dias da Silva, Y. ould Hamidoune
and W. Gao, the precise value of cr(G) (in terms of the group invariants of G)
was determined, apart from cyclic groups of order pq where p and q are primes
with p+ ⌊2√p − 2⌋+1 < q < 2p. We settle this remaining case in the following
Theorem 1.1. Its proof is based on ideas of G.T. Diderrich (developed in his
work on cyclic groups of order pq) and on the solution of the Erdős-Heilbronn
Conjecture by J.A. Dias da Silva and Y. ould Hamidoune.

Theorem 1.1. Let G be a cyclic group of order pq where p, q are primes with

p + ⌊2√p − 2⌋ + 1 < q < 2p. Then cr(G) = p + q − 2.

We consequently have the following determination of the value of the critical
number for all finite abelian groups. Apart from Theorem 1.1, it is based on the
fundamental work of many authors, and at the end of Section 2 we will provide
detailed references to all contributions. Note that, by definition, |G| ≤ 2 implies
that cr(G) = |G|.

Theorem 1.2. Let G be a finite abelian group of order |G| ≥ 3, and let p denote

the smallest prime divisor of |G|.
1. If |G| = p, then cr(G) = ⌊2√p − 2⌋.
2. In each of the following cases we have cr(G) = |G|

p
+ p − 1 :

• G is isomorphic to one of the following groups : C3 ⊕ C3, C2 ⊕ C2,

C4, C6, C2 ⊕ C4, C8.

• |G|/p is an odd prime with 2 < p < |G|
p

≤ p + ⌊2√p − 2⌋ + 1.

3. In all other cases we have cr(G) = |G|
p

+ p − 2.

The work on the precise value of the critical number is complemented by
investigations on the structure of sets S ⊂ G \ {0} with |S| ≤ cr(G) and which
have the property that every group element can be written as a nonempty sum
of distinct elements from S. We refer to recent work of Y. ould Hamidoune,
A.S. Lladó and O. Serra, see [6] and [11].

Throughout this article, let G be an additively written, finite abelian group.

2. Notation and tools from Additive Group Theory

Let N denote the set of positive integers, P ⊂ N the set of prime numbers, and
let N0 = N∪{0}. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}.
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For n ∈ N, let Cn denote a cyclic group with n elements. Throughout, all
abelian groups will be written additively.

Let A,B ⊂ G be nonempty subsets. Then A + B = {a + b | a ∈ A, b ∈
B} denotes their sumset. The set A is called an arithmetic progression with

difference d ∈ G if there is some a ∈ G such that A = {a + νd | ν ∈ [0, |A| − 1]}.
If A = {a1, . . . , aℓ} and k ∈ N, we denote the restricted sumset by

Σk(A) = {
∑

i∈I

ai | I ⊂ [1, ℓ] with |I| = k} and write Σ(A) =
⋃

k≥1

Σk(A) .

In particular, A = ∅ if and only if Σ(A) = ∅, and for convenience we set
Σ0(A) = {0}. Thus in more technical terms, the critical number cr(G) is the
smallest integer ℓ ∈ N such that every subset S ⊂ G \ {0} with |S| ≥ ℓ satisfies
Σ(S) = G.

Now we provide the background necessary to prove Theorem 1.1. We start
with the classical addition theorem of Cauchy-Davenport (see [7, Corollary
5.2.8]).

Theorem 2.1. (Cauchy-Davenport) Let G be prime cyclic of order p, s ∈ N≥2,
and A1, . . . , As ⊂ G nonempty subsets. Then

|A1 + . . . + As| ≥ min
{

p,

s
∑

i=1

|Ai| − s + 1
}

.

In Theorem 2.1 of [2] and a following remark, G.T. Diderrich improved the
Cauchy-Davenport bound under extra structure assumptions on A1, . . . , As.

Theorem 2.2. (Diderrich) Let G be prime cyclic of order p, s ∈ N≥2 and

A1, . . . , As ⊂ G nonempty subsets such that all subsets, apart from one possible

exception, are arithmetic progressions with pairwise distinct nonzero differences.

Then

|A1 + . . . + As| ≥ min
{

p,

s
∑

i=1

|Ai| − 1
}

.

The Theorem of Dias da Silva and Hamidoune settled the Erdős-Heilbronn
Conjecture on restricted sumsets (see [1] for the original paper, and also [10,
Theorems 3.4 and 3.8]).

Theorem 2.3. (Dias da Silva-Hamidoune) Let G be prime cyclic of order p,
S ⊂ G a subset and k ∈ [1, |S|].

1. |Σk(S)| ≥ min{p, k(|S| − k) + 1}.
2. If |S| = ⌊√4p − 7⌋ and k = ⌊|S|/2⌋, then Σk(S) = G.
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Clearly, the second item of 2.3 is a special case of the first item. Simple
calculations show that k ∈ [2, |S|−1], then k(|S|−k)+1 ≥ |S| whence |Σk(S)| ≥
|S|. We use these observations throughout the paper.

For the convenience of the reader we offer a proof of Theorem 1.2 based on
Theorem 1.1 and on the fundamental work of prior authors, which is scattered
in the literature and for which we offer precise references. Moreover, we recall
the classical example showing that for |G| > p we have

cr(G) ≥ |G|
p

+ p − 2 , where p is the smallest prime divisor of |G| .

Let H ⊂ G be a subgroup with (G : H) = p. Then there exist h1, . . . , hp−2 ∈
G \H such that h1 +H = hi +H for all i ∈ [1, p− 2]. Then for S = (H \ {0})∪
{h1, . . . , hp−2} we have Σ(S) ⊂ H ∪ (h1 +H)∪ . . .∪

(

(p−2)h1 +H
)

. This shows
that |Σ(S)| ≤ (p − 1)|H| < |G| and thus cr(G) ≥ |S| + 1 = |G|/p + p − 2.

Proof of Theorem 1.2, based on 1.1. Let |G| ≥ 3 and p be the smallest prime
divisor of |G|.

CASE 1: G is cyclic of order p.
Note, since p ≥ 3, we have

√
4p − 7 /∈ N and thus ⌊√4p − 7⌋ = ⌊√4p − 8⌋ =

⌊2√p − 2⌋. Thus Theorem 2.3 by Dias da Silva and Hamidoune shows that
⌊2√p − 2⌋ is an upper bound (see [1, Corollary 4.2] for details), and simple
examples show that the bound is sharp (see [1, Example 4.2] and [8, Theorem
7]).

CASE 2: G = Cp ⊕ Cp with p ≥ 3.
H.B. Mann and J.E. Olson showed that cr(G) ≤ 2p − 1 (with equality for

p = 3), and after that cr(G) = 2p − 2 for all p ≥ 5 was proved by H.B. Mann
and Ying Fou Wou (see [9]).

CASE 3: G = Cp ⊕ Cq for a prime q with 3 ≤ p < q.
The case q ≤ p + ⌊2√p − 2⌋+ 1 was settled by J.R. Griggs (see [8, Theorem

4]).
The case p + ⌊2√p − 2⌋+ 1 < q < 2p follows from the present Theorem 1.1.
The case q ≥ 2p + 1 was settled by G.T. Diderrich (see [2, Theorem 1.0]).

CASE 4: |G| is even.
This case was settled by G.T. Diderrich and H.B. Mann in [3], see also [8,

Theorem 5] for a self-contained, simplified proof.

CASE 5: |G| is odd and |G|/p is composite.
Then cr(G) = |G|/p+p−2 by W. Gao and Y. ould Hamidoune (see [5]).
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3. The setting and the strategy of the proof

First, we fix our notations which remain valid throughout the rest of the
paper, and then we outline the strategy of the proof of Theorem 1.1.

Let G be cyclic of order pq where p, q are primes with p+⌊2√p − 2⌋+1 < q <
2p (which implies that p ≥ 7) and let S ⊂ G\{0} be a subset with |S| = p+q−2.

Let H,K ⊂ G be the subgroups with (G : H) = p and (G : K) = q. Let
s = |{a + H ∈ G/H | a ∈ S \ H}| and pick a1, . . . , as ∈ S \ H such that
|{ai + H | i ∈ [1, s]}| = s. We set S0 = H ∩ S and Si = (ai + H) ∩ S for all
i ∈ [1, s].

Suppose that a1, . . . , as and t, r, n ∈ N0 are chosen in such a way that

• |S1| ≥ . . . ≥ |St| ≥ 3,

• |St+1| = . . . = |St+r| = 1 and

• |St+r+1| = . . . = |St+r+u| = 2.

Notice that

s = t + r + u ≤ p − 1 and |S0| +
t

∑

i=1

|Si| + r + 2u = p + q − 2 = |S| .

For an element x ∈ G we consider a representation

x + H =

s
∑

i=1

fi(ai + H) (∗)

with fi ∈ [0, |Si|] for all i ∈ [1, s] and f1 + . . . + fs > 0. If fi ∈ {0, |Si|}, then fi

is called a collapsed coefficient and

C(∗) =

s
∑

i=1,fi∈{0,|Si|}

(|Si| − 1)

is called the collapse of the representation (∗). We say that G/H has a repre-

sentation with collapse C ∈ N0 if every x ∈ G has a representation (∗) and C is
the maximum of the collapses C(∗).

We provide an example to illustrate the definition of the collapse of a repre-
sentation.

Example 3.1. Following the notation introduced above, consider the cyclic
group G = Z/91Z and the subgroup H of order 13. Take

S = {2, 5, 7, 8, 10, 13, 15, 21, 24, 34, 37, 40, 43, 46, 63, 66, 71, 72},

and fix a1 = 8, a2 = 2, a3 = 10, a4 = 46, a5 = 5, a6 = 13.
Note that |S0| = 3, |S1| = 4, |S2| = 3, |S3| = 3, |S4| = 1, |S5| = 2, and

|S6| = 2.
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We may represent 1 by

1 = 1(8) + 0(2) + 0(10) + 0(46) + 0(5) + 0(13),

noting that each of the five zero-coefficients are collapsed so that the collapse
of the representation is 2 + 2 + 0 + 1 + 1 = 6.

We may also represent 1 by

1 = 2(8) + 1(2) + 1(10) + 1(46) + 1(5) + 1(13),

and this representation has only one collapsed coefficient, namely the coefficient
1 of 46 since |S4| = 1. The collapse of this representation is then 0.

As will be seen later, representations with small collapse are advantageous
for our approach.

The strategy of the proof is as follows. First we settle the very simple case
where |S0| ≥ ⌊2√q − 2⌋. After supposing that |S0| ≤ ⌊2√q − 2⌋ − 1 we follow
the ideas of G.T. Diderrich and proceed in two steps:

1. First, we show that G/H has a representation with some collapse C ∈ N0

(see Lemmas 4.3, 4.2, 4.7).

2. For x ∈ G and a representation (∗) we show that

|(Σ(S0) ∪ {0}) + Σf1
(S1) + ... + Σfs

(Ss)| ≥ q .

Suppose that 1. and 2. are settled. Notice that

(Σ(S0) ∪ {0}) + Σf1
(S1) + ... + Σfs

(Ss) ⊂ H + f1(a1 + H) + ... + fs(as + H)

= H +

s
∑

i=1

fi(ai + H) = x + H .

Thus 2. implies that we have equality in the above inclusion. Therefore

x + H = (Σ(S0) ∪ {0}) + Σf1
(S1) + ... + Σfs

(Ss) ⊂ Σ(S) ,

and together with 1. we obtain G = Σ(S).

4. Proof of Theorem 1.1

We start with a simple special case.

Proposition 4.1. If |S0| ≥ ⌊2√q − 2⌋, then Σ(S) = G.
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Proof. Suppose that |S0| ≥ ⌊2√q − 2⌋. Since, by Theorem 1.2.1, cr(H) =
⌊2√q − 2⌋, it follows that Σ(S0) = H. Since |S \H| ≥ p+q−2− (q−1) = p−1,
we can choose p− 1 distinct elements b1, · · · , bp−1 ∈ S \H. For i ∈ [1, p− 1] we
set Wi = {0 + H, bi + H} ⊂ G/H, and by Theorem 2.1 we obtain that

|Σ(W1 + . . . + Wp−1)| ≥ min{p, 2(p − 1) − (p − 1) + 1} = p .

Thus it follows that

Σ(S) ⊃ Σ(S0) +
(

Σ({b1, . . . , bp−1}) ∪ {0}
)

= G .

Hence from now on we may assume that |S0| ≤ cr(H) − 1, and we proceed
in the two steps described above.

Lemma 4.2. If t ≥ ⌊2√p − 2⌋, then G/H has a representation with collapse

C = 0.

Proof. By Theorem 1.2.1, we have t ≥ ⌊2√p − 2⌋ = cr(G/H) and thus Σ({a1 +
H, . . . , at + H}) = G/H. Pick some x ∈ G. Then there exists a nonempty
subset I ⊂ [1, t] such that

x − (a1 + . . . + as) + H =
∑

i∈I

(ai + H)

and hence

x + H =
∑

i∈I

2(ai + H) +
∑

i∈[1,t]\I

(ai + H) +
s

∑

i=t+1

(ai + H) . (∗∗)

Since |Si| ≥ 3 for all i ∈ [1, t], the representation (∗∗) has collapse C(∗∗) = 0.

Lemma 4.3. If |S0| ≤ ⌊2√q − 2⌋ − 1, then G/H has a representation with

collapse C ≤ 1.

Proof. Suppose that |S0| ≤ ⌊2√q − 2⌋ − 1. We construct sets A1, . . . , At+r and
D as follows:

Ai = {ai + H, . . . , (|Si| − 1)ai + H} ⊂ G/H for i ∈ [1, t];

Ai = {H, ai + H} ⊂ G/H for i ∈ [t + 1, t + r];

D = {b0, b0 − b1, b0 − b2, . . . , b0 − bu} ⊂ G/H

where bj = at+r+j + H for j ∈ [1, u], and b0 =

u
∑

j=1

bj + H. We assert that

D +
∑t+r

i=1 Ai = G/H. Clearly, this implies that G/H has a representation with
collapse C ≤ 1.
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Assume to the contrary, that D +
∑t+r

i=1 Ai ( G/H. Applying the Cauchy-
Davenport Theorem and Theorem 2.2, we have

|D +

t+r
∑

i=1

Ai| ≥ |D| + |
t+r
∑

i=1

Ai| − 1

≥ |D| +
t+r
∑

i=1

|Ai| − 2

= u +
t

∑

i=1

|Si| − t + 2r − 1 ,

and hence

u +

t
∑

i=1

|Si| − t + 2r − 1 ≤ p − 1 . (∗ ∗ ∗)

Since by our constructions,

p + q − 2 = |S0| +
t

∑

i=1

|Si| + r + 2u ,

we can solve this equation for
∑t

i=1 |Si|, yielding

u + (p + q − 2 − |S0| − r − 2u) − t + 2r − 1 ≤ p − 1

q − u − t + r ≤ |S0| + 2

q − (u + t + r) + 2r ≤ |S0| + 2.

Therefore we have

q − (u + t + r) + (2r − 1) ≤ |S0| + 1 .

We distinguish two cases.

CASE 1: |S0| ≤ ⌊2√q − 2⌋ − 2 or s ≤ p − 2 or r ≥ 1.
Using u + t + r = s ≤ p − 1 and the assumption of CASE 1 we obtain

q − p + 1 ≤ ⌊2
√

q − 2⌋ .

Here, since q − p + 1 is positive, squaring both sides preserves the inequality,
giving us

(q − p)2 + 2(q − p) + 1 ≤ 4(q − 2)

q2 − 2pq + p2 + 2q − 2p + 1 ≤ 4q − 8

q2 − 2pq − 2q + p2 − 2p + 9 ≤ 0

q2 − (2p + 2)q + (p2 − 2p + 9) ≤ 0.
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By considering this as a quadratic in terms of q, we can apply the quadratic
formula to find that

q ≤ p + 1 + 2
√

p − 2 .

Since q and p + 1 are integers, we then have

q ≤ p + 1 + ⌊2
√

p − 2⌋ ,

which is a contradiction to the original restrictions of p+⌊2√p − 2⌋+1 < q < 2p.

CASE 2: |S0| = ⌊2√q − 2⌋ − 1, s = p − 1 and r = 0.
Using p − 1 = s = t + r + u = t + u and (∗ ∗ ∗) we obtain that

p − 1 + (t − 1) = u + 2t − 1 ≤ u +
t

∑

i=1

|Si| − t − 1 ≤ p − 1 ,

whence t ≤ 1.
If t = 0, then p = u + 1 = |D| and hence D = G/H, a contradiction.
If t = 1, then u = p− 2 and (looking back at the beginning of the proof) we

get

p−1 ≥ |D+

t+r
∑

i=1

Ai| = |D+A1| ≥ |D|+|A1|−1 = (u+1)+(|S1|−1)−1 = u+|S1|−1 ,

and hence |S1| ≤ 2, a contradiction.

We require the following technical Lemma.

Lemma 4.4. Suppose that G/H has a representation with collapse C ∈ N0. If

(p + q − 2) + max{1, |S0| − 1}−C − s ≥ q, then for every x ∈ G with C(∗) ≤ C
we have | (Σ(S0) ∪ {0}) +

∑s

i=1 Σfi
(Si)| ≥ q.

Proof. For any subset A ⊂ G we set Ā = {a+K | a ∈ A} ⊂ G/K where K ⊂ G
is the subgroup with (G :K) = q. Clearly we have Σk(A) = Σk(A) for all k ∈ N0,
|A| ≥ |A| and if x ∈ G and A ⊂ x + H, then |A| = |A|. If |Σ(S0) ∪ {0}| ≥ q,
then the statement of the Lemma follows. Suppose that |Σ(S0 ∪ {0})| < q.

We assert that |Σ(S0) ∪ {0}| ≥ |S0| + max{1, |S0| − 1}. If |S0| ≤ 1, then
this is clear. Suppose that S0 = {z1 + K, . . . , zλ + K} with z1, . . . , zλ ∈ G and
λ ≥ 2. Then Σ(S0) ∪ {0} = {0, z1 + K} + . . . + {0, zλ + K}, and Theorem 2.2
implies that

|Σ(S0) ∪ {0}| ≥ |Σ(S0) ∪ {0}| ≥ min{q, 2λ − 1} = 2|S0| − 1 .

Let x ∈ G with representation (∗) and let i ∈ [1, s]. If fi is a collapsed coefficient,
then |Σfi

(Si)| = |Σfi
(Si)| = 1. If fi is not a collapsed coefficient, then the

observation after Theorem 2.3 gives us

|Σfi
(Si)| ≥ |Σfi

(Si)| ≥ |Si| = |Si| .
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Thus we obtain

|Σ(S0) ∪ {0}| +
s

∑

i=1

|Σfi
(Si)| ≥

s
∑

i=0

|Si| + max{1, |S0| − 1} − C ,

and by Theorem 2.1 we have

| (Σ(S0) ∪ {0}) +

s
∑

i=1

Σfi
(Si)| ≥ |

(

Σ(S0) ∪ {0}
)

+

s
∑

i=1

Σfi
(Si)|

≥ min{q, |Σ(S0) ∪ {0}| +
s

∑

i=1

|Σfi
(Si)| − s}

≥ min{q,
s

∑

i=0

|Si| + max{1, |S0| − 1} − C − s}

= min{q, p + q − 2 + max{1, |S0| − 1} − C − s} .

So if p + q − 2 + max{1, |S0| − 1} − C − s ≥ q, then the assertion follows.

Proposition 4.5. If 3 ≤ |S0| ≤ ⌊2√q − 2⌋ − 1, then Σ(S) = G.

Proof. Since |S0| ≤ ⌊2√q − 2⌋−1, Lemma 4.3 gives us a representation of G/H
with collapse C ≤ 1. Notice that since |S0| ≥ 3, we have p+q−2+max{1, |S0|−
1} − C − s ≥ p + q − 2 + 2 − 1 − (p − 1) = q. Thus the assertion follows from
Lemma 4.4.

Now consider the case |S0| ≤ 2, we contemplate two subcases. First take the
case where |S1| ≤ 3.

Proposition 4.6. If |S0| ≤ 2 and |S1| ≤ 3, then Σ(S) = G.

Proof. Since q ≥ 5, we have |S0| ≤ 2 < ⌊2√q − 2⌋. Thus Lemma 4.3 implies
that there is a representation of G/H with collapse C ≤ 1. Thus it remains to
verify the assumption of Lemma 4.4, and thus we have to show that

(p + q − 2) + max{1, |S0| − 1} − C − s ≥ q .

Note that |S0| ≤ 2 implies that max{1, |S0| − 1} = 1. We have (p + q − 2) +
max{1, |S0| − 1} − C − s ≥ q for s ≤ p − 2. Consider the case s = p − 1. Since

p + q − 2 = |S0| +
t

∑

i=1

|Si| + r + 2u

≤ 2 + 3t + r + 2u

= 2 + s + 2t + u

= p + 1 + 2t + u ,
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it follows that
q − 2 ≤ 1 + 2t + u

= 1 + t + (t + u + r) − r

= 1 + t + (p − 1) − r

= t + p − r.

Since q ≥ p + ⌊2√p − 2⌋ + 2, we see that

t ≥ q − p − 2

≥ ⌊2
√

p − 2⌋.

Consequently, Lemma 4.2 implies that we have collapse C = 0. Putting all
together we obtain

(p + q − 2) + max{1, |S0| − 1} − C − s ≥ (p + q − 2) + 1 − 0 − (p − 1) = q ,

and hence the assumption of Lemma 4.4 is satisfied.

Finally, we address the remaining case where |S0| ≤ 2 and |S1| ≥ 4.

Lemma 4.7. If |S0| ≤ 2 and |S1| ≥ 4, then for every x ∈ G there is a repre-

sentation (∗) of x + H with f1 ∈ [2, |S1| − 2].

Proof. We argue as in Lemma 4.3. Suppose that |S0| ≤ 2 and |S1| ≥ 4. We
construct sets A1, . . . , At+r and D as follows:

A1 = {2a1 + H, . . . , (|S1| − 2)a1 + H} ⊂ G/H ,

Ai = {ai + H, . . . , (|Si| − 1)ai + H} ⊂ G/H for i ∈ [2, t];

Ai = {H, ai + H} ⊂ G/H for i ∈ [t + 1, t + r];

D = {b0, b0 − b1, b0 − b2, . . . , b0 − bu} ⊂ G/H

where bj = at+r+j +H for j ∈ [1, u], and b0 =

u
∑

j=1

bj +H. It suffices to show that

D +
∑t+r

i=1 Ai = G/H. Applying the Cauchy-Davenport Theorem and Theorem
2.2, we have

|D +

t+r
∑

i=1

Ai| ≥ min{p, |D| + |
t+r
∑

i=1

Ai| − 1}

≥ min{p, |D| +
t+r
∑

i=1

|Ai| − 2}

= min{p, u +

t
∑

i=1

|Si| − t + 2r − 3} .
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Recall that p + q− 2 = |S0|+
∑t

i=1 |Si|+ r + 2u implies
∑t

i=1 |Si| = p + q− 2−
|S0| − r − 2u. Now we have

u +

t
∑

i=1

|Si| − t + 2r − 3 = u + (p + q − 2 − |S0| − r − 2u) − t + 2r − 3

= p + q − 5 − |S0| + r − u − t

= p + q − 5 − |S0| + r − (s − r)

= p + q − 5 − |S0| + 2r − s.

Since s ≤ p − 1, we see that

p + q − 5 − |S0| + 2r − s ≥ p + q − 5 − |S0| + 2r − p + 1

= q − 4 − |S0| + 2r

≥ p + ⌊2
√

p − 2⌋ − 2 − |S0| + 2r

for the given values of primes p, q. This gives us

u +

t
∑

i=1

|Si| − t + 2r − 3 ≥ p + ⌊2
√

p − 2⌋ − 2 − |S0| + 2r

≥ p + ⌊2
√

p − 2⌋ − 4 + 2r

≥ p + ⌊2
√

p − 2⌋ − 4

≥ p .

Proposition 4.8. If |S0| ≤ 2 and |S1| ≥ 4, then Σ(S) = G.

Proof. By Lemma 4.7 it remains to show that

| (Σ(S0) ∪ {0}) +
s

∑

i=1

Σfi
(S)| ≥ q .

As in the proof of Lemma 4.4, we set, for any subset A ⊂ G, Ā = {a + K | a ∈
A} ⊂ G/K , and we use all observations made before. Theorem 2.1 implies that

|
(

Σ(S0) ∪ {0}
)

+

s
∑

i=1

Σfi
(Si)| ≥ min{q, |Σ(S0)∪{0}|+|Σf1

(S1)|+
s

∑

i=2

|Σfi
(Si)|−s} .

By Lemma 4.7 we have f1 ∈ [2, |S1| − 2], and by Theorem 2.3 we get

|Σf1
(S̄1)| ≥ min{q, f1|S1| − f2

1 + 1} .
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To find a lower bound on this inequality, we consider the minimum value of
the quadratic expression f1|S1| − f2

1 + 1 over the interval [2, |S1| − 2]. Since
the leading term is negative, the minimum value will occur when f1 = 2 or
f1 = |S1| − 2. Hence f1|S1| − f2

1 + 1 ≥ 2|S1| − 3 ≥ |S1| + 1 because |S1| ≥ 4.
Now we have

| (Σ(S0) ∪ {0}) +

s
∑

i=1

Σfi
(S)| ≥ |

(

Σ(S0) ∪ {0}
)

+

s
∑

i=1

Σfi
(Si)|

≥ min{q, |Σ(S0) ∪ {0}| + |Σf1
(S1)| +

s
∑

i=2

|Σfi
(Si)| − s}

≥ min{q, |Σ(S0) ∪ {0}| + (|S1| + 1) +

s
∑

i=2

|Si| − 1 − s} ,

where we subtract one for a possible collapsed coefficient yielding Σfi
(Si) = {0}

for some i ∈ [2, s]. Therefore we obtain that

| (Σ(S0) ∪ {0}) +
s

∑

i=1

Σfi
(S)| ≥ min{q, (|S0| + max{1, |S0| − 1} + (|S1| + 1) +

s
∑

i=2

|Si| − 1 − s}

= min{q, p + q − 2 + max{1, |S0| − 1} − s}
≥ min{q, p + q − 2 + 1 − (p − 1)}
= q .

Now the proof of Theorem 1.1 follows by a simple combination of the previous
propositions.

Proof of Theorem 1.1. Let G be cyclic of order pq where p, q are primes with
p+⌊2√p − 2⌋+1 < q < 2p, and let S ⊂ G\{0} be a subset with |S| = p+q−2.
We use all notations as introduced at the beginning of Section 3.

If |S0| ≥ ⌊2√q − 2⌋, then Proposition 4.1 implies that Σ(S) = G.
If 3 ≤ |S0| ≤ ⌊2√q − 2⌋ − 1, then Proposition 4.5 yields that Σ(S) = G.
Consider now the case |S0| ≤ 2. If additionally we have |S1| ≤ 3, then

Proposition 4.6 yields that Σ(S) = G. On the other hand, if |S1| ≥ 4, then
Proposition 4.8 yields that Σ(S) = G.
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